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Abstract

In this paper, by introducing a simplified version of Lieb’s spin-reflection-
positivity method, we show that the spin-excitation gap in a strongly cor-
related fermion model with attracting interactions is always larger than or
equal to its charged gap, at any admissible filling . As another application
of this method and a comparison to the above statement, we also give a de-
tailed proof to an opposite inequality, which is satisfied by the spin gap and
the charged gap in the half-filled Kondo lattice model, a strongly correlated

electron model with positive couplings.
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I. INTRODUCTION

In the study of strongly correlated electron systems, the possible existence of charged
gaps and spin gaps in their excitation spectrum attracts many physicists’ interest. The
quantum transport and the magnetic properties of these systems are mainly affected by
these gaps. In particular, if a strongly correlated electron system has a nonzero charged
gap at certain filling, it becomes an insulator. For instance, in a seminal paper [1], Lieb
and Wu solved exactly the one-dimensional Hubbard model and showed that, for any on-
site Coulomb repulsion U > 0, the system has a nonvanishing charged gap at half-filling.
Consequently, it is always a Mott insulator and the metal-insulator transition happens at
U, = 0 in this model. In higher dimensions, it is still not very clear whether the half-filled
Hubbard model has a metal-insulator transition at a nonzero U, [2,3].

For the Kondo lattice model, another strongly correlated electron model which is cur-
rently under intensive study [4], the interplay between its charged excitation and spin ex-
citation has been one of the focusing points of research in the past several decades. The
super-exchange interaction in this system leads to a RKKY effective interaction between
the localized spins. It competes with the Kondo screening effect on the localized spins.
Consequently, when J, the super-exchange coupling, is much smaller than the bandwidth
of itinerant electrons, the RKKY interaction becomes dominant and the localized spins are
antiferromagnetically ordered at half-filling. Therefore, the spin-excitatiqn gap of the sys-
tem is vanishing. On the other hand, when J is sufficiently large, the Kondo interaction will
eventually win over and the system becomes paramagnetic. This phase is characterized by a
nonzero spin gap and the system is a spin liquid. As a result, for the half-filled Kondo lattice
model, a quantum phase transition from an antiferromagnetic insulator to a paramagnetic
insulator would be expected to occur at some critical value J, > 0.

In a paper published in 1992, Tsunetsugu et alstudied this transition in a one-dimensional
Kondo lattice by numerical diagonalization [5]. After introduction of the density matrix

renormalization group technique [6], Yu and White could investigate the same model on



a larger sample [7]. These authors found that the expected transition actually occurs at
J. = 0. In other words, a finite spin gap exists for any J > 0 in the one-dimensional Kondo
lattice model. Moreover, they also observed that the charged gap of this model is always
larger than its spin exzcitation gap. These conclusions were confirmed by further numerical
investigations on both one-dimensional periodic Anderson model and Kondo lattice model
[8-10]. One can find a detailed review on these results in Ref. [11].

Recently, by applying a generalized version of Lieb’s spin-reflection-positivity technique
[12-14], we were able to re-establish rigorously some observations made in these previous
works. More precisely, we proved that, in any dimensions, both the quasiparticle gaps and
the charged gaps of the positive-U Hubbard model, the periodic Anderson model and the
Kondo lattice model at half-filling are larger than their spin excitation gaps [15,16]. Our
analysis showed clearly that this conclusion strongly depends on the particle-hole symmetry
possessed by these models at half-filling and the repulsive interactions between electrons.
Therefore, a natural question arose is whether this statement still holds true for either the
same models with doping or some phenomenological models with an attracting interaction
between fermions, such as the negative-U Hubbard model [17].

In fact, for the doped Kondo lattice model, some recent numerical results have already
indicated that a nonvanishing spin gap may sustain, while the charged gap becomes zero
[18]. Further investigations are needed to confirm this observation. On the other hand, for
the negative-U Hubbard model, one believes that the attracting potential between fermions
makes Cooper pairs formed. Consequently, the spin fluctuations in this system should be
strongly suppressed. As a result, a spin pseudo-gap may appear even before temperature
is lowered below the superconducting temperature 7, [19]. When temperature is below T,
these preformed Cooper pairs are coherently correlated and the system becomes supercon-
ducting. As a result, the charged gap (Not the quasi-particle gap) of the model vanishes.
Therefore, one would expect that, at temperature 7' = 0, the spin gap of the negative-U
Hubbard model should be larger than or equal to its charged gap at any finite filling. In
other words, for both the doped Kondo lattice chain and the negative-U Hubbard model,
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their spin-excitation gaps may be larger than their charged gaps.

The purpose of the present paper is twofolds. First, we would like to establish rigorously
a relation between the charged gap and the spin-excitation gap in a strongly correlated
fermion model with atiracting potentials. More precisely, by taking the negative-U Hubbard
model as an example, we shall show that its spin-excitation gap is indeed larger than its
charged gap at any admissible filling.

In the meantime, we shall introduce a simplified version of the spin-reflection-positivity
method for the strongly correlated fermion systems containing an odd number of particles.
This new approach is based on the singular polar decomposition theorem in matrix theory.
Then, as another application of this more straightforward technique, we shall show that an
opposite inequalily is satisfied by the charged gap and the spin gap in the half-filled strongly
correlated electron models with positive couplings (We take the Kondo lattice model as a
concrete example).

From a technical point of view, by studying these concrete models in details, we shall
demonstrate how to apply Lieb’s spin-reflection-positivity method to the strongly correlated
electron systems which have unequal numbers of up-spin and down-spin fermions. We believe
that this technique should be very useful in studying other interesting properties of these
models. On the other hand, since the conclusions derived in this paper are actually based
on some very general properties shared by many strongly correlated electron models, such
as the periodic Anderson model and the double-exchange model [20], they can be easily
extended to these models without further ado.

This paper is organized in the following way: In section II, we introduce the Hamiltonians
of both the Hubbard model and the Kondo lattice model. We shall also explain some sym-
metries of these models; In section III, we define charged gaps and spin-excitation gaps for
the strongly correlated electron systems. Then, we state our main results in two theorems;
In section IV, we prove theorem 1 for the negative-U Hubbard model, a typical phenomeno-
logical strongly correlated fermion model with negative couplings. In the meantime, we shall

also introduce a simplified version of the spin-reflection-positivity method for the strongly
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correlated electron systems with unequal numbers of up-spin and down-spin fermions; In
section V, we apply this method again to the half-filled strongly correlated electron systems
with positive couplings. We show that their charged gaps and spin-excitation gaps satisfy
an opposite inequality; Section VI is for some conclusions. And, finally, in the appendix
of this paper, for the reader’s convenience, we give a shortened proof of the singular polar

decomposition which we used to prove our main results in this paper.

II. THE HAMILTONIANS OF THE HUBBARD MODEL AND THE KONDO

LATTICE MODEL

To begin with, we now introduce some definitions and useful notation.
Take a finite d-dimensional simple cubic lattice A with N, lattice sites. We impose the
open boundary condition on it. Then, the Hamiltonian of the negative-U Hubbard model

can be written as

Hy(-U)=—-t>_ > (c;’acj,, + c}acia)
T <ij>
1 1 -
U o) ) o o
icA

In Eq. (1), ¢}, (ci,) is the fermion creation (annihilation) operator which creates (annihilates)
an itinerant electron of spin o at lattice site i. < ij > denotes a pair of nearest-neighbor
lattice sites. The parameters ¢ > 0 and U > 0 represent the kinetic energy and the on-site
attracting potential between itinerant electrons, respectively. 4 is the chemical potential.
We would like to emphasize that, in terms of Hgy(—U), the simple cubic lattice is bipartite.
In other words, the lattice can be divided into two separated sublattices A and B such that,

fermions can only hop from a site of one sublattice to a site in another sublattice.
In literature, the negative-U Hubbard model is frequently used as a phenomenological
model to study either the strong coupling superconductors [17] or the strong static binding

of electrons at localized centers in amorphous semiconductors [21].

Similarly, the Hamiltonian of the Kondo lattice model has the following form
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Hg=—=t3 Y (chcio +cloio)

7 <ij>

+JZUi'Si—/LN (2)

icA
In Eq. (2), ¢ is the fermion operator for itinerant electrons at lattice site i. o; and s;
represent the spin operators of itinerant electrons and localized electrons, respectively. In

terms of the spin-1/2 fermion operators, they can be written as

Cig = % (c;‘,rcu + chiT) y Oy = % (c;',rcu - chiT) ;

Oi; = % (nfT - an’) (3)
and

=g (Fhfut Fld) s sw= o (R — A

Siy = % (nfT - nﬂ) (4)

J > 0 is the antiferromagnetic super-exchange interaction between them. In Eq. (4), fi
and fi, represent the localized fermion operators. Unlike the fermion operators of itinerant

electrons, they are subject to the following constraint conditions
nf = fhfa+ fifu=1 ()

In other words, at each lattice site, there must be a localized fermion with either up-spin or
down-spin. It is a very strict constraint condition on the possible form of the ground state
wave functions of the Kondo lattice Hamiltonian Hy and has to be dealt with carefully.

In terms of Hamiltonian (2), the simple cubic lattice is also bipartite. This fact can be
easily visualized by introducing a “double layer lattice structure” [22]. For definiteness, let
us consider a two dimensional square lattice with lattice constant a = 1 for example. We
take two identical copies of this lattice, A; and A, and make a doubly-layered lattice A by
connecting their corresponding sites with bonds of unit length. Now, each point of A has
coordinates r = (i, m) with m = 1, 2 and, obviously, A has 2N, lattice points. If we define

new fermion operators e, by



Cio, if m=1;
rs = (6)
fig, if m=2.
then lattice A can be divided into two separated sublattices A and B such that, the electron
hopping and the spin exchanging only happen between sites in the different sublattices.
Therefore, A as well as A are bipartite.

As usual, by exploring the symmetries of a specific model, one can often simplify his
analysis on the system. We notice that both the negative-U Hubbard Hamiltonian and the
Kondo lattice Hamiltonian enjoy some common symmetries.

First, Hamiltonians (1) and (2) commute with the total particle number operators N.
Consequently, their Hilbert spaces can be divided into numerous subspaces {V(N)}. Each
of these subspaces is characterized by an integer N, the total number of fermions in the
system. In particular, the subspaces V(N = N,) and V(N = 2N, ) are called the half-filled
subspaces for the negative-U Hubbard Hamiltonian and the Kondo lattice Hamiltonian,
respectively.

Furthermore, it is easy to check that both Hamiltonians Hg(—U) and Hg commute
with the total spin operators .§’+ =3, + z'S’y, S5 =8,— z'S'y and S‘z, which are defined to be
summations of the spin operators in Egs. (3) and (4) over all the lattice sites, respectively.
Therefore, S? and S, are good quantum numbers of these systems: Any eigenstate ¥, of
either Hy(—U) or Hg with quantum number 52 = S(S + 1) must have 25 + 1 isotopes
{T,. (M)} with -S<M<LS.

In addition, when p = 0, both Hyg(—U) and Hg have another symmetry: They also

commute with the so-called pseudo-spin operators, which are defined by

Iy =Y e(i) (c;‘TcL) . Jo=Ji,
icA
J, = % (ng +nf, — 1), (7)
icA

for the negative-U Hubbard Hamiltonian and

Jp= > e(i) (c;‘TCL - fi'}fi‘l) , Jo=J1,

icA
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Jz

b | =

z;\(n‘i}+nf¢+nif¢+ni’1—2), (8)
ic

for the Kondo lattice Hamiltonian. In the above equations, (i) = 1, for i € A; ¢(i) =
—1, for i € B. These operators satisfy the commutation relations of the conventional spin
operators. Consequently, both J2 and J, are also good quantum numbers. In other words,
each eigenstate of Hy(—U) or Hg can be also characterized by a quantum number J and a
quantum number J, with —J < J, < J.

Remark 1: It has been shown that, when pu = 0, the global ground states of both
Hy(—U) and Hgk on a simple cubic lattice coincide with their corresponding ground states
in the half-filled subspaces. Furthermore, they have quantum numbers S = 0 and J = 0
[12,23].

III. CHARGED GAPS AND SPIN GAPS OF STRONGLY CORRELATED

ELECTRON MODELS

With these preparations, we now introduce the definitions of the spin-excitation gap and
the charged gaps for both the negative-U Hubbard model and the Kondo lattice model.

When the systems are half-filled, the chemical potential 12 = 0. In this case, both $2? and
J? are good quantum numbers. Therefore, following Refs. [5] and [7], we can simply define

the spin-excitation gap of these models by
A, =Ey(J=0,S=1)—Ey(J=0,5=0) (9)

where Eo(J = j, S = s) is the lowest eigenvalue of the corresponding Hamiltonian in the
subspace with quantum numbers J = j and S = s. Similarly, the charged gap of these

models at half-filling are defined by [5,7]
A,=Ey(J=1,8=0)—Ey(J =0, S=0) (10)

For both the Hubbard Hamiltonian and the Kondo lattice Hamiltonian at half-filling,

these quantities are well defined, since Eo(J = 0, S = 0) coincide with their global ground
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state energies, as we recalled in Remark 1. However, when these models are at an arbitrary
admissible filling, the chemical potential y is, in general, nonzero. In this case, the pseudospin
symmetry is violated, although S? is still a conserved quantity. Consequently, we have to
revise both definitions (9) and (10). For the spin-excitation gap in a doped strongly correlated

electron system, its extension is actually quite straightforward. Following Ref. [18], we define
A, = Ey(N, S=1)— Ey(N, S=0) (11)

In Eq. (11), N is required to be an even integer. Apparently, when the systems are half-filled,
Eq. (11) coincides with definition (9).

On the other hand, the revision of the definition for the charged gap in the doped case
demands a little thinking. We notice that, by the definition of the pseudospin operators,
Ey(J =1, § = 0) in Eq. (10) actually coincides with the ground state energies of the
Hamiltonians in both subspaces V(N = N +2) and V(N = N — 2). Here, N = N, for the
Hubbard model and, N = 2N, for the Kondo lattice model. Therefore, following Ref. [18]
again, it is natural to extend definition (10) as

A, = % (Bo(N +2) + Eo(N — 2) — 2F(N)) (12)

with N being an even integer. In Eq. (12), E¢(IV) should be taken as the global ground state
energies of the Hamiltonians at filling p = N/ N. It is easy to check that, when N = N ,

Eq. (12) is reduced to Eq. (10), too.

Now, we are ready to state and prove our main results, which can be summarized in the

following theorems.

Theorem 1: For the negative-U Hubbard model on an d-dimensional simple cubic

lattice, the following inequality
A, > A, (13)

holds at any filling ratio 0 < N/N, < 2 with N being an even integer.
Theorem 2: For the positive-U Hubbard model, the periodic Anderson model and the

Kondo lattice model on an d-dimensional simple cubic lattice, when the system is half-filled,
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their charged gap A, is larger than their spin-excitation gap A,. Namely, the following

inequality
Ao > A, (14)

is satisfied.

In the introduction of this paper, we have argued why theorem 1 should be expected
on a physical basis. Actually, it can be proven by applying the same techniques which
we employed in our previous papers [15,16]. In the following, however, we would like to
prove it in a more straightforward way. The new approach is based on the singular polar
decomposition theorem in matrix theory and is considerably simpler, when one has to deal
with localized spin freedoms in a strongly correlated electron system. We shall make this
point more clear by giving a new proof to theorem 2, which we have established in Refs. [15]

and [16] by a rather complicated approach.

IV. PROOF OF THEOREM 1

First, we prove theorem 1.

Proof of theorem 1: For the negative-U Hubbard model, Lieb showed that its ground state
has spin S = 0, when there are an even number of particles in the system [12]. Therefore,
the ground state of Hy(—U) has quantum numbers Ny = M and N, = M, when the total
number of particles in the system is N = 2M. In this case, we denote the ground state of
Hy(-U) by ¥oa(M, M) and its energy by Ey(M, M). By fine-tuning the chemical potential
&, we can assume that Wo(M, M) is the global ground state of Hamiltonian Hy(—U, u).

Next, let us consider ¥o(M + 1, M — 1) and To{M — 1, M + 1), the ground states of
Hy(—U, p) in the spin triplet sector. We denote their energies by Eo(M + 1, M — 1) and
Eo(M — 1, M + 1), respectively. Since Hy(—U, 1) commutes with spin operators 5, S_
and S, both the ground states Uo(M +1, M —1) and ¥o(M — 1, M + 1) are, in fact,

degenerate. Therefore, we have identity
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Eo(M+1, M —1)=Ey(M -1, M +1)

To apply the spin-reflection-positivity technique, we re-write Hamiltonian (1) into a sum
of direct products of up-spin fermion operators with down-spin fermion operators. For this
purpose, we shall follow Ref. [13] and introduce the following quasi-fermion operators by

letting

A

Gy =an, Cy= (-1 (16)

In Eq. (16), NT represents the total number operator of up-spin fermions in the system. It

is easy to check that the conventional anticommutation relations
{éia; CA’jtr} = {éitm éjta} =0, {CiTm C.ia'} = 5i.i (17)

still hold for operators with the same spin indices. However, operators {C’iT}, now, commaute

with {Cy,}. Therefore, Hamiltonian (1) can be re-written as
Hy(-U,p) =Ty, +LoT,
1 1 N
~UY (m—5) ® (m—5) —ul¥ (18)

ieA
In Eq. (18), 7', stands for the hopping term of spin-o fermions and I, is the identity operator,
acting in the Hilbert space of spin-¢ fermions.
With the quasi-fermion operators and the direct-product form (18) of the negative-U

Hubbard Hamiltonian, the wave function of ¥o(M + 1, M — 1) can be simply written as
‘I’O(M +1, M — 1) = Z Wmn'lpjn ® ’(p'riz (19)
m,n

In Eq. (19), ¥§ is a configuration of spin-o fermions defined by

~

Yyg=Cl,---Cf, | 0) (20)

where (i, ...,ir), with L =M +1, for 0 =1; L = M — 1, for ¢ =], indicate the positions
of fermions with spin ¢ in the lattice. Apparently, the entire set {¢f} gives a natural basis

of V,(L), the subspace of L fermions with spin o.
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By letting m be the row index and n be the column index, we can further write the

coefficients {Wpn} of ¥o(M +1, M — 1) into a matrix W. However, in general, this matrix

M+1
cM+,

is not a square matriz. That is due to the fact that, for o =1, V;(M+1) has dimension
while the dimension of V|(M —1) is C’f\‘,ﬁ_l. Generally, they are not equal. Mathematically,
it is rather difficult to deal with a nonsquare matrix. In our previous work [15,16], we
amended this problem by enlarging the Hilbert subspaces and constructing a new coefficient
matrix W, which is square. To this matrix, we can apply the standard polar decomposition
theorem in matrix theory [24]. However, in this process, many unphysical states, which are
not eigenvectors of the particle number operators ]\7} and N, 1, are created. To eliminate these
states, we had to set their coefficients in the expansion of the wave function to be zero. That
made our previous approach rather complicated.

In the following, we shall introduce a more straightforward approach, which is based
on the following singular polar decomposition theorem for the nonsquare matrices in matrix
theory.

Lemma (Singular Polar Decomposition Theorem): Let A be an m X n matrix with
m # n.

(1) If m < n, then there exist an m X m unitary matrix Uy, an m x m diagonal semipositive

definite matrix A; and one m X n matrix V] such that

Moreover, the m rows of matrix V; are orthonormal vectors.
(ii) Similarly, if m > n, then there exist an m X n matrix V3, an nxn diagonal semipositive

definite matrix A, and one n X n unitary matrix U, such that

with the n columns of V;, being orthonormal.

The proof of this theorem can be found in a standard textbook on matrix theory [24].
However, for reader’s convenience, we shall give a short proof of it in the appendix of this
paper.
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For definiteness, let us assume that the coefficient matrix W has more rows than columns.
In this case, the singular polar decomposition theorem tells us that we can find three matrices

U, V and A such that

W =VAU (23)

with U being an C%\_l X C%\_l square unitary matrix and V being an C%+1 X C%\_l matrix

with orthonormal columns. Moreover, A is an Cﬂa‘l X C’%;l diagonal matrix with A; > 0.

Consequently, the wave function ¥o(M + 1, M — 1) can be re-written as
\I’o(M + 1, M — ]-) - EWmnwjn ® ’l)b;l’z
m,n

=3 (VAU),, ¥}, @ 5

m,n

D
=Y Mg ®di (24)

=1

with D = C¥-1. In Eq. (24), § and ¢} are defined by

& =X"Veuthl,, o1 =Y Uty (25)

Since U is unitary and V has columns which are orthonormal, the new sets of vectors {¢]}
and {¢}} are orthonormal, too. More importantly, these new vectors {¢]} and {¢i} are
also the eigenvectors of the particle number operators NT and N 1, respectively. Furthermore,

because the ground state wave function ¥o(M + 1, M — 1) is normalized, we have

D
TTWw =3 N =1 (26)

=1

With the simple form (24) for ¥o(M + 1, M — 1), we calculate the ground state energy
Eo(M+1, M -1).

Eo(M +1, M —1)

D ~ -~
=Y N[ 1Ty &)+ (st 1T | 8])]
=1

D
~UY ( > A (el | ni - % | &)

ieA \l,lx=1

x (@} Imy — 5 | 6h)) — 2uM (27)

13



Next, we apply inequality | ab |< 1(| a |* + | b |?) to each term in the last summation of

Eq. (27). Dropping the spin indices, we obtain

Eo(M +1, M —1)

D . ~
>SS NG T8+ T16)]
=1
D . ~
P2 R [ 1T 160+ (61 T 40)]
=1
v (z Ny |~ 3 | 6)
icA \U1, 12

X (&2 I ni — % i éh))

- _Z (Z Ah’\lz ¢12 ' ny — I ¢11>

IEA i,12

<l = 5 1)) — 20 (28)
The right hand side of Eq. (28) can be put into a more compact form by introducing

new wave functions
D D
=) N ®E, Ty = > \o] ® (29)
where £ and ¢§ are the complex conjugate of & and ¢f, respectively. In terms of ¥; and
Uy, inequality (28) now reads
Eo(M+1, M -1)
> (W | Ha | 00) + 5%, | Hy | ). (30)
By their constructions, ¥; and ¥, are actually wave functions in the subspaces V(M +
1, M +1) and V(M — 1, M — 1), respectively. That is due to the fact that {£&} ({¢7})
are the eigenvectors of the particle number operators N, with the same eigenvalue N, =

M + 1 (M — 1). Furthermore, they are also normalized. Therefore, by the variational

principle, inequality (30) implies that

Eyo(M+1, M —1)

1
> SEy(M+1, M+1)+  Eo(M ~1, M ~ 1) (31)

(2]
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Following the similar procedure, we can also show that

Eo(M -1, M +1)

1
> CE(M -1, M—1)+%E0(M+1, M+1) (32)
Combining Eq. (31) with Eq. (32) and using identity (15), we obtain

2By (M +1, M —1)

> Bo(M =1, M —1)+ Eo(M +1, M+ 1) (33)

Finally, by subtracting 2Ey(M, M) = 2Ey(2M) from both sides of inequality (33) and
dividing the resultant equation by factor 2, we establish inequality (13).

Theorem 1 is proven. QED.

Before proceeding to the proof of theorem 2, we would like to make a remark.

Remark 2: As shown in the proof of inequality (13), we mainly exploited the spin
interchange symmetry and the negative interactions between up-spin and down-spin fermions
in the negative-U Hubbard Hamiltonian. As a matter of fact, it is the on-site attracting
potential between fermions which greatly suppresses the spin fluctuation in the system.
Consequently, a spin gap opens. Therefore, we shall expect that theorem 1 can be easily
extend to other strongly correlated fermion models with attracting potentials and the spin

symmetry. Consequently, inequality (13) should also hold true for these models.

V. PROOF OF THEOREM 2

Now, we turn to the proof of theorem 2.

Proof of theorem 2: In the following, we shall take the Kondo lattice model as a concrete
example.

For the half-filled Kondo lattice model at half-filling, the standard definitions (9) and
(10) of the spin-excitation gap and the charged gap are applicable, since both the quantum
numbers S? and J? are conserved quantities. By these definitions, we see that inequality

(14) is actually equivalent to
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In the following, we shall show that, indeed, inequality (34) holds true for the ground state
energies of the Kondo lattice model in the subspaces V(J=1,5=0)and V(J/ =0, S =1).

First, let us investigate the ground state wave function ¥o(J = 1, S = 0). By the
definition of the pseudospin operators, ¥o(J = 1, S = 0) has a representative with J, = 1,
which belongs to the subspace V/(Nj +1, Ny +1). In the following, we shall exclusively use
¥o(J =1, §=0) and Eyp(J =1, S = 0) to denote this state and its energy.

Unlike the negative-U Hubbard model, a direct application of the spin-reflection-
positivity method to the Kondo lattice Hamiltonian is impossible. The main difficulty
is caused by the positive super-exchange interaction in the model. However, this technical
problem can be easily overcome by applying the so-called partial particle-hole transforma-
tion Ux to the Kondo lattice Hamiltonian. Under this transformation, Hx will be mapped
onto a unitarily equivalent Hamiltonian with negative couplings.

Following Ref. [23], we define Ux by
ﬁ}(ciTﬁK = Cit, U’}L{cuﬁ_r{ = e(i)cL,
Uk fuUx = fur,  UkfuUx = —€(i)fi,. (35)
It is well known that Uy is a unitary transformation. Under this transformation, the Hamil-

tonian H is transformed into [23]
Hy = UL HxUx

=—ty Y (cii,cj, + c}acia)

o <ij>

Z Z (c!o-cia' + fit-rfia')

T ieA
(c!TciT fiTT fir + Cﬁcuf iﬂf u)
i€A

> (csz iTCLf i+ f itrCiniTJ,Cu) : (36)

icA

_|_

(LY ) T -

We notice that Hy is symmetric with respect to the fermion spin indices and the sign of

its last sum, which represents the couplings between the up-spin fermions and the down-spin
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fermions, is negative. These characteristics of the new Hamiltonian allow us to apply the
spin-reflection-positivity method.

Under the transformation Uk, the constraint condition (5) now reads

Fofn = Flifu. (37)
It requires that, in the eigenstates of the transformed Hamiltonian Hy, each localized orbital
is either completely empty or occupied by a pair of f-fermions. This condition causes some
mathematical problem which we shall carefully deal with in the following.

Remark 3: Another important fact which we would like to emphasize is that, under
the partial particle-hole transformation, the spin operators 5’+, S_ and §, are mapped onto
the pseudo-spin operators f+, J_ and J, defined in Eq. (8), and vice versa. Consequently,
after the transformation, an eigenstate ¥(J = j, S = s) of the original Hamiltonian Hg is
mapped onto an eigenstate ¥(J = s, § = j) of Hg.

As before, we introduce the quasi-fermion operators and re-write Hamiltonian Hy into
a sum of direct products of up-spin fermion operators with down-spin fermion operators.

Namely, we let
&t = cits fn = fir, Gy = (—l)ﬁTciJ,,
fus (1) (38)
where ]\7} is the total number operator of fermions with up-spin in the system. Then,
Hamiltonian (36) can be re-written as
He=Ciol+ 50,
- giEZA(é!TﬁT®équ+ﬁTén®f£6u)- (39)
In Eq. (39), G, represents all the terms in Hy which contain solely the fermion operators
of spin o.
Now, let us consider how the eigenstate ¥o(J =1, J, =1, S = 0) of Hg is transformed

under Ux. As we noticed in Remark 3, this state is mapped onto the eigenstate \TIO(J =

0, S=1, S, =1) of Hg in subspace V(N + 1, Ny — 1). Therefore, we have identity
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Eo(J=1,8=0; Hx)=Ey(J =0, S =1; Hy). (40)

since the transformation Uy is unitary. Consequently, instead of studying the ground state
To(J =1, S =0) of Hk, we are now concentrating on ¥o(J = 0, S = 1), the ground state
of the transformed Hamiltonian H XK.

In terms of the basis vectors

yg=él, - fl, 8,10 (41)

with L = Ny + 1, for 0 =t and L = N, — 1, for 0 =], we write the wave function of

Ty(J=0,8=1)as

To(J=0,8=1)=Ty(Ny +1, Ny — 1)

=Y Wil ® 91, (42)

However, in constructing the wave function \TJU(NA + 1, Na — 1), constraint condition (87)
must be strictly observed. Therefore, if 41 and v} have different f-fermion distributions,
the coefficient of ¢ ® v} in the expansion of ¥o(N, + 1, Ny — 1) should be put to zero.

Consequently, ‘IIO(NA + 1, Ny — 1) has a form of “partial summations”, i.e.,

Uo(Na+1, Ny —1)

1
=2 WhwR e+ -

m,n
+ X OWL @y - )
m,n

In each partial sum, the distribution of f-fermions is specified, subject to the constraint
condition (37).

For example, let us consider a partial sum Y Wn({ )1/),(,:” ® w,(fn. Assume that the

n
total number of f-fermion pairs in this sector is ny. Then, in an admissible configuration
YT @ {4, which satisfies the constraint condition (37), there are n{ = Nx+1—ng

up-spin and n{ = Nj — 1 — ny down-spin itinerant fermions. In general, n{ # n{. Since

(11, the set of up-spin fermion configurations in this partial sum, contains Cy! vectors
m Ny

18



and {¢{""} has C’:,; vectors, the coefficient matrix W) of this partial sum is an C;:,; X C:,i
matrix, which is, in general, not a square matriz. As done above, we apply the singular

polar decomposition theorem to this matrix and rewrite the partial sum as

Dy
S OWE @ v = 5 AE™ @ 4 (14)
m,n =1

with A; > 0 and {E,(T)T} and {¢"*} being orthonormal. Naturally, these new sets of vectors
are eigenvectors of the particle number operators Ny and N with Ny = Ny + 1 and N =
Nj —1, respectively. More importantly, both of them have the same distribution of f-fermion
and hence, the right hand side of Eq. (44) satisfies automatically the constraint condition
(37).

By repeating this process to each partial sum in Eq. (43), we are able to write the wave

function E’o(NA +1, Ny —1) as

D,
Ty(Npy+1, Ny —1) =) Z)\ga)fz(m ® ¢§8)‘L

s=11=1
=Y Arél ® ¢ (45)
T
with Az > 0 and
S TWOIWe) =3 2% =1 (46)
] T

Consequently, we have
Eo(J =0, S =1, Hg)
= EO(NA +1, Npy —1, HK)

= SR [F 1 6r160)+ 9k 1 Cu | 98)

J L
52 ( > dwdneh | i | €)
icA \,Ts
x (¢, | & fuu | 1)
J r3 A
B EZ ( Z ATl’\Tz (f;lr"z | fiTrCiT l 6:‘{"1)
icA \T1, T

x (¢t | Fien | %)) (47)
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By applying inequality | ab |< (| a |* + | b |*) to each term in the last two sums in Eq. (47)

and introducing new trial wave functions ¥; and ¥, by
¥, = > Aréh @ EF, Uy = > Ardh ® G5, (48)
T T
we are able to reduce inequality (47) into

EO(NA +1, Ny —1, EK)

e o~ - 1~ ~ -
U | He | ) + 5(8 | He | Ta). (49)

Notice that ¥, and ¥, are actually wave functions in the subspaces V(NA+1, Ny +1)

and V(Nj — 1, Nj — 1), respectively. Therefore, inequality (47) implies

Eo(J =0, S=1, Hg)

=

> —Fo(Na +1, Np +1, Hg)

NN o )

+ —Eo(Ny — 1, Ny — 1, Hg) (50)

On the other hand, it has been shown [23] that, for the Hamiltonian Hy, identities

Eo(Ny+1, Ny +1, Hg)
= Eo(Np — 1, Nj — 1, Hyg)

=FEy(J=1, $=0, Hg) (51)
hold. Consequently, by substituting Eq. (51) into Eq. (50), we finally obtain
Eo(J=0,S8=1, Hk) > Eo(J =1, §=0, Hg) (52)

To finish the proof of theorem 2, we apply the inverse of the partial particle-hole transfor-
mation U " and map Hy back into the Hamiltonian H k- As we discussed in Remark 3, under
this transformation, \io(J =0,5=1, EK) is unitarily mapped onto ¥o(J =1, S =0, Hx)
and ¥o(J = 1, § = 0, Hy) is mapped onto Uy(J = 0, S = 1, Hy). Therefore, by Ug?,
Eq. (52) is transformed into Eq. (34), which is equivalent to inequality (14). That ends our
proof of theorem 2. QED.
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As we have shown in the above proof, it is the localized spin constraint in the Kondo
lattice model which makes the analysis of the model rather difficult. Comparing with our
previous approach in Refs. [15] and [16], one can see that the newly-developed version of the
spin-reflection-positivity technique, which is based on the singular polar decomposition the-
orem, is more straightforward and hence, more effective in dealing with the problems caused
by this constraint. Since the same problems may also arise for other strongly correlated
electron models with two or more degenerate bands, such as the double-exchange model

[20], we expect that this technique provides a very useful tool in analyzing these models.

VI. CONCLUSIONS

In summary, in the present paper, we prove that the spin-excitation gap in a strongly cor-
related fermion model with attracting interactions, such as the negative-U Hubbard model,
is always larger than or equal to its charged gap, at any admissible filling. In proving this
theorem, we introduce a simplified version of Lieb’s spin-reflection-positivity method. As
another application of this method and a comparison to the above statement, we also show
in details that the spin gap and charged gap in the half-filled Kondo lattice model, a strongly

correlated electron model with positive couplings, satisfy an opposite inequality.
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In this appendix, for reader’s convenience, we shall give a shortened proof of the singular
polar decomposition theorem, which we applied to prove theorem 1 and theorem 2 in this
paper. One can find a more detailed discussion of this theorem on page 411 of Ref. [24].

Proof of the singular polar decomposition theorem: First, let us assume that m < n. In
this case, we consider matrix product AA!. It is an m x m semipositive definite matrix.

Therefore, it has m orthonormal eigenvectors (X, X2, - - -, Xm), which satisfy equations
AAlx; = Mx;, 1<i<m. (53)
Re-organizing {);} in a decreasing order
M2 >2 2> N a="=An=0 (54)

we define a diagonal semipositive definite matrix A; and an m x m unitary matrix U; by

Ar---0
v (55)
0 A
and
Ul = (xh X2, ", xm) (56)

where x; represents the i*® column of matrix U;.
Next, we construct matrix V5. The first k rows of V; are given by

Vi=— /\l (Atx)’ (57)

2

Since A; # 0 for 1 <4 < k, these rows are well defined. To define the rest m — k rows of V3,

we notice that the first k rows defined in Eq. (57) are orthonormal to each other. Actually,

we have
ViIVF) = ——(Afx;] Alx;)
A g
1 taat L oyt
= )\.}\.xiAA Xj = W)‘jxixj = dyj (58)
7 LM
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In the last step of the above derivation, we used the definition of vectors {x;}. On the other
hand, since each row V; is an n-dimensional vector, one can find other m — k orthonormal
vectors z1, z}, - -, 2l _,, which are orthogonal to each V{ with 1 <4 < k. We let them be

the rest m — k rows of V. Consequently, matrix V; has m orthonormal rows.

Finally, we need to show that
UJA= MW (59)

holds for the above defined matrices. Obviously, by their definitions, the first k rows of UI A
and A, V; are correspondingly identical. Consequently, we need only to consider the rest m—k
rows of both U{’ A and A; V4. For A1 V4, these rows are zero vectors since Ay =--- = A, = 0.
We now show that the corresponding rows in Ult A are also zero vectors.

Let us take one row x}LA of Uf A with £+ 1 <1 < m and calculate its norm.

(< Alx]A) = Z (ﬂi @Aﬁa) (i mA)

n m m

=3 122> Asa(xi)pAra(x),

a=1 | f=17=1

é i i(?l)-fyAvaALﬂ(xl)ﬁ

| B=1v=1 |
x| AAtx; = Axlx, =0 (60)

Therefore, x] A = 0 and Eq. (59) is an identity.
Similarly, when m > n, one can prove that A = V3A,U; holds by considering matrix
product A'A instead of AA!.

The theorem is proven. QED.
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