UNIVERSITY OF CAMBRIDGE

Isaac Newton Institute for Mathematical Sciences

Annual Report for 1993-94

July 1995

ISAAC NEWTON INSTITUTE FOR MATHEMATICAL SCIENCES

Annual Report for 1993-94

-

	Director's Report1	
	ntroduction2	
1.	Founding of the Institute	
2.	New Developments and Summary 1993-1994 5 2.1 Young Scientists 5	
21	2.2Hewlett-Packard62.3Leverhulme Trust62.4Office of the Year Award62.5Princeton University Press Series62.6Cambridge University Press Series72.7Visits Made to other UK Universities72.8Staffing72.9SERC/EPSRC72.10Institute Finances72.11Professor Peter Goddard7	
3.	Management and Staff	
4.	Programme Structure and Organisation134.1General134.2Scientific Steering Committee144.3Programmes154.4Scientific Policy16	
5.	Facilities 19 5.1 Building 19 5.2 Computing Facilities 20 5.3 Library 21 5.4 Housing 22 5.5 Publicity 22 5.6 Merchandise 23	
6.	Fund-raising and Grant Aid256.1SERC/EPSRC Rolling Grant256.2Hewlett-Packard266.3Isaac Newton Trust266.4St John's College266.5NM Rothschild and Sons26	

	6.6	Leverhulme Trust	.26
	6.7 Centre Nationale de Recherches Scientifiques (CNRS)		. 26
	6.8	Gabriella and Paul Rosenbaum Foundation	. 26
	6.9	EU	.26
	6.10	NATO Advanced Study Institutes (ASIs)	
	6.11	Prudential Distinguished Fellowship	.27
	6.12	LMS	. 27
6.13 DAIWA Anglo-Japanese Foundation		DAIWA Anglo-Japanese Foundation	. 27
	6.14 Institute of Physics Fellowship		. 27
	6.15	Jesus College	. 27
	6.16	Cambridge Philosophical Society	. 27
7.	Finance	es	. 29
8.	Program	mme Reports	. 33
9.	Append	lices	51

Cover Photograph and Interior of Institute (p.24): J Austin

DIRECTOR'S REPORT

After the frenetic activity of setting up the Newton Institute, launching it and dealing with initial teething problems, the Institute has now settled down to a more stable mode. The second full year of operation saw another four successful programmes continuing our emphasis on a broad coverage of interdisciplinary activities. In addition to mathematicians of all types, we have involved engineers, biologists, computer scientists, physiologists and physicists. The unique contribution of the Institute lies in this universal approach.

We passed one essential hurdle when the SERC rolling grant was carried forward (by the new EPSRC). The review committee gave the Institute the highest possible grading.

Our relations with industry will be significantly enhanced by a new joint venture with Hewlett-Packard which will establish a link with their new Basic Research Institute in Mathematical Sciences. It will also bring tangible benefits to the Institute in terms of computer hardware.

Our international links are being further strengthened with increasing support from the European Union and new opportunities in Japan and elsewhere. Our international reputation is now fully established and the many visitors we have had from all over the world are our best ambassadors.

The Leverhulme Trust awarded a substantial grant to aid scientists from the former Soviet Union and Eastern Europe to participate in the work of the Newton Institute.

As a flagship for mathematics in Cambridge, we are the starting point for the ambitious development of a 'Mathematical Campus' on the adjacent site. In particular, the Institute has helped to foster links between Pure and Applied Mathematics.

Peter Goddard, the first Deputy Director and prime mover in the establishment and development of the Institute, retired at the end of September 1994 on taking up the Mastership of St John's College. He leaves behind a thriving Institute, a tribute to his judgment, perseverance and dedication. We welcome Professor John Wright from the University of Reading as his successor.

Michael Atiyah

INTRODUCTION

The fundamental purpose of the Newton Institute is to foster research in the Mathematical Sciences of the highest international standing, Mathematical Sciences being interpreted extremely broadly.

The Director, Sir Michael Atiyah, is advised on scientific policy by a committee of distinguished scientists, the Scientific Steering Committee. All of its members, apart from the Director, are external to Cambridge.

The range of sciences in which mathematics plays a significant part is, of course, too large for an Institute of modest size to cover adequately. The Scientific Steering Committee has to make difficult choices when assessing which research programmes to recommend. Many proposals of great scientific merit and timeliness are received. One of the aims of the Newton Institute is to break down the barriers which arise from the departmental structure of most universities. A major consideration when judging the appropriateness of a proposed research programme is the extent to which it is "interdisciplinary". Usually this will involve bringing together research workers with very different backgrounds and expertise.

Even the design of the building, with no corridors and all offices opening off central meeting areas, encourages visiting researchers to interact fruitfully.

The Institute's current method of working is to run parallel six-month research programmes from January to June and from July to December, that is four programmes each year.

Research in mathematics, as in many other sciences, tends to consist of major breakthroughs, with rapid exploitation of new ideas, followed by long periods of consolidation. For the Newton Institute to be an exciting and important world centre it has to be involved with the breakthroughs rather than the consolidation.

The UK Scientific Community is served by the Newton Institute in two major ways. First, UK experts are given the opportunity to work and collaborate with the best overseas workers in their field over an extended period. Secondly, other UK scientists, particularly young people, are encouraged to visit the Institute to be introduced to exciting new research developments by some of the world's greatest mathematical scientists.

1. FOUNDING OF THE INSTITUTE

The inauguration of the Institute on 3 July 1992 was the culmination of four years' preparation. For a number of years and for a variety of reasons, a need had been felt for a UK national institute in theoretical physics and mathematics. Efforts had been made outside Cambridge to initiate such a development but little concrete progress had been made. A crucial advantage which made the development seem feasible to the group which started to develop the project in Cambridge in June 1988 was the possible availability of "pump-priming" financial support from Cambridge Colleges.

After some preliminary planning, tentative approaches for funding were made to St Jóhn's College and Trinity College in October 1988. In March 1989 St John's agreed in principle to construct a building on land the College owned at Clarkson Road in West Cambridge to house a Mathematical Sciences Research Institute. The building would be provided rent free for the first five years, subject to satisfactory evidence being received that funds to meet the running costs of the Institute for that period would be available from other sources, and subject to the rental value of the building being no more than about £150,000 per year.

The proposed institute had been conceived from the start as a national institute covering the whole broad range of the mathematical sciences. It was therefore decided to approach various appropriate national bodies. An important opportunity for this was provided by the retreat organised by the London Mathematical Society (LMS) in May 1989 at the Isle of Thorns which was attended by representatives from the Edinburgh Mathematical Society, the Institute of Mathematics and its Applications, the Royal Statistical Society, a number of different universities and Professor AFM Smith (then Chairman of the Science and Engineering Research Council Mathematics Committee). Those present (voting as individuals) passed a motion "that the mathematicians present at the Retreat welcome with enthusiasm the creation of the Institute for Mathematical Sciences in Cambridge, along the lines proposed by the Cambridge Committee". Following this, the backing of the principal learned societies concerned with the mathematical sciences was obtained.

In June 1989 the Trustees of the Isaac Newton Trust, established by Trinity College, indicated that the Trust would provide $\pounds 200,000$ per annum for five years towards the running costs of the Institute provided that additional funding of at least double this amount (exclusive of the rent being provided by St John's) was forthcoming from other sources. Sir Michael Atiyah, who joined the Committee in May 1989, suggested that adopting the name *The Isaac Newton Institute for Mathematical Sciences* would be highly appropriate in view of the Institute's proposed breadth through pure mathematics, theoretical physics and the other mathematical sciences.

The earliest date by which the Institute could open was constrained by both the time necessary to select and organise the first research programmes and by the time required for the planning and construction of the building. Both of these considerations pointed to July 1992 as the date for inaugurating the Institute's scientific work.

Financial support from the Science and Engineering Research Council (SERC) had to be a vital aspect of the Institute's finances, both for the financial backbone it would provide directly and because it provided a testimony of the value of the Institute to the mathematical community through the peer review process. Informal approaches were made to the Mathematics Committee of the Science Board of the SERC starting in April 1989. The SERC decided that proposals to realise a national institute should be sought from UK universities. Five proposals, from Cambridge, Edinburgh (Edinburgh and Heriot-Watt Universities), London, Oxford and Warwick, were selected for further consideration. Presentations were made in London by representatives of those short-listed in November 1989 to a committee reporting to the Mathematics Committee of the SERC. In December the Mathematics Committee recommended the funding of the Cambridge proposal.

Founding of the Institute

This was confirmed early in 1990 with a "rolling" grant of about £500,000 per year for the first four years.

Early in 1990, Sir Michael Atiyah was appointed Master of Trinity College. This cleared the way for him to become the first Director of the Institute.

The award of the SERC grant, together with the financial support provided by LMS, NM Rothschild and Sons and others, meant that all the conditions attached to the grants from St John's and Trinity had been satisfied, and so the Institute could now definitely be established. Other generous contributions to setting-up costs came from Apple UK; Cambridge University Press; Princeton University Press; Springer-Verlag and other publishers; Christ's, Gonville and Caius, Emmanuel and Jesus Colleges; the Nuffield Foundation; Sun Microsystems and the University of Cambridge. Further details are given in section 7a below.

A report proposing the establishment of the Institute as part of the University of Cambridge and setting out its constitution was prepared and approved by the University on 2 November 1990, formally establishing the Institute retrospectively from the previous 1 October. The Report appointed Professor Goddard as Deputy Director of the Institute from 1 October 1991 and established a Management Committee and Scientific Steering Committee (see below).

Scientific planning began in earnest in the summer of 1990. A call for proposals was issued and the Scientific Steering Committee met for the first time in October. From the 23 proposals it received, it recommended the Director to select as the first programmes, to start in July 1992, Low Dimensional Topology and Quantum Field Theory and Dynamo Theory.

By the time the Institute opened in July 1992, the eight programmes for the first two years were at active stages of preparation with invitations to participants issued for nearly all of the first year and much of the second.

The official opening of the building had to wait till 30 October 1992 when the Chancellor of the University, HRH The Duke of Edinburgh, came to the Institute and met many of the visiting members.

2. NEW DEVELOPMENTS AND SUMMARY 1993–1994

The Institute began its second year of operation in July 1993 with parallel programmes on Computer Vision and Random Spatial Processes, followed in January by parallel programmes on Geometry and Gravity and Cellular Automata, Aggregation and Growth. All four programmes had a broad mixture of participants from different disciplines with Computer Vision drawing on a particularly wide range of scientists including psychologists, robotics engineers, statisticians and biologists.

As well as the long-term participants in these programmes, large numbers of mathematical scientists were attracted to the workshops, conferences and lectures held at the Institute throughout the year.

2.1 Young Scientists: We were particularly pleased that many younger scientists took part in the work of the Institute in 1993/94 and we have monitored their participation. The Institute sees it as an important part of its policy to encourage the participation of young scientists, particularly those at post-graduate and post-doctoral level. The Gabriella and Paul Rosenbaum Foundation generously donate the sum of \$70,000 per annum to enable one young American scientist to attend each programme. This scheme was initially established for three years but we have made strenuous efforts to effect its renewal with the result that it will now continue at least to the end of July 1997. It has been highly successful, not only from the point of view of the people supported, but also because through it other young scientists have become aware of the Institute and decided to attend its programmes.

Younger scientists who are staying for any length of time are encouraged to apply for the status of "Affiliated Participant", sponsored by a visiting member which, although it cannot promise an office because of lack of space, entitles them to be in the Institute at any time day or night, use of the library and specified use of computers. They are welcome, of course, to attend all lectures and seminars. Indeed the attendance of young people is a regular feature of all the Institute's activities and this is strongly encouraged in the Institute's publicity.

In addition, we hold a number of conferences and workshops which are specifically aimed at more junior scientists and which the majority of young par-

Young scientists attending the Cellular Automata, Aggregation and Growth NATO ASI/EC conference in June 1994

ticipants are fully-funded to attend. These include NATO Advanced Study Institutes (ASIs). We held two during 1993/94, one in July 1993 as part of the *Random Spatial Processes* programme and one in June 1994 as part of the *Cellular Automata*, Aggregation and Growth programme. Both were very well attended.

The Newton Institute has also set up a number of Euroconferences with funding from the European Union (EU)'s Human Capital and Mobility Fund. These too are specifically targeted at younger people. The Euroconference scheme takes place in academic institutions throughout Europe and the Newton Institute is particularly pleased to have secured funding for two series of such conferences to date. In line with the grant conditions, funded participation is limited to young (usually under 35)

New Developments and Summary 1993-1994

people from EU countries, with efforts being made to achieve as wide a spread as possible. Those from the disadvantaged areas of the EU are particularly encouraged to attend.

Euroconferences are a concentrated period of activity lasting between several days and two weeks during which there are both formal lectures and opportunities for young people to discuss their work. The timetable is scheduled so that there is free time during the day for more mundane activities such as going to the bank and at least one social event takes place during each conference. Longer conferences may even include a day trip such as the tour of Suffolk villages which was part of the *Cellular Automata*, Aggregation and Growth summer conference. Two Newton Institute Euroconferences took place during 1993/94. The first formed part of the Geometry and Gravity programme in March 1994 and the second was a joint Euroconference with the *Cellular Automata*, Aggregation and Growth NATO ASI.

Many young scientists also attended the series of lectures given by Professor Hawking and Professor Sir Roger Penrose on the *The Nature of Space and Time* which were held in Lady Mitchell Hall and again formed part of the *Geometry and Gravity* programme. We are currently making applications for further funds which will enable us to offer extra support to young scientists.

2.2 Hewlett-Packard: Negotiations with Hewlett-Packard took place throughout this academic year with the result that Hewlett-Packard decided to give generous support to the Institute by donating powerful workstations and associated equipment and by establishing a Hewlett-Packard Senior Research Fellowship at the Newton Institute. The workstations were donated in July 1994 and the Fellowship established from January 1995, hence both will be discussed in more detail in the 1994/95 Annual Report.

The Newton Institute is pleased to be associated with the new Hewlett-Packard Basic Research Institute in Mathematical Sciences (BRIMS) in Bristol and looks forward to a long and fruitful co-operation between BRIMS and the Newton Institute. The inauguration of BRIMS took place at the Newton Institute in October 1994 and this event will also be discussed in more detail in next year's Annual Report.

2.3 Leverhulme Trust: The Leverhulme Trust also announced its first grant to the Newton Institute in 1993/94. The Institute identified the funding of participants from Eastern Europe and the former Soviet Union as being a very important part of its provision. Such scientists are often distinguished but are unable to raise their own funds to visit other academic institutions. Accordingly, the Institute made an application in which it asked the Leverhulme Trust to provide part-funding to cover travel and subsistence payments for participants from Eastern Europe and the former Soviet Union from July 1994 over a period of three years, together with associated additional costs. The total amount requested was $\pounds 55,000 \ pa$ to provide thirty-seven and a half person-months of subsistence expenses at about $\pounds 1,000$ per month, $\pounds 6,000$ in travel expenses and $\pounds 11,500$ in additional costs. This would provide fifteen Visiting Fellowships if the average stay were two and a half months as expected. The Trust awarded this amount in full and the grant will begin in July 1994.

2.4 Office of the Year Award: The Institute's building won the Du Pont Award for Innovation at the 1993 Office of the Year awards which were organised by the Association of Facilities Managers and the Institute of Facilities Management. This endorsed our belief in the quality and originality of the Institute's building. The design is highly successful and continues to work well, attracting many favourable comments from short and long-stay participants.

2.5 Princeton University Press Series: The first lectures in the Princeton University Press/ Newton Institute lecture series were given during 1993/94 and are due to be published in 1995.

New Developments and Summary 1993–1994

Professor Steven Zucker gave a course of three lectures on Computational Vision and Biological Perception in November 1993 which were well-received.

Professor Sir Roger Penrose and Professor Stephen Hawking gave alternate lectures on *The Nature* of Space and Time during April and May 1994, with the very last lecture being a debate between the two. Such was the demand to attend these lectures that the majority were held in Lady Mitchell Hall which has a much higher capacity (500) than the Newton Institute. The debate was held at the Institute and close-circuit TV was installed to enable those who could not obtain a seat in the lecture theatre to watch in the Institute's building. Princeton University Press also arranged for the lectures to be professionally recorded by Anglia TV and an edited version may well become available on video.

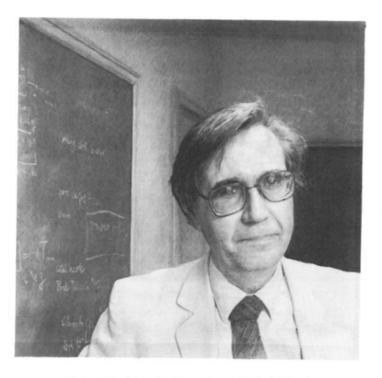
2.6 Cambridge University Press Series: Publications agreed with Cambridge University Press were also advanced during 1993/94. The first book, Solar and Planetary Dynamos, edited by MRE Proctor, PC Matthews and AM Rucklidge, was published and at least four others were in advanced stages of preparation.

-

2.7 Visits Made to other UK Universities: Scientists visiting the Newton Institute are encouraged to visit other UK universities during the course of their stay and a paragraph has been added to the standard invitation letter to emphasise this point. Information about current Newton Institute visitors, together with contact numbers, is also available on the World Wide Web. Visiting members of the Institute have given over 120 seminars in departments outside Cambridge. This is an increase on the previous figure of 100. UK universities at which visiting members have talked include Aberdeen, Bristol, Durham, Edinburgh, Imperial College, King's College London, Leeds, Newcastle, Nottingham, Oxford, Queen Mary and Westfield College, Sheffield, Stirling, Surrey, Sussex, Swansea and Warwick as well as the HP Research Centre in Bristol and the CIBA Foundation Symposium in London. In many cases, there will have been talks in more than one department.

2.8 Staffing: As a result of experience gained in the first year, and because of increasing numbers of conferences and workshops, some changes were made in Institute staffing levels and job descriptions.

2.9 SERC/EPSRC: In the autumn of 1993 the rolling grant given by the SERC was due to be reviewed. The Institute therefore submitted a new application form and was informed of an official review visit. That visit took place in November 1993. Shortly afterwards the SERC was replaced by several more specialised research councils. The recommendations from the review body resulted, however, in the rolling SERC grant being renewed and taken over by the Engineering and Physical Sciences Research Council (EPSRC). Application will also be made to the Particle Physics and Astronomy Research Council (PPARC) at the time of the next EPSRC review.


2.10 Institute Finances: The Institute's finances remain robust in the short term but are heavily dependent on substantial support for running costs provided by the Newton Trust and on generous rent subvention given by St John's College. When these come to an end considerable difficulties will ensue unless adequate replacement funding for infrastructure is obtained from elsewhere.

The Institute is grateful for financial support received in 1993/94 from the EPSRC, The Newton Trust, St John's College, NM Rothschild and Sons, Centre Nationale de Recherches Scientifiques (CNRS), the Daiwa Anglo-Japanese Foundation, the Gabriella and Paul Rosenbaum Foundation, the Prudential, NATO (for advanced study institutes), the European Community Human Capital and Mobility Scheme (Euroconferences), the LMS, the Institute of Physics, Jesus College, the Cambridge Philosophical Society and a number of private individuals.

2.11 Professor Peter Goddard: Professor Goddard, Deputy Director throughout the Institute's

New Developments and Summary 1993-1994

fledgling years, announced that he would be leaving on 30th September 1994, and in February 1994 was elected Master of St John's College from 1st October 1994.

ř.

Peter Goddard. Drawing: Bob Tulloch, 1992; reproduced by kind permission of the Master and Fellows of St John's College

3. MANAGEMENT AND STAFF

3.1 Management: The management of the Institute is the responsibility of the Management Committee. This has been modified slightly in 1993/94 to include a representative of the School of Technology and an EPSRC rather than an SERC representative. The Committee now consists of the Director, the Deputy Director, the Heads of DAMTP and DPMMS, five persons appointed by the General Board of the Faculties (of whom one is nominated by the Council of the School of Physical Sciences, one is nominated by the Faculty Board of Mathematics and one is nominated by the School of Technology), a Chairman appointed by the General Board, one person appointed by each of St John's College, Trinity College and the EPSRC and one additional person co-opted at the discretion of the committee.

The membership of the Management Committee at 30 June 1994 was:

Professor PV Landshoff	General Board Chairman
Sir Michael Atiyah, OM, PRS	Director
Professor A Baker, FRS	Trinity College
Professor JH Coates, FRS	Head DPMMS
Professor DG Crighton, FRS	Head DAMTP
Professor AP Dowling	School of Technology
Mr J Farrow	EPSRC
Professor P Goddard, FRS	Deputy Director
Professor FP Kelly, FRS	co-opted
Professor Sir Martin Rees, FRS	CSPS
Dr GA Reid	St John's College
Dr PMH Wilson	Faculty of Mathematics
Professor JDM Wright	General Board
Professor Sir Christopher Zeeman, FRS	General Board

Dr Neil Viner (SERC) also served on the Committee during 1993/94.

During the year 1993/94 the Management Committee met once during each University term (on 8th November, 7th March and 3rd June). At these meetings it received reports on the Institute's finances, facilities, publicity, housing arrangements and fund-raising efforts. It approved the scientific programmes which the Director proposed to it on the advice of the Scientific Steering Committee and it received the minutes of that Committee. It was responsible for recommending to the General Board elections to Rothschild Visiting Professorships on the advice of the Director and Deputy Director. It received regular detailed reports on the progress of planning for those programmes which had been approved and final reports on those programmes which had been completed.

3.2 Staff: Sir Michael Atiyah remains Director of the Newton Institute but other changes have taken place during the past year, the most significant of which was the announcement by Professor Peter Goddard of his decision to resign as Deputy Director. A long and careful search for a successor culminated in the appointment of Professor John Wright to take over on that date.

At the end of the first full year of operation it was easier to assess exactly which staff were needed and how the duties should be divided. It was recognised that the post of Administrator was an extremely busy one which needed additional support. Thus Lynne Stuart was upgraded from Principal Secretary to Administrative Assistant in the Director's Office in July 1993 in order that she could take on more of that rôle. It was also felt that more consistent assistance with financial management was necessary and hence Sarita Haggart took up her position as full-time Accounts Clerk at the beginning of the same month. Ann Cartwright became the new Institute Administrator on 1st September 1993, replacing Ken Smith. Computing was also identified as a key area which

Management and Staff

was under-resourced in terms of personnel. Thus Mustapha Amrani was appointed as Computer Assistant from 1st January 1994. Janey Marsters resigned as Conference and Programme Secretary at the end of May 1994 to be replaced by Florence Leroy in August 1994.

The Institute would not have survived without a wide variety of extra helpers who were called upon to assist at particularly busy times to provide cover or additional help and support. In 1993/94 these included Lindsay Abbott; Caroline Bardy; Ian Farquharson; Kate Gibbons; Michael Goddard; Julie Godfrey; Philip Greenwood; Sallie Hage; Florence Leroy; Wanda Lewcun; Carrie Marshall; Michael Sekulla; Alison Suter; William Tunstall-Pedoe and Peter Wren.

The present staff of the Institute consists of:

Director Deputy Director (to 30/9/94) (from 1/10/94) Institute Administrator Administrative Assistant Computer Systems Manager Computing Assistant Librarian Housing Officer Accounts Clerk Secretary Receptionist Catering Assistant Sir Michael Atiyah OM, PRS Professor P Goddard FRS Professor J Wright Ms A Cartwright Ms LA Stuart Mrs HM Strudwick Dr M Amrani Mrs M Allen Ms W Abbott Miss S Haggart Ms F Leroy Miss T Hibbitt Miss T Secker

The Director and Deputy Director were supported in 1993/94 by two Assistant Directors, Dr Pelham Wilson and Dr Noah Linden. Dr Wilson was Assistant Director until 1st October 1994. The Institute is grateful for all his work on its behalf.

3.3 Evaluation: In order to seek ways of improving its management and administrative procedures, the Institute continues to collect information and monitor its performance and achievements in various ways. It collects biographical information on its visiting members. It gets each visiting member to complete a general questionnaire, requesting an evaluation of and comments on the Institute's facilities, staff support, financial provision and coffee, lunch and tea arrangements. Visiting members are also asked to fill out a housing questionnaire. Conference participants are now also asked to complete a questionnaire requesting evaluation and comments on conference organisation, scientific content, lunch arrangements and accommodation arrangements. The results of all these questionnaires are collated and discussed at regular staff meetings, together with suggestions for changes and problems which have emerged. Where possible, improvements have been made. This is seen as a continuing process. The numbers of younger scientists attending lectures and seminars at the Institute is also monitored (although this relies upon them signing in at reception or registering as affiliated participants), as are talks given by visiting members in other academic institutions. Numbers of women attending the Institute are recorded too. Each visiting member is required to write a report on his or her stay, giving details of work done and useful interactions during the visit and each fills in a form indicating publications which are likely to arise out of his or her visit. These are followed up at regular intervals until publication details are received. On the whole the reports of visiting members have been positive and often very enthusiastic. A selection is quoted here:

I found my stay at the Newton Institute to be excellent-certainly one of the best research visits I

Management and Staff

have had.

I found the architecture of the building very appropriate for the kind of joint work mathematicians like to do. The staff is very co-operative and friendly. The computer and library facilities are appropriate.

It's been one of the most enjoyable and profitable times I have spent anywhere... I sincerely hope that the INI will continue to exist and be run in a similar style. I'm sure that I am not alone in saying that the staff support and architectural design both contributed significantly to the ability of the scientists to devote their full attention to collaborative research.

The two months I spent at the Newton Institute have brought me closer to the scientific community of the UK than anything else in my professional life so far.

The Newton Institute has a unique atmosphere where people work hard with feeling no stress. It is thus much easier to progress and to collaborate in such exceptional conditions. I enjoyed my stay very much and I am thankful to all the staff that made things as easy as possible. All the people working for the Institute have always been extremely helpful.

I have enjoyed this excellent programme enormously. I have never in my career been so stimulated for so long, which the seven publications I wrote in six months bear witness to.

The staff derive considerable satisfaction from such comments but they are far from complacent and are constantly striving to improve the Institute as a stimulating environment for research.

3.4 Visit to the Institute of Theoretical Physics (ITP) in Santa Barbara and Mathematical Sciences Research Institute (MSRI) in Berkeley: Professor Peter Goddard (Deputy Director), Ann Cartwright (Institute Administrator) and Lynne Stuart (Administrative Assistant) visited ITP from 16 March to 19 March 1994, attending the inauguration of their new building and MSRI from 21 March to 22 March 1994 to study different methods of running institutes. Whilst there they interviewed the majority of the staff at ITP, including the retiring Administrator who had worked there for fourteen years. At MSRI they talked only to senior staff because there had recently been many changes of personnel.

Their main conclusions from these visits can be summarised thus:

a. Academic Staff. Both ITP and MSRI have a number of full-time academic staff involved in administration, two in the former case and three in the latter. All expect to spend fifty per cent of their time on research.

b. Funding. Both ITP and MSRI get the majority of their funding from a single source and so do not need to fundraise to the same extent as the Newton Institute. This means less work at several levels of the organisation although the Newton Institute prefers not to be entirely dependent on one source of funding.

c. Housing. ITP and MSRI Housing Officers put participants in contact with the landlords or agents of suitable properties. Neither Institute rents properties to sub-let to participants as does the Newton Institute. Although the latter is more labour-intensive, local conditions mean it would be virtually impossible to do otherwise and offer a service at all.

d. Visiting Members. ITP has permanent members and postdoctoral fellows. MSRI has visiting members who are not attached to any particular programme and postdoctoral fellows. Limitations of physical space mean that this would be extremely difficult at the Newton Institute.

Management and Staff

e. Programme Structure and Conferences. Although the ITP programme structure is similar, there are many less conferences and workshops than at the Newton Institute. MSRI, whose range of activities is not as large as the Newton Institute operates a different programme structure with one year-long programme and a series of shorter programmes, thus offering greater flexibility, which results in fewer topics being treated in depth.

f. Management. ITP does not have a management committee. All management is conducted through senior staff. MSRI has a management committee which is totally independent of the University of California. In some ways this generates extra work, particularly in the area of finances, where it also leaves the Institute more vulnerable. On the other hand, autonomy and the lack of bureaucracy could be used positively to provide additional flexibility.

g. Scientific Advisory Committees. The scientific advisory committees of both ITP and MSRI differ from that of the Newton Institute in the way they function. Proposals are invited by ITP at annual intervals the ITP committee develops and encourages these proposals almost independently of the Director. The MSRI committee does not specifically ask for proposals. It initiates and develops these itself to an even greater extent.

h. Administrative Staff. ITP has a number of long-term student helpers who are used on a regular basis to supplement the work of permanent staff. This helps to alleviate some of the administrative burden and is especially useful for holiday cover.

4. PROGRAMME STRUCTURE AND ORGANISATION

4.1 General: The Institute adopted the pattern, for its early years at least, of having two six-month research programmes running at any one time, four per year and this was the pattern followed in 1993/94. Participants are characterised as either long-stay (8 days or more) or short-stay (7 days or less). Long-stay participants are also known as visiting members. Numbers quoted refer to long-stay participants unless otherwise stated. Each programme had an average of 18 to 23 participants in residence at any one time, and the Institute had between 40 and 50 visiting members staying for two weeks or more. The total number of participants in a programme was between 48 and 67. In addition, there were 576 short-stay participants across the four programmes. The statistics for those programmes which took place in 1993/94 are given in the following table:

Programme	Visiting Members	Average Stay (days)	Average Occupancy
Computer Vision	58	50	18
Random Spatial Processes	55	61	20
Geometry and Gravity	67	55	23
Cellular Automata, Aggregation and Growth	48	70	20

During its second year of operation the Institute has seen an overall increase in the number of visiting scientists. These have included over 220 visiting members (a slight increase on the previous year), staying between two weeks and six months, about two months on average. Nearly 75% of these were from overseas compared to 80% the previous year. Within the four programmes there have been a total of 24 workshops, periods of more intense activity on specialised topics or pedagogical activities which involved an additional 370 participants. In addition, the programmes themselves attracted a large number of scientists who made short visits, including about 200 who stayed for only a few days (compared to 95 short-term visitors in 1992/93).

Professor Alain Connes in discussion with Professor Gary Horowitz during the *Geometry* and *Gravity* programme

The visiting members are listed in §9.1 and a chart showing the periods of their visits is given in §9.2. A breakdown of numbers by nationality is given in §9.3 and a graph showing the age distribution of visiting members is shown in §9.4. The median is 39 years with an interquartile range of 33 years to 46 years. For workshops and short-stay visits the age profile is younger. Detailed biographical records have not been compiled for all short-stay participants, but an age survey at a typical large workshop produced a median age of 37 years with an interquartile range of 29 years to 44 years.

The scientific planning for each programme is the responsibility of a team of three or four organisers. The choice of organisers is made so as to reflect the intended scope of the programme.

Programmes are selected about two years before they are scheduled to begin. The first task of the organisers is to identify leading workers who are willing to commit themselves to participating in the programme for an appreciable period. A wider group can then be approached in successive tranches. In the period between 18 and 6 months before the programme starts, the budget for subsistence and travel will be committed in this way. Naturally, there will be subsequent changes and withdrawals due to unforeseen circumstances, leaving flexibility in the budget to enable some invitations to be issued just before and during the programme.

A typical structure for a programme is to begin with some more pedagogical activity, to have two or three more specialised workshops towards the middle of the programme, focussing on particular aspects of the programme or closely related areas, and perhaps to end with some more general meeting summarising the state of the art. Such a model is not rigidly imposed and programmes vary quite considerably in their actual structure. In addition to the workshops, etc, which serve to widen the participation in the programmes, the organisers are strongly encouraged to organise less formal special days, short meetings or intensive lecture series, which can attract daily or short-term visitors, so further increasing the impact of the Institute on the UK mathematical community. As we have seen above, this policy was more successfully pursued in the second year of operation than the first.

All of this is against the background of regular series of seminars in each programme. During the year July 1993 to June 1994, there were over 770 lectures and seminars given in the Institute, an increase of 120 on the previous year. A list of these seminars, which perhaps more than anything else illustrates the scope of the Institute and the intensity of its activities, is given in $\S9.6$. In addition, visiting members are also encouraged to go to other UK universities to give lectures and seminars. In 1993/94 the total number of lectures and seminars given elsewhere was 120. Again, this was an increase on the previous year's total (see $\S2.7$).

Some thought has been given as to whether the structure of four six-month research programmes each year should be varied, eg by having some two- or three-month research programmes. Some topics, whilst not justifying a full six-month programme, might make excellent subjects for a two- or three-month one. It would also help the Institute cover a wider range of the mathematical sciences.

A further possible variation is that of the 'fatter' or more major programme which could take place alongside two or more shorter and more minor programmes. A more diverse pattern could present greater logistical difficulties and, in the case of shorter programmes, some problems where Visiting Fellowships and Professorships were designed for participants staying for longer periods and there could be too much overlap with the work of other British Institutes. It has therefore been decided to proceed with caution in this direction by experimenting first with minor programme variations in late 1996.

4.2 Scientific Steering Committee: The Director is advised on the scientific work of the Institute and, in particular, on the selection of programmes by the Institute's Scientific Steering Committee. This Committee has undergone minor changes since the reorganisation of the research councils and now consists of the Director, three persons appointed by the General Board (GB) on the recommendation of the EPSRC, one person recommended by the General Board on the recommendation of the Particle Physics and Astronomy Research Council (PPARC), two persons appointed by the General Board on the recommendation of the LMS, six persons appointed by the General Board after consultation with the Councils of the Schools of the University and national scientific bodies (the Royal Society, the Royal Society of Edinburgh, the Royal Statistical Society, the Institute of Physics, the Royal Academy of Engineering, the Institute of Mathematics and its Applications and the Edinburgh Mathematical Society) and one additional person co-opted at the discretion of the Committee.

The membership of the Committee on 30 June 1994 was:

	Oxford University	GB Chairman
Professor Sir Christopher Zeeman, FRS	Newton Institute	Director
Sir Michael Atiyah, OM, PRS		LMS
Professor JM Ball, FRS	Heriot-Watt	
Professor MV Berry, FRS	Bristol	GB
	Orsay	GB
Professor J-M Bismut	Sheffield	GB
Professor GA Gehring		GB
Professor TJ Pedley	Leeds	0.1
	Oxford	EPSRC
Professor BD Ripley	Imperial College	EPSRC
Professor AFM Smith		EPSRC
Professor JT Stuart, FRS	Imperial College	and the second se
Professor CTC Wall, FRS	Liverpool	LMS
Professor CIC Wall, 1105		

Professor VI Arnold, Professor PG Burke, Professor IG Halliday and Professor DJ Wallace were members of the Committee from 1991 to 1993. The Committee is required to meet once per year but in practice meets twice per year, once in the Spring and once during the Autumn term.

4.3 Programmes: The Scientific Steering Committee perceives its rôle as involving both the consideration of proposals received and the stimulation of proposals in the areas of mathematical sciences which it considers to be potentially particularly suitable for the Institute. The Institute advertises its willingness to receive proposals in a variety of ways which have included the annual distribution of a poster containing a "Call for Proposals" to over 500 departments and institutions concerned with the mathematical sciences in the UK and abroad. At meetings the Committee regularly considers in which areas it should stimulate proposals and the Director, the Deputy Director or individual Committee members then assume responsibility for taking action in particular areas.

The Institute began its scientific work in July 1992 with its first two programmes, on Lowdimensional Topology and Quantum Field Theory and Dynamo Theory; since then, six further programmes on L-functions and Arithmetic, Epidemic Models, Computer Vision, Random Spatial Processes, Geometry and Gravity and Cellular Automata, Aggregation and Growth have been completed. On the advice of the Scientific Steering Committee, the following programmes have now been selected for 1994-96:

> July to December 1994 Topological Defects Symplectic Geometry

January to June 1995 Exponential Asymptotics Financial Mathematics

July to December 1995 Semantics of Computation From Finite to Infinite Dimensional Dynamical Systems

January to June 1996 Dynamics of Complex Fluids Computer Security, Cryptology and Coding Theory

July to December 1996 Mathematics of Atmosphere and Ocean Dynamics

4.4 Scientific Policy: It is the intention of the Scientific Steering Committee that the Newton Institute should be devoted to the Mathematical Sciences in the broad sense. The range of sciences in which mathematics plays a significant part is, of course, too large for an Institute of modest size to cover adequately. In making the necessary choices important principles are that no topic is excluded a priori and that scientific merit is to be the deciding factor. One of the main purposes of the Newton Institute is to overcome the normal barriers which are presented by departmental structures in Universities. In consequence, a main criterion in judging the "scientific merit" of a proposed research programme is the extent to which it is "interdisciplinary". Usually this will involve bringing together research workers with very different backgrounds and expertise. There must, however, be a clear common ground on which all can focus and each programme has to have a substantial and significant mathematical content and a broad mathematical/scientific base. A further main criterion should be that the subject area is in the forefront of current development.

Because of the wide base of support for the Newton Institute in the research councils and elsewhere, the Institute's programmes should as far as possible represent an appropriate balance between the various mathematical fields. Such considerations, however, are secondary to the prime objective of having high quality programmes. If there are no exciting developments, actual or potential, in a particular field, it would be wrong to run a programme simply to maintain a balance.

Details of forthcoming programmes are listed below:

Symplectic Geometry

July to December 1994

Organisers: SK Donaldson (Oxford), D McDuff (Stony Brook), D Salamon (Warwick), CB Thomas (Cambridge).

Surfaces known as symplectic manifolds arise in many branches of pure and applied mathematics, for example they provide the natural framework in which to discuss classical mechanics. There has been dramatic progress in recent years in understanding their properties drawing on results from many disciplines, including differential geometry and topology, global analysis and the theory of partial differential equations. The programme will bring together mathematicians from all these fields together with theoretical physicists with the aim of further developing the theory for example by exploiting the parallelism between Yang-Mills theory in four dimensions (which was originally constructed by physicists to describe the strong nuclear force between elementary particles) and symplectic geometry in spaces of arbitrary even dimension.

Topological Defects

July to December 1994

Organisers: AJ Bray (Manchester), TWB Kibble (Imperial), RS Ward (Durham).

Topological defects appear in a vast array of physical situations, from cosmic strings which occur in unified field theories of elementary particles at the highest energies, to vortices which occur in superfluids at temperatures approaching absolute zero. These defects exhibit remarkably similar behaviour, whether it be the breaking and joining of cosmic strings or of superfluid vortices or the evolution of a network of defects in a liquid crystal. By bringing together experts in field theory, cosmology, condensed-matter physics and high-energy particle theory, the programme aims to exploit common themes and thus further the study of topological defects in each of these contexts.

Exponential Asymptotics

January to June 1995

Organisers: MV Berry (Bristol), CJ Howls (Bristol), MD Kruskal (Rutgers), FWJ Olver (Maryland).

Although quantities which are exponentially small are important and arise frequently in applications, until recently the mathematical literature about them has been sparse. Now there is an upsurge in interest in the subject and a central new concept (*resurgence*) has emerged which describes how small exponentials are responsible for the divergences of asymptotic series. Resurgence enables the divergent tails to be decoded (for example by resummation) to yield these exponentials. New mathematical techniques are being developed as well as new areas of application, for example pattern formation in fluids, chaos in classical and quantum mechanics, and even philosophy. The aim of the programme is to foster a common culture, based on the recognition that (as with chaos in the 1970s) the problems being studied are essentially the same despite differences of language and approach.

Financial Mathematics

January to June 1995

Organisers: MHA Davis (Imperial), SD Hodges (Warwick), I Karatzas (Columbia), LCG Rogers (QMW).

Since no-one has yet found a way to make sure money on the financial markets, we are led to conclude that the prices of various financial assets should be regarded as random processes. In the last 15-20 years, there has been an enormous explosion in the range and volume of derivative securities traded (a derivative security is a financial instrument whose price depends on the behaviour of the prices of other assets). These derivative securities offer the buyer a means of protecting against the risk inherent in the random fluctuations of asset prices, but the financial institutions selling them need to know how to price them, and how to hedge them. This has stimulated the application of mathematics to a broad range of such questions: How should one model these processes? How should we estimate these models? How should one use the models to deduce prices and to decide trading strategies? Major applications of probability, statistics, stochastic optimal control, partial differential equations, numerical analysis and simulation result, in addition to the questions of economic theory which arise. The practical importance of this application area is hard to overstate; as one example, trading in just one class of derivatives, interest-rate swaps, grew from nothing in 1981 to \$3000 billion ten years later.

Semantics of Computation

July to December 1995

Organisers: S Abramsky (Imperial), G Kahn (INRIA Sophia-Antipolis), JC Mitchell (Stanford), AM Pitts (Cambridge).

Advances in hardware have enabled a huge expansion of the capabilities and uses of computer systems. The challenge of effectively engineering the software of these systems has led Computer Scientists to identify fundamental principles for structuring computational tasks, such as the use of *procedures* (ie breaking down large programming tasks into smaller blocks), and of *concurrency* (many tasks being performed simultaneously, possibly by separate units). These principles have been embodied in programming languages, and methods for reasoning about such constructs have been developed. The attempt to provide rigorous foundations for these developments has resulted in a rich mathematical theory of the semantics of computation. While striking successes have been achieved, there are major challenges to refine the current framework for semantics in order to deal with the subtle issues which arise, for example, in combining concurrency and procedures. The programme will bring together mathematicians, theoretical computer scientists, language designers and software engineers, with the aim of enhancing the interactions between these overlapping

communities, and thus furthering the interplay between foundational work and advanced language design and software technology.

From Finite to Infinite Dimensional Dynamical Systems July to December 1995

Organisers: P Constantin (Chicago), JD Gibbon (Imperial), J Hale (Georgia), CT Sparrow (Cambridge).

The non-linear behaviour of dynamical systems is of great and continuing interest in mathematics and throughout the sciences. Although work in this area was originally stimulated by attempts to understand high dimensional systems such as the weather, much of the effort focussed on nonlinearities in low dimensional systems for which the proofs and numerical experiments are much easier. More recently, progress has been made towards clarifying the relationship between low and high dimensional systems (including infinite dimensional ones). Some of these results show that infinite dimensional systems (PDEs for example) can be effectively finite dimensional, whilst others attempt to describe truly infinite dimensional behaviour. What these recent developments have in common is that they combine the topological approach, which has been so successfully applied to low dimensional systems, with classical analytic methods. The programme will bring together experts in both finite and infinite dimensional systems, and aims to make progress in such areas as spatio-temporal chaos, attractors in infinite dimensional systems, and others where experimental and numerical results suggest that both topological and analytic theories play important rôles.

Dynamics of Complex Fluids

January to June 1996

Organisers: TCB McLeish (Leeds), JRA Pearson (Schlumberger Cambridge Research), K Walters (Aberystwyth).

Many fluids of industrial, biological and environmental importance (eg molten plastics, salad dressings, whole blood, sinovial fluid, fluidised sediments) respond in a complicated fashion when deformed. The reasons for this complexity can be traced back to their molecular structure and to the hydrodynamic forces acting between molecules. The programme will bring together experts who seek to relate flow behaviour to structure and those who seek to predict flow fields of such fluids in complex geometries, with particular reference to polymer melts, polymer solutions, liquid crystals and colloidal suspensions. This involves modelling on a wide range of length (and associated time) scales, ie from molecular dynamics to large scale continuum mechanics. Most of the mathematical problems that arise involve non-linear differential, integro-differential or integral equations; a full range of analytical and numerical techniques has to be employed to obtain solutions.

Computer Security, Cryptology and Coding Theory

January to June 1996

Organisers: RJ Anderson (Cambridge), PG Farrell (Manchester), P Landrock (Århus), RM Needham (Cambridge).

Over the past twenty years, the quest for dependable computer systems has fuelled rapid advances in cryptology and coding theory. Cryptology is used to secure electronic transactions, while coding theory has facilitated many recent advances in radio-based communications. These techniques are central to designing distributed systems which will perform reliably despite the presence of noise and of malicious attacks, and there is a growing interaction between them at the theoretical level. Practical aspects are also important, and incorporating cryptographic and coding techniques into systems turns out to be much more complex than was first anticipated; this has led to interest in formal methods of verification and in robustness principles. By bringing together mathematicians, computer scientists and engineers working in these related fields, the programme aims to further both the theoretical and the engineering aspects of the art.

5. FACILITIES

5.1 Building: The Institute's building contains two seminar rooms with flexible seating (the larger, Seminar Room 1, holding between ninety-six and one hundred and fifty people and the smaller, Seminar Room 2, between thirty-six and fifty) a library, thirty offices (eighteen double and twelve single), a General Office (for administration), offices for the Institute Administrator and the Deputy Director and common areas. For use in the seminar rooms, the Institute possesses four GBI 5000 overhead projectors, three Kodak Carousel 35mm slide projectors and a GEC CRT projector (mounted onto the ceiling in Seminar Room 1) which can project European and USA videos (in PAL, SECAM and NTSC formats) and the output, in monochrome or colour, from a SunSPARC station, an HP, a Macintosh Quadra or a PC. In each seminar room there are six chalk boards and two overhead projector screens. In Seminar Room 1 there is also a central screen which can be raised and lowered automatically from the lectern. It can be used for the CRT projector, one or two slide projectors (which can be controlled from the lectern) or an overhead projector.

The library, seminar rooms and administrative offices are grouped around a ground-floor common area and the scientists' offices which are on the mezzanine and galleried first and second floors, surround the mezzanine common area. Throughout the building there are places for discussion grouped around chalkboards. As with the rest of the Institute's facilities, the building has been designed with a view to quickness of assimilation, which is of prime importance given the relatively short average stay of participants compared with the members of a normal university department.

The originality and effectiveness of the design of the Newton Institute building was formally recognised when it was awarded the Du Pont Award for Innovation at the 1993 Office of the Year Awards. The award was presented to Lynne Stuart by the Duke of Gloucester at a ceremony held in London on 18 November 1993. The cut-glass decanter which she received on behalf of the Institute is now on display in the library. The award generated welcome publicity for the Institute and for its architects, Annand and Mustoe.

In October 1993 the latter made a donation to the Institute of a bust of the Director, Sir Michael Atiyah, sculpted by David Annand, brother of the architect and a distinguished artist, using

Lynne Stuart receiving the Du Pont Award for Innovation from the Duke of Gloucester. Photo: Bill Mason Photography

the cold cast bronze technique. The bust was unveiled by the Chairman of the Management Committee at a ceremony on 8th October attended by members of the local press, visitors, staff and the Management Committee.

Some minor improvements were made to the building in 1993/94. A switch was installed in the lift to ensure that the doors could be kept open for long enough to allow a wheelchair user to enter easily.

A removable ramp has been made for visitors in wheelchairs who wish to go directly from the car park into Seminar Room 1. The ramp is installed on request.

Concern was felt that the cycle path which runs alongside the Institute between our building and Wolfson Court was potentially hazardous as there were no warning signs to either motorists or cyclists at the point where cars cross the path on entry to the Institute car park. A series of temporary signs were erected by the Institute until permanent signs were erected by St John's College.

At a meeting to inform the Institute's neighbours about the proposed development of the Clarkson Road site to include facilities for the DAMTP and the DPMMS, it transpired that the most significant criticism of the present building is the high level of external lighting. The Institute is experimenting with these lights in order to achieve an acceptable but safe level.

Most of the "snagging" of the building has now been completed. Major items included the re-lining of the lift shaft and replacement of the screen outside the library. Some minor woodwork and other items are still outstanding.

Future plans for the Institute include the possibility of extending the building by utilising the loft space to create additional rooms, particularly for computer use. The essential character of the building will not be lost but the extra space generated could be used both for offices for scientists and for a computer room.

The Institute is currently examining the question of food provision for participants at lunchtimes. Limitations are imposed because of the kitchen facilities. The provision of hot food is not possible at the moment and more adequate refrigeration is necessary to provide a better range of cold food. Meanwhile, various microwave meals and cup-a-soups are left out for participants to purchase overnight and at weekends, and cereal and milk are available at breakfast time. A range of chocolates, sweets, crisps and fresh fruit is also provided for purchase and high-quality coffee and tea are always available from our 'Flavia' machines.

5.2 Computing Facilities

Of the four programmes running at the Institute last year, Computer Vision and Random Spatial Processes made particularly heavy use of the Institute's computing resources. In particular, they had a greater requirement for "number-crunching" facilities than any of the previous programmes. It was anticipated that this demand would continue to rise and it was therefore decided to upgrade all the Sun workstations in participants' offices to 12 MB of RAM. The IPC workstation, bohr, was upgraded to 64 MB of RAM, to provide scope for memory-hungry programs to be run within the Institute.

The proposed donation of new computer equipment by Hewlett-Packard meant that, in addition, the Institute's computer base would be supplemented by nine high-speed, relatively powerful workstations, having high-resolution graphics monitors, as well as a much more powerful workstation with high processor speeds and a large amount of RAM. It was decided, therefore, to withdraw a number of the older Sun workstations which had been purchased second-hand by the Institute, removing the memory from them and installing it in some of the newer Sun computers. Additionally, several of the Sun workstations were to be converted to run as X-terminals, with a Hewlett-Packard workstation acting as a server, to make more efficient use of their capacity.

A number of items of software on the Unix network have been upgraded, including *Mathematica*, *Glim* and *OpenWindows*. We are continuing to support *Sunview* which is Sun's original windowing system and which a number of participants are still more familiar with than the X-windows systems.

The arrival of Dr Mustapha Amrani, our new Computing Assistant, in January was most welcome, providing first-line support to users and designing really usable front ends for many of the administrative database programs. In addition, a number of new databases and associated programs have

been written, and the whole front-end system has been made more coherent. An on-line information system has also been provided for the administrative computer network to enable the administrative staff to access on-screen, and thus more quickly, much of the information currently supplied in paper form, eg telephone/office lists, seminar lists. Administrative staff have been making use of the system for some time and are finding it much easier to use by means of the menu-driven applications now provided.

The Novell network, which is of vital importance to the administrative system of IBM compatibles and Macintosh machines, is heavily used. Thus, in 1994/95 we will both increase our network licence and at the same time upgrade to the next version of Novell 3.1.

Information about the Institute, including seminar information, lists of visitors, etc, is now available by means of "anonymous ftp". This allows people from outside the Institute, who do not necessarily normally have access to our computer system, to download the relevant information to their own local computer. In parallel with this, we have also installed a "gopher" system which makes it possible to display the information on-screen without the need to download the individual files. Activity on both systems is logged and they are fairly heavily used. The information provided is monitored by members of staff, who also suggest new information to be included on these services. Seminar lists are automatically copied into the relevant directories, and an automatic checking system notifies staff if the lists are out of date. A future development in this line is the provision of a World Wide Web page about the Newton Institute.

A new printer has been installed in the General Office which has built-in networking capabilities, so that has been configured to provide direct printing facilities to each Unix host on the academic network independent of the printing service for the Novell network. This has reduced the traffic through our Novell fileserver and further improved the speed of printing within the General Office. Additionally, it can print at a resolution of 800 dots per inch, has three paper trays and can be used to print on to A3, which is extremely useful for the production of posters. The printer previously in the General Office has now been installed on the Second Floor to provide a printing facility for people nearby.

A new Macintosh computer, a Quadra 650 with internal CD-ROM drive, has also been purchased to act as a desktop publishing workstation. It has been linked to the colour scanner/printer to enable the speedy production of leaflets about the Institute. For example, it was used successfully to produce brochure information for the American trip by the Deputy Director and Administrators.

During April, it was noticed that there had been a spate of unauthorised access to the computers within DAMTP. From there, entry was gained successfully to the University's Central Unix Service, the DPMMS, and the Newton Institute. Immediate steps were taken in all these institutions to tighten up security measures. The presence at the Institute of so many people from outside Cambridge meant that it was not possible to disconnect our computer systems from the Internet for more than a day at a time, whereas the mathematics departments remained disconnected for more than one week. However, during those periods of disconnection we were able to install new security patches to the kernels of the file servers and workstations. In addition, new passwords were issued to all users together with more detailed guidelines about the setting of passwords.

5.3 Library

The number of monographs currently held in the library stands at just under 3200 and a catalogue of nearly all of these is available online via the University Library's Online Public Access Catalogue, which can be accessed from the terminal in the library, in the offices of the participants or remotely. In cataloguing the monographs thought has been given to the future developments for the library. The titles and holdings of serials are also on this system and can be accessed similarly.

Over the period 1993/1994 nearly 450 loans were recorded. A commonly used rule of thumb states that for every loan transaction there are four other transactions taking place in the library, so this would make the number of transactions in the library over the last year roughly 1800.

The library was heavily used by affiliated participants, particularly from the Geometry and Gravity programme. Their use of the library was reviewed but no major changes implemented. Photographs are now taken of all such students in order to be able to ensure that some degree of control can be kept on library use.

A new facility in the library is the display of preprints and reprints relevant to the programmes.

The archive of publications of past participants is maintained in the library where copies of many are deposited. Details are updated regularly and automatically sent to the Institute's ftp system.

The Institute's first publications appeared this year. The first book in our Cambridge University Press series was entitled *Solar and Planetary Dynamos*, edited by MRE Proctor, PC Matthews and AM Rucklidge.

5.4 Housing

The Institute provides housing for its participants in eleven flats (at Mordell Court, Chesterton High Street) and a listed building containing six study bedrooms (at 1 Chapel Street), all situated about a mile and three quarters from the Institute and rented from St John's College, and an average of fourteen other dwellings (mostly private houses and flats).

For a single person, prices vary from £15 to £18 per night, with accommodation ranging from single study bedrooms sharing bathroom facilities, to self-contained one-bedroom flats. For accompanied participants, prices range from £20 to £26 per night for those coming with one other person, and from £24 to £27 per night for those coming with larger families. In each case prices reflect the size of the property and the length of stay.

All the accommodation that the Institute has arranged is fully-furnished and of good quality, and the rent charged includes council taxes and maintenance costs but not telephone, electricity or gas charges. The prices reflect the fact that, in order to be able to guarantee accommodation for its relatively short-stay members, the Institute often has to rent properties for periods when they will be unoccupied and the rent must cover these voids. The rent charge must bear a sensible relation to the subsistence allowances the Institute pays, currently $\pounds 30$ per day. This allowance is primarily designed to cover the accommodation and basic food costs for a single person. It should also cover the cost of accommodation for a participant accompanied by his or her family, though not in this case the food costs as well.

In practice, taking into account the Christmas break, it is difficult to get occupancy rates much above two hundred and eighty days per year. The housing office is in effect a small business with an annual turnover of £150,000 which has to run at very close to zero margin, neither making a substantial profit nor being an appreciable drain on the Institute's finances.

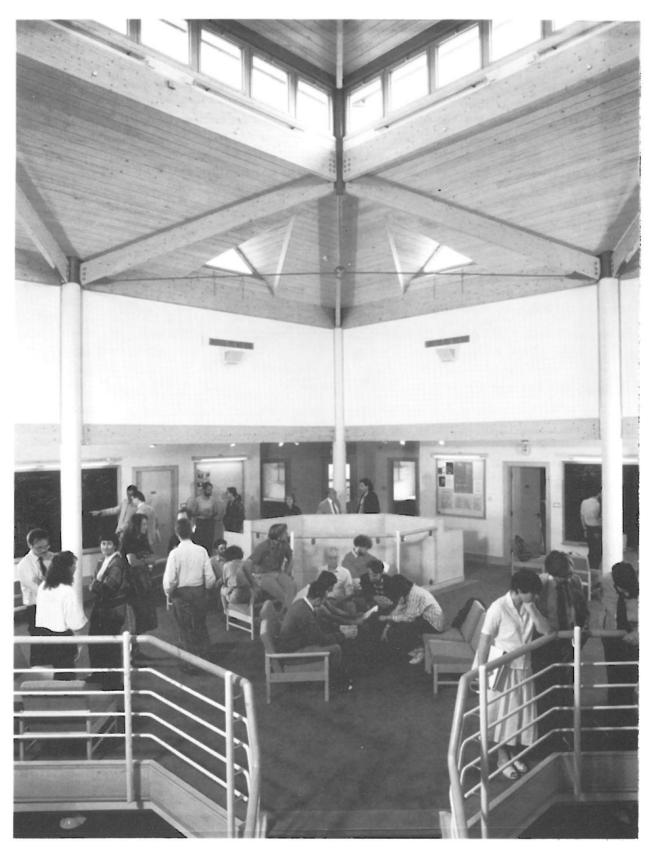
5.5 Publicity

Information about the Institute, including seminar information, lists of visitors, etc is now available by means of "anonymous ftp". This allows people from outside the Institute who do not necessarily normally have access to our computer system, to run a file transfer programme by which means they can download the relevant information to their own local computer. To access this information it is necessary to ftp to:

newton.newton.cam.ac.uk

entering ftp as the user name and your usual email address as the password. All of the information is contained in the directory pub and the directories below that. The directory pub/programmes contains newsletters and charts and lists of expected participants in present and future programmes. The directory pub/seminars contains the seminar lists. The directory pub/general contains the list of current visiting members with telephone numbers and office assignments, their accommodation addresses in Cambridge, the Institute's General Information booklet, travel information and information on how to submit proposals for future programmes. Much of this information is updated automatically at regular intervals from the Institute's databases. In parallel with ftp, we have also installed a "gopher" system which runs on the same principle but is menu-driven and displays the information on screen without the need to download the individual files. Activity on both systems is logged and they are both heavily used. Institute information will shortly appear on the World Wide Web. The home page will be

http://www.newton.cam.ac.uk


The Institute sends weekly mailouts both through conventional means and by electronic means to publicise its programmes and seminars. Special mailouts are undertaken for conferences and special events and the Institute is currently expanding and revising all its mailing lists.

Following on the Du Pont Award for Innovation, highly complimentary articles appeared in a wide variety of publications which included *Centrepiece Magazine*; Premises and Facilities Management and Facility and Design Management. The award was also mentioned in The Times and the Cambridge Evening News.

Further publicity was generated by the lectures given by Professor Stephen Hawking and Professor Sir Roger Penrose in April and May 1994 as part of the Geometry and Gravity programme. As a result of these, articles appeared in the New York Times Magazine and elsewhere. A publication from Princeton University Press (PUP) will follow and we were also very grateful to PUP for commissioning high-quality videotapes of the lectures, extracts from which can be used in future Institute promotional material.

5.6 Merchandise

The Institute has continued to sell Fermat's Last Theorem T-shirts throughout the year and has also added T-shirts for the Random Spatial Processes, Cellular Automata, Aggregation and Growth and Geometry and Gravity programmes, the latter being designed by Professor Hawking and selling in large numbers. In addition, we have produced an Institute pen as well as the Institute postcards already on sale. Any profits are used to support the Institute's activities. Future projects include Institute mugs and Institute Christmas cards.

Interior of the Isaac Newton Institute

6. FUND-RAISING AND GRANT AID

6.1 SERC/EPSRC Rolling Grant

a. Original Grants. The rolling grant awarded by the SERC on the basis of the competition held in 1989 consisted of two components, a Visiting Fellowship Grant (VFG) to provide subsistence and travel costs for participants, and a Special Research Grant (SRG) to provide contributions to the setting-up costs of the Institute and to the recurrent 'core' costs of the Institute's research programme through the provision of salaries for organisers and key participants. To these was subsequently added a third Direct Costs Grant (DCG) grant to contribute (following the dual research support transfer from the universities' funding councils to the research council) to the administrative costs of the Institute, by providing 60% of the salary of the Administrator and the salaries of the Principal Secretary (subsequently upgraded to Administrative Assistant) and the Conference and Programme Secretary.

b. Rolling Mechanism. The original grants were awarded for a four-year period with a review to take place before the end of the first two years, with the intention that they should be replaced with new grants which would then run for four years with a start date two years after the original one. This process could then continue at two year intervals, so that the horizon would then be extended from the two years remaining to a new four-year horizon. At each two-yearly review, a case can be made if appropriate for changes in resources allocated for the coming two years and a case has to be made for the resources requested for the two years beyond that into which the grant will be extended.

c. Review Dates. In order to enable the SRG to make a contribution to the setting-up costs of the Institute the start date of the grants was set as 1 January 1992, six months before the Institute began operation. The date by which the review had to take place was set as 31 December 1993. An application was made in September 1993 for increased resources for the second two-year period, ie the calendar years 1994 and 1995, in the form of the cost of upgrading the Principal Secretary to Administrative Assistant and and the cost of an Assistant Computer Officer, and for an extension into the third two-year period, ie the calendar years 1996 and 1997. The review panel visited the Institute on 16 November 1993, reporting to the SERC Mathematics Committee in December. Because of the need to consult other Boards and Committees, the grant could not be announced before March nor given a start date before 1 March 1994. It is understood that it is the intention of EPSRC that the next review should begin with the submission of an application by the Institute in September 1995, with a review panel visiting the Institute in October or November and a new grant beginning on 1 March 1996.

d. The Award. The review panel recommended support in full for the application made in September 1993 for extension of the rolling grant but the Mathematics Committee, whilst largely accepting the report, felt it had to cut back the award by £60k over the four-year period. The original award had contained contributions of 7.5% from the Engineering Board, 6.25% from the Astronomy and Planetary Science Board (APSB) and 5% from the Nuclear Physics Board (NPB), the bulk coming from the Science Board under which the Mathematics Committee sat. In consequence approaches were made within SERC to their successors, the Engineering and Technology Board and the Particle, Space and Astronomy Board for contributions to fund the increased resources for 1994 and 1995 and for the extension into 1996 and 1997. The Engineering and Technology Board agreed but the Particle, Space and Astronomy Board suggested that, following the reorganisation of research councils from 1 April 1994, requests for additional support could best be handled by direct application to the new Particle Physics and Astronomy Research Council (PPARC). They therefore declined to provide a contribution to the increased resources requested or the extension beyond 1995 but

Fund-Raising and Grant Aid

their commitment for 1994 and 1995 will of course be honoured. In view of this the Mathematics Committee has made further funds available to enable the award to continue at its present level until the next review date (1 March 1996). Thus the Institute was granted a substantial sum of money which will enable it to maintain its activities at current levels.

6.2 Hewlett-Packard: Towards the end of the 1993/94 year, Hewlett-Packard very generously offered to make a very considerable donation of computer equipment to the Institute, consisting of one high-speed, high-resolution graphics computer with very large disk capacity to act as a 'numbercrunching' machine, and capable of handling symbolic manipulation packages (eg Mathematica) and graphics with ease; nine fast workstations with high resolution monitors and large disk capacity which have ten times more memory than SPARCstation 1/1+ machines and processors running nine times faster than our fastest desktop Sun; operating system, manuals and cabling for all the above; one Deskjet 1200 colour PostScript general printer and one colour plotter for plotting graphical output. The approximate total value of the donation is £350,000. Hewlett-Packard also wish to fund a Senior Hewlett-Packard Research Fellow at the Institute. We expect the person to be in post from January 1995.

6.3 Isaac Newton Trust: The Isaac Newton Trust continued to provide the Institute with $\pounds 200,000 \ pa$ as a contribution to overheads. This support is vital to the continued existence of the Institute. In addition, the Isaac Newton Trust made a contribution of $\pounds 10,000$ towards the salary of the Library and Information Officer.

6.4 St John's College: St John's College donated the sum of £150,000 to the Institute in 1993/94, being the second instalment (of five) of its funding to offset against the rent of the Newton Institute building.

6.5 NM Rothschild and Sons: The money donated by NM Rothschild and Sons in 1992 to be used for the salary of Rothschild Distinguished Visiting Professors over a five-year period was spent in 1993/94 on Professor David Mumford (Harvard University) on the *Computer Vision* programme and Professor James Hartle (University of California, Santa Barbara) and Professor Shing-Tung Yau (Harvard) on the *Geometry and Gravity* programme, and associated costs.

6.6 Leverhulme Trust: During 1993/94 a successful application was made to the Leverhulme Trust for £165,000 over three years, beginning in July 1994. This money will be spent on subsistence and travel costs for scientists from Eastern Europe and the former Soviet Union, together with associated additional costs.

6.7 Centre Nationale de Recherches Scientifiques (CNRS): Members of the CNRS visited the Institute for the purposes of assessment during the year 1993/94. The organisation continues to donate the sum of 400,000FF to the Newton Institute towards subsistence and travel costs for French participants (in particular those from CNRS laboratories) and associated costs.

6.8 Gabriella and Paul Rosenbaum Foundation: The Institute received the second instalment of a three-year grant from the Gabriella and Paul Rosenbaum Foundation. The \$ 70,000 given funds the salary of one young American scientist on each of the Institute's four programmes. This year the recipients were Dr Jitendra Malik on the *Computer Vision* programme; Dr Tom Mountford on the *Random Spatial Processes* programme; Dr Iddo Yekutieli on the *Cellular Automata, Aggregation and Growth* programme and Dr Arlen Anderson on the *Geometry and Gravity* programme. The grant has been extended for a further two years.

6.9 EU: Applications were made to the European Union's Human Capital and Mobility Fund for Euroconferences to enable the Institute to fund a series of conferences primarily aimed at young people. The first conference series which covers the years 1993/94 and 1994/95 was awarded

Fund-Raising and Grant Aid

60,000 ecu in subsidy to spend on four conferences and the second series, which covers the years 1994/95 to 1996/97, has been awarded 90,000 ecu for eight conferences.

6.10 NATO Advanced Study Institutes (ASIs): Applications were made to NATO by the organisers of the programmes on Random Spatial Processes and Cellular Automata, Aggregation and Growth for support to fund conferences under the NATO ASI programme. Again, these were largely aimed at young scientists. Both of these applications were successful, the former being awarded the sum of £48,852 and the latter being awarded £47,170.

6.11 Prudential Distinguished Fellowship: This year's instalment of £25,000 from the Prudential Corporation was the second of three, given to be spent on distinguished visiting fellows and associated costs. In 1993/94 the recipients of Prudential awards were Professor Henrik Flyvbjerg; Dr Tim Halpin-Healy and Dr Michael Moore. All three attended the *Cellular Automata*, Aggregation and Growth programme.

6.12 LMS: LMS awarded the sum of $\pounds 10,000$ pa to the Institute for five years beginning in 1992/93. This money is to fund subsistence and travel costs for short-term UK participants.

6.13 DAIWA Anglo-Japanese Foundation: The sum of $\pounds 10,000$ was awarded to the Institute by the Daiwa Foundation to fund the participation of Japanese scientists in the Institute's programmes.

6.14 Institute of Physics Fellowship: The Institute received the second $\pounds 10,000$ instalment (of five) of its grant from the Institute of Physics which is given to support a visiting physicist from Eastern Europe. The recipient of the fellowship was Dr Janos Kertész, Deputy Director of the Institute of Physics at the Technical University in Budapest who attended the *Cellular Automata*, Aggregation and Growth programme.

6.15 Jesus College: Jesus College contributed \pounds 5,000 towards running costs as it has pledged to do for the first five years of the Institute's operation.

6.16 Cambridge Philosophical Society: The Cambridge Philosophical Society funds four bursaries of £250 each per Institute year to enable young (under 35) scientists to attend the Institute's programmes. In 1993/94 unspent funds were also carried forward from the previous year and hence six bursaries were awarded in total. The recipients of these awards were: Dr Nicola Ferrier Computer Vision; Dr Ben Hambly, Dr Alison Etheridge and Dr Terence Chan Random Spatial Processes and Dr Timothy Newman and Dr Martin Evans Cellular Automata, Aggregation and Growth.

7. FINANCES

The grants given and expenditure incurred on establishing the Institute are summarised in Table 7a below. Grants for recurrent costs are also summarised in Table 7b.

Table 7c, prepared in connection with the fundraising for the Institute gives a picture of the funds which are necessary for the Institute to continue to operate at the best possible level. EPSRC funding, through a "rolling grant", is assured until 31 December 1997 and is to be reviewed for the second time in the autumn of 1995. It will then be considered for extension for a further two years to 31 December 1999 and the resources provided for 1996 and 1997 will be reviewed. The subvention of the rent (by $\pounds 150k pa$) provided by St John's College and the grant of $\pounds 200k pa$ from the Newton Trust will last until June 1997.

Table 7a-Setting-Up Costs

Donations		Expenditure			
Apple UK	108,000	Audio Visual Aids	27,743		
Books (Individuals)	232,000	Consumables	16,000		
Books (Organisations)	25,000	Computing Equipment	409,086		
Cambridge University	121,000	Furniture & Equipment	139,727		
Cambridge Colleges	140,000	Library	305,930		
Individuals	17,221	Office Equipment	40,437		
London Math Soc	20,000	Inauguration	5,704		
Nuffield Foundation	57,298	Security Systems	15,715		
SERC	100,000	Staff Costs	84,644		
Sun Microsystems	213,000				
Interest	11,467				
Total	£1,044,986	Total	£1,044,986		

Apple UK donated computer equipment worth $\pounds 108,000$.

Donations of books and journals worth about £232,000 were received from individuals. Donations of money totalling £17,221 were also received.

Donations of books and journals were received from Cambridge University Press, London Mathematical Society, Princeton University Press, Springer-Verlag and other organisations, totalling about $\pounds 25,000$ in value.

Grants of £5,000 from Christ's College, £30,000 from Emmanuel College, £100,000 from Gonville and Caius College were received towards the costs of establishing the Institute. Jesus College gave a grant of £5,000 pa for 5 years.

The London Mathematical Society provided a grant of $\pounds 20,000$ towards establishing the Institute. This was part of a larger grant of $\pounds 70,000$, the remainder to be paid over 5 years.

The Nuffield Foundation provided a grant of $\pounds 57,298$ to meet the salary costs of the Deputy Director and some secretarial and other support during the setting-up period.

A grant of £100,000 was received from the SERC towards the cost of establishing the Institute, £70,000 for computing equipment and £30,000 for the library.

Sun Microsystems donated computer equipment worth about £213,000.

A grant of £100,000 was received from the University of Cambridge towards the cost of furniture and equipment for the building. A further grant of £21,000 was provided out of anticipated income

Finances

from the UFC associated with the Institute.

Table 7b—Grants for Recurrent Costs

SERC/EPSRC	$\pounds 568k$
Isaac Newton Trust	$\pounds 210k$
St John's College	$\pounds 150 \mathrm{k}$
NATO	£96k
NM Rothschild & Sons	$\pounds 67k$
CNRS	£47k
Rosenbaum Foundation	£47k
European Union	£28k
Prudential Corporation plc	$\pounds 25k$
Institute of Physics	$\pounds 10k$
London Mathematical Society	$\pounds 10k$
Daiwa Anglo-Japanese Foundation	$\pounds 10k$
Jesus College	$\pounds 5 \mathrm{k}$
Cambridge Philosophical Society	$\pounds 1.5 k$

Finances

able	7c Future Funding Needs	5						
Note	es	91-92	92-93	93–94	94-95	95-96	96-97	97 - 98
]	BUILDING							
1	Setting-up cost	$\pounds 234k$						
2	Rent		£184k	£184k	£184k	£184k	£184k	£184k
3	Overheads		$\pounds 27k$	£23k	$\pounds 28k$	$\pounds 29k$	$\pounds 29k$	$\pounds 30k$
	Total Need	$\pounds 234k$	$\pounds 211k$	$\pounds 207k$	$\pounds 212k$	£213k	£213k -	£214k
4	Funding secured	£234k	£211k	£207k	£212k	£213k	£213k	£60k
	Funding Need: building							$\pounds 154k$
]	EQUIPMENT							
5	Computers	$\pounds409k$	$\pounds 105k$	$\pounds 122k$	$\pounds 122k$	$\pounds 125k$	$\pounds 128k$	£131k
6	Books	$\pounds306k$	$\pounds 18k$	$\pounds 27k$	$\pounds 27k$	$\pounds 28k$	$\pounds 28k$	$\pounds 29k$
7	Consumables		$\pounds 63k$	£71k	$\pounds70k$	$\pounds72k$	$\pounds74k$	$\pounds75k$
	Total Need	$\pounds715k$	$\pounds 186k$	$\pounds 220k$	£219k	$\pounds 225k$	$\pounds 230k$	$\pounds 235 k$
8	Funding secured	£715k	£186k	£220k	£219k	£214k	$\pounds 200k$	$\pounds 165k$
	Funding Need: equipment					£11k	£30k	$\pounds 70k$
I	POSTS							
9	Core posts	$\pounds 85k$	$\pounds 227k$	$\pounds 212k$	$\pounds 245k$	$\pounds 277k$	$\pounds 284k$	£291k
10	Visiting posts		$\pounds 541k$	$\pounds 538k$	$\pounds 560 \mathrm{k}$	$\pounds 574k$	$\pounds 588k$	£603k
	Total Need	$\pounds 85k$	$\pounds768k$	$\pounds750k$	$\pounds 805 k$	$\pounds 851k$	£872k	£894k
11	Funding secured	$\pounds 85k$	£768k	£750k	$\pounds 805k$	£832k	£788k	$\pounds 695k$
	Funding Need: posts					£19k	£84k	\pounds 199k
	Total Annual Funding Nee	d				$\pounds 30k$	£114k	£423k
	Cumulative Total Need					$\pounds 30k$	£144k	$\pounds 567k$

NOTES:

1. The setting up costs include fitting out, furniture, office equipment and audio-visual equipment.

2. Funds have been secured to rent the building for the first five years from 1 July 1992.

3. Overhead contributions include amounts paid to the University of Cambridge in respect of heat, lighting, maintenance etc.

4. Includes £750k from St John's College towards the first five years' rent, and grants of £121k from the SERC and £100k from Gonville and Caius College.

5. Includes the cost of maintaining and renewing the hardware and software necessary for the first class computing and electronic communication system which is essential for the Institute.

Finances

6. The Library needs to maintain a collection of the most important texts and the key journals over a broad range of the mathematical sciences.

7. Consumables includes items not subsumed under other headings including stationery, publicity materials, telephones, postage, faxes etc.

8. Computer workstations have been donated by Hewlett-Packard, Sun Microsystems and Apple UK; software has been donated by NAG, Claris and Wolfram Research. Over 4000 books and journals have been donated by a large number of publishers and individual members of the mathematical community. Emmanuel, Jesus and Christ's Colleges have made grants.

9. Core posts include the Deputy Director and administrative staff and the Hewlett-Packard Senior Research Fellow from January 1995.

10. Visiting posts include the research programme organisers, visiting professorships and fellowships, as well as basic subsistence allowances for most of the 220 scientists who come as visiting members of the Institute each year.

11. Funding has been obtained as follows:

Institute of Physics	$\pounds 50k$ over 5 years
Prudential Corporation plc	$\pounds 100k$ over 4 years
NM Rothschild & Sons	\pounds 333k over 5 years
Isaac Newton Trust	$\pounds 1050$ k over 5 years
London Mathematical Society	\pounds 70k over 5 years
CNRS	$\pounds 200k$ over 5 years
Rosenbaum Foundation	$\pounds 225k$ over 5 years
Daiwa Anglo-Japanese Foundation	$\pounds 26k$ over 2 years
SERC/EPSRC	$\pounds 3239k$ over 6 years
Hewlett-Packard	\pounds 490k over 5 years
Leverhulme Trust	$\pounds 165k$ over 3 years

8. PROGRAMME REPORTS

Programme 5: COMPUTER VISION

July to December 1993

Report from the Organisers

A Blake (Oxford), D Mumford (Harvard), BD Ripley (Oxford).

Introduction. This programme brought together researchers from a wide range of disciplines, principally mathematics, statistics and engineering, but also computer science, psychology and various biological sciences. (The organisers are from departments of engineering science, mathematics and statistics.) Computer vision is an inter-disciplinary area, but it is not a well-defined academic subject, and sub-communities work in different 'universes' attending separate conferences, publishing in separate journals and so forth. One of the main aims of the programme was to break down some of these barriers and explore in depth the potential impact of mathematical and statistical methodology within computer vision, and we believe that our success at this is the major achievement of the programme.

Computer vision has developed rapidly in the last two decades. It developed originally as an engineering discipline to tackle practical problems in several areas: visual navigation of mobile robots and road vehicles, hand-eye coordination in assembly robots, quality inspection of manufactured goods and automated analysis of medical images. David Marr, from many perspectives the founder of the area, was the first to seek systematically analogies between the solutions of these problems by computer and their solutions in an animal brain. The field is somewhat split between those who take biological vision as their model and want to describe the brain's algorithms and those who seek direct engineering solutions to the practical problems of vision. The involvement of mathematicians and statisticians has been relatively recent but substantial contributions have already been made, and sufficient computing power is now available to enable theoretical approaches to be developed into feasible computational algorithms. Thus theoretically founded methods can be expected to have increasing importance in the future, and this programme has been very timely in influencing the future directions and coherence of the subject of computer vision.

Organisation. Since the subject to be covered is so broad, we decided to structure the six-month period rather precisely. Sixteen weeks were allocated to specific topics (see the table below) and each was allocated to one or two week-organisers who were asked to arrange the lecture programme for that week and ensure that there was enough introductory material, often in the form of one or two short courses. We aimed at 8 hours of lectures per week (but the pressure to let everyone speak who had something significant to add usually resulted in about 12 hours per week). This structure was widely advertised several months in advance.

Four of these topics were designated as workshops, which were advertised even more widely and had more intensive programmes of around 20 lectures. However, many of the topics attracted visitors from the UK for the week, so several weeks had over 40 people in attendance. We had intended to organise software challenges, but this proved to be too ambitious, partly because of the limited hardware available at the Institute and partly from the difficulty in establishing standards and comparing software with divergent goals. However, in the areas of two out of the four planned challenges — real-time visual tracking and model-based vision — software from Oxford and from Rochester was installed and demonstrated.

Schedule of topic weeks.

Week	Topic	Week Organiser(s)		
July 5-9	Active Vision I	R Brockett, CM Brown		
July 12-16	Computational Geometry and Robotic Path- Planning	JM Brady		
July 19-23	Active Vision II — WORKSHOP	A Blake, D Terzopoulos		
July 26-30	Computational Approaches to Analysis of Multiple Views	O Faugeras, T Huang		
Aug. 2-6	Psychophysics of Motion and Binocular Stereo	K Nakayama		
Aug. 16-20	Biology of Vision	D van Essen		
Aug. 23-27	Object Recognition I — WORKSHOP	J Mundy		
Sept. 6-10	Object Recognition II	S Geman		
Sept. 13-17	Surface Geometry	J Koenderink		
Sept. 20-24	Wavelets and Pyramid Architectures	P Burt, S Mallat		
Oct. 18–22	Statistical Methods in Vision - WORKSHOP	PJ Green		
Oct. 25–29	Speech Recognition and relations to Vision	S Roukos, J Bridle		
Nov. 1–5	Statistical Basis of Learning and Classification	BD Ripley		
Nov. 8–12	Reinforcement Learning and Adaptive Control	A Barto		
Nov. 22–26	Texture Segmentation and Classification	J Malik, K Conradsen		
Nov. 29–Dec. 3	Geometry-driven Diffusion and Image Segment- ation — WORKSHOP	D Mumford		

One motivation for choosing this structure was the realisation that as many leading workers in computer vision are running 'labs' and are heavily dependent on grant/industrial funding, they would only be able to visit Cambridge for periods of 1-4 weeks. (Several people visited twice, and long-term visitors returned home for short periods of administration and grant review.) Our structure enabled us to attract researchers for those topics which particularly interested them or to which we particularly wanted their contributions.

Several special lectures were targeted at a less specialist audience. Steven Zucker gave the Princeton University Press series of six lectures on

Computational Vision and Biological Perception

and David Mumford gave the annual Marr lecture on

What does the brain have to compute in order to see?

a version of which was also given in Edinburgh. During the workshop on *Statistical Methods in Vision* papers by three of the participants were read to the Research Section of the Royal Statistical Society in London:

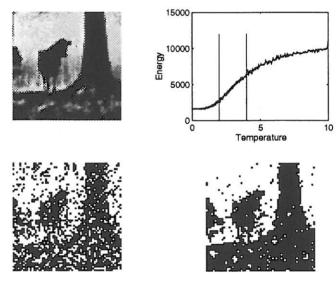
BD Ripley: Neural Networks and Related Methods for Classification.

U Grenander and MI Miller: Representations of Knowledge in Complex Systems.

There was one joint discussion session with the parallel programme, Random Spatial Processes, and considerable cross-attendance and informal interaction.

Attendance. Eight people attended throughout the programme, six for around three months, sixteen for 4-8 weeks, and there were 73 recorded one week visits. (We estimate another 100 people attended for one or more weeks, without specific invitations.)

There was extensive attendance by younger UK workers, especially from the main UK groups at Oxford and Sheffield. Many Cambridge scientists from the Engineering and Biological Departments


were regular participants. Unfortunately many senior UK researchers found it difficult to come for more than very short visits.

Highlights. Our impressions are that the main impact of the computer vision programme has been at the conceptual level; it has led to much wider (and more widespread) understanding of the possible theoretical bases for computer vision. Central to this has been the rôle of Bayesian statistical inference, which has recurred throughout the programme, often in topics unsuspected by the organisers!

Hierarchical Bayesian inference has occurred in many of the topic weeks, in which 'layered' abstractions of a visual scene are used as levels of interpretation. For example, when viewing a human face we may wish to factor out the effects of lighting and viewpoint (equivalently, of 'pose') before considering a family of template faces to identify individual faces by name. Methods developed in speech, expert systems and genetics are now available to compute 'optimal' estimates within such hierarchical structures by far-reaching extensions of dynamic programming. Some ideas have already been implemented in computer vision (for instance in object recognition and in reinforcement learning), but the latest techniques developed by statisticians will now be applied within the computer vision community.

Object Recognition was a recurring theme, not only in the weeks specifically dedicated to this, but in the majority of other weeks. This topic both highlighted the divergence between 'camps' involved in the development of very different techniques and the promise if these can be integrated. These range from the use of polynomial invariant theory, to searching in a space of random diffeomorphisms, to exploiting curvature and non-linear shape diffusion based on curvature. It is very striking that although pure mathematics has developed geometric theories ranging from topology to differential geometry to algebraic geometry, none of these seems to capture the intuitive notion of 'shape' and what we mean when we say two shapes are 'similar'. In our week on surface geometry, we even sought to include the insights of a sculptor (John Willats) in describing shape. The range of algorithms developed for object recognition reflects this search for modeling the diverse things similarity of shape includes.

What have we learned from biological vision? Several unifying themes in computer vision have been developed using strongly evidence from and intuition based on the study of bio-

Top left: Input image. Top right: Energy as a function of temperature during the annealing process. Bottom left: An intermediate stage at a relatively high temperature in the construction of foreground/background by annealing. Bottom right: A lower temperature stage. The temperatures of two samples are marked by the vertical lines in the graph: note that they delineate the steepest part of the curve – the 'phase transition' in this example.

logical vision. We mention three of these. One is the idea that the appropriate vision front-end is a multiscale wavelet-like filter bank, extracting local spatial frequency features and analogous to simple and complex cell responses on the brain area V1. The ubiquity of this theme, from algorithms for stereo and motion computation to texture segmentation was striking. A second is the need to

separate the computation of local edges, eg by filters, from that of extended edges or contours. Both the neurophysiology of V1 and V2 and the psychophysics of the Gestalt school suggest that extended edges represent a higher stage of processing. Finally, the existence of massive feedback pathways in the brain has been linked generally with statistical models in which a very complex prior is used and specifically with the idea of fitting flexible templates. On the other hand, we saw some very useful algorithms which seem as un-biological as propellers for flight. Examples include the use of invariant theory for object recognition and the characterisation of faces using principal curvatures obtainable from laser range data, but probably not from ordinary images.

Statistical filtering and control. Another of the potentially productive links reinforced during the programme has been between active vision/robotics and control theory. This was evident particularly during the first three weeks and the "reinforcement learning" week in November. Roger Brockett was particularly influential in disseminating theories of stochastic estimation and control and expanding on potential applications in motion modelling. The dynamic programming theme recurred in the context of reinforcement learning, with particular application to learning direct sensory-motor couplings.

Output. The main success of our programme will be in establishing a coherent theoretical view on computer vision. The workshop has heavily influenced the following books which have been planned and/or substantially written during the programme:

A Blake: Visual Contour Tracking

CM Brown, D Terzopoulos: Real Time Vision. (Drawn from the weeks on active vision.)

J Malik, R Cipolla, P Perona, A Zisserman: Vision: Principles, Models and Applications.

D Mumford, A Yuille, P Belhumeur: Computer Vision

BD Ripley, NL Hjort: Pattern Recognition and Neural Networks.

S Zucker: Computational Vision and Biological Perception, Princeton University Press.

which can in turn be expected to influence the future of computer vision as a subject. There will be many other publications, impossible to assess as yet. Many of the long-term participants, while resident here, also traveled and lectured outside of Cambridge, to a wide variety of departments. These include lectures at Oxford, London, Edinburgh, Leeds, Liverpool and Stirling in the UK, INRIA (Nice), Tübingen and Heidelberg on the continent. While it is always difficult to engage in extensive software development while on leave, several projects were successfully carried out with the Institute computer base and with special-purpose vision equipment brought in. These include:

Belhumeur and Mumford: Genetic algorithm style minimisation procedures

Blake and Isard: Linking stochastic estimation with template models

Brown: Lattice predictors

Cipolla and Giblin: Geometry of silhouettes in motion

Oliensis: Structure from motion algorithms

Tiwari: Path-planning, Face image analysis

Weiss and Giblin: Algorithms for visual analysis of surface geometry

Programme 6: RANDOM SPATIAL PROCESSES

Report from the Organisers

MT Barlow (UBC, Vancouver), GR Grimmett (Cambridge), H Kesten (Cornell).

Introduction

The theory of random spatial processes has been born out of a need to understand the evolution of complex stochastic systems living in a space normally of finite dimension. This programme aimed at making progress on some of the hardest problems presently under scrutiny, namely, to understand the structure of phase transitions in probabilistic systems, to comprehend the natures of pure phases and the rôle of the number of dimensions, to study geometrical properties of evolving processes, as well as to model and solve concrete problems arising in related areas of scientific research.

In the past two decades there have been studied a great variety of models involving the interaction of a large (or infinite) number of particles, and often exhibiting phase transition. Many of these models have been inspired by statistical physics. While such models may differ considerably in detail, a number of general tools have been developed. One aim of the programme was to acquaint young researchers with these tools. A second aim was to bring together more senior researchers who are already familiar with various parts of this 'machinery' in order to make further substantial progress by combined efforts.

Most of the best researchers worldwide in the field contributed to the success of the programme by visiting for substantial periods. Attempts were made to guide progress by having periods of focus on different aspects, with specialist contributions from groups originating in different countries. There were about 55 long-term visitors in all, with an average stay of 2 months. During the months July-August there were many U.S. visitors, with a more European mix subsequently. All active UK probabilists were welcome, and most of them visited, at least for short periods.

The programme opened in July with a NATO Advanced Study Institute entitled 'Probability Theory of Spatial Disorder and Phase Transition' (G Grimmett, director). Around 120 individuals showed up at this 11 day meeting, from a multiplicity of countries. The principal speakers delivered two talks each, being expositions of recent progress and areas ripe for future research. This superb ASI was attended by at least 28 UK scientists, many of whom were less than 30 years old.

Activity related to material expounded at the ASI continued throughout August. In September there was a successful week devoted to 'Stochastic methods in partial differential equations', for which many experts attended specially (J Norris, M Barlow, G Grimmett, organisers). Once again, UK participation was high. The third and final meeting, on 'Metastability and hydrodynamic limits for interacting particle systems', took place in November (H Kesten, organiser); this was a concentrated research symposium devoted largely to the dynamics of evolving processes.

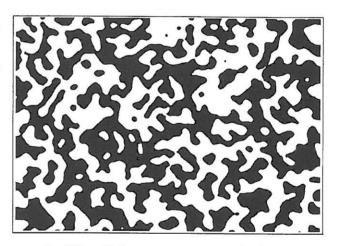
In between these three meetings, we pursued a programme of 2–4 seminars or expository talks per week. This more tranquil timetable enabled participants to interact and to reflect. Almost always (in the daytime) one could find participants discussing scientific problems in the common area of the Institute. Various groups of researchers attained the critical point of fruitful collaboration, and good progress was made on a variety of topics (see below). A number of these collaborations have resulted already in preprints, and many more articles are in the pipeline.

In addition to the funding arranged through the Newton Institute budget, we benefited from the substantial grant of around \$ 48,000 from NATO, as well as ancillary sums from the National Science Foundation, the London Mathematical Society, and the Cambridge Philosophical Society.

Some people took part in discussions with members of the parallel programme on Computer Vision.

Scientific Programme

A variety of closely related major themes have been pursued.


Large deviations in statistical physics. The sophisticated large deviations machinery of R Dobrushin and S Shlosman has many principal applications to interacting systems. These include the study (with R Kotecky) of the shape of the critical droplet in the two-dimensional Ising model, and the verification in this case of the famous Wulff construction (work continues in three dimensions). Also dependent on methods from the theory of large deviations is the ongoing programme of R Dobrushin and some of his students to derive higher order hydrodynamic equations. Typically these are equations involving a small parameter ϵ representing the local density of an evolving system of particles. Whereas the usual 'Euler' hydrodynamic equations are useful for times as large as $O(\epsilon^{-n})$.

Metastability and time-evolution. The energy function of a system generally has many minima. A system which spends a long time near a local minimum before flipping to a global minimum is sometimes said to be metastable. There are substantial mathematical difficulties in studying metastability for complex interacting systems, and a major part of the programme was devoted to this general area. Outstanding progress has been made on metastability for the Ising model, and various groups were brought together to discuss and report (R Schonmann, E Olivieri, F Martinelli, E Scoppola, H-T Yau, and others).

One now has quite good estimates of how long it takes for a *d*-dimensional Ising model on a finite box, evolving under Glauber dynamics, to change from 'all minus-spins' to the plusstate. The parameters involved are the size of the box, the strength of the magnetic field, and the temperature; one usually works at low temperatures and small magnetic fields. One may measure the distance between the state of the system and the plus-state using various norms. Several participants explored the relations between such estimates and their dependence on the mixing properties of the Ising model.

There are also major problems of a similar nature for the Ising model on the infinite space \mathbb{Z}^d . These were attacked also by participants in the programme, but are not yet well understood.

Movement of interfaces. A new type of problem has arisen in the study of dynamical models whose stationary state is given by the Ising model. Such questions are closely related to metastability and to hydrodynamic limits of

In this cellular automaton, each site progressively changes its colour in agreement with the majority of its neighbours. Clustering (or self-organisation) occurs swiftly, as illustrated here after three updates with random initial colours. (Figure by David Griffeath)

systems in 2 or more dimensions. A specific problem of this nature concerns the way the boundary of a growing droplet of plus-spins moves inside a set of minus-spins, when an Ising system evolves under Glauber dynamics from 'all minus' to the plus-state. In certain regimes this movement may

be described as 'motion by mean curvature' (A De Masi, E Presutti). Another example (in one dimension) is the motion of the interface in Glauber dynamics for an Ising system with Kac potential (after an appropriate limit has been taken). In this case one may show the existence of travelling waves (A De Masi, E Presutti).

Similar issues arise in the study of the shock wave experienced by one-dimensional exclusion processes and other nearest-neighbour attractive systems (P Ferrari). The position of the wave-front may be observed by positioning a special particle there. The movement of this particle is then observed, and various results may be obtained, including laws of large numbers, central limit theorems, as well as information about solutions to the macroscopic equation arising in the hydrodynamic limit.

Statistical physics. Many models of statistical physics pose first-class challenges to the probabilist, and we mention here several areas under this heading. First, progress has been made on understanding the nature of phase transitions for spin glasses (M Aizenman, A Gandolfi, M Keane, C Newman). For such mathematical models the phenomenon of frustration poses a major difficulty, and a similar problem arises in studying hard-core models (J van den Berg, R Dobrushin, H-O Georgii). An important model from statistical physics involves Schrödinger-type equations with random potentials, and sometimes other random coefficients. One of the main questions here is to determine conditions on the potentials and energy values for which these equations have localised eigenfunctions. M Aizenman and S Molchanov have given greatly simplified proofs of some known results, and have proved new results implying that localisation occurs in a variety of regimes. M Aizenman gave two lectures on his method during the NATO conference.

Quantum systems were the subject of investigation by several participants. For example, A Mazel and Y Suhov studied the phase diagram and ground states of a quantum system with a generalised hard-core interaction.

A topic of burgeoning interest amongst physicists and probabilists is the study of repulsive and attractive random walks and Brownian motion, and self-avoiding walks (T Hara, Y Higuchi, G Slade, B Tóth, E Bolthausen). We heard several lectures on this. The lace expansion is a major tool here (see below).

Lace expansions. In the context of percolation and polymer models such as the self-avoiding walk, a major component of understanding phase transition and dimension-dependence is to prove existence of the critical exponents characterising the behaviour of various quantities of interest near the critical point. Although much non-mathematical and numerical work has been done in this direction, rigorous proofs of existence of critical exponents have only begun to appear in recent years. This problem is dimension-dependent, and currently rigorous results have been obtained only above the upper critical dimensions, respectively four, six, and eight for the self-avoiding walk, percolation, and lattice animals (branched polymers). This work, due primarily to T Hara and G Slade and continued during the programme, is based on the application of an expansion method known as the lace expansion. It remains a major challenge to prove existence of critical exponents in lower dimensions.

Ising/Potts models. The Ising model in two dimensions has a beautiful geometry which varies as a function of temperature and external field. Y Higuchi has continued his successful project to understand the geometry of single-spin clusters. Partially related is the problem of proving weak mixing (J van den Berg, A Gandolfi, Y Higuchi, R Schonmann).

D Abraham and C Newman described their work on weighted surface models with an Ising interaction, and on related questions about the geometry of 'Peierls contours'.

Potts models have been studied extensively. In addition to the work of J.Cardy and G Grimmett (see below), we were fortunate to be visited twice by R Kotecky, who explained the detailed application of Pirogov-Sinai contour theory to Potts models.

Interacting particle processes. A standard model for the spread of infection is the contact process. This is the simplest of a class of 'threshold' models, in which each point becomes infected at a rate which depends on the states of its neighbours. T Liggett explained how the ergodic structure of such processes in one dimension depends on the numerical value of the critical point of the contact process, and how to calculate this value to the desired accuracy.

The random-cluster model is a process of stochastic geometry which generalises the Potts model. J Cardy described beautiful conjectures for the conformal invariance of two-dimensional Potts models at criticality; it may be many years before such conjectures (which may be applied also to crossing probabilities of random-cluster processes) are verified rigorously. G Grimmett explored level-set representations and time-evolutions for random-cluster models, in an attempt to understand the phenomenon of first and second order phase transitions.

T Mountford, our Rosenbaum Fellow, worked on a variety of interacting particle processes. One fine result of his is a Poisson limit theorem for the output from queues in series; his solution to this old problem in queueing theory uses ideas developed for exclusion processes.

Growth models. Models of stochastic growth are relevant to several areas of applied science, including cancer research, epidemiology, crystal growth, and so on. Various visitors reported on different aspects of the rigorous theory. G Lawler described progress and open problems for diffusion-limited aggregation (DLA), a process studied also by M Barlow and E Perkins on trees. K Alexander and M Penrose have worked on processes which accrete into spanning trees. H Kesten, C Newman, R Pemantle, Y Peres, and M Piza have proved elegant bounds for the fractal-like structure of the boundary of a certain growth process; interesting questions remain unanswered for this problem. J Hammersley continued his work on understanding the nature of holes created within the boundary of an Eden cluster, using in part Monte Carlo simulation.

Tree processes. When crystalline lattices are too hard, the physicist and probabilist migrate to a tree. Trees are often regarded as infinite-dimensional analogues of crystalline lattices. Models which are too difficult to analyse on finite-dimensional spaces are sometimes tractable on trees, owing to the absence of loops. Such solutions for trees then serve as guides to what may be expected in high but finite dimensions. Until a few years ago, one considered typically only *regular* trees. R Lyons, R Pemantle, and Y Peres have shown that many problems are tractable on completely general trees, including finding critical values for Ising and percolation processes. Under investigation now are various properties of random walks on trees. For example, criteria for recurrence and transience have been found, properties of harmonic measure on the boundary of the tree are known (in the transient case), and there are intriguing comparisons between polar sets (sets which are not hit by a random walk) on different Galton–Watson trees (R Lyons, R Pemantle, Y Peres).

In another direction, examples have been constructed (by I Benjamini and H Kesten) of trees on which one can see all sequences of 0s and 1s in an independent percolation process, starting from a prescribed finite number of vertices.

Finally in this section we mention the work of M Barlow and E Perkins on diffusion-limited aggregation (DLA) on trees (see above).

Measure-valued diffusions are continuum limits of branching walks, and serve as models for the spatial distribution of a population whose members branch, die, and move. The two fundamental processes in the field, the Fleming-Viot process (FV) and super Brownian motion (SBM) (also known as the Dawson-Watanabe process) are related by the fact (discovered by A Etheridge. P March, and E Perkins) that FV is just SBM conditioned to have constant mass. Although these processes take values in spaces of non-atomic measures, it is possible to follow the histories of the individuals which make up the population. P Donnelly described a simple way of doing this, while JF LeGall outlined another, and D Dawson and E Perkins a third. The individuals in SBM evolve and move independently, but for more realistic models one wishes to allow interactions between individuals and the whole population (eg particles move away from densely populated regions), or between populations (for models of competing species, say). E Perkins described a 'stochastic calculus' which enables a variety of models with interactions to be built from SBM, while P March (in joint work with D Dawson) has obtained resolvent estimates which allow Stroock-Varadhan perturbation methods to be applied to the FV process. Such work was expounded and investigated by a substantial group of visitors (A Greven, T Shiga, etc) during the programme, and was central to the September meeting.

Stochastic partial differential equations. The rigorous study of random fields indexed by a continuum rather than a lattice is in its infancy, one-dimensional and Gaussian cases aside. Stochastic partial differential equations, by which a well understood random field such as white noise is transformed infinitesimally into some more general field, offer a way forward, currently an active area of research worldwide. This was represented in the September meeting and the associated discussions by the work of J Norris, R Tribe, J Walsh, and others, as were many of the other connections between continuum random processes and partial differential equations, for example in travelling waves (J Biggins, Y Suhov). However a rigorous theory of continuum limits of critical lattice systems is still a long way off, if not impossible in general.

Professor Claude Kipnis: We regret to report the death of one of the participants on the Random Spatial Processes programme. Professor Claude Kipnis died in his Cambridge residence of an acute myocardial infarction at the beginning of September 1993.

Programme 7: GEOMETRY AND GRAVITY

January to June 1994

Report from the Organisers

GW Gibbons (Cambridge), SW Hawking (Cambridge) and CJ Isham (London).

Introduction: The aim of this programme was to bring together geometers and physicists interested in Problems in Classical and Quantum Gravity. In addition to classical differential geometry there has arisen over the past few years the important mathematical subject variously called "non-commutative differential geometry" or the "quantised calculus". Developed originally by mathematicians the subject is now being taken up by physicists especially as an alternative to the Kaluza-Klein procedure for obtaining descriptions of matter in terms of the geometry of an extended spacetime.

In addition to these purely mathematical areas there has been a remarkable resurgence of interest of late in the foundations of quantum mechanics and its relevance for studies of the early universe—quantum cosmology. New ways of looking at the nature of spacetime and their relevance for quantum theory are also at the heart of Twistor theory and this viewpoint has stimulated a number of important developments within differential geometry and gauge theory.

Finally the subject of gravitational collapse and the quantum properties of black holes continues to offer deep challenges to our understanding of fundamental physics and provides much of the physical motivation behind our attempts to quantise gravity.

Programme Structure: With these four main areas in mind the organisers decided to structure the programme in terms of four main sub-programmes:

Mathematical Foundations (Jan-March)

Twistor Theory (April-June)

Quantum Cosmology (March-May)

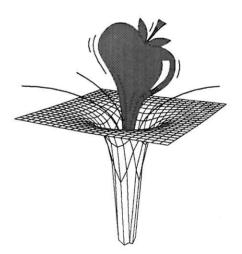
Black Hole Physics (May-June)

Long-Term Participation: The overall cohesion of the programme was maintained by the presence throughout the 6-month period of the organisers and James Hartle and Gary Horowitz. Both the latter have extremely broad interests and their presence for the entire six-month period (Hartle as Rothschild Professor for part of it) contributed enormously to the success of the programme. Also present for the entire six-month period were Arlen Anderson (Rosenbaum Fellow) and Ben Harms.

Other Activities: In addition to the main activities a number of small workshops and a major review conference were held during the six months. The conference, supported in part by funds from the EU, was entitled *Classical and Quantum Gravity* (28-31 March) and was a four-day Survey Meeting. The speakers were partly taken from among the participants, and about half were invited specially. The meeting was extremely well attended both by people from the UK and from the EU. The level of the talks was accessible to a broad mathematical audience and a large number of students and post-doctoral workers were present.

At a more technical level mini workshops were held on Membranes and Higher Dimensional Extended Objects (21-23 March), Closed Timelike Curves and Black Holes (11-15 April), Black Holes (6-9 June), Twistors (8-14 June) and Strings (23-27 May) and a one-day meeting on Saturday 7 May at which members of the Editorial Board of Classical and Quantum Gravity spoke on their recent research. In association with the programme Professor J Charap organised a workshop on the Geometry of Constrained Dynamical Systems (15-18 June).

Mathematical Foundations: This sub-programme began with ten lectures by S-T Yau (Rothschild Professor) on Non-linear Equations and Geometry and Gravity. Professor Yau's lectures covered classical general relativity (the positive mass theorem and the properties of minimal surfaces) and also the applications of algebraic geometry to string theory—especially to the as yet imperfectly understood phenomenon of mirror manifolds. Professor Yau's lectures were followed by a series of lectures by Professor A Connes on the Quantised Calculus. Professor Connes developed the general theory, and gave some applications to the standard model of particle physics. Professor Connes was present for the entire three months of the sub-programme. During his stay he was able to extend his work to cover the Einstein action. He also worked with Rovelli on the problem of time in quantum cosmology from the point of view of the algebraic approach to quantum theory. Other participants (Madore, Dubois-Viollette, Machir) developed various aspects of the formalism of non-commutative differential geometry to the point where concrete physical models are beginning to emerge.


Quantum Cosmology: The central interest of this sub-programme were the various approaches to Decoherent Histories developed by Griffiths, Omnes, Gell-Mann, Hartle and others. All four were present at the Institute for part of the programme. A regular seminar was held in which Hartle,

Isham and Halliwell led the discussions. One notable development was the work of Isham (and Linden) who were able to relate the general scheme of Gell-Mann and Hartle to a generalisation of the quantum logic which incorporates ideas from temporal logic.

The study week on *Closed Timelike Curves* proved extremely valuable in providing a challenge to attempts being made, such as the Hartle-Gell-Mann scheme, to generalise the basic quantummechanical framework. It identifies what must be sacrificed and what may be retained in the present theory. There was some agreement that one could have either unitarity or linearity but not both.

Twistor Theory: This sub-programme was fortunate in being able to attract most of the leaders in this field, including of course Sir Roger Penrose whose knighthood was announced during his stay at the Institute. A high proportion of the participants working on Twistor theory were able to attend for the entire three months and progress was made on generalising the non-linear graviton construction to general, non self-dual gravitational fields and to the relation between the Penrose transform and the Radon transform. The Twistor Week attracted a large number of twistor theorists from within the UK.

Black Hole Physics: In addition to the long standing debate about whether quantum coherence is maintained during quantum processes involving black holes there was extensive discussion of the possibility-relaxed for some time but now at the centre of attention-that charged black holes (magnetic or electric) may be paircreated by sufficiently strong external electromagnetic fields. Analysing this possibility has produced many new insights into the quantum physics of black holes and gave rise to much discussion. Another topic of increasing importance is the relationship between black holes and superstring states. This has become more pressing because of recent developments-due in part to Sen-which relate, via so-called S-duality-the properties of string states at strong coupling to those of soliton states, such as Yang-Mills BPS monopoles, at weak coupling. There were several discussions of how this phenomenon might carry over to the situation where gravitational fields are taken into account. This work raises both mathematical and physical challenges and

The design for the Geometry and Gravity programme T-shirt, by Simon Gill based on an idea by Stephen Hawking

exchanges between mathematicians like Yau and Segal on the one hand and string theorists like Harvey and Gauntlett on the other provided to be extremely valuable.

Another topic which received extensive attention was the significance in string theory of the singularities of classical relativity. There is now mounting evidence that not all classical spacetimes with singularities should be considered singular in string theory. A related question relates to the idea of "duality": that physics at very small and very large distances may be related by a symmetry of string theory.

Public Lecture Programme: In addition to the usual regular seminar programme and workshops two of the participants—Stephen Hawking and Roger Penrose—delivered three public lectures on the theme of The Nature of Space and Time. In the lectures, which are to be published by Princeton University Press, Hawking and Penrose were able to survey their own individual approaches to the

various problems raised by the existence of spacetime singularities, the need to quantise gravity, the nature of a possible gravitational entropy and its relevance for our understanding of the Big Bang. These lectures were extremely popular and attracted large audiences. They culminated in a debate—held in the Institute, during which the two protagonists were able to restate their respective positions and contrast them with the opposite viewpoint. It may be anticipated that the stimulus that their efforts have produced will continue to provoke discussion among students and others in the future. They clearly established that the ultimate aims of quantum gravity are not merely to solve technical problems, important as these are, but also to address some of the most fundamental questions about the nature of the universe and the laws that govern it.

Programme 8: CELLULAR AUTOMATA, AGGREGATION AND GROWTH January to June 1994

Report from the Organisers

B Derrida (Ecole Normale Supérieure), AJ McKane (Manchester), ER Speer (Rutgers).

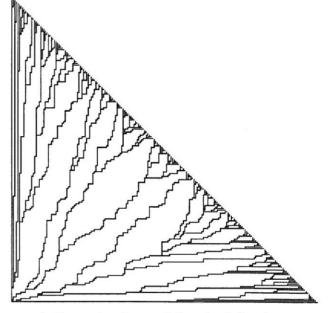
Introduction. As the behaviour of statistical mechanical systems in thermal equilibrium becomes increasingly well understood, much activity among theoretical physicists and mathematicians interested in statistical physics has focused in recent years on the behaviour of nonequilibrium systems, and in particular on problems of the growth. The advent of large-scale computer simulations has also contributed to the huge increase of scientific activity in this area. The problems of interest are typically modeled as systems of very large number of microscopic objects which evolve according to very simple dynamical rules of a local character, and one is interested in the statistical properties of the system at a macroscopic scale.

The goal of the programme in Cellular Automata, Aggregation and Growth was to bring together scientists, primarily physicists and mathematicians, who have worked in and contributed to this field, and to encourage interactions among them. The high quality of the participants, the amount of collaborative effort which ensued, and the enthusiasm shown by the participants in their final reports all testify to the degree to which these goals were met. Nine participants stayed for the entire six months of the programme, fifteen others stayed for at least two months, and more than twenty visited for shorter periods.

Scientific activities were scheduled with a view toward promoting the goal of interaction and collaboration. A twice weekly seminar was used as a vehicle for participants, particularly those recently arrived, to introduce their work to others; this seminar also provided an opportunity to bring to Cambridge, or to the Institute from other parts of Cambridge, scientists working in the areas of interest of the programme. A series of short meetings was designed to introduce participants systematically to some of the major topics of the programme, and to reach out to U.K. scientists at Cambridge and other institutions. The programme ended with a NATO Advanced Study Institute on Scale Invariance, Interfaces and Non-equilibrium Dynamics, organised by M Droz, AJ McKane, J Vannimenus and D Wolf.

We wish to express our appreciation to the Director, Deputy Director, and Institute staff for the excellent support which they gave to the programme.

Areas of Scientific Activity: The topic of the meeting and the interest of the participants spanned rather broad areas of physics and mathematics, and many collaborations were initiated. It is convenient to describe these scientific activities in terms of a number of specific sub-areas.


Kinetic roughening and the KPZ equation: This was one of the most active areas represented; participants working on these problems included Edwards, Halpin-Healy, Kardar, Kertész, Krug,

Moore, Tang, and Wolf. In particular, Kertész and Wolf (with E Somfai) obtained results on long range temporal correlations in nucleation events during layer by layer growth. Moore obtained an exact solution of the KPZ in all dimensions higher than four.

Coarsening phenomena: It emerged from the meeting held on coarsening, and in particular from the review talks there of Alan Bray, that for this problem many of the fundamental dynamical principles, the self-similarity structure, and the scaling relations are now fairly well understood. On the other hand, several collaborations among participants in the programme have produced additional progress in this area. Bray, Derrida, and Godreche discovered that certain quantities relevant to coarsening phenomena—for example, the number of unflipped spins, as a function of time, in an Ising or Potts model started from a random initial condition and evolving with Glauber dynamics—decay with a power law having a nontrivial exponent; they also solved exactly a related deterministic model in one dimension. For the stochastic dynamics, several approaches have been developed to determine the exponents exactly, in particular by Dhar and Hakim. Kertész and Ramaswamy found multiple time scales and logarithmically slow coarsening in a two-species asymmetric exclusion model.

Asymmetric exclusion models and exact solutions: As the programme developed, a great deal of discussion and collaborative effort grew out of work over the past several years, by Derrida and collaborators, on exact solutions for certain one-dimensional driven diffusive systems called asymmetric exclusion models. In these solutions, exact formulas for the steady state measure of these systems are obtained as particular matrix elements, or as traces, of products of infinite dimensional matrices. These solutions played an important rôle in the discussion of shocks and fronts at the short meeting devoted to that subject. Moreover, during the programme Derrida, Evans, and Mallick extended these methods to calculate the exact diffusion constant in one such model. Schütz also obtained results on these models, using a somewhat different algebraic approach. At the moment there is hope that these techniques can be pushed to obtain further results, but that question is certainly not settled.

Work took place also on some related models in which exact solutions are, at least at the moment, not obtainable. Evans, Godreche, and

A directed polymer "river basin": the solution of a global optimisation problem closely related to interface growth; from Kinetic Roughening Phenomena, Stochastic Growth, Directed Polymers, and All That by T Halpin-Healy and Y-C Zhang.

Mukamel studied a one dimensional, two species asymmetric exclusion model, in a system with open boundaries, in which there is a rather surprising broken symmetry; in general, such symmetry breaking does not take place in one dimensional equilibrium systems (at least those with short range interactions), so the nonequilibrium nature of the model is critical here. Kertész and Ramaswamy studied several two dimensional versions of the driven asymmetric exclusion process.

Self organised criticality: This area, while perhaps not as active as a few years ago, still presents interesting questions. One of these is to determine just what behaviours of a system should be

characterised as SOC and what properties of the system are required to give rise to this behaviour; these questions played a major rôle in Grinstein's lectures to the NATO Institute, and motivated Flyvbjerg's derivation of a particularly simple SOC system, the "self organised critical pinball machine." Another area of activity is the application of SOC concepts to biological and evolutionary models; Bak and Flyvbjerg, and Derrida and Flyvbjerg with J De Boer, AD Jackson, and T Wettig, obtained results in this area. Speer returned to one of the original SOC models, obtaining results on conservation laws in the directed sandpile model of Dhar and Ramaswamy.

A question which remains open is the relation of SOC models for sandpiles with behaviour of actual granular materials. Several talks at seminars and at the NATO meeting were devoted to experimental work in this area.

Reaction-diffusion systems: Reaction-diffusion systems, and the formation of fronts in such systems, were discussed in seminars by Cardy and Droz, and by Chopard at the NATO Institute. Droz and McKane were able to show the equivalence of the two existing methods for obtaining a field-theoretic description of these systems. Newman obtained results on some novel effects in reaction-diffusion systems in dimension two.

Behaviour of fronts: We have discussed above the work in the programme on shocks and fronts as motivation for and application of exact solutions of asymmetric exclusion models, and on fronts in reaction-diffusion systems. In separate work, Dekking and Speer studied the shape of fronts in the more abstract probabilistic setting of the minimal displacement of a branching random walk.

Disordered systems: The visit of Kardar seemed to be a focus for several collaborations in the area of disordered systems. Derrida and Kardar developed a position-space renormalisation group scheme for the study of a branched directed polymer in a random medium, modeling the interface of a Potts model in the presence of random bonds. Dhar, Kardar and Tang studied the depinning transition of interfaces from impurities, focusing on anisotropic depinning potentials, which they conjecture lead to new universality classes of depinning.

Diffusion limited aggregation: Seminars on diffusion limited aggregation and Laplacian growth, describing the current experimental and theoretical status and some new directions of attack, were presented by Ball, Couder, Halsey, Hakim, and Yekutieli. Yekutieli continued his work on a model of branched growth defined on abstract tree graphs.

Field theoretic and other continuum methods: Several collaborations have been formed in which field theoretic methods are used to study non-equilibrium statistical mechanical behaviour. Dickman, Grinstein, and Livi have used these methods to examine the critical properties of contact processes with many absorbing states. Domany, Grinstein, and Livi worked on damage spreading in more general interacting particle systems; they believe that their methods will show that the static critical behaviour is that of ordinary directed percolation. McKane and Zia used path integral techniques to calculate the statistics of one-dimensional interfaces. Blum and McKane, motivated by work of Schwartz and Edwards on the KPZ equation, studied variational approaches to stochastic processes, especially those for which detailed balance does not hold. McKane worked with participants in the programme on Geometry and Gravity on the use of standard nonequilibrium statistical mechanics techniques in studying quantum decoherence.

Cellular Automata: Work was carried out in a variety of unrelated areas of cellular automata research. Chaté presented a seminar describing rather surprising collective behaviour of certain cellular automata in high (four, five and six) dimensions. The source of this behaviour is not clear at the moment, and Chaté and Tang began a collaboration to see if it can be reproduced by a systematic mean-field-like approximation. Goldenfeld and McKane studied the problem of

modeling quantum systems by cellular automata; an extensive review of literature led them to conclude that there are fundamental difficulties with all previous work in this area. Speer and Steif initiated a rigorous study of a deterministic cellular automaton, the threshold voter model, in a region of parameter space in which now rigorous results are currently available.

Short Meetings: Various short meetings were organised as part of the programme.

- 3-4 February: Dynamics of Phase Ordering and Other Coarsening Phenomena. A one and a half day meeting with three review talks by A Bray and talks on current work by N Goldenfeld, V Hakim, and I Yekutieli.
- 3-4 March: Kinetic Roughening

A one and a half day meeting with two review talks by T Halpin-Healy and talks on current work by S Edwards, L Tang, and D Wolf.

23 March: Fronts and Shocks:

An afternoon meeting with talks by M Droz, J Krug, E Speer, and H Spohn.

- 21-22 April: Diffusion Limited Aggregation A one and a half day meeting with two review talks by R Ball and talks on current work by J Earnshaw, T Halsey, and I Yekutieli.
- 12-13 May: Self-organised Criticality

A one and a half day meeting with two review talks by D Dhar and talks on current work by P Bak, J-P Bouchaud, and H Flyvbjerg.

25 May: Cellular Automata:

An afternoon meeting with talks by J Hemmingsson, R Livi, and A Toom.

1 June: Spitalfields Day

A one day meeting with talks by B Derrida, D Dhar, H Flyvbjerg, and R Zia.

20-30 June: Scale Invariance, Interfaces and Non-Equilibrium Dynamics A NATO Advanced Study Institute with talks by B Chopard, Y Couder, S Edwards, H Flyvbjerg, G Grinstein, V Hakim, I Jánosi, M Kardar, J Krug, J Rajchenbach, L Sander, M Siegert, K Sneppen, D Wolf, and R Zia.

9. APPENDICES

9.1	Nationalities and Countries of Residence of Visiting Members	51
9.2	Chart of Visits 1993-94	30
9.3	Table Showing Nationality and Country of Residence	38
9.4	Cumulative Frequency Graph of Ages	<u> 59</u>
9.5	Papers Produced by Participants7	70
9.6	Seminars and Lectures	34

9.1 NATIONALITIES AND COUNTRIES OF RESIDENCE OF VISITING MEMBERS

Programme: Computer Vision

Participant	Nationality	Country of Residence	Home Institution	Visits
Amit, Y	Israel	USA	Department of Statistics, University of Chicago	22 Aug - 10 Sep, 1 Oct - 15 Oct,
Bajcsy, R	USA	USA	Department of Computer Sciences, University of Pennsylvania	19 Jul - 30 Jul,
Barlow, HB	UK	UK	Physiological Laboratory, University of Cambridge	9 Aug - 20 Aug,
Belhumeur, PN	USA	USA	Robotics Laboratory, Harvard University	9 Jul - 27 Aug, 19 Oct - 2 Dec,
Blake, A	UK	UK	Department of Engineering Science, University of Oxford	5 Jul - 17 Dec,
Brockett, RW	USA	USA	Department of Applied Science, Harvard University	1 Jul - 30 Jul,
Brown, C	USA	USA	Department of Computer Science, University of Rochester	5 Jul - 18 Aug,
Cipolla, R	UK	UK	Department of Engineering, University of Cambridge	5 Jul - 1 Oct,
Conradsen, K	Denmark	Denmark	Technical University of Denmark	4 Nov - 5 Dec,
Cooper, DB	USA	USA	Department of Engineering, Brown University	21 Aug - 15 Sep,
Cox, IJ	UK	USA	NEC Research Institute, Princeton	26 Jul - 6 Aug,
Ferrier, NJ	UK	UK	Department of Engineering Science, University of Oxford	4 Jul - 31 Jul, 9 Aug - 13 Aug, 29 Nov - 3 Dec,
Forsyth, D	South Africa	USA	Department of Computer Science, University of Iowa	2 Aug - 29 Aug,
Frigessi, A	Italy	Italy	Laboratorio di Statistica, Venezia	18 Oct - 29 Oct,
Geiger, D	USA	USA	Siemens Corporate Research, Princeton	6 Sep - 17 Dec,
Geman, D	USA	USA	Department of Mathematics, University of Massachusetts	22 Aug - 28 Aug, 5 Sep - 11 Sep,
Geman, S	USA	USA	Department of Applied Mathematics, Brown University	14 Aug - 12 Sep, 25 Oct - 26 Nov,
Giblin, PJ	UK	UK	Department of Pure Mathematics, University of Liverpool	12 Jul - 25 Sep, 29 Nov - 3 Dec,
Gidas, B	USA	USA	Department of Applied Mathematics, Brown University	29 Nov - 6 Dec,
Graffigne, C	France	France	Mathématiques, Université de Paris-Sud	16 Oct - 30 Oct,
Green, PJ	UK	UK	Department of Mathematics, University of Bristol	17 Oct - 23 Oct, 1 Nov - 5 Nov, 8 Nov - 12 Nov,
Hallam, J	UK	UK	Department of Artificial Intelligence, University of Edinburgh	19 Jul - 30 Jul, 30 Aug - 10 Sep, 1 Nov - 12 Nov,
Huang, TS	USA	USA	Beckman Institute, University of Illinois	4 Jul - 10 Jul, 19 Jul - 27 Jul,

17	IIIZ	THE		
Kay, JW	UK	UK	Department of Computing and Mathematics, Uni- versity of Stirling	18 Oct - 22 Oct,
Kimia, BB	Canada	USA	Department of Engineering, Brown University	29 Nov - 3 Dec,
Kübler, O	Germany	Switzerland	Institut für Kommunikationstechnik, ETH, Zürich	16 Aug - 20 Aug, 29 Nov - 3 Dec,
Longuet-Higgins, HC	UK	UK	Experimental Psychology Laboratory, University of Sussex	26 Jul - 6 Aug,
Mackay, DJC	UK	UK	Department of Physics, University of Cambridge	18 Oct - 25 Nov,
Malik, J	India	USA	Computer Science Division, University of California	15 Jul - 5 Dec,
Manduchi, R	Italy	USA	Department of Electrical Engineering, University of California	19 Sep - 21 Oct,
Mayhew, JEW	UK	UK	AI Vision Research Unit, University of Sheffield	5 Jul - 17 Dec,
Maybank, SJ	UK	UK	GEC Marconi Hirst Research Centre	26 Jul - 30 Jul, 23 Aug - 27 Aug, 6 Sep - 10 Sep, 18 Oct - 22 Oct, 1 Nov - 5 Nov, 29 Nov - 3 Dec,
Morel, J-M	France	France	CEREMADE, Université de Paris-Dauphine	2 Dec - 4 Dec,
Mumford, D	USA	USA	Department of Mathematics, Harvard University	15 Jul - 15 Dec,
Mundy, JL	USA	USA	GEC Research and Development Center, New York	19 Jul - 27 Aug,
Nakayama, K	USA	USA	Department of Psychology, Harvard University	1 Aug - 7 Aug,
Neal, RM	Canada	Canada	Department of Computer Science, University of Toronto	28 Oct - 12 Nov,
Nicholls, GK	New Zealand	UK	Department of Statistics, University of Oxford	22 Nov - 3 Dec,
Oliensis, J	USA	USA	Department of Computer Science, University of Massachusetts	5 Jul - 1 Oct,
Perona, P	Italy	USA	Caltech, Pasadena	25 Oct - 5 Nov, 21 Nov - 3 Dec,
Pollick, FE	USA	USA	ATR Human Information Processing Research Laboratory, Kyoto	26 Jul - 6 Aug,
Porrill, J	UK	UK	AI Vision Research Unit, University of Sheffield	26 Jul - 29 Oct, 20 Jul - 22 Jul,
Ripley, BD	UK	UK	Department of Statistics, University of Oxford	4 Jul - 17 Dec,
Sapiro, G	Uruguay	Israel	Department of Electrical Engineering, Technion, Israel	19 Jul - 23 Jul, 12 Sep - 17 Sep, 29 Nov - 3 Dec,
Shiota, T	Japan	Japan	Department of Mathematics, University of Kyoto	22 Nov - 6 Dec,
Sparr, AG	Sweden	Sweden	Department of Mathematics, University of Lund	13 Sep - 25 Sep,
Spiegelhalter, DJ	UK	UK	MRC Biostatistics Unit, Cambridge	18 Oct - 22 Oct, 1 Nov - 5 Nov,
Szeliski, R	Canada	USA	Digital Equipment Corporation, Cambridge, Massachusetts	19 Jul - 30 Jul, 6 Sep - 24 Sep,
Tannenbaum, A	Israel	USA	Department of Electrical Engineering, University of Minnesota	12 Sep - 17 Sep, 28 Nov - 4 Dec,
Terzopoulos, D	Canada	Canada	Department of Computer Science, University of Toronto	17 Jul - 1 Aug,

Tiwari, S	India	USA	Department of Mathematics, University of Wisconsin ESAT-M12, University of Leuven	4 Jul - 17 Dec, 19 Jul - 31 Jul,
Van Gool, L	Belgium	Belgium	ESAT-MIZ, University of Dedven	22 Aug - 28 Aug,
				28 Nov - 4 Dec,
Weiss, RS	USA	USA	Department of Computer Science, University of Massachusetts	22 Aug - 18 Sep,
Weinshall, D	Israel	Israel	Institute of Computer Science, Hebrew University of Jerusalem	5 Jul - 6 Aug, 22 Aug - 26 Aug,
Werman, M	Israel	Israel	Institute of Computer Science, Hebrew University of Jerusalem	4 Jul - 29 Jul, 22 Aug - 6 Sep,
Yuille, AL	UK	USA	Division of Applied Sciences, Harvard University	3 Jul - 24 Sep, 5 Oct - 17 Dec,
Zisserman, A	UK	UK	Department of Engineering Science, University of Oxford	4 Jul - 10 Dec,
Zucker, SW	USA	Canada	Department of Electrical Engineering, McGill University	1 Sep - 17 Dec,
	I	Programme: I	Random Spatial Processes	
Participant	Nationality	Country of Residence	Home Institution	Visits
Abraham, DB	UK	UK	Department of Theoretical Physics, University of Oxford	1 Jul - 14 Aug, 29 Aug - 12 Sep, 5 Nov - 3 Dec,
Aizenman, M	USA	USA	Department of Physics, University of Princeton	1 Jul - 31 Jul,
Alexander, KS	USA	USA	Department of Mathematics, University of South- ern California	4 Jul - 13 Aug,
Andjel, ED	Argentina	France	Mathématiques Informatique Mécanique, Univer- sité de Provence Provence	1 Sep - 30 Sep,
Barlow, MT	UK	Canada	Department of Mathematics, University of British Columbia	1 Jul - 30 Dec,
Benjamini, I	Israel	Israel	Department of Mathematics, Cornell University	4 Oct - 29 Oct,
BenArous, G	France	France	Département de Mathematiques, Université de Paris-Sud	12 Sep - 18 Sep,
Bolthausen, E	Switzerland	Switzerland	Institut für Angewandte Mathematik, Universität Zürich	13 Sep - 24 Sep,
Chayes, J	USA	USA	Department of Mathematics, University of California	4 Jul - 16 Jul,
Chan, T	Australia	UK	Department of Actuarial Mathematics, Heriot- Watt University	19 Sep - 25 Sep,
Dawson, DA	Canada	Canada	Department of Mathematics and Statistics, University of Carleton, Ottawa	12 Sep - 24 Sep,
De Masi, A	Italy	Italy	Dipartimento di Matematica, Università de l'Aquila	1 Sep - 14 Nov,
Dobrushin, RL	Russia	Russia	Institute for Information Transmission Problems, Moscow	10 Sep - 30 Nov,
Donnelly, PJ	Australia	UK	School of Mathematical Sciences, QMW College, London	18 Oct - 22 Oct, 12 Sep - 17 Sep, 1 Nov - 12 Nov,
Ferrari, PA	Italy	Brazil	Instituto de Matemática e Statística, Universidade de Sao Paulo	5 Jul - 31 Dec,

Gandolfi, A	Italy	Italy	Facolta di Scienze, Universitá de Torino	8 Jul - 15 Dec,
Georgii, HOF	Germany	Germany	Mathematisches Institut, Universität München	27 Sep - 14 Oct,
Greven, A	Germany	Germany	Institut für Mathematische Stochastik, Georg- August-Universität Göttingen	13 Sep - 25 Sep,
Grimmett, GR	UK	UK	Department of Pure Mathematics and Mathemati- cal Statistics, University of Cambridge	1 Jul - 31 Dec,
Hambly, B	Australia	UK	Department of Mathematics and Statistics, Uni- versity of Edinburgh	12 Sep - 24 Sep,
Hara, T	Japan	Japan	Department of Applied Physics, Tokyo Institute of Technology	3 Jul - 14 Aug,
Higuchi, Y	Japan	Japan	Department of Mathematics, University of Kobe	1 Jul - 15 Dec,
Keane, M	USA	Netherlands	Delft University of Technology	1 Jul - 30 Sep, 19 Oct - 29 Oct, 27 Nov - 14 Dec,
Kesten, H	USA	USA	Department of Mathematics, Cornell University	1 Jul - 30 Dec,
Kipnis, CP	France	France	CEREMADE, Université de Paris-Dauphine	24 Aug - 13 Sep,
Kotecky, R	Czechoslovakia	Czechoslovakia	Department of Theoretical Physics, Charles University, Prague	25 Oct - 27 Nov,
Landim, C	USA	USA	Courant Institute of Mathematical Sciences, University of New York	7 Nov - 14 Nov,
Lawler, GF	USA	USA	Department of Mathematics, Duke University	3 Jul - 29 Aug,
Liggett, TM	USA	USA	Department of Mathematics, University of Califor- nia at Los Angeles	4 Jul - 4 Aug,
Martinelli, F	Italy	Italy	Dipartimento di Matematica, Universitá di Roma	28 Oct - 28 Nov,
Martin-Löf, A	Sweden	Sweden	Department of Mathematical Sciences, University of Stockholm	1 Jul - 31 Jul, 7 Nov - 19 Nov,
March, P	USA	USA	Department of Mathematics, Ohio State University	12 Sep - 17 Sep,
Mountford, TS	UK	USA	Department of Mathematics, University of Califor- nia at Los Angeles	1 Jul - 15 Dec,
Newman, CM	USA	USA	Courant Institute of Mathematical Sciences, University of New York	1 Jul - 22 Aug,
Norris, JR	UK	UK	Department of Pure Mathematics and Mathemati- cal Statistics, University of Cambridge	1 Jul - 15 Dec,
Olivieri, E	Italy	Italy	Dipartimento di Matematica, Universitá di Roma	28 Oct - 28 Nov,
Pardoux, E	France	France	Laboratoire de Mathématiques, Université de Provence	24 Aug - 18 Sep,
Pemantle, R	USA	USA	Department of Mathematics, University of Wisconsin	4 Jul - 15 Jul, 31 Jul - 29 Aug,
Penrose, MD	UK	UK	Department of Mathematical Sciences, University of Durham	3 Jul - 31 Aug,
Perkins, EA	Canada	Canada	Department of Mathematics, University of British Columbia	12 Sep - 24 Sep,
Peres, Y	Israel	USA	Department of Mathematics, Yale University	4 Jul - 20 Jul,
Petritis, D	Greece	France	Institut de Recherche Mathématique, Université de Rennes	23 Nov - 9 Dec,
Picco, P	France	France	Centre National de la Recherche Scientifique, Marseille	31 Oct - 13 Nov,
Presutti, E	Italy	Italy	Dipartimento di Matematica, Universitá di Roma	1 Sep - 28 Nov,

Schonmann, RH	Brazil	USA	Department of manonicity, and t	2 Jul - 9 Sep, 8 Nov - 19 Nov,
Scoppola, E	Italy	Italy	Instituto di Fisica, Universitá di Roma	8 Nov - 19 Nov,
Shiga, T	Japan	Japan		8 Sep - 28 Sep,
Shlosman, SB	Russia	Russia	Institute for Information Transmission Problems, Moscow	5 Oct - 26 Nov,
Sidoravicius, V	Lithuania	Brazil	IMPA, Rio de Janeiro	1 Sep - 19 Sep,
Slade, GD	Canada	Canada	Department of Mathematics and Statistics, Mc- Master University	1 Jul - 15 Dec,
Steif, JE	USA	Sweden	Department of Mathematics, Chalmers University of Technology	12 Sep - 19 Sep,
Suhov, YM	Russia	UK	Department of Pure Mathematics and Mathemati- cal Statistics, University of Cambridge	1 Jul - 31 Dec,
Toth, B	Hungary	Hungary	Institute of Mathematics, Hungarian Academy of Sciences	7 Nov - 25 Nov,
Van den Berg, J	Netherlands	Netherlands	Centre for Mathematics and Computer Science, Amsterdam	1 Aug - 30 Nov,
Walsh, JB	USA	Canada	Department of Mathematics, University of British Columbia	9 Sep - 18 Sep,
		Programme:	Geometry and Gravity	
Participant	Nationality	Country of Residence	Home Institution	Visits
Aichelburg, PC	Austria	Austria	Institut für Theoretische Physik, Universität Wien	14 Feb - 6 Mar,
Alvarez, E	Spain	Spain	Departamento de Fisica Teorica, Universidad Au- tonoma de Madrid	11 Apr - 21 Apr,
Anderson, A	USA	USA	Blackett Laboratory, Imperial College	1 Jan - 30 Jun,
Ashtekar, AV	USA	USA	Center for Gravitational Physics, Pennsylvania State University	2 Jun - 30 Jun,
Bailey, TN	UK	UK	Department of Mathematics, University of Edinburgh	1 Apr - 30 Jun,
Brady, PR	Eire	UK	Department of Physics, University of Newcastle	28 Mar - 31 Mar, 11 Apr - 15 Apr,
Bugajska, KM	Canada	Canada	Department of Mathematics, York University, Toronto	8 Feb - 8 May,
Carlip, SJ	USA	USA	Department of Physics, University of California at Davis	22 Jun - 30 Jun,
Carter, B	UK	France	Observatoire de Paris-Meudon	19 Feb - 23 Apr,
Clarke, CJS	UK	UK	Department of Mathematics, University of	28 Mar - 31 Mar,
			Southampton	11 Apr - 12 Apr,
				14 Apr - 14 Apr,
Connes, A	France	France	Institute des Hautes Etudes Scientifiques, Bures- sur-Yvette	10 Jan - 31 Mar,
De Alwis, SP	Sri Lanka	USA	Department of Physics, University of Colorado	16 May - 29 Jun,
Dowker, F	UK	USA	Department of Physics, University of California at Santa Barbara	2 Mar - 31 May,
Dowker, JS	UK	UK	Department of Physics, University of Manchester	28 Mar - 31 Mar

Dubois-Violette,	M France	France	Laboratoire de Physique Théorique, Université de Paris	28 Feb - 11 Mar,
Eastwood, MG	UK	Australia	Department of Pure Mathematics, University of Adelaide	1 Apr - 30 Jun,
Ellwood, DA	UK	France	Institut des Hautes Etudes Scientifiques, Bures- sur-Yvette	6 Jan - 31 Mar,
Garriga, J	Spain	UK	Department of Applied Mathematics and Theoret- ical Physics, University of Cambridge	21 Mar - 23 Mar, 28 Mar - 31 Mar,
Gauntlett, J	USA	USA	Enrico Fermi Institute, University of Chicago	15 Apr - 30 Jun,
Gell-Mann, M	USA	USA	Sante Fe Institute	19 Mar - 26 Mar, 31 Mar - 6 Apr,
Gibbons, GW	UK	UK	Department of Applied Mathematics and Theoret- ical Physics, University of Cambridge	1 Jan - 30 Jun,
Giulini, DJW	Germany	Germany	Fakultät für Physik, Albert Ludwigs Universität	6 Mar - 2 Apr,
Halliwell, JJ	UK	UK	Blackett Laboratory, Imperial College	28 Mar - 27 May,
Harms, BC	USA	USA	Department of Physics and Astronomy, University of Alabama	1 Jan - 20 Jun,
Hartle, JB	USA	USA	Department of Physics, University of California at Santa Barbara	14 Jan - 31 Jan, 7 Jun - 30 Jun,
Harvey, J	USA	USA	Enrico Fermi Institute, University of Chicago	5 Jun - 29 Jun,
Hawking, SW	UK	UK	Department of Applied Mathematics and Theoret- ical Physics, University of Cambridge	1 Jan - 30 Jun,
Hayward, SA	UK	UK	Department of Mathematical Studies, University of Southampton	28 Mar - 31 Mar, 11 Apr - 15 Apr,
Hoppe, J	Germany	Germany	Institut für Theoretische Physik, Universität Karlsruhe	1 Jan - 31 Mar,
Horowitz, G	USA	USA	Department of Physics, University of California at Santa Barbara	13 Jan - 28 Jun,
Hull, CM	UK	UK	Department of Physics, QMW College, London	23 May - 27 May, 22 Jun - 26 Jun,
Hu, BL	USA	USA	Department of Physics, University of Maryland	28 Mar - 7 Apr, 16 May - 26 May,
Isham, CJ	UK	UK	Blackett Laboratory, Imperial College	1 Jan - 30 Jun,
Kallosh, RE	Russia	USA	Department of Physics, Stanford University	16 Mar - 1 Apr,
Kay, BS	UK	UK	Department of Mathematics, University of York	8 Feb - 9 Feb, 28 Mar - 31 Mar, 11 Apr - 15 Apr,
Klimčík, C	Czechoslovakia	Czechoslovakia	Nuclear Centre, Charles University, Prague	1 Jan - 22 Jan, 30 Jan - 12 Feb, 13 Mar - 26 Mar,
Kodama, H	Japan	Japan	Uji Research Center, Yukawa Institute, University of Kyoto	1 Mar - 30 Jun,
Kuchař, KV	USA	USA	Department of Physics, University of Utah	27 Mar - 1 Jun,
Laflamme, R	Canada	USA	Los Alamos National Laboratory	1 Apr - 13 May,
LeBrun, CR	USA	USA	Department of Mathematics, SUNY at Stony Brook	2 May - 30 Jun,
Madore, J	Canada	France	Laboratoire de Physique Théorique, Université de Paris	1 Feb - 20 Mar, 27 Mar - 31 Mar,
Mason, LJ	UK	UK	Mathematical Institute, University of Oxford	16 Apr - 30 Jun,

McCarthy, PJ	UK	UK	School of Mathematical Sciences, QMW College,	7 Mar - 25 Mar,
Michor, PW	Austria	Austria	London	28 Mar - 31 Mar,
Ortin, T	Spain	UK	Institut für Mathematik, Universität Wien Department of Physics, QMW College, London	28 Feb - 11 Mar, 28 Mar - 31 Mar, 11 Apr - 15 Apr,
Paz, JP	Argentina	Argentina	Department of Physics, University of Buenos Aires	2 May - 30 May,
Penrose, R	UK	UK	Mathematical Institute, University of Oxford	25 Apr - 22 Jun, 28 Mar - 29 Mar,
Perry, MJ	UK	UK	Department of Applied Mathematics and Theoret- ical Physics, University of Cambridge	4 Jan - 30 Jun,
Politzer, HD	USA	USA	Caltech, Pasadena	9 Apr - 17 Apr,
Preskill, J	USA	USA	Caltech, Pasadena	1 Jun - 23 Jun,
Pullin, J	Argentina	USA	Center for Gravitational Physics, Pennsylvania State University	28 Mar - 4 Apr,
Rovelli, C	Italy	USA	Department of Physics, University of Pittsburgh	15 Jan - 13 Feb,
Simon, J	USA	USA	Department of Physics, University of Maryland	10 Apr - 17 Apr,
Singer, MA	UK	UK	Department of Mathematics, University of Edinburgh	4 May - 30 Jun,
Smolin, L	USA	USA	Center for Gravitational Physics, Pennsylvania State University	18 May - 3 Jun,
Stelle, K	UK	UK	Blackett Laboratory, Imperial College	21 Mar - 23 Mar, 28 Mar - 31 Mar, 10 May - 17 Jun,
Strominger, A	USA	USA	Department of Physics, University of California at Santa Barbara	6 Jun - 25 Jun,
Susskind, L	USA	USA	Department of Physics, Stanford University	1 Jun - 28 Jun,
Tod, KP	UK	UK	Mathematical Institute, University of Oxford	28 Mar - 31 Mar, 12 Apr - 15 Apr, 8 Jun - 10 Jun, 13 Jun - 14 Jun,
Tseytlin, A	Russia	UK	Blackett Laboratory, Imperial College	28 Mar - 31 Mar, 18 Apr - 24 Apr,
Tucker, R	UK	UK	Department of Physics, University of Lancaster	28 Mar - 31 Mar, 21 Mar - 24 Mar,
Vickers, J	UK	UK	Department of Mathematics, University of Southampton	28 Mar - 31 Mar, 11 Apr - 15 Apr,
Wald, RM	USA	USA	Enrico Fermi Institute, University of Chicago	21 Mar - 1 Apr,
Ward, RS	UK	UK	Department of Mathematical Sciences, University of Durham	1 Apr - 30 Jun,
Woodhouse, NMJ	UK	UK	Wadham College, University of Oxford	2 May - 10 Jun,
Yau, ST	USA	USA	Department of Mathematics, Harvard University	3 Jan - 31 Jan, 1 May - 30 Jun,

Programme: Cellular Automata, Aggregation and Growth

Participant	Nationality	Country of Residence	Home Institution	Visits
Abraham, DB	UK	UK	Department of Theoretical Physics, University of Oxford	29 Mar - 30 Mar, 15 Jun - 30 Jun,
Bak, P	Denmark	USA	Department of Physics, Brookhaven Laboratory	15 Jan - 22 Jan, 1 May - 31 May,
Blum, T	USA	UK	Department of Theoretical Physics, University of Manchester	4 Jan - 30 Jun,
Bray, AJ	UK	UK	Department of Physics, University of Manchester	4 Jan - 31 Mar,
Chaté, H	France	France	Service de Physique de l'Etat Condensé, Saclay	4 Apr - 16 May,
Dekking, FM	Netherlands	Netherlands	Department of Mathematics, Delft University of Technology	10 Jan - 30 Jan,
Derrida, B	France	France	Laboratoire de Physique Statistique, ENS	1 Jan - 30 Jun,
Dhar, D	India	India	Tata Institute of Fundamental Research, Bombay	15 Apr - 30 Jun,
Dickman, R	USA	USA	Department of Physics and Astronomy, City University of New York	7 Jun - 29 Jun,
Domany, E	Israel	Israel	Weizmann Institute of Science, Israel	25 May - 30 Jun,
Droz, M	Switzerland	Switzerland	Département de Physique Théorique, Université de Genève	15 Mar - 14 Apr,
Dudarev, S	Russia	UK	Department of Materials, University of Oxford	19 Jun - 30 Jun,
Evans, MR	UK	France	Laboratoire de Physique Statistique, ENS	4 Jan - 1 Mar,
Fisher, DS	USA	USA	Department of Physics, Harvard University	30 May - 3 Jun,
Flyvbjerg, H	Denmark	Denmark	Niels Bohr Institute, Copenhagen	4 Jan - 30 Jun,
Godrèche, C	France	France	Service de Physique de l'Etat Condensé, Saclay	13 Feb - 14 May, 14 Jun - 19 Jun,
Goldenfeld, N	UK	USA	Department of Physics, University of Illinois at Urbana	3 Jan - 10 Feb,
Gray, LF	USA	USA	School of Mathematics, University of Minnesota	9 Mar - 31 Mar,
Grinstein, G	Canada	USA	IBM Watson Research Center	3 May - 30 Jun,
Hakim, V	France	France	Laboratoire de Physique Statistique, ENS	4 Jan - 30 Jun,
Halpin-Healy, T	USA	USA	Department of Physics, Barnard College, Columbia University	8 Jan - 30 Jun,
Hwa, T	USA	USA	Institute of Advanced Study, University of Princeton	16 Jun - 30 Jun,
Kardar, M	Iran	USA	Department of Physics, MIT	28 Feb - 4 Mar, 28 Mar - 15 Apr,
Kertész, J	Hungary	Hungary	Institute of Physics, Technical University of Budapest	2 Jan - 7 Apr, 24 May - 30 Jun,
Koukiou, F	Greece	France	Département de Physique, Université de Cergy- Pontoise	7 Apr - 22 Apr,
Krug, J	Germany	Germany	Institut für Festkörperforschung, Jülich	14 Mar - 13 Apr,
Lebowitz, JL	USA	USA	Department of Mathematics, Rutgers University	5 Jun - 11 Jun,
Livi, R	Italy	Italy	Dipartimento di Fisica, Università di Bologna	1 May - 30 Jun,
Maes, CDT	Belgium	Belgium	Institute of Theoretical Physics, University of Leuven	1 Mar - 31 Mar,
Mallick, K	France	France	Département de Mathématiques, ENS	2 Feb - 18 Feb, 4 Apr - 24 Apr,

58

McKane, AJ	UK	UK	Department of Physics, University of Manchester	1 Jan - 30 Jun,
Moore, MA	UK	UK	Department of Physics and Astronomy, University of Manchester	1 Jan - 30 Jun,
Mukamel, D	Israel	Israel	Weizmann Institute of Science, Israel	19 Apr - 30 Jun,
Newman, T	UK	UK	Department of Theoretical Physics, University of Oxford	5 Apr - 30 Apr,
Paczuski, M	USA	USA	Brookhaven National Laboratory, Upton, New York	1 May - 31 May,
Ramaswamy, R	India	India	Department of Physical Sciences, Jawaharlal Nehru University	1 Jan - 27 Mar, 19 Jun - 30 Jun,
Rost, M	Germany	Germany	Institut für Festkörperforschung, Jülich	23 Mar - 29 Mar,
Schuetz, GM	Germany	Germany	Department of Physics, University of Oxford	31 Jan - 28 Feb, 23 Mar - 29 Mar, 11 May - 14 May,
Speer, ER	USA	USA	Department of Mathematics, Rutgers University	1 Jan - 30 Jun,
Spohn, H	Germany	Germany	Theoretische Physik, Universität München	6 Mar - 9 Apr,
Steif, JE	USA	Sweden	Department of Mathematics, Chalmers University of Technology	6 Feb - 6 Mar,
Suhov, YM	Russia	UK	Department of Pure Mathematics and Mathemati- cal Statistics, University of Cambridge	28 Feb - 12 Mar, 5 Apr - 15 Jun,
Tang, L-H	China	Germany	Institut für Theoretische Physik, Universität Köln	1 Mar - 30 Jun,
Toom, A	USA	USA	Incarnate Word College, San Antonio	14 May - 30 Jun,
Wolf, DE	Germany	Germany	Theoretische Physik, Universität Duisburg	13 Feb - 16 Apr,
Yekutieli, I	Israel	USA	Department of Mathematics, Yale University	1 Jan - 30 Jun,
Zhang, Y-C	China	Switzerland	Institut Physique Theorique, Université de Fribourg	6 May - 15 May,
Zia, RKP	USA	USA	Department of Physics, Virginia State University	29 May - 30 Jun,

9.2 CHART OF VISITS 1993-94

Computer Vision

	Jul	Aug	Sep	Oct	Nov	Dec
Amit, Y Bajcsy, R Barlow, H Belhumeur, P Blake, A		$\frac{22}{20}$	<u>10</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • • • • • • • • • • • • • • • •	2
Brockett, R Brown, C Cipolla, R Conradsen, K Cooper, D	$ \begin{array}{c} 1 & 30 \\ $	18	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5
Cox, I Ferrier, N Forsyth, D Frigessi, A Geiger, D	$\begin{array}{c} 26 \\ 4 \\ 31 \\ 2 \\ 2 \\ 31 \\ 2 \\ 2 \\ 31 \\ 2 \\ 31 \\ 2 \\ 31 \\ 31$	<u> </u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Geman, D Geman, S Giblin, PJ Gidas, B Graffigne, C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	12	25 		- · · · · · · · · · · · · · · · · · · ·
Green, P Hallam, J Huang, T Kay, JW Kimia, B	<u> </u>		<u>10</u>	· · · · <u></u> · ·		· · · · · ·
Kubler, O Longuet-Higgins, C Mackay, D Malik, J Manduchi, R	26 e	· · - · · · ·	· · · · · · · · · · · · · · · · · · ·	<u>18</u> 	25	<u>5</u>
Mayhew, J Maybank, S Morel, J-M Mumford, D Mundy, J	5 	· · · · · · · · · · · · · · · · · · ·	· <u>- · · · · · ·</u>	· · · · <u>-</u> · · ·		17
Nakayama, K Neal, R Nicholls, G Oliensis, J Perona, P					<u>12</u> <u>22</u> <u>5</u> <u>21</u>	· · · · · · · · · · · · · · · · · · ·

60

9.2	Chart	of	Visits	1993-94
-----	-------	----	--------	---------

	Jul	Aug	Sep	Oct	Nov	Dec
Pollick, F Porrill, J Ripley, B Sapiro, G Shiota, T	<u> </u>	<u>6</u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	17
Sparr, G Spiegelhalter, D Szeliski, R Tannenbaum, A Terzopoulos, D	$\frac{19}{100} \frac{30}{100}$		$\begin{array}{c} 13 25 \\ \hline \\ 6 24 \\ \hline \\ \hline \\ \hline \\ \end{array}$	· · · · · · · · · · · · · · · · · · ·		
Tiwari, S van Gool, L Weiss, R Weinshall, D Werman, M	$ \frac{4}{19 31} $ $ \frac{5}{4 29} $	6	<u> </u>	· · · · · · · ·	· · · · · · · ·	
Yuille, A Zisserman, A Zucker, S	3 		24 1	. 5		<u>17</u> · · · <u>10</u> · · · · <u>17</u> · ·

Random Spatial Processes

	Jul	Aug	Sep	Oct	Nov	Dec
Abraham, DB Aizenman, M Alexander, KS Andjel, E Barlow, M	$\frac{1}{1}$ $\frac{4}{1}$ $\frac{4}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	<u>14</u> <u>2</u> 	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	•••••	δ · · · · · · · · ·	<u>3</u>
Benjamini, I BenArous, G Bolthausen, E Chayes, J Chan, T	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · ·		4 29 	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	· · · · · · · ·
Dawson, D De Masi, A Dobrushin, R Donnelly, P Ferrari, P	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	$\begin{array}{c} & 12 & 24 \\ 1 & & \\ & & \\ & & \\ & & 10 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	· · · · · · · ·	14 30 1 12	· · · · · · · · · · · · · · · · · · ·
Gandolfi, A Georgii, H-O Greven, A Grimmett, G Hambly, B	. <u>8</u> 	· · · · · · · ·	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>14</u>		
Hara, T Higuchi, Y Keane, M Kesten, H Kipnis, C	3 1 1 1 1	<u>14</u> 		<u> </u>	27	<u>16</u> <u>14</u> <u>30</u>
Kotecky, R Landim, C Lawler, GF Liggett, TM Martinelli, F		29 4	· · · · · · · · ·	25 	27	
Martin-Löf, A March, P Mountford, T Newman, CM Norris, J	1 31 	22 .	· · · <u>-</u> · · · ·	· · · · · · ·	<u>7 19</u>	15
Oliveri, E Pardoux, E Pemantle, R Penrose, M Perkins, E	$\frac{4 15}{3} \qquad \qquad$	24 29 31	18	• • • • • •		· · · · · ·
Peres, Y Petritis, D Picco, P Presutti, E Schonmann, R	<u>4</u> <u>20</u> 		9 	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{c} 23 \\ \frac{23}{28} \\ \frac{28}{8} \\ \frac{8}{19} \\ \end{array} $	9

	L		J	ul					A	ug				1	Sep				C)ct			No	v				De	ec	
Scoppola, E Shiga, T	•	•	•	• •	•	•	•	•	•	•	•	•	•			• 2	8	•••	•	•	 •			9	•	•			•	•
Shlosman, SB Sidoravicius, V		•	•	•	•	•	•	•	•	•	•	•	1		19	•	•									•	• •		·	·
Slade, G	1		_					-		-																		15	•	•
Steif, J Suhov, Y			•	•	•	•		•	•	•	•	•	•			•	•	•••	•	•	 •	•	• •	•	•	•			•	• 31
Tóth, B van den Berg, J	•	•	•	•	•	•		•	•	•	•	•			•	•	•		•	•	 •	7		2	5 30	•		•	•	·
Walsh, J		•			•	•							•	-	_	•	•		•	•	 •	•	• •		•					

Geometry and Gravity

	Jan	Feb	Mar	Apr	May	Jun
Aichelburg, P Alvarez, E		· · <u>14</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Anderson, A Ashtekar, A Bailey, T	· · · · · · · ·			• • • • • •		30 2 30 30
Brady, P Bugajska, K Carlip, S Carter, B Clarke, C	• • • • • • • •			23	<u>8</u> 	· · · · · · · ·
Connes, A de Alwis, S Dowker, F Dowker, S Dubois-Violette, M	. <u>10</u> 	· · · · · ·	31 2 28 11 	· · · · · · · ·	<u>16</u> <u>31</u>	· · · · · · · · · · · · · · · · · · ·
Eastwood, M Ellwood, DA Garriga, J Gauntlett, J Gell-Mann, M		· · · · · ·	<u></u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	30 • • • • • • • • • • • • • • • • • • •
Gibbons, G Giulini, N Halliwell, J Harms, B Hartle, J	1 		<u>6</u> 2 <u>28</u>		27	30 • • • • • • • • • • • • • • 20 • • •
Harvey, J Hawking, S Hayward, S Hoppe, J Horowitz, G	1 			· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u>5</u> 29 30 28
Hull, C Hu, B-L Isham, C Kallosh, R Kay, B	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	<u>16 1</u>	<u>7</u>	<u>16 26</u>	· · · · · · · · · · · · · · · · · · ·
Klimcik, C Kodama, H Kuchar, K Laflamme, R Lebrun, C	<u>1</u> <u>22</u> <u>30</u>	12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 13 2	
Madore, J Mason, L McCarthy, PJ Michor, P Ortin, T		· · · · · · ·	20 	<u>16</u>	· · · · · · · · ·	<u> </u>

	Jan	Feb	Mar	Apr May	Jun
Paz, J Penrose, R Perry, M Politzer, D	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · ·		22 30
Preskill, J Pullin, J					<u>1 23</u> .
Rovelli, C	15	13			· · · · · · ·
Simon, J Singer, M		· · · · · · ·		· · · · · · · · · · · · · · · · · · ·	30
Smolin, L Stelle, K				· · · · · · · · · · · · · · · · · · ·	<u> </u>
Strominger, A Susskind, L				· · · · · · · · · · · · · · · · · · ·	. <u>6 25</u> . <u>1 28</u>
Tod, P		· · · · · · ·	· · · · · · -	····	
Tseytlin, A Tucker, R				• • • • • • • • • • • • •	· · · · · · ·
Vickers, J Wald, RM				<u> </u>	
Ward, R Woodhouse, N				12	30 10
Yau, S-T	3 31			1	30

_

Cellular Automata, Aggregation and Growth

	Jan	Feb	Mar	Apr	May	Jun
Abraham, D Bak, P Blum, T Bray, A Chaté, H	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	31 	· · · · · · · · · · · · · · · · · · ·	<u> </u>	. <u>18 30</u>
Dekking, F Derrida, B Dhar, D Dickman, R Domany, E	. <u>10 30</u> 1 	· · · · · · · · ·	· · · · · · ·			30 30 29 30
Droz, M Dudarev, S Evans, M Fisher, D Flyvbjerg, H	4	· · · · · · · · · · · · · · · · · · ·	. <u>15</u> 	<u>14</u>	· · · · · · · · · · · · · · · · · · ·	 . <u>19 30</u>
Godreche, C Goldenfeld, N Gray, L Grinstein, G Hakim, V			$\frac{9 \qquad 31}{2}$	· · · · · · · · · · · · · · · · · · ·	<u>14</u>	· · · · · · · · · · · · · · · · · · ·
Halpin-Healy, T Hwa, T Kardar, M Kertész, J Koukiou, F	. <u>8</u> 	· · · · · · · · · · ·	28 		· · · · · · · · · · · · · · · · · · ·	30 . <u>16 30</u>
Krug, J Lebowitz, J Livi, R Maes, C Mallick, K	· · · · · · · · · · · · · · · · · · ·		. <u>14</u> 	13	· · · · · · · · ·	- · · · · . 30
McKane, AJ Moore, M Mukamel, D Newman, T Paczuski, M	1 1 		· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·	30 30 30
Ramaswamy, R Rost, M Schuetz, G Speer, E Spohn, H	<u>1</u> 		27			. <u>19 30</u>
Steif, J Suhov, Y Tang, L-H Toom, A Wolf, D	· · · · · · · · ·	· · · · <u>1</u>			<u>14</u>	15 30 30

9.2 Chart of Vi	sits 1993–94
-----------------	--------------

	Jan	Feb	Mar	Apr	May	Jun
Yekutieli, I Zhang, Y-C	<u>1</u>					30
Zhang, Y-C Zia, RKP						

Country	Visiting N	Members .	Workshops
country	Residents	Nationals	Residents
Argentina	1	3	0
Australia	1	$\begin{array}{c}3\\3\\2\\2\\1\end{array}$	0
Austria	2	2	1
Belgium	2	2	7
Brazil	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 9 \\ 0 \\ 2 \\ 2 \\ 0 \\ $	1	0
Canada	9	11	1
China	0		1
Czech Republic	2	2 2 3	3
Denmark	2	3	3 3 3 3
Eire	Ō	1	3
Finland	0	Ō	3
France	20	13	34
Germany	10	10	35
Greece	0		2
Hungary		$2 \\ 2 \\ 4$	ī
India	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	4	4
Iran	0	1	1
Israel	6	9	2
Italy	8	12	19
Japan	6 8 5	5	7
Lithuania	0		0
Netherlands	3	$\frac{1}{2}$	18
New Zealand	0	1	0
Norway	0	0	
Portugal		0	3 3
Russia	0 2 0	6	7
Singapore		0	1
South Africa	0	$\frac{1}{3}$	1
Spain	1	3	10
Sri Lanka	1	0	0
Sweden	3	$\frac{2}{2}$	6
Switzerland	4	2	10
Turkey	0	0	1
UK	56	57	325
USA	81	61	64
Uruguay	0	1	0
Total	225	225	576

9.3 NATIONALITY AND COUNTRY OF RESIDENCE

9.4 CUMULATIVE FREQUENCY GRAPH OF AGES OF VISITING MEMBERS

9.5 PAPERS PRODUCED BY PARTICIPANTS

Abraham DB, Newman TJ, Schuetz GM	RSP
Non-equilibrium dynamics of finite interfaces Abraham DB, Latremoliere F	RSP
Corner spontaneous magnetisation in the planar Ising ferromagnet	
Aizenman M The localization transition on Bethe lattices	RSP
Albeverio S, Zhou X	RSP
Gaussian behaviour of a modified Domb-Joyce model in $d \ge 4$ dimensions	1001
Alexander K	RSP
Simultaneous uniqueness of infinite clusters in stationary random labelled graphs	
Alexander K Approximation of subadditive functions and convergence rates in limiting-shape	RSP
results	7
Altmann M	EPI
Susceptible infected-removed epidemic models with dynamic partnerships	
Altmann M	EPI
The deterministic limit of infectious disease models with dynamic partners	DDI
Altmann M, Morris WM A clarification of the mixing model	EPI
Anderson A, Halliwell J, Linden N	GGR
Holes in general relativity	
Anderson A	GGR
Unitarity in the presence of closed timelike curves	
Anderson A	GGR
Towards not quantizing the gravitational field	GGR
Anderson A An elegant solution of the N-body Toda system	GGR
Anderson A	GGR
The quantum action: Schwinger's action principle revisited	
Anderson A	GGR
Coupling classical and quantum variables	
Andjel E, Schinazi R	RSP
A complete convergence theorem for an epidemic model Ashtekar A, Varadarajan M	GGR
A striking property of the gravitational Hamiltonian	uun
Ashtekar A, Lewandowski J, Marolf D et al	GGR
Coherent state transforms on the space of connections	
Ashtekar A	GGR
A manifestly gauge invariant approach to quantum gauge theories Ashtekar A, Lewandowski J	CCD
Differential geometry on the space of connections	GGR
Ashtekar A, Lewandowski J	GGR
Projective techniques and functional integration for gauge theories	
Bailey NTJ	EPI
An improved hybrid HIV/AIDS model geared to specific public health data and	l
decision-making	EDI
Bailey NTJ HIV/AIDS: Core group dynamics and public health action	EPI
Bailey NTJ	EPI
Prediction and validation in the public health modelling of HIV/AIDS	

Bailey NTJ	EPI
Operational modelling of HIV/AIDS to assist public health control Bailey T, Eastwood M, Singer M	COD
The Penrose transform for non-holomorphic correspondences	GGR
Bailey T, Eastwood M, Mason L et al	GGR
Complex analysis and the Fuuk transform	
Bailey T, Eastwood M, Mason L	GGR
The Radon and Fourier transforms as real analogues of the Penrose and twistor transforms	
Bajcsy R	CVI
A commentary on Jeannerod's "Representing brain neural correlates of motor	OVI
intention and imagery"	
Bak P, Flyvbjerg H, Sneppen K	CAG
Can we model Darwin?	
Barma M, Ramaswamy R Field induced transport in random modia	CAG
Field-induced transport in random media Baumann G, Jánosi IM, Wolf D	CAG
Particle trajectories and segregation in a two-dimensional rotating drum	CAG
Beardsley P, Zisserman A, Murray D et al	CVI
Navigation using affine structure from motion	
Becker N, Shao Q	EPI
A transmission model for a disease with some fatalities	CIVI
Belhumeur P, Mumford D, Yuille A On vision	CVI
Belitsky V, Ferrari P	RSP
Hydrodynamic limits of a model of annihilating deterministic particles	1001
Benjamini I, Pemantle R, Peres Y	RSP
Martin capacity for Markov chains and random walks in varying dimensions	
Besag J, Green P, Higdon D et al	CVI
Bayesian computation and stochastic systems Bienenstock E	CVI
A model of neocortex	UVI
Blake A	CVI
Improbable views	
Blake A, Curwen R, Zisserman A	CVI
A framework for spatio-temporal control in the tracking of visual contours Blake A	CUI
A theory of planar grasp	CVI
Blake A, Sinclair D	CVI
Isoperimetric normalisation of planar curves	
Blake A, Isard M	CVI
Learning to track lip-movements	
Blake A, Isard M	CVI
Phase-space tuning for a visual contour tracker Blake A, Isard M	CVI
Three-dimensional position, attitude and shape input using video tracking of hands	011
and lips	
Blake A	CVI
Visual contour tracking	
Blum T, McKane A	CAG

Variational schemes in the Fokker-Planck equation

Brassesco S, De Masi A, Presutti E Brownian fluctuations of the instanton in the $d = 1$ Ginzberg-Landau equation with noise	RSP
Brydges DC, Slade G The diffusive phase of a model of self-interacting walks	RSP
Bushnell CJ, Henniart G Local tame lifting for $GL(n)$	LFN
Cairns A Primary component analysis of epidemic models	EPI
Cardy J, Mussardo G Universal properties of self-avoiding walks from two-dimensional field theory	LDT
Carlip S Statistical mechanics of the three-dimensional black hole	GGR
Carter B Equations of motion of a stiff geodynamic string or higher brane	GGR
Chakrabarti SK, Rosner R, Vainshtein SI Possible role of massive black holes in the generation of galactic magnetic fields	DYN
Cipolla R, Perona P, Zisserman A et al Graduate textbook on computational vision	CVI
Clune T, Knobloch E Pattern selection in three-dimensional magnetoconvection	DYN
Colmez P Fonctions zêta p-adiques en $s = 0$	LFN
Corrigan E Knot physics Crivelli M, Felder G, Wieczerkowski C	LDT LDT
Topological representations of $U_q(SL_2(\mathbb{C}))$ on the torus and the mapping class group	LDI
Da Costa G Lattice models and BV type relations	LDT
Darmon H, Granville A On the equations $z^m = F(x, y)$ and $Ax^p + By^q = Cz^r$	LFN
Date E, Okado M Calculation of excitation spectra of the spin model related with the vector repre- sentation of the quantized affine algebra of type $A_n^{(1)}$	LDT
De Alwis S Quantum dilaton gravity in two dimensions	GGR
De Boer J, Derrida B, Flyvbjerg H et al A simple model of self-organized biological evolution	CAG
De Masi A, Orlandi E, Presutti E et al Glauber evolution with Kac potentials: I. Mesoscopic and macroscopic limits, interface dynamics	RSP
De Masi A, Gobron T, Presutti E Travelling fronts in non local evolution equations	RSP
De Zoysa A, Carter R, Mendis KN Mathematical simulations of transmission blocking vaccine strategies for "P.Vivax" malaria	EPI
De Zoysa A Quantitative analysis of "P. Vivax" malaria transmission with special emphasis on	EPI
transmission blocking immunity Dekking FM, Speer E On the shape of the wavefront in branching random walk	CAG

Derrida B, Bray A, Godrèche C Non-trivial exponents in the zero temperature dynamics of the one-dimensional Ising and Potts models	CAG
Derrida B, Evans M, Godrèche C Exact diffusion constant for one-dimensional asymmetric exclusion models with	CAG
open boundaries Derrida B, Evans M	CAG
Exact steady state properties of the one dimensional asymmetric exclusion model Derrida B, Flyvbjerg H, Jackson A et al	aua
A simple model of self-organised biological evolution	CAG
Derrida B, Bray A, Godrèche C	CAG
Non-trivial algebraic decay in a soluble model of coarsening Dhar D	CAG
Spatial organisation in a dissipative model of sandpiles	CAG
Di Francesco P, Zuber J-B	LDT
Fusion potentials: I Dickman R	CAG
Numerical study of a field theory for directed percolation	ond
Dobrushin R, Shlosman S	RSP
Droplet condensation in the Ising model: a moderate deviation point of view Dobrushin R, Blinovskii V	RSP
Large deviations for piece-wise homogeneous random walk	
Dobrushin R, Pechersky J Large deviations for processes with independent increments on infinite interval	RSP
Dobson AP, Hudson PJ	EP1
Microparasites: observed patterns in wildlife Domany E	CAG
Directed percolation and damage spreading	Ond
Donnelly P	RSP
Match probability calculations for multi-locus DNA profiles Dowker F	GGR
On the consistent histories approach to quantum mechanics	GUIL
Droz M, McKane A Equivalence between Poisson representation and Fock space formalism for birth-	CAG
death processes Dubois-Violette M, Michor P	CCD
The Frölicher-Nijenhuis bracket for derivation based non-commutative differential forms	GGR
Eastwood M, Gindikin SG, Wong H	GGR
Holomorphic realization of J-cohomology and constructions of representations	
Eguchi T c = 1 Liouville theory perturbed by the black hole mass operator	LDT
Eguchi T	LDT
Two-dimensional black hole and the $c = 1$ Liouville theory Enqvist K, Shukurov A, Sokoloff D et al	DYN
The neutrino mass and the origin of galactic magnetic fields	
Evans M, Foster D, Godrèche C <i>et al</i> Spontaneous symmetry breaking in a one-dimensional driven diffusive system	CAG
Spontaneous symmetry breaking in a one-dimensional driven diffusive system Evans M, Kawahigashi Y	LDT
Quantum symmetries of operator algebras	
Fairlie D, Nuyts J A fresh look at generalized Veneziano amplitudes	LDT
\mathbf{U}	

Fearn DR, Kuang W	LDT
Resistive instability in the absence of critical levels	LDT
Felder G, Wieczerkowski C Conformal blocks on elliptic curves and the Knizhnik-Zomolodchikov-Bernard	DDI
equations	
Ferrari PA	RSP
Behaviour of a second-class particle in the rarefaction front for the asymmetric	
simple exclusion process	RSP
Ferrari PA Recent results on shocks and second-class particles for the asymmetric simple	1001
exclusion process	
Ferrari PA, Fontes L, Kohayakawa Y	RSP
Invariant measures for a two species asymmetric process	
Ferrari PA, Kesten H, Martinez S	RSP
<i>R</i> -positivity, quasi-stationary distributions and ratio limit theorems for a class of probabilistic automata	
Ferrier N, Rowe S, Blake A	CVI
Real-time traffic monitoring	
Flyvbjerg H, Holy TE, Leibler S	CAG
Stochastic dynamics of microtubules: a model for caps and catastrophes	~ ~ ~
Flyvbjerg H, Sneppen K, Bak P et al	CAG
Evolution as a self-organised critical phenomenon	CAG
Flyvbjerg H, Fygenson D, Leibler S et al Bulk nucleation of microtubules	UAG
Flyvbjerg H	CAG
A very simple self-organised critical system	
Flyvbjerg H, Bak P, Jensen M et al	CAG
A theory of macro-evolution	C L C
Flyvbjerg H	CAG
Self-organised critical pin-ball machine Flyvbjerg H, Bak P, Jensen M et al	CAG
A self-organised critical model for evolution	
Forsyth D, Mundy J, Zisserman A et al	CVI
Using global consistency to recognise Euclidean objects with an uncalibrated cam-	
era	TEN
Friedlander JB, Granville A	LFN
Smoothing "smooth" numbers Friedlander S, Vishik MM	DYN
On stability and instability criteria for MHD	
Gailitis A	DYN
Magnetic field generation by axisymmetric flows of conducting liquid in a spherical	
stationary conductor cavity	COD
Gauntlett J S-duality and the spectrum of magnetic monopoles in heterotic string theory	GGR
Gervais JL, Saveliev MV	LDT
W-geometry of the Toda systems associated with non-exceptional simple Lie al-	
gebras	
Gibbons G, Kallosh R	GGR
Topology, the Gauss-Bonnet theorem and the entropy of dilaton black holes	CW
Giblin P, Cipolla R	CVI
Following cusps Giblin P, Cipolla R	CVI
Frontier points	

Giblin P, Zisserman A	CVI
Profiles of surfaces in computer vision	CVI
Giblin P, Pollick F, Rycroft J Recovery of an unknown axis of rotation from the profiles of a rotating surface	CVI
Giblin P, Pollick F	CVI
Profiles under circular motion	CIVI
Giblin P, Weiss R	CVI
Epipolar fields on surfaces Gilbert A, Otani NF, Childress S	DYN
Simple dynamical fast dynamos	-
Gilbert A	DYN
A cascade interpretation of Lundgren's stretched spiral vortex model for turbulent fine structure	
Ginzburg V	DYN
An embedding $S^{2n-1} \to \mathbb{R}^{2n}$, $2n-1 \ge 7$, whose Hamiltonian flow has no periodic	
trajectories	LFN
Goto Y Arithmetic of weighted projective surfaces over finite fields	
Granville A	LFN
Integers, without large prime factors, in arithmetic progressions. II	LFN
Granville A, Sun Z-W Values of Bernouilli polynomials	
Grav L	CAG
Convergence to equilibrium and a strong law for the motion of restricted interfaces	CAG
Gray L, Speer E Toom interface	
Green P, Grenander U, Miller M	CVI
Representations of knowledge in complex systems	CVI
Green P Statistical aspects of medical imaging (editorial)	0.11
Green P	CVI
Contribution to discussion of paper by Grenander and Miller, RSS Ordinary meet	-
ing, 20 October 1993 Green P	CVI
Markov chain Monte Carlo in image analysis	
Greenhalgh D, Dietz K	EPI
Some bounds on estimates for the basic reproductive ratio R_0 derived from th age-specific force of infection	C
Grimmett G	RSP
Percolative problems	RSP
Grimmett G The random-cluster model	101
Grimmett G	RSP
Stochastic random-cluster process and the uniqueness of random-cluster measure	es RSP
Grimmett G, Bollobás B, Janson S The random-cluster model on the complete graph	nsr
Grimmett G	RSP
Comparison and disjoint-occurrence inequalities for random-cluster models	
Grinstein G	CAG
Self-organised criticality Grinstein G	CAG
Systems with infinite numbers of absorbing states	

Grinstein G	CAG
Damage spreading in nonequilibrium systems Grinstein G	
Power law correlations in systems with coherent periodic oscillations	CAG
Guilini D	GGR
Diffeomorphism group of three-manifolds	
Hakim V, Rappel W-J	CAG
Noise induces periodic behavior in the globally-coupled complex Ginzberg-Landau equation	
Hakim V	CAG
Shapes and dynamics of Laplacian growth	0.110
Hallam J	CVI
Hybrid problems need hybrid solutions? Tracking and controlling toy cars Halpin-Healy T	ala
Stochastic growth, kinetic roughening phenomena, random energy landscapes, and	CAG
all that: aspects of multidisciplinary statistical mechanics	
Hambly B	RSP
On constant tail behaviour for the limiting random variable in a supercritical branching process	
Hammersley J	RSP
Fractal dynamics of Eden clusters	nor
Hammersley J, Mazzarino G	RSP
Properties of large Eden clusters in the plane Hara T, Slade G	
The self-avoiding walk and percolation critical points in high dimensions	RSP
Hara T, Slade G	RSP
Mean-field behaviour and the lace expansion	1001
Harms B, Leblanc Y	GGR
Black objects in the gauge theory of p-branes Harris M	TTAL
Cohomological realisation of supercuspidal representations of $GL(n)$	LFN
Hartle J, Gell-Mann M	GGR
Equivalent sets of histories and multiple quasiclassical domains	
Hartle J Quasiclassical domains in a quantum universe	GGR
Hartle J	GGR
Spacetime information	GGU
Hartle J, LaFlamme R, Marolf D	GGR
Conservation laws in the quantum mechanics of closed systems Hartle J, Miller W	
Signature of the simplicial supermetric	GGR
Hartle J, Williams R	GGR
Simplicial mini superspace IV: Solutions on product triangulations	Gait
Harvey J	GGR
S-duality and the spectrum of magnetic monopoles in heterotic string theory Hasibeder G	DDI
When susceptible and infective human hosts are not equally attractive to	EPI
mosquitoes: a generalisation of the Ross model	
Hasibeder G	EPI
Comments on heterogeneity: aspects in mathematical epidemiology Hawking S, Horowitz G, Ross S	0.00
Entropy and black half and	GGR

Entropy, area, and black hole pairs

	LFN
Heath-Brown DR A mean value estimate for real character sums	LFN
Heath-Brown DR	
Heath-Brown Dit The Hardy Littlewood circle method for quadratic and cubic forms	EPI
Heesterbeek JAP, Roberts MG Threshold quantities for infectious diseases in periodic environments	TIN
Hida H	LFN
p-adic ordinary Hecke algebras for $GL(2)$	RSP
	1001
Higuchi Y Exponential decay of the cluster size distribution for ferromagnetic Ising percola-	
tion	RSP
Higuchi Y, Toth B Limit theorems for the so-called reinforced random walk	
	RSP
Higuchi Y Exponential decay of the cluster size distribution for the two-dimensional Ising	
percolation	GGR
Hoppe J	
Hoppe J Some classical solutions of relativistic membrane equations in four space-time di-	
mensions	GGR
Hoppe J Surface motions and fluid dynamics	CCD
Harawitz C. Tsevtlin A	GGR
On exact solutions and singularities in string theory	GGR
Horowitz G	
A new test of cosmic censorship	GGR
Horowitz G, Hawking S, Ross S	
Black hole pair annihilation Horowitz G, Gibbons G, Townsend P	GGR
Resolving singularities in higher dimensions	CVI
	UVI
Fisher's method of scoring in statistical image reconstruction.	
cobi and Gauss-Seidel iterative schemes	EPI
Hudson PJ, Dobson AP Macroparasites: observed patterns in wildlife	
N Matsumoto M	LFN
On Galois actions on profinite completions of braid groups	GGR
Quantum temporal logic and deconcretice functionals in the insection of the	
generalised quantum theory	GGR
Isham C, Linden N, Schreckenberg S The classification of decoherence functionals: an analogue of Gleason's theorem	
	EPI
Jacquez JA Role of primary infection in epidemics of HIV infection in gay cohorts	CVI
Activation functions, computational goals and learning funct for four particular	,
with contextual guidance	RSP
Keane M, Smorodinsky M, Solomyak B	
Cantor criticality	CVI
Kent J, Mardia KV, Rabe S Face description from laser range data	CAC
D D	UAC
Kertész J, Ramaswamy R Pattern formation in two-dimensional traffic models and related systems	

Kertész J, Somfai E, Wolf D	
Correlated island nucleation in layer-by-layer growth	CAG
Kertesz J, Ramaswamy R	C.L.C
Coarsening in a driven diffusive systems with two species	CAG
Rester H, Schonmann RH	RSP
On some growth models with a small parameter Kesten H	
Branching random walk with a critical branching part	RSP
Kimia B, Tannenbaum A, Zucker S	
Non-linear shape approximation via the entropy scale space	CVI
, Klinick C, Iseytlin A	GGR
Propagation of strings in the null orbifolds Kodama H	don
	GGR
Description of quantum dynamics of totally constrained systems in an extended state space	
Kodama H, Fiujita Y	
Influence of cooling flow and galactic motion on the iron distribution in clusters	GGR
of galaxies	
Kolyvagin V	LFN
On the modular hypothesis and Fermat's last theorem Kolyvagin V	
Fermat equation over cyclotomic fields	LFN
Kotecky R, Olivieri E	DCD
Shapes of growing droplets: a model of escape from a metastable phase	RSP
Roberty R, Ollayes L, Shlosman S	RSP
Aggregation and intermediate phases in dilute spin systems Kotecky R, Martinelli F, Mazel A	
The rate of approach to equilibrium for three-dimensional Ising model	RSP
Mag 5, Dobbs H1	CAG
Current-induced faceting of crystal surfaces	CAG
Krug J	CAG
Turbulence and generic scale invariance Kuchař K	
Friedmann universe as a parametrized harmonic oscillator	GGR
Ruchar K, Romana J	GGD
The role of time in quantum collapse	GGR
Kuchař K, Brown D	GGR
Dust in quantum gravity Kuzanayan K, Sokolov D	oun
On the parametric resonance in thin disk galactic dynamo	DYN
Károlyi A, Kertész J	
Hydrodynamic cellular automata for granular media	CAG
Lanamme R, Gregory R	GGR
The stability extremally charged black string from string theory	GGI
Langer F, Zucker S	CVI
A computational model of spatially varying illumination Laumon G	
Sur la cohomologie à supports compacts des variétés de Shimura pour GSF(4)	LFN
	RCD
itandom warks, narmonic measure and Laplacian growth models	RSP
Le Gall J-r, Perkins E, Taylor S	RSP
The packing measure of the support of super-Brownian motion	

C - Davin C	GGR
LeBrun C Anti-self-dual metrics and Kähler geometry	
LeBrun C, Ye Y-G	GGR
Complex contact transformations and quaternionic geometry	GGR
LeBrun C, Mason L Twistors, Zoll manifolds and projective structures	
LeBrun C. Singer M	GGR
Electro-gravitational instantons and complex deformation theory	GGR
LeBrun C	GOIL
Fano manifolds, contact structures, and quaternionic geometry	RSP
Liggett T Improved upper bounds for the contact process critical value	
MacKay D, Takeuchi R	CVI
Interpolation models with multiple hyperparameters	
MacKay D. Peto I.	CVI
Smoothing within a hierarchical probabilistic model, with applications to language	
modelling	CAG
Maes C, Giacomin G, Lebowitz J	onic
Ground state percolation in lattice gases	CVI
Malik J, Rosenholtz R Recovering surface curvature and orientation from texture distortion: a least	
squares algorithm and sensitive analysis	
Malkus WVR	DYN
Energy sources for planetary dynamos	CVI
Mardia KV, Little JA	CVI
Image warping using derivative information	CVI
Mardia KV, Rabe S, Kent J	
Statistics, shape and images Martinelli F	RSP
On the two-dimensional Ising model in the phase coexistence region	
Martin-Löf A	EPI
The final size of a nearly critical epidemic, and the first passage time of a Wiener	
process to a parabolic barrier	EPI
Martin-Löf A	DII
Diffusion approximation for a nearly critical s-i-s epidemic	CAG
Maslov S, Paczuski M Scaling theory of depinning in the Sneppen model	
Mason L	GGR
Self-duality on split signature	COD
Mason L, LeBrun C	GGR
On the Blaschke conjecture	GGR
Mason L, Bailey T, Eastwood M	
Twistor theory and the Radon transform	CVI
Maybank S Finite dimension filters	
Mazel A, Suhov Y	RSP
Ground states of a Boson quantum lattice model	DDI
Metz JAJ, Van den Bosch J	EPI
Velocities of epidemic spread	CVI
Miller T, Zucker S Computation in neural cliques: biological consistency implies computational	
tractability	

Moore MA	CAG
Energy barriers for flux line crossing	ond
Moore MA	CAG
The vortex glass scaling exponent Moore MA, Blum T, Doherty JP	
Glassy solutions of the Kardar-Parisi-Zhang equation	CAG
Moorhouse T, Ward RS	GGR
Numerical twistor procedure for solving a nonlinear field equation	GGU
Morris WM, Dean L	EPI
Effect of sexual behaviour change on long term HIV-prevalence among homosexual	
men Morris WM, Kretzschmar M	
Concurrent partnerships and transmission dynamics in networks	EPI
Mountford T	RSP
A coupling of infinite particle systems	nor
Mountford T	RSP
Exponential convergence of sub-critical attractive reversible nearest particle sys- tems	
Mountford T, Prabhaker B	
On weak convergence of departures from an infinite series of queues	RSP
Mukamel D	CAG
Asymmetric exclusion model with two species: spontaneous symmetry breaking	OAG
Mukamel D	CAG
Droplet dynamics in an asymmetric exclusion model Mukamel D	
Spontaneous symmetry breaking in one-dimensional driven diffusive systems	CAG
Mundy J, Zisserman A	CVI
Applications of invariance in computer vision	CVI
Mundy J, Liu J, Zisserman A	CVI
Repeated structures: image correspondence constraints and three-dimensional	
structure recovery Nayak SK, Ramaswamy R	
Melting of (Ar-Xe) ₁₃ clusters: surface-core effects	CAG
Neal RM	CVI
Priors for infinite networks	011
Newman C	RSP
Disordered Ising systems and random cluster representations Norris JR	
Twisted sheets	RSP
Olivieri E, Scoppola E	RSP
Markov chains with exponentially small transition probabilities: first exit problem	nsr
from a general domain. I. The reversible case	
Pardoux E, Buckdahn R Backword SDEs driver & L	RSP
Backward SDEs driven by Levy processes and related integro-partial differential equations	
Pauwels E, Fiddelaers P, Van Gool J	CIT
Geometry-driven curve evolution	CVI
Pemantle R	RSP
Maximum variations of total risk	
Pemantle R Sharpness of second moment with infordant line in the second moment	RSP
Sharpness of second moment criteria for branching and tree-indexed processes Penrose M	DCT
Self-avoiding walks and trees in spread-out lattices	RSP

Popa S	LDT
Free-independent sequences in type II_1 factors and related problems	
Prasad D, Ramakrishnan D	LFN
Symplectic root numbers of two-dimensional Galois representations: an interpre- tation	
Proctor M	DYN
Lectures on instability in the presence of symmetry	DIN
Razumov AV, Saveliev MV	LDT
Differential geometry of Toda systems	
Ribet KA	LFN
Wiles proves Taniyama's conjecture; Fermat's last theorem follows	CIVI
Ripley BD Choosing network complexity	CVI
Ripley BD	CVI
Network methods in statistics	011
Ripley BD	CVI
Flexible non-linear approaches to classification	
Ripley BD	CVI
Comment on: Neural networks, a review from a statistical perspective, by Bing Cheng and D.M. Titterington	
Ripley BD, Hjort NL	CVI
Pattern recognition and neural networks	0.11
Roberts MG, Heesterbeek JAP	EPI
The dynamics of nematode infections of farmed ruminants	
Sattenspiel L	EPI
Structured epidemic models and the spread of measles on Dominica, West Indies Schonmann R	RSP
Theorems and conjectures on the droplet-driven relaxation of stochastic Ising mod-	101
els	
Schuetz GM	CAG
Duality relations for asymmetric exclusion processes	
Shapiro L, Zisserman A, Brady JM Motion from point matches using office opinolog memoty	CVI
Motion from point matches using affine epipolar geometry Shiga T	RSP
Measure-valued branching diffusions: immigrations, excursions and limit theorems	1001
Sidoravicius V, Kipnis C	RSP
CLT for the rescaled dynamics of a tagged particle in the interacting Ornstein-	
Uhlenbeck process	-
Sidoravicius V, Prescutti E Long-time behaviour of a charged particle interacting with an ideal gas	RSP
Singer M	GGR
Remarks on the period mapping for four-dimensional conformal structures	uun
Singer M, Murray MK	GGR
Non-integral hyperbolic monopoles and their spectral curves	
Singer M, LeBrun C	GGR
Electro-gravitational instantons and complex deformation theory	COD
Smolin L A strong coupling expansion for quantum gravity	GGR
Smolin L	GGR
Canonical quantization of the Bianchi model	
Smolin L	GGR
The strange quark mass and the cosmological natural selection hypothesis	

Sneppen K, Bak P, Flyvbjerg H et al Evolution as a self-organized critical phenomenon (macro-evolution/punctuated equilibrium/self- organization/criticality)	CAG
Soward A	DYN
On the role of stagnation points and particle paths in a two-dimensional flow fast dynamo model	
Soward A Phase mixed rotating magnetoconvection and Taylor's condition. I. Amplitude equations	DYN
Soward A	DYN
Phase mixed rotating magnetoconvection and Taylor's condition. II. Travelling pulses	
Soward A	DYN
Phase mixed rotating magnetoconvection and Taylor's condition. III. Wave trains	
Sparr G A common framework for kinetic depth, reconstruction and motion for deformable objects	CVI
Speer E	CAG
Conservation laws in a directed sandpile model	
Stinchcombe RB, Schuetz GM	CAG
Operator algebra for stochastic dynamics and the Heisenberg chain	
Suhov Y, Vvedenskaya N	RSP
The limiting departure flow in an infinite series of queues I	
Suhov Y	RSP
The limiting departure flow in an infinite series of queues II	
Tang L-H, Kardar M	CAG
Driven depinning in an anisotropic medium	
Tang L-H, Chaté H, Grinstein G	CAG
Phase diffusion in quasiperiodic cellular automata	
Tang L-H	CAG
Dynamical surfaces	
Toom A Simple one-dimensional interaction systems with super-exponential relaxation times	CAG
Toth B	RSP
"True" self-avoiding walks with generalized bond repulsion on $\mathbb Z$	
Vainshtein SI, Du Y, Sreenivasan KR	DYN
Sign-singular measure and its association with turbulent scalings	
Vainshtein SI, Sreenivasan KR, Pierrehumbert RT et al	DYN
Scaling exponents for turbulence and other random processes and their relation- ships with multifractal structure	
Vainshtein SI, Sreenivasan KR	DYN
Kolmogorov's $\frac{4}{5}$ th law and intermittency in turbulence	
Vainshtein SI	DYN
On the generation of magnetic flux and fractal properties	
Van Gool L, Moons T, Ungureanu D et al	CVI
The characterisation and detection of skewed symmetry	
Van Gool L, Moons T, Pauwels E et al	CVI
Vision and Lie's approach to invariance	
Van den Berg J, Gandolfi A	RSP
A triangle inequality for covariances of binary FKG random variables	

Van den	Berg J	RSP
	An improved lower bound for the critical activity of the hard-square lattice gas model	
Van den		RSP
van den	Disagreement percolation and mixing properties of Gibbs measures	1001
Van den	Bosch F, Zadoks JC, Metz JAJ	EPI
van den	Continental expansion of plant disease: a survey of some recent results	DII
Vaughan	방법에서 이 가슴에 잘 하는 것 같아요. 이 가슴에 가슴에 가슴에 가슴에 가슴에 가슴에 가슴에 가슴에 가슴다. 가슴에 가슴에 가슴에 가슴에 가슴이 다른 것이 가슴이 가슴에 다른 것이다. 나는 것이 가슴이 나는 것이 가슴이 나는 것이 가슴이 가슴이 가슴이 가슴이 가슴이 가슴이 가슴이 가슴이 가슴이 가슴	LFN
* auguan	The use of additive number theory of numbers without large prime factors	
Velasco-l	Hernandez JX	EPI
V OI GEORGE I	A model for Chagas disease involving transmission by vectors and blood transfu-	
	sion	
Ward RS		GGR
	Discrete A_n Toda field equations	
Whelan		GGR
	Spacetime alternatives in relativistic particle motion	
Wolf D		CAG
	Correlated nucleation in molecular beam epitaxy	
Wolf D		CAG
	Computer simulation of molecular beam epitaxy	
Woodho		GGR
	Self-duality and integrability	
Wytzes-		STA
	A woolcomber's guide to the stars	
Xu G		CVI
	Segmentation and optical flow for multiple rigid motions via recovery of epipolar	
X 1 / 1	geometry	CAC
Yekutieli		CAG
Yekutieli	Self-diffusion and "visited" surface in the droplet condensation problem	CAG
Ickullen	A model of branched growth	UNU
Yuille A	A model of branched growth	CVI
Tunic A	Bayesian decision theory and psychophysics	011
Zeitlin V	, Kambe T	DYN
Low	Two-dimensional ideal magnetohydrodynamics and differential geometry	
Zhang K		LFN
0	On coupling between the Poincaré equation and the heat equation	
Zhang S		LFN
0	On the 3-part of Birch and Swinnerton-Dyer conjecture	
Zia RKP	, Blum T	CAG
	An introduction to the statistical mechanics of driven-diffusive systems	
Zisserma	n A, Forsyth D, Mundy J et al	CVI
	Three-dimensional object recognition using invariance	
Zisserma		CVI
	A case against epipolar geometry	

'CVI', 'RSP', 'GGR' or 'CAG' indicate that the author(s) were participants in the Computer Vision, Random Spatial Processes, Geometry and Gravity or Cellular Automata, Aggregation and Growth programmes; 'LDT', 'DYN', 'LFN' or 'EPI' indicate that the author(s) were participants in the Low Dimensional Topology and Quantum Field Theory, Dynamo Theory, L-functions and Arithmetic or Epidemic Models programmes which took place in 1992/93 but the papers were not published until 1993/94; 'STA' indicates that the author(s) were members of the Institute staff.

9.6 SEMINARS AND LECTURES

July 1993 - June 1994

Ê

T Liggett	Survival and coexistence in interacting particle systems I	05/07/93	RSP*
B Derrida	Mathematical problems in the theory of disordered systems	05/07/93	RSP*
F Den Hollander	Scaling for a random polymer	05/07/93	RSP*
M Keane	Ergodic theory of spatial processes I	05/07/93	RSP*
R Carpenter	Biological gaze control: overview	06/07/93	CVI*
B Derrida	Exact results in asymmetric exclusion models	06/07/93	RSP*
D Griffeath	Self-organization in cellular automata I	06/07/93	RSP*
R Carpenter	Case study: active vision	06/07/93	CVI*
R Brockett	Kalman filtering	06/07/93	CVI*
Y Peres	The percolation approach to capacity and multiple points for Brownian motion	06/07/93	RSP*
M Keane	Ergodic theory of spatial processes II	06/07/93	RSP*
D Griffeath	Self-organization in cellular automata II	07/07/93	RSP*
R Brockett	Linear quadratic Gaussian control principles	07/07/93	CVI*
G Grimmett	Percolation and related models I	07/07/93	RSP*
R Daniel	Practical control system design	07/07/93	CVI*
R Schonmann	Critical droplets and metastability in stochastic Ising models I	07/07/93	RSP*
F Comets	High temperature Sherrington-Kirkpatrick model and stochastic calculus	07/07/93	RSP*
G Grimmett	Percolation and related models II	08/07/93	RSP*
K Glover	H^{∞} control principles	08/07/93	CVI*
R Schonmann	Critical droplets and metastability in stochastic Ising models II	08/07/93	RSP*
C Brown	The problem of delay: experiments with positive feedback control	08/07/93	CVI*
D Weir	Active vision at GEC	08/07/93	CVI*
G Papanicolaou	Convection enhanced diffusion I	08/07/93	RSP*
T Liggett	Survival and coexistence in interacting particle systems II	08/07/93	RSP*
G Papanicolaou	Convection enhanced diffusion II	09/07/93	RSP*
R Brockett	Feedback linearization control	09/07/93	CVI*
J Chayes	Self-organized criticality and singular diffusion	09/07/93	RSP*
C Brown	Cognitive gaze control: Bayes nets and decision theory	09/07/93	CVI*
A Klein	Multiscale analysis in disordered systems	09/07/93	RSP*
R Kotecky	Geometric representation of lattice models and large volume asymptotics	09/07/93	RSP*
B Zegarlinski	Disordered spin systems: some results and problems	11/07/93	RSP*
E Scoppola	Metastability for Markov chains: a general procedure based on renormalisation group ideas	11/07/93	RSP*
M Menshikov	Constructive methods in Markov chain theory	11/07/93	RSP*
C Newman	Disordered Ising systems and random cluster representations I	12/07/93	RSP*
P Ferrari	Shocks in exclusion processes with drift	12/07/93	RSP*
S Shlosman	Ising model and large deviations I	12/07/93	RSP*
K Alexander	Spanning forests, invasion percolation and optimal paths to infin- ity in percolation methods	12/07/93	RSP*
S Schlosman	Ising model and large deviations II	13/07/93	RSP*

M Aizenman	The localization transition for random operators I	13/07/93	RSP*
M Alzenman M Brady	Introduction to path planning and sensor guided control	13/07/93	CVI*
H Kesten	First-passage percolation and the problem of shape	13/07/93	RSP*
M Piza	Fluctuations in first-passage percolation	13/07/93	RSP*
S Cameron	Search methods for path planning	14/07/93	CVI*
M Aizenman	The localization transition for random operators II	14/07/93	RSP*
	Mean-field behaviour and the lace expansion I	14/07/93	RSP*
G Slade		14/07/93	CVI*
A Maclean	Using snakes for path planning	14/07/93	CVI*
S Cameron	Non-holonomic path planning for wheeled vehicles	14/07/93	RSP*
G Lawler	Random walks, harmonic measure and Laplacian growth models I		RSP*
B Nachtergaele	Stochastic geometric aspects of quantum spin states	14/07/93	
M Brady	Sensor guided control of the AGV and path planning for the robot head	15/07/93	CVI*
A Kupiainen	Renormalization group ideas for random walks and PDEs	15/07/93	RSP*
J Manyika	Sensor data fusion and decision theoretic control	15/07/93	CVI*
G Slade	Mean-field behaviour and the lace expansion II	15/07/93	RSP*
G Lawler	Random walks, harmonic measure and Laplacian growth models II	15/07/93	RSP*
C Newman	Disordered Ising systems and random cluster representations II	15/07/93	RSP*
Y Peres	Speed of random walk and dimension of harmonic measure on Galton-Watson trees	19/07/93	RSP
J Porrill	Active vision at AI Vision Research Unit at Sheffield	20/07/93	CVI*
D Murray	Controlling the Yorick stereo head	20/07/93	CVI*
D Terzopoulos	Dynamic models for recursive shape and motion estimation	20/07/93	CVI*
A Blake	Control of scale in curve tracking	20/07/93	CVI*
R Curwen	Parallel implementation of curve trackers	20/07/93	CVI*
G Sullivan	Traffic surveillance using model-based vision	21/07/93	CVI*
J Malik	Applications of tracking to traffic monitoring	21/07/93	CVI*
J Hallam	Model cars: an experiment in real-time intelligent control	21/07/93	CVI*
J Mayhew	Active vision at AI Vision Research Unit: the adaptive control and self-calibration of a 4 d.o.f. stereo camera head	21/07/93	CVI*
R Bajcsy	Cooperating behaviours: discrete dynamic events	21/07/93	CVI*
R Cipolla	Uncalibrated stereo hand-eye coordination	21/07/93	CVI*
M Taylor	Grasping three-dimensional objects using an active viewer	21/07/93	CVI*
C Taylor	Generation and fitting of trainable flexible templates	22/07/93	CVI*
A Yuille	Theoretical and experimental advances in deformable templates	22/07/93	CVI*
L Shapiro	Tracking moving heads	22/07/93	CVI*
D Tock	Tracking drivers' eyes	22/07/93	CVI*
R Szeliski	Robust shape recovery from occluding contours using a linear smoother	22/07/93	CVI*
D Hogg	Fusing two views using object motion	22/07/93	CVI*
D Aldous	Hammersley's process and its hydrodynamical limit	23/07/93	RSP
C Longuet-Higgins	Ambiguous surfaces	26/07/93	CVI*
S Maybank	Critical sets for lines and points	26/07/93	CVI*
T Huang	Feature-based motion estimation	26/07/93	CVI*
O Faugeras	Ambiguous sets of lines for motion estimation from three views	27/07/93	CVI*
P Giblin	Recovery of surfaces from profiles under rotation with unknown	27/07/93	CVI*
	axis		

M Werman	From image sequences for computer graphics and geometric modelling	27/07/93	CVI*
A Martin-Löf	The final size of a nearly critical epidemic and a first passage time problem	27/07/93	RSP
S Maybank	Reconstructions for minimal data sets	27/07/93	CVI*
C Longuet-Higgins	SVD for compacting para-perspective image sequence data in the manner of Tomasi and Kanade	27/07/93	
O Faugeras	Affine and projective reconstruction from a pair of uncalibrated cameras	28/07/93	CVI*
R Szeliski	Recovering three-dimensional shape and motion from image streams using nonlinear least squares	28/07/93	CVI*
L Shapiro	Structure and motion with an affine camera	28/07/93	CVI*
P Beardsley	Projective structure from motion	28/07/93	CVI*
D Weinshall	The linear acquisition of similarity and affine invariant shape from noisy sequences of images	28/07/93	
O Faugeras	Camera geometry	29/07/93	CVI*
O Faugeras	E- and F-matrixes, Sturm and Kruppa	29/07/93	CVI*
R Horaud	Hand-eye calibration	29/07/93	CVI*
G Lawler	Slowly recurrent sets and loop-erased walk in d-dimensions	30/07/93	RSP
J Porrill	Geometry of binocular stereopsis with vergence	02/08/93	CVI*
T Hara	Lower bounds on the connective constant of self-avoiding walks		RSP
D Weinshall	On polar disparity		CVI*
J Gårding	More on polar disparity	02/08/93	CVI*
J Malik	On disparity gradients	02/08/93	CVI*
K Nakayama	Tutorial on psychophysics of vision I	03/08/93	CVI*
B Rogers	Psychophysics of stereopsis	03/08/93	CVI*
K Nakayama	Tutorial on psychophysics of vision II	03/08/93	CVI*
K Nakayama	Tutorial on psychophysics of vision III	04/08/93	CVI*
J Frisby	Stereo-texture interactions	04/08/93	CVI*
W Freeman	Modelling the statistics of the world as seen by the eye	04/08/93	CVI*
K Nakayama	Tutorial on psychophysics of vision IV	05/08/93	CVI*
A Derrington	Some simple failures of human motion perception	05/08/93	CVI*
K Alexander	Boundary fluctuations in first-passage percolation	06/08/93	RSP
M Penrose	Spread-out continuum percolation	09/08/93	RSP
N Bingham	Some application of large deviation theory	11/08/93	RSP
R Pemantle	Discrete potential theory for Markov chains and an application of potential theory to Galton-Watson trees	13/08/93	RSP
R Schonmann	For two-dimensional lattice spin systems weak mixing implies strong mixing	16/08/93	RSP
D van Essen	Principles of neural architecture and function	16/08/93	CVI*
D van Essen	Subcortical and early cortical processing	17/08/93	CVI*
J Robson	An interpretation of image representation in primary visual cortex	17/08/93	CVI*
D van Essen	Higher visual processing	17/08/93	CVI*
F Heitger	Modelling V2 and gestalt grouping	18/08/93	CVI*
H Barlow	Neural coding	18/08/93	CVI*
D van Essen	Visual attention: computational models and psychological tests	18/08/93	CVI*

J Malik	Simple cells, complex cells and contour cells: what algorithms do they support?	19/08/93	CVI*
D O'Carroll	Higher order visual processing in flying insects	19/08/93	CVI*
A Sillito	The role of cortico-fugal feedback in central visual function	19/08/93	CVI*
D Mumford	Modelling the feedback circuits in the brain	19/08/93	CVI*
M Keane	Cantor criticality	20/08/93	RSP
J Mundy	Object recognition: introduction	23/08/93	CVI*
J Mundy	An overview and history of object recognition	23/08/93	CVI*
Y Higuchi	Two-dimensional Ising percolation	23/08/93	RSP
S Ullman	An overview of model-based recognition	23/08/93	CVI*
J Mundy	Interpretation tree and pose clustering	23/08/93	CVI*
S Ullman	Alignment	and Malana and Anna and	CVI*
J Mundy	Curved object recognition	24/08/93	CVI*
J Porrill	Object recognition in TINA	24/08/93	CVI*
T Moons	Invariant characteristics of articulated objects	24/08/93	CVI*
R Poppelstone	Pose determination using symmetry groups	24/08/93	CVI*
D Cooper	The role of statistics in recognition	24/08/93	CVI*
J Mundy	Invariant methods in recognition	25/08/93	CVI*
S Ullman	Comments on invariant methods	25/08/93	CVI*
C Rothwell	A recognition system based on invariants	25/08/93	CVI*
D Forsyth	Recognizing extruded and algebraic surfaces	25/08/93	CVI*
A Zisserman	Invariants of three-dimensional symmetric objects	25/08/93	CVI*
J Mundy	Multiple-view invariants	26/08/93	CVI*
L Stark	Object classes based on function	26/08/93	CVI*
A Evans	Object recognition using neural networks	26/08/93	CVI*
A Shashua	Does intensity play a role in recognition?	26/08/93	CVI*
S Ullman	Object recognition in the future I	26/08/93	CVI*
J Mundy	Object recognition in the future II	26/08/93	CVI*
T Mountford	An old fool and his coupling	27/08/93	RSP
J van den Berg	Disagreement percolation and uniqueness of Gibbs measures	01/09/93	RSP
P Ferrari	Poisson approximation for the departure from a system with in-	03/09/93	RSP
	finitely many queues		
S Geman	Object recognition: introduction	06/09/93	CVI*
U Grenander	Ramblings on pathology patterns	06/09/93	CVI*
D Abraham	An application of percolation to random surfaces	06/09/93	RSP
S Geman	Discussion on recognition of multiple objects in complex scenes	07/09/93	CVI*
Y Amit	Graphical methods for image matching	08/09/93	CVI*
B Ripley	Classifying galaxies and worms in images	08/09/93	CVI*
A Blake	Motion- and shape-selective contours	09/09/93	CVI*
R Weiss	Local search for verification of model matching	09/09/93	CVI*
S Zucker	Shape models	10/09/93	CVI*
C Kipnis	From gradient to nongradient in exclusion processes	10/09/93	RSP
D Mumford	Recognition of faces and leaves and defining similar shapes	10/09/93	CVI*
J Walsh	Stochastic two-point boundary value problem	13/09/93	RSP*
R Tribe	Long-time behaviour of another white noise heat equation	13/09/93	RSP*
Y Suhov	Random branching processes and travelling wave solutions for cou-	13/09/93	RSP*
	pled KPP equations		

87

-

J Koenderink	Topographic representation	12/00/02	CWI*
A Sznitman	Aspects of Brownian motion in a Poissonian potential	13/09/93	CVI*
R Szeliski	Particle representation	13/09/93	RSP*
		13/09/93	CVI*
T Shiga	Measure-valued branching diffusions: excursions, immigrations and limit theorems	13/09/93	RSP*
S Zucker	Surfel representation	13/09/93	CVI*
E Perkins	Measure-valued diffusions with singular interactions	14/09/93	RSP*
J Koenderink	Ecological optics of surfaces	14/09/93	CVI*
E Pardoux	Backward SDEs and quasilinear PDEs and variational inequalities	14/09/93	RSP*
N Gonchasruk	On a class of quasilinear stochastic differential equations of parabolic type	14/09/93	RSP*
P Giblin	Projection to lines and planes	14/09/93	CVI*
J Norris	Two-parameter diffusions	14/09/93	RSP*
P March	Resolvent estimates for Fleming-Viot operators	14/09/93	RSP*
J Le Gall	A new random process and its connections with PDEs	15/09/93	RSP*
J Koenderink	Natural parts of surfaces	15/09/93	CVI*
A Etheridge	Representations of superprocesses	15/09/93	RSP*
I Porteous	'Robust geometry of surfaces	15/09/93	CVI*
D Mumford	What's ON a face	15/09/93	CVI*
J Steif	The critical threshold voter automaton	15/09/93	RSP
P Donnelly	Discrete constructions for measure-valued diffusions	16/09/93	RSP*
J Koenderink	Geometry of pictorial relief	16/09/93	CVI*
D Dawson	Quasi-equilibria in a hierarchical Fleming-Viot model	16/09/93	RSP*
J Willats	A sculptor's perspective	16/09/93	CVI*
M Van den Berg	Heat content, Minkowski dimension and capacitory density	16/09/93	RSP*
E Davies	Analysis on some bounded locally Euclidean manifolds	16/09/93	RSP*
W Kendall	Probability and gradient estimates for harmonic maps	16/09/93	RSP*
E Bolthausen	On self-attracting random walks	17/09/93	RSP*
J Biggins	Spatial branching processes and the KPP equation and its neighbours	17/09/93	RSP*
G BenArous	Langevin dynamics for spin glasses	17/09/93	RSP*
A Greven	On systems with a large number of interacting components	20/09/93	RSP
P Burt	A framework for multi-resolution image analysis	20/09/93	CVI*
S Mallat	Multi-resolution, wavelets and local frequency decompositions	20/09/93	CVI*
S Mallat	Orthonormal wavelets for image processing	21/09/93	CVI*
P Burt	Pyramid applications for image processing	21/09/93	CVI*
J Hammersley	Fractal dynamics of Eden clusters	22/09/93	RSP
P Burt	Pyramid applications to computer vision	22/09/93	CVI*
S Mallat	Multiscale edge detection	22/09/93	CVI CVI*
J Daugman	Gabor wavelets in mammalian vision and pattern recognition		
	applications	23/09/93	CVI*
E Andjel	The exclusion process with a finite number of particles	24/09/93	RSP
F Kelly	Loss networks	27/09/93	RSP
P Hall	Statistical estimation of fractal properties	29/09/93	RSP
H Georgii	Large deviations for Gibbsian point random fields with super- stable interactions	04/10/93	RSP
I Benjamini	λ_1 and the Liouville property	06/10/93	RSP

M Rees	Understanding cosmic evolution: progress, hype and prospects	11/10/93	INS
M Barlow	DLA on the binary tree	13/10/93	RSP
P Green	Bayesian image analysis	18/10/93	CVI*
D Spiegelhalter	Graphical models and exact calculations	18/10/93	
P Green	Emission tomography and EM algorithms	18/10/93	CVI*
H Huppert	Volcanoes: how they work	18/10/93	INS
P Green	Markov chain Monte Carlo in image problems	19/10/93	CVI*
M Miller	Inference in parametric spaces of varying dimension	19/10/93	CVI*
B Ripley	Galaxy deconvolution and recognition	19/10/93	CVI*
C Graffigne	Segmentation algorithms	19/10/93	CVI*
J Kay	Edge-preserving image restoration	19/10/93	CVI*
D Titterington	Parameter estimation in image models	20/10/93	CVI*
C Jennison	Multiple site updates in image estimation	20/10/93	CVI*
T Kaijser	On couplings of random systems with complete connections	20/10/93	RSP
A Baddeley	Stochastic geometry and high level vision	21/10/93	CVI*
C Jennison	Subpixel resolution and edge fitting	21/10/93	CVI*
D Phillips	Hierarchical templates and tracking via MCMC	21/10/93	CVI*
A Frigessi	Informative priors in remote sensing	21/10/93	CVI*
P Donnelly	Genealogical processes in population genetics	22/10/93	RSP
J Bridle	Overview of automatic speech recognition	25/10/93	CVI
J Bridle	Signal processing and acoustic modelling for automatic speech recognition	25/10/93	CVI
J Bridle	Hidden Markov theory and basic algorithms	25/10/93	CVI
J Bridle	Whole-word connected speech recognition	26/10/93	CVI
S Roukos	Large vocabulary issues/decision-tree based methods	26/10/93	CVI
S Zucker	Computational vision and biological perception I. The visual cor- tex and edge detection	26/10/93	INS
A Gandolfi	Greedy lattice animals	27/10/93	RSP
S Roukos	Statistical language models for automatic speech recognition	27/10/93	CVI
M Brooke	Lip reading and talking-head graphics	27/10/93	CVI
S Della Pietra	Introduction to maximum entropy and exponential models	28/10/93	CVI
B Ripley	Applicability of speech techniques in vision: a discussion	28/10/93	
S Della Pietra	Maximum entropy continued	28/10/93	CVI
S Zucker	Computational vision and biological perception II. Grouping and the geometry of curve inferencing	28/10/93	INS
S Della Pietra	Growing overlapping decision trees	29/10/93	CVI
J Cardy	Conformal invariance, the Potts model and percolation	29/10/93	RSP
S Della Pietra	Language translation by statistical means	29/10/93	CVI
B Ripley	Overview of neural nets and classification trees	01/11/93	CVI
D Spiegelhalter	Belief nets I: introduction	01/11/93	CVI
R Dobrushin	Gibbs fields from physics through mathematics to all sciences	01/11/93	INS
D Spiegelhalter	Belief nets II	02/11/93	CVI
B Ripley	Neural networks for classification	02/11/93	CVI
R Neal	The Bayesian approach to accommodating complex models and its Monte Carlo implementation	02/11/93	CVI
D MacKay	Issues in Bayesian adaptive modelling	02/11/93	CVI

S Zucker	Computational vision and biological perception III. Cliques of neurons and visual accuracy	02/11/93	INS
G Slade	Attractive and repulsive walks	03/11/93	RSP
D Bell	Dempster/Schafer methodology for handling uncertainty in spa- tial reasoning	03/11/93	
D Wolpert	Stacked generalization	04/11/93	CVI
A Dawid	Computational developments for networks	04/11/93	
A Gammerman	PRESS - probabilistic reasoning expert system shell	04/11/93	
S Zucker	Computational vision and biological perception IV. Neuronal metabolism, colour and texture	04/11/93	
R Dobrushin	Fluctuations of boundaries of droplets	05/11/93	RSP
R Dobrushin	The hydrodynamical equations of Navier-Stokes level	08/11/93	
A De Masi	Travelling fronts for Glauber dynamics with a magnetic field and Kac interactions	08/11/93	
B Toth	Anomalous diffusion of self-repelling random walks	08/11/93	RSP
B Ripley	What have we learned? Mathematical theories of generalization	08/11/93	INS
F Martinelli	On the stochastic two-dimensional Ising model in the phase tran- sition region	09/11/93	
S Shlosman	Annealed spin systems and the Fisher renormalization group	09/11/93	RSP
A Barto	An introduction to reinforcement learning	09/11/93	CVI*
A Barto	Reinforcement as adaptive optimal control	09/11/93	CVI*
S Zucker	Computational vision and biological perception V. Temporal cor- tex, object recognition and shape categories	09/11/93	INS
D Abraham	Stochastic dynamics of Dobrushin interface lattice gas model	09/11/93	RSP
E Olivieri	Metastability and nucleation for general stochastic Ising models	10/11/93	RSP
P Ferrari	Annihilating particle systems and automata	10/11/93	RSP
T Prescott	Adaptive local navigation	10/11/93	CVI*
C Landim	Hydrodynamical limit for space inhomogeneous asymmetric zero- range processes	10/11/93	RSP
T Mountford	Bootstrap percolation	10/11/93	RSP*
R Kotecky	Influence of boundaries on states in finite volumes	11/11/93	RSP*
E Scoppola	Graph methods and renormalization for Markov chains	11/11/93	RSP*
A Barto	Theoretical aspects of reinforcement learning algorithms based on dynamic programming	11/11/93	CVI*
C Watkins	Q-learning and animal learning	11/11/93	CVI*
N Temperley	The cluster theory approach to metastability of a liquid	11/11/93	RSP*
H Yau	Scaling limit of the asymmetric simple exclusion process	11/11/93	RSP*
R Schonmann	A simple model for crystal growth	12/11/93	RSP*
E Presutti	Time asymptotics of a reaction diffusion equation with a small noise	12/11/93	RSP*
A Barto	Issues for application, animal learning and neuroscience	12/11/93	CVI*
O Penrose	Metastability and the analytically continued free energy	12/11/93	RSP*
P Whittle	Polymer models and the Potts model	15/11/93	RSP
J Coates	Fermat's last theorem	15/11/93	INS
E Presutti	Critical fluctuations in Glauber dynamics	17/11/93	RSP
J Malik	Overview and examples	22/11/93	CVI*
F Martinelli	On a logarithmic Sobolev inequality for Gibbs measures	22/11/93	RSP

P Perona	Texture segmentation	22/11/93	CVI*
D Mumford	What does the brain have to compute in order to see?	22/11/93	INS*
E Olivieri	Renormalization group pathologies and finite size conditions		RSP
A Yuille	The coupled-membrane model for texture segmentation	23/11/93	CVI*
K Conradsen	Case studies in texture analysis I	23/11/93	CVI*
K Conradsen	Case studies in texture analysis II	23/11/93	CVI*
J Carstensen	Co-occurrence matrices and applications	24/11/93	CVI*
B Ripley	Statistical pattern recognition	24/11/93	CVI*
J Gårding	Shape from texture I		CVI*
J Malik	Shape from texture II	25/11/93	CVI*
A Gandolfi	On Talagrand's method of isoperimetric inequations	29/11/93	RSP
B Romeny	Foundations of linear scale space	29/11/93	CVI*
T Lindeberg	Scale selection and blob analysis	29/11/93	CVI*
M Barlow	Analysis in fractal media	and the second	INS
P Perona	Anisotropic diffusion	30/11/93	CVI*
T Shiota	Regularization and corner detection	30/11/93	CVI*
G Gerig	Vector-valued diffusions	30/11/93	CVI*
L Alvarez	Axiomatic approach to multi-scale analysis and evolution of curves	30/11/93	CVI*
W Niessen	Implementation of four scale-space schemes	30/11/93	CVI*
L van Gool	Parallel implementations	30/11/93	CVI*
D Mumford	Overview of energy approaches	01/12/93	CVI*
S Mitter	Minimization of energy functionals	01/12/93	CVI*
D Petritis	The low temperature phase diagram on Penrose and more general quasi-periodic lattices	01/12/93	RSP
N Nordstrom	Relationship between the energy formulation and diffusions	01/12/93	CVI*
J Morel	Existence and regularity of minimum energy solutions	01/12/93	CVI*
D Geiger	Relations with statistical physics	01/12/93	CVI*
B Romeny	Covariant formalism and nonlinear scale-space	01/12/93	CVI*
P Leaci	Perspectives from the De Giorgi school on free boundary problems	01/12/93	CVI*
S Pizer	Objects and geometry of scale space	02/12/93	CVI*
G Gerig	Applications to medical imaging	02/12/93	CVI*
L van Gool	Coupled nonlinear diffusion for early vision	02/12/93	CVI*
J Weber	Segmentation of optical flow based on three-dimensional motion and diffusion	02/12/93	CVI*
S Pizer	Variable conductance diffusion via pattern recognition	02/12/93	CVI*
R Whitaker	Embedded snakes: energy minimizing blobs	02/12/93	CVI*
B Kimia	Entropy scale space for shape	02/12/93	CVI*
A Bangham	Sieve filtering	02/12/93	CVI*
P Perona	Asymmetrically biased diffusions for image normalization and quantization	02/12/93	CVI*
S Tavaré	Random combinatorial structures and the Ewens sampling formula	06/12/93	RSP
A Pece	Direct and inverse processing in the visual system	06/12/93	CVI
A Horridge	The vision of bees and its invariances	07/12/93	CVI
S Yau	Nonlinear equations, geometry and gravity I	04/01/94	
S Yau	Nonlinear equations, geometry and gravity II	04/01/94	

S Yau	Nonlinear equations, geometry and gravity III	05/01/94	GGR
S Yau	Nonlinear equations, geometry and gravity IV	05/01/94	GGR
S Yau	Nonlinear equations, geometry and gravity V	06/01/94	GGR
S Yau	Nonlinear equations, geometry and gravity VI	06/01/94	GGR
S Yau	Nonlinear equations, geometry and gravity VII	07/01/94	
S Yau	Nonlinear equations, geometry and gravity VIII	07/01/94	GGR
S Yau	Nonlinear equations, geometry and gravity IX	10/01/94	
S Yau	Nonlinear equations, geometry and gravity X	10/01/94	GGR
R Ramaswamy	Sand pile models and defects	11/01/94	
D Sherrington	Complexity and order parameter flows in neural dynamics	12/01/94	CAG
A Connes	Quantized calculus and applications I	13/01/94	GGR
A Connes	Quantized calculus and applications II	13/01/94	
H Flyvbjerg	Physics of soap froths	17/01/94	
A Connes	Quantized calculus and applications III	18/01/94	
N Goldenfeld	Renormalization group and structural stability for PDEs and trav-	18/01/94	
	elling waves		
A Connes	Quantized calculus and applications IV	18/01/94	GGR
F Dekking	Travelling waves for nonlinear operators	19/01/94	CAG
A Connes	Quantized calculus and applications V	20/01/94	GGR
A Connes	Quantized calculus and applications VI	20/01/94	GGR
J Hoppe	The dynamics of relativistic membranes	24/01/94	GGR
J Hartle	Quantum mechanics and quantum cosmology	24/01/94	INS
A Connes	Quantized calculus and applications VII	25/01/94	GGR
A Connes	Quantized calculus and applications VIII	25/01/94	GGR
J Kertész	Kinetic roughening with quenched disorder	25/01/94	CAG
N Hitchin	Einstein metrics with self-dual Weyl tensor	25/01/94	GGR
M Evans	Exact results on asymmetric exclusion and relation to growth	26/01/94	CAG
A Connes	Quantized calculus and applications IX	27/01/94	GGR
A Connes	Quantized calculus and applications X	27/01/94	GGR
C Klimĉi'k	Duality invariant class of exact string backgrounds	31/01/94	GGR
N Manton	Dynamics of solitons	31/01/94	INS
A Connes	Quantized calculus and applications XI	01/02/94	GGR
A Connes	Quantized calculus and applications XII	01/02/94	GGR
J Girard	Linear logic	01/02/94	*
A Connes	Quantized calculus and applications XIII	03/02/94	GGR
A Connes	Quantized calculus and applications XIV	03/02/94	GGR
A Bray	Introduction to the dynamics of phase ordering I	03/02/94	CAG*
A Bray	Introduction to the dynamics of phase ordering II	03/02/94	CAG*
A Bray	Introduction to the dynamics of phase ordering III	04/02/94	CAG*
N Goldenfeld	Scaling and universality in cell dynamic models for phase ordering and crystal growth	04/02/94	CAG*
I Yekutieli	Models of domain growth and coarsening	04/02/94	CAG*
V Hakim	Growth and competition of needles in a Laplacian field	04/02/94	CAG*
C Rovelli	Non-perturbative quantum gravity in the loop representation	07/02/94	GGR
M Alexander	Simple models of walking, running and jumping	07/02/94	INS
G Schuetz	Non-abelian symmetries of stochastic processes	08/02/94	CAG

9.6 Seminars and Lectures July 1993 - June 1994 M Schwartz Nonlinear deposition 09/02/94 CAG Quantum field theory on spacetime with horizons and the KMS 09/02/94 GGR

B Kay

2 1109	condition	00/02/04	uun
A Connes	Quantized calculus and applications XV	10/02/94	GGR
A Connes	Quantized calculus and applications XVI	10/02/94	
P D'Eath	Bosonic physical states in $N = 1$ supergravity	14/02/94	
G Horowitz	Gravitational collapse: from black holes to naked singularities	14/02/94	
T Blum	Replica approach to directed polymers	15/02/94	
B Palmer	Conformal minimal surfaces	15/02/94	GGR
R Stinchcombe	Evaporation deposition models	17/02/94	
J Madore	Physics and non-commutative geometry	21/02/94	
T Halpin-Healy	Kinetic roughening phenomena	21/02/94	
J Steif	Phase transition for cellular automata	22/02/94	
R Ball	Models of self-similar crack growth	23/02/94	CAG
D Ellwood	Pushouts of C*-algebras	28/02/94	
C Isham	The challenge of quantum gravity	28/02/94	INS
T Halpin-Healy	KPZ primer I	03/03/94	
T Halpin-Healy	KPZ primer II	03/03/94	
K Bugajska	From symplectic structure to space-time	03/03/94	
D Wolf	Correlated noise and anomalous scaling	04/03/94	CAG*
L Tang	Kinetic roughening at a driven depinning transition	04/03/94	CAG*
S Edwards	Statistics of surfaces under deposition	04/03/94	CAG*
M Dubois-Violette	Non-commutative differential calculus, symplectic geometry and quantum mechanics	07/03/94	GGR
A Connes	Non-commutative geometry and particle physics	07/03/94	INS
C Godrèche	Blockage transition in a two-dimensional system	08/03/94	CAG
H Jensen	The fate of the elastic string in a random environment	09/03/94	CAG
P Michor	The Frölicher-Nijenhuis bracket for derivation based non-commut- ative differential forms	10/03/94	GGR
J Cardy	Field theory and renormalization group for reaction diffusion processes	15/03/94	CAG
C Maes	Percolation in some correlated models of statistical mechanics	16/03/94	CAG
H Levine	A new look at continuum approaches to DLA	18/03/94	CAG
M Tonin	Twistor-like formulation of supermembranes	21/03/94	GGR*
R Tucker	Geometrical variations for stiff membranes in curved spaces	21/03/94	GGR*
G 't Hooft	Nature as an information processing machine: joint CAG/GGR seminar	21/03/94	GGR*
R Percacci	Target space duality in p-branes	22/03/94	GGR*
R Khuri	Black p-branes in four-dimensional string theory	22/03/94	GGR*
J Hoppe	Integrable membranes and fluid dynamics	22/03/94	GGR*
L Gary	Equilibrium behavior on particle systems interfaces	22/03/94	CAG
P Townsend	Global structure of p-brane solitons	22/03/94	GGR*
U Lindstrom	The zero tension limit of strings and membranes	22/03/94	GGR*
J Garriga	Covariant perturbations on membranes	22/03/94	GGR*
I Bakas	Infinite symmetries in string theory	23/03/94	GGR*
B Carter	Classical dynamics of a brane complex	23/03/94	GGR*

.

P Schaller	Remarks on supermembranes in four dimensions	23/03/94	GGR*
M Droz	Fronts and pattern formation in reaction diffusion system	23/03/94	
H Spohn	Shock fluctuations in stochastic lattice gas models	23/03/94	CAG*
J Krug	Disorder-induced unbinding and shock fluctuations	23/03/94	
E Speer	Microscopic structure of shocks: the Burgers equation and the asymmetric exclusion process	23/03/94	
J Hartle	Generalized quantum theory and the quantum theory of spacetime	28/03/94	GGR*
C Isham	Quantum logic and the generalized quantum theory of Gell-Mann and Hartle	28/03/94	GGR*
R Penrose	Twistor theory: aims and achievements	28/03/94	GGR*
K Kuchař	In quantum collapse, ask which bell it is that tolls	29/03/94	GGR*
J Madore	Non-commutative differential geometry	29/03/94	GGR*
T Damour	Theoretical implications of experiments on gravity	29/03/94	GGR*
C Clarke	Lorentz geometry: causality and singularities	30/03/94	GGR*
J Stewart	What can computers tell us about general relativity	30/03/94	GGR*
S Hawking	Loss of quantum coherence with closed timelike curves	30/03/94	GGR*
G Gibbons	Solitons and gravity	30/03/94	GGR*
R Kallosh	Supersymmetry and gravity	30/03/94	
G Horowitz	The impact of superstring theory on general relativity	31/03/94	GGR*
B Kay	Quantum field theory in a curved spacetime: future directions	31/03/94	
J Halliwell	Information theory and gravity	31/03/94	
H Spohn	Bulk diffusivity of lattice gases close to criticality	05/04/94	
T Newman	Exact results for a model of interface growth	06/04/94	
D Deutsch	Quantum computation and closed timelike curves	11/04/94	
J Simon	Unitarity and closed timelike curves	12/04/94	
F Koukiou	The mean field theory of directed polymers in random media and spin glass models	12/04/94	
J Hartle	Path integrals and closed timelike curves	12/04/94	GGR*
S Hawking	Quantum coherence and closed timelike curves	13/04/94	GGR*
H Chaté	Collective behaviour in spatially extended dynamical objects	13/04/94	CAG
D Politzer	Simple examples of closed timelike curves	13/04/94	GGR*
A Lahiri	A toy model of black hole thermodynamics	14/04/94	GGR*
B Kay	Misner space and F-locality	14/04/94	GGR*
S Rosenberg	Testing closed timelike curves causality violation	14/04/94	GGR*
M Cassidy	Nonlinearity with closed timelike curves	14/04/94	GGR*
R Laflamme	Stability of charged strings and p-branes	14/04/94	GGR*
T Ortin	Time symmetric initial data sets in dilaton gravity	15/04/94	
J Dowker	Geometric entropy	15/04/94	
C Gundlach	Isaacson expansion in quantum cosmology	18/04/94	
E Alvarez	On non-abelian duality	20/04/94	
R Ball	Introduction to diffusion limited aggregation I	21/04/94	CAG*
R Ball	Introduction to diffusion limited aggregation II	21/04/94	
T Halsey	Diffusion limited aggregation as branched growth	22/04/94	
J Earnshaw	Scaling in colloidal aggregation	22/04/94	
I Yekutieli	Asymptotics of diffusion limited aggregation	22/04/94	
	SSC Meeting	24/04/94	

V The law			
V Frolov	Wavefunction of a black hole and the dynamical origin of entropy	25/04/94	
S Hawking	The nature of space and time I: classical theory	25/04/94	
D Mukamel	Selection in non-equilibrium systems	26/04/94	
M Moore	Flux lines and pinning in high-temperature superconductors	27/04/94	
R Penrose	The nature of space and time II: structure of space-time singularities	27/04/94	GGR*
S Hawking	The nature of space and time III: quantum black holes	29/04/94	GGR*
R Ward	Self-dual Einstein as two-dimensional field theory	02/05/94	GGR
R Penrose	The nature of space and time IV: space-time and quantum theory	02/05/94	GGR*
G Grimmett	Probabilistic aspects of the Potts model	03/05/94	CAG
M Paczuski	Field theory of a model of self-organised criticality	04/05/94	CAG
S Hawking	The nature of space and time V: quantum cosmology	04/05/94	GGR*
A Anderson	Coupling classical and quantum variables	05/05/94	GGR*
R Penrose	The nature of space and time VI: the twistor view of space-time	06/05/94	GGR*
M MacCallum	Roughening up Scri	07/05/94	
J Friedman	QFT on space-time with closed timelike curves and on non-time- orientable space-times	07/05/94	GGR*
G 't Hooft	Dynamics of the black hole horizon	07/05/94	GGR*
D Kramer	On radiative solutions in general relativity	07/05/94	
S Hawking	The nature of space and time VII: debate	09/05/94	
R Omnès	Philosophical consequences of the interpretation of quantum me- chanics by consistent histories	10/05/94	
D Dhar	Introduction to self-organized criticality I	12/05/94	CAG*
L Mason	Quasi-local mass, Hamiltonians and positive energy	12/05/94	
D Dhar	Introduction to self-organized criticality II	12/05/94	CAG*
P Bak	Is life a self-organized critical phenomenon?	13/05/94	CAG*
J Bouchaud	Some phenomenological ideas for the statics and dynamics of sandpiles	13/05/94	
H Flyvbjerg	Self-organized critical pin-ball machine	13/05/94	CAG*
J Gauntlett	$SL(2,\mathbb{Z})$ duality and soliton theory	16/05/94	
R Livi	Defects in a coupled map system	17/05/94	
J Paz	Decoherence, chaos and the classical limit	17/05/94	
H Flyvbjerg	Stochastic dynamics of microtubules	18/05/94	
H Kodama	Alternative treatment of the quantum Hamiltonian constraint	19/05/94	
L Smolin	The Cherns-Simons functional as a time-function in canonical gravity	23/05/94	
B Lian	Algebra, cohomology and quantum operators	23/05/94	GGR*
A Klemm	Mirror symmetry on Calabi-Yau spaces	24/05/94	GGR*
A Toom	Cellular automata with super-exponential relaxation times	25/05/94	
R Livi	Cellular automata modelling of immune networks	25/05/94	CAG*
J Hemmingsson	On global quasiperiodicity in cellular automata	25/05/94	CAG*
T Ortin	$SL(2,\mathbb{R})$ duality and supersymmetry		GGR*
A Albrecht	Locating information in quantum systems	26/05/94	GGR*
G Segal	L^2 cohomology of monopole moduli spaces	27/05/94	GGR*
M Green	A discussion of open issues in string theory	27/05/94	GGR*
P D'Eath	Finiteness of $N = 1$ supergravity with supermatter		

D Fisher	Collective transport in random media	31/05/94	CAG
R Zia	American football, barber poles and clouds: pattern formation in a noisy cellular automaton	01/06/94	CAG*
D Dhar	The Abelian cellular automaton model of sandpiles	01/06/94	CAG*
B Derrida	Exact steady states of systems out of equilibrium: asymmetric exclusion models	01/06/94	CAG*
H Flyvbjerg	Dynamics of froths and foams	01/06/94	CAG*
J Gauntlett	Pair creation of black holes	06/06/94	GGR*
J Preskill	Black hole theory dynamics in two dimensions	06/06/94	GGR*
L Susskind	Gedanken experiments and black hole complementarity	06/06/94	GGR*
J Harvey	S-duality in heterotic string theory	07/06/94	GGR*
D Mukamel	Symmetry breaking in one dimension driven diffusive systems	07/06/94	CAG
S Hawking	Pair creation and annihilation of black holes	07/06/94	GGR*
G Horowitz	Pair creation of large black holes	07/06/94	GGR*
J Lebowitz	Asymptotic behavior of densities and spatial structure in diffusion limited two particle reactions	08/06/94	CAG
M Eastwood	Holomorphic realisations of representations	08/06/94	GGR*
S De Alwis	Time and black holes	08/06/94	GGR*
M Singer	A "period mapping" for four-dimensional conformal manifolds	08/06/94	GGR*
P Tod	Some solutions of the Boyer-Finley equation	09/06/94	GGR*
S Merkulov	Twistor theory and fundamental geometries	09/06/94	GGR*
C LeBrun	Anti-self-dual manifolds and Kähler geometry	09/06/94	GGR*
L Susskind	Strings, horizons and complementarity	09/06/94	GGR*
R Horan	A vanishing theorem for quaternionic-Kähler manifolds	09/06/94	GGR*
R Ward	Numerical twistors	10/06/94	GGR*
L Mason	Self-duality in split signature and the inverse scattering transform	10/06/94	GGR*
T Bailey	A CR Penrose transform	10/06/94	GGR*
R Penrose	Twistors for vacuum spacetimes	13/06/94	GGR*
L Mason	Further remarks on twistors for vacuum spacetimes	13/06/94	GGR*
L Hughston	Quantum measurement and stochastic differential geometry	13/06/94	GGR*
N Woodhouse	Twistor theory of the Painlevé equations	13/06/94	GGR*
C LeBrun	Quaternionic-Kähler manifolds	14/06/94	GGR*
A Hodges	Twistor diagrams	14/06/94	GGR*
R Dickman	Critical phenomena at the edge of extinction	14/06/94	CAG
M Eastwood	Twistor theory and the X-ray transform	14/06/94	GGR*
M Singer	Non-integral hyperbolic monopoles	14/06/94	GGR*
M Banados	Central charges in the canonical realization of asymptotic symme- tries in non-abelian Chern-Simons theory	15/06/94	GGR*
I Barashenkov	Topological Chern-Simons vortices from the constrained Hamilto- nian formalism	15/06/94	GGR*
G Clément	Classical solutions of gravitating Chern-Simons electrodynamics	15/06/94	GGR*
D Tchrakian	Exponentially localised instantons	15/06/94	GGR*
J Figueroa-O'Farrill	Homological obstructions to gauging sigma models	15/06/94	
G Papadopoulos	Solitons and the geometry of massive sigma models	15/06/94	
C Fosco	Canonical structure of the nonlinear sigma model in a polynomial formulation	15/06/94	
A Ashtekar	A manifestly gauge-invariant approach to quantum gauge theories	16/06/94	GGR*

Integration theory on the space of connections modulo gauge transformations: projective techniques	16/06/94	GGR*
Path integration in Ashtekar variables	16/06/94	GGR*
Evolutionary laws, initial conditions and gauge fixing in con- strained systems	16/06/94	GGR*
Light-cone formulation of gauge theories	16/06/94	GGR*
Hamiltonian constraints and Dirac's observables: from relativistic particles towards field theory and general relativity	16/06/94	GGR*
Gauging kinematical and internal symmetry groups for ex- tended system: the Galilean one-time and two-times harmonic oscillator	16/06/94	GGR*
On the harmonic interaction of three relativistic point particles	16/06/94	GGR*
Symmetry of the (2+1) dimensional black holes		
Spherically symmetric gravity as a completely integrable con- strained system	16/06/94	
Quantization of the gravitational solitons	16/06/94	GGR*
The R-matrix of the Calogero model	17/06/94	
Batalin-Fradkin-Vilkovisky approach for gauge-invariant systems with closed algebra	17/06/94	GGR*
Anomalies, WZ terms and field-antifield formalism	17/06/94	GGR*
Time and the interpretation of the Hamiltonian constraint in canonical gravity	17/06/94	
Transfer matrix quantization of general relativity, and the problem of time	17/06/94	GGR*
W-symmetry and the rigid particle	17/06/94	GGR*
Pure geometrical treatment of singular Lagrangians with higher derivatives	17/06/94	
Dirac versus reduced phase space quantization for systems having no gauge conditions	17/06/94	GGR*
Classical and quantum aspects of degenerate metric fields	17/06/94	GGR*
Transition rates and stationary probability distributions in sys- tems without detailed balance	17/06/94	CAG
BRS-cohomology in two and higher dimensional gravitational theories	17/06/94	GGR*
Quantisation of $(2 + 1)$ dimensional gravity for $g = 1$ and $g = 2$	17/06/94	GGR*
Geometry of time-dependent constraints	18/06/94	GGR*
New results on local BRST cohomology in gravity	18/06/94	GGR*
Collective coordinates and BRST transformations	18/06/94	GGR*
Geometry of fermionic constraints in superstring theories	18/06/94	GGR*
BRST and new superstring states	18/06/94	GGR*
Second class constraint problem in the framework of Hamiltonian BRST theory	18/06/94	GGR*
Statistical mechanics of growth processes I: scale invariance from competitive growth	20/06/94	CAG*
Shape and dynamics of Laplacian growth I: physical examples, simple shapes and selection by capillary effects	20/06/94	CAG*
Cellular automata modelling of pattern formation I: introduction, modelling of physical systems, examples	20/06/94	CAG*
	 Path integration in Ashtekar variables Evolutionary laws, initial conditions and gauge fixing in constrained systems Light-cone formulation of gauge theories Hamiltonian constraints and Dirac's observables: from relativistic particles towards field theory and general relativity Gauging kinematical and internal symmetry groups for exitended system: the Galilean one-time and two-times harmonic oscillator On the harmonic interaction of three relativistic point particles Symmetry of the (2+1) dimensional black holes Spherically symmetric gravity as a completely integrable constrained system Quantization of the gravitational solitons The R-matrix of the Calogero model Batalin-Fraktin-Vilkovisky approach for gauge-invariant systems with closed algebra Anomalies, WZ terms and field-antifield formalism Time and the interpretation of the Hamiltonian constraint in canonical gravity Transfer matrix quantization of general relativity, and the problem of time W-symmetry and the rigid particle Pure geometrical treatment of singular Lagrangians with higher derivatives Dirac versus reduced phase space quantization for systems having no gauge conditions Classical and quantum aspects of degenerate metric fields Transition rates and stationary probability distributions in systems without detailed balance BRS-cohomology in two and higher dimensional gravitational theories Quantisation of (2 + 1) dimensional gravity for g = 1 and g = 2 Geometry of time-dependent constraints New results on local BRST cohomology in gravity Collective coordinates and BRST transformations Geometry of fermionic constraints in superstring theories BRST and new superstring states Second class constraint problem in the framework of Hamiltonian BRST theory Statistical mechanics of growth processes I: scale invariance f	transformations: projective techniques16/06/94Path integration in Ashtekar variables16/06/94Evolutionary laws, initial conditions and gauge fixing in constrained systems16/06/94Light-cone formulation of gauge theories16/06/94Patricles towards field theory and general relativity16/06/94Gauging kinematical and internal symmetry groups for exitended system: the Galilean one-time and two-times harmonic oscillator16/06/94On the harmonic interaction of three relativistic point particles16/06/94Symmetry of the (2+1) dimensional black holes16/06/94Spherically symmetric gravity as a completely integrable constrained system16/06/94Quantization of the gravitational solitons16/06/94Wantization of the gravitational solitons16/06/94Wantization of the gravitational solitons16/06/94Wantization of the gravitation of gauge-invariant systems17/06/94Wantization of general relativity, and the problem17/06/94Time and the interpretation of the Hamiltonian constraint in canonical gravity17/06/94Transfer matrix quantization of general relativity, and the problem17/06/94Versymmetry and the rigid particle17/06/94Pure geometrical treatment of singular Lagrangians with higher17/06/94Inc aversus reduced phase space quantization for systems having no gauge conditions17/06/94Rescohomology in two and higher dimensional gravitational17/06/94Rescohomology in two and higher dimensional gravitational17/06/94Rescohomology in two and higher dimensional gravitational18

Generic scale invariance and self-organised criticality I: introduc- tion to generic scale invariance	20/06/94	CAG*
Statistical mechanics of growth processes II: kinetic roughening I: fundamentals	21/06/94	CAG*
Cellular automata modelling of pattern formation II: from micro- to macroscopic: the FHP model of a fluid	21/06/94	CAG*
Generic scale invariance and self-organized criticality II: models of self-organised criticality	21/06/94	CAG*
Non-equilibrium ordering dynamics and pattern formation I: mod- ern theories of phase ordering	21/06/94	CAG*
Statistical mechanics of growth processes III: kinetic roughen- ing II: aspects of KPZ theory	22/06/94	CAG*
Cellular automata modelling of pattern formation III: from micro- to macroscopic: $A + B \rightarrow 0$ reaction-diffusion process	22/06/94	CAG*
A possible resolution of the black hole information puzzle	22/06/04	CCR
mental tests of self-organised criticality	22/06/94	CAG*
Cellular automata modelling of pattern formation IV: growth pro- cesses in reaction-diffusion systems, Liesegang patterns	22/06/94	CAG*
Statistical mechanics of growth processes IV: turbulence and interfaces	23/06/94	CAG*
Shape and dynamics of Laplacian growth II: dynamics in two di- mensions and conformal mapping	23/06/94	CAG*
Recent experimental results on granular media I: general features of granular systems	23/06/94	CAG*
Non-equilibrium ordering dynamics and pattern formation II: nu- merical simulations of phase ordering	23/06/94	CAG*
Minimal SOC: intermittent dynamics of interfaces and evolution	24/06/94	CAG*
stochastic models	24/06/94	CAG*
two-dimensional granular systems		
Statistical mechanics of driven diffusive systems I: critical and generic singularities in a driven Ising lattice gas	24/06/94	CAG*
Fluctuating lines: randomness, depinning and non-equilibrium ef- fects I: anisotropy and depinning of a line in two dimensions	25/06/94	CAG*
Computer simulation of driven systems I: submonolayer morphol- ogy in molecular beam epitaxy	25/06/94	CAG*
Statistical mechanics of driven systems II: phase transitions in variants of the Katz-Lebowitz-Spohn model	25/06/94	CAG*
Pattern and scaling in the growth of thin films	25/06/94	CAG*
structures I		
Fluctuating lines: randomness, depinning and non-equilibrium ef- fects II: anisotropy and depinning of a line in three dimensions	27/06/94	CAG*
Monopole and instanton moduli spaces	27/06/94	GGR
Field theories for deposition	27/06/94	CAG*
	 tion to generic scale invariance Statistical mechanics of growth processes II: kinetic roughening I: fundamentals Cellular automata modelling of pattern formation II: from microto macroscopic: the FHP model of a fluid Generic scale invariance and self-organized criticality II: models of self-organised criticality Non-equilibrium ordering dynamics and pattern formation I: modern theories of phase ordering Statistical mechanics of growth processes III: kinetic roughening II: aspects of KPZ theory Cellular automata modelling of pattern formation III: from microto macroscopic: A + B → 0 reaction-diffusion process A possible resolution of the black hole information puzzle Generic scale invariance and self-organized criticality III: experimental tests of self-organised criticality Cellular automata modelling of pattern formation IV: growth processes in reaction-diffusion systems, Liesegang patterns Statistical mechanics of growth processes IV: turbulence and interfaces Shape and dynamics of Laplacian growth II: dynamics in two dimensions and conformal mapping Recent experimental results on granular media I: general features of granular systems Non-equilibrium ordering dynamics and pattern formation II: numerical simulations of phase ordering Minimal SOC: intermittent dynamics of interfaces and evolution Shape and dynamics of Laplacian growth III: fractal growth and stochastic models Recent experimental results on granular media II: experiments in two dimensional granular systems Statistical mechanics of driven diffusive systems I: critical and generic singularities in a driven Ising lattice gas Fluctuating lines: randomness, depinning and non-equilibrium effects I: anisotropy and depinning of a line in two dimensions formation for systems I: phase transitions in variants of the Katz-Lebowitz-Spohn model Pattern and scaling in the growth of	tion to generic scale invariance Statistical mechanics of growth processes II: kinetic roughening I: fundamentals Cellular automata modelling of pattern formation II: from micro- to macroscopic: the FHP model of a fluid Generic scale invariance and self-organized criticality II: models of self-organised criticality Non-equilibrium ordering dynamics and pattern formation I: mod- ern theories of phase ordering Statistical mechanics of growth processes III: kinetic roughen- ing II: aspects of KP2 theory Cellular automata modelling of pattern formation III: from micro- to macroscopic: $A + B \rightarrow 0$ reaction-diffusion process A possible resolution of the black hole information puzzle 22/06/94 Generic scale invariance and self-organized criticality III: experi- mental tests of self-organised criticality Cellular automata modelling of pattern formation IV: growth pro- cesses in reaction-diffusion systems, Liesegang patterns Statistical mechanics of growth processes IV: turbulence and 23/06/94 interfaces Shape and dynamics of Laplacian growth II: dynamics in two di- mensions and conformal mapping Recent experimental results on granular media I: general features of granular systems Non-equilibrium ordering dynamics and pattern formation II: nu- merical simulations of phase ordering Minimal SOC: intermittent dynamics of interfaces and evolution 24/06/94 stochastic models Recent experimental results on granular media II: experiments in 24/06/94 stochastic models Recent experimental results on granular media II: experiments in 25/06/94 fects I: anisotropy and depinning and non-equilibrium ef- fects I: anisotropy and depinning of a line in two dimensions Computer simulation of driven systems I: submonolayer morphol- ogy in molecular beam epitaxy Statistical mechanics of driven systems I: phase transitions in 25/06/94 pattern and scaling in the growth of thin films 25/06/94 Experiments on pattern formation: from stable fronts to fractal 27/06/94 structures I Fluctuating lines: ra

9.6 Seminars and Lectures July 1993 – June 1994			
M Siegert	Non-equilibrium ordering dynamics and pattern formation III: pattern formation in molecular beam epitaxy	27/06/94	CAG*
Y Couder	Experiments on pattern formation: from stable fronts to fractal structures II	28/06/94	CAG*
D Wolf	Computer simulation of driven systems II: correlations in layer- by-layer growth	28/06/94	CAG*
J Rajchenbach	Recent experimental results on granular media III: segregation	28/06/94	CAG*
D Wolf	Computer simulations of driven systems III: modelling of granular materials	28/06/94	CAG*
Y Couder	Experiments in pattern formation: from stable fronts to fractal structures III	29/06/94	CAG*
M Kardar	Fluctuating lines: randomness, depinning and non-equilibrium ef- fects III: nonlinear dynamics of a moving flux line	29/06/94	CAG*
H Flyvbjerg	A very simple self-organized critical system	29/06/94	CAG*
I Jánosi	Population dynamics of coupled map lattices	29/06/94	
D Wolf	Computer simulation of driven systems IV: heap formation and segregation	30/06/94	
M Kardar	Fluctuating lines: randomness, depinning and non-equilibrium ef- fects IV: nonlinear relaxation of drifting polymers	30/06/94	ĊAG*

'CVI', 'RSP', 'GGR' or 'CAG' indicate that the seminar is within the Computer Vision, Random Spatial Processes, Geometry and Gravity or Cellular Automata, Aggregation and Growth programmes; 'INS' denotes an Institute seminar. An asterisk indicates that the seminar took place within a workshop

