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Abstract

We investigate a formation of electron strings due to short and long-range
electron-phonon and electron-electron interactions. We found that insulating
and conducting electron strings may arise in materials with not very wide
bands, like HTSC. We estimate the string length and the number of particles
self-trapped into a single string taking into account the typical parameters of
cuprates, like LasCuQy. The conducting strings have typically a small dop-
ing (n < 0.3) and are created mostly due to the long-range electron-phonon
interaction although short-ranged anti-ferromagnetic and electron phonon in-
teractions such as a deformation potential, an interaction with Jahn-Teller
deformations and with Holstein optical phonons may play also an important
role. Probably such strings play an important role in the creation of stripe
phase observed in HT'SC.

PACS numbers: 71.10, 61.82.Fk,61.82.Bg, 71.45.Gm

There is a growing body of experimental evidences' ™ and theoretical arguments®® in-
dicating on existence of complex inhomogeneous mesoscopic structures forming from holes
and spins in HTSC and other oxides. Such inhomogeneous structures were conventionally
ascribed to a stripe phase, have been anticipated in theoretical papers® '? and have been
originally observed in HTSC by Biancone, Thurston, Tranquada, et al'>™® et al. In the
most recent papers the one dimensional character of charge and spin fluctuations!” and an
importance of the lattice distortions in the creation of the mesoscopic stripe structures®-2
have been clearly demonstrated.

The stripe structure has been also observed in other oxides, manganites*, where the
important role of the lattice effects has been also indicated. All these experiments show
that the stripe phenomenon is generic and the lattice deformations may play an important
role in the stripe formation and the stripe behavior.

Independently from these experiments, we have recently suggested that the lattice plays
an important role in a self-creation of such mesoscopic structures of the stripe phase®t. We
have proposed that in materials with narrow bands there may arise a many-particle self-
trapping in the form of a long cigar shaped object named as strings. The string’s phenomen is



a many-particle generalization of a conventional self-trapping effect which usually leads to a
formation of fluctuons, deformons, polarons and other single and two particle objects studied
very intensively in the past (see, for example, the review’ and references in). The electron
strings may be created both by a long- and by a short-range electron-phonon interaction. In
the limit of very narrow bands studied in Refs®® the electron hopping vanishes and strings
are insulating defects. On the other hand the observed stripes are highly conducting or
superconducting!®~183.1

In the present work we have extended our studies, taking into account the finite band-
width and treat the kinetic energy of electrons on equal footing with their potential energy.
We found that with the increase of the bandwidth when the contribution of electron kinetic
energy increases there may arise a new type of strings - conducting strings. The appearence
of electronic strings may have a strong influence on the low energy physics. Since the cre-
ation of strings is related to atomic displacements they may be detected by all sorts of
experiments which may detect such displacements. They primarily must include Scanning
Tunneling Microscopy (STM) experiments. The X-ray and neutron scattering, photoemis-
sion experiments may be also very useful although a mesoscopic size of the strings may
create an obstacle. The strong lattice fluctuations, which may be associated with a highly
conducting string proposed in the present paper, has been detected by MeV helium ion
channeling, an ultrafast real-space probe of atomic displacements?.

In general such strings may correspond to either a ground state or a metastable state.
For a short range electron phonon interaction the strings are mostly insulating and typically
correspond to a metastable state. However in a doped antiferromagnet the criterion for the
strings formation (for both conducting and insulating) is strongly improved. Both types
of strings may arise in a ground state. At the very low doping such conducting strings
are probably ordered into a Wigner crystal. The strings forming a Wigner crystal may
have no an orientational order. With the increase of the doping the orientational order
must definitely arise and the Wigner crystal or an analogous nematic liquid crystal should
be seen in the experiments as some kind of mesoscopic superstructures. The stripe phase
may correspond to the liquid crystal consisting of these highly conducting electron strings.
Depending on the distance between these strings the liquid crystal may also be in two states
insulating and conducting. The conducting state arises due to a percolation through these
strings. In other words the conducting phase is formed when a conducting percolative path
of an infinite length will arise.

However in the present paper we limit ourself by studies of a single highly conducting
string. We have employed the Hartree-Fock many body-wave function as a variational
wave function to describe fermions self-trapped by a string potential well. Outside the self-
trapped potential well the wave function is vanishing reflecting the fact that these electrons
are self-trapped. We have performed calculations of the number of particles and the length
of the string having a lowest energy per particle for the narrow band materials with short-
and long-ranged electron phonon interactions also taking into account finite values of the
bandwidth.

We consider the general Hamiltonian of spinless fermions interacting via a strong long-
range electron-electron repulsion and with different types of phonons on a d— dimensional
hypercubic lattice:
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where ¢ is the electron hopping-integral, the operator a)(a;) creates (destroys) a fermion at
a lattice site ¢ , n; is the occupation number operator a;j a; and the operator b};(bq) is an
operator of the creation (destruction) of a phonon. The summations in eq.(1) extend over
the lattice sites ¢ and -as indicated by < ¢,j > -over the associated next nearest sites 7. The

matrix element of the electron-phonon interaction is equal to
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The function (g) and the phonon dispersion relation w(q) are different for different
types of the electron-phonon interaction. For example, for optical longitudinal phonons
(Pekar-Frélich interaction!®) in continuum limit the product v%(q)w(g) = 4mwe?/(e*¢?) with
1/€* = 1/€x — 1/€o. For the Holstein phonons of the fixed frequency fiw, the function +y(g)
is a g— independent function y(¢) = . In general for the short-range electron phonon
interaction the v2(q)w(q) = const = c. The long-range part of the Coulomb interaction has
a conventional type®:
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where it is plausible to assume that for spinless fermions the effective dielectric constant €
may be taken as € = €,. Such Hamiltonian, we believe, may correctly describe both the
strong electron-electron repulsion and the effect of an electron-phonon interaction which
effectively creates an attraction, i.e. two dominant interactions which competition together
with a competition of kinetic electron energy leads to a formation of highly conducting
electron strings.

The Hartree-Fock many-body wave function of the M self-trapped particles ¥(1,2, ..., M)
which we employ to calculate an expectation value of the Hamiltonian, eq.(1) has a form of
a Slater determinant

V(12,00 M) = o det || 41055 | (4)

consisting of single particle wave functions:

Jx exp(ikeng) if 1<n, <N

i) = { )

=0, otherwise

Each of these wave functions describes the electron(hole) trapped by N neighboring sites
(string potential well) with equal probability, 1/N. If string is oriented in the x direction
and is located on the sites n, = 1,..., NV the particle quasi-momentum £k, is determined by
boundary conditions at the ends of the string. For next simplicity we use periodical bound-
ary conditions. As a first example we consider a short-ranged electron-phonon interaction.
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Although for any type of the short-ranged interaction the results obtained are similar, at
the first stage we discuss only an interaction with acoustical phonons, i.e. with the lattice
deformations. As in Refs®® we employ an adiabatic approximation considering a very slow
motion of the lattice(see, for example in Refs®®). With the use of this many body wave
function we have estimated an expectation value of Hamiltonian H, eq.(1). These calcula-
tions have been done into two steps. Using this many-body wave function, first, we have
calculated the one body and the pair correlation functions. Then with the use of adiabatic
approximation we have excluded slow (classical) phonon variables to get an expression for
adiabatic potential (see, for details, Refs®®) which is a total energy including the Coulomb
and exchange energies. The calculated expression of the total energy per particle has the
form:

Eg sin mn sinmn  cn
— = - + — — + 2¢.nlog M
2dt — 2t — 2t 7 5 +2enlog (6)

where d is a dimension of the hypercubic lattice, the value n is an electron(hole) doping inside
the string: n = M/N. For the short range interaction of interest the coupling constant in the
Hamiltonian(1) (note that we consider an interaction with acoustical phonons) v%(gq)w(q) =
¢ = D?/K with D is a deformational potential and K is an elastic modulus (see, for example,
in Ref®). This estimation of the total energy has been obtained on the basis of an exact
solution® found in the limit of the very strong coupling ¢/t >> 1. This expression, eq.(6),
represents a variational estimation of the total energy of M particles self-trapped into the
string of the length NV valid for a wide range of values ¢/¢t. Therefore in the framework of the
variational approach we may get a reliable estimation of a number of particles, a length and
the energy of electron string valid for a wide range of the parameters of the Hamiltonian such
as a coupling constant c, the bandwidth ¢ and the characteristic Coulomb energy €,. Here
the values M and n are variational parameters. The optimal number of particles trapped
into the string of fixed length N is determined by a minimization of Es/M with respect to
M and it is given by the eq.:

M= 2tsinmn (7)

€N

After the substitution of this expression into the eq.(6) for Es we get the dependence Eg =
Eg(n) on the doping of the string n = M/N. Depending on the relation between values ¢,
¢ and ¢, there may exists one or two types of solutions which correspond to two different
types of strings: insulating®, when n = 1 and conducting, when n < 1. When ¢ ~ ¢ >> ¢, the
string may have a conducting state as a ground state. The small ratio €./t may arise when
there is a strong screening between carrent carriers. This usually occurs for mobile polarons
where we have to put into the effective Coulomb energy €. (which is effectively a value of an
intersite Coulomb repulsion) instead of the high-frequency dielectric constant e, the static
dielectric constant €2°. Then the number of particles trapped into the string is described
by eq.(7). In the latter case the string state is indeed a ground state, while the polaron
states correspond to excited states. When the coupling constant ¢ is very large (¢ > t and
¢ > ¢) the eq. (7) is not applicable, since the associated solution describing a conducting
string disappears while the other solution associated with the marginal extremum n = 1 and
describing insulating strings still exists. Thus, in extreme strong coupling lomit the string
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is always insulating with N = M and the number of particles in such a string is defined as
(see, for comparison, ref.%)

c
M= ——1
exp(5- — 1) ®
The minimum energy Fg associated with an insulating string which has been calculated
with the use of the relation N = M, the eq.(8) and the expression for Eg, eq.(6), is simplified
to the form(see, for comparion, in the ref.?):

Es—min = (2dt — GZ—C)M (9)

The comparison of eq.(9) and with the energy of M single polarons equal to M (2dt—c/2)
indicates that an insulating string with M trapped charged particles may have a lower energy
than the total energy of M separated self-trapped particles if €, > c¢. That is the insulating
string with M > 1 (these values of M correspond to the inequality e, < c, see, eq.(8))
is associated with a metastable minumum. This metastable minimum may become an
absolute minimum in the doped antiferromagnet. For a single hole in the antiferromagnet
there is an increase in the exchange energy equal to 2dJ, where J is an exchange constant.
For M separated holes this energy increase is equal to 2dMJ. On the other hand for M
holes trapped in a string such increase in exchange energy is equal to J(2dM — M + 1).
Therefore, the absolute minimum of the total energy of the deformational string in a doped
antiferromagnet is described by the eq.:

B min = [Zdt — %4 (2 1)J] M+J (10)

where the value M is defined by eq.(8). The comparison of this expression with the total
energy of M separated self-trapped particles indicates that the strings may have a lower
energy if the following inequality holds:

€. < c<(e.+2J) (11)

Thus, the exchange interaction between anti-ferromagnetic spins significantly improves the
physical conditions required for a string formation in doped antiferromagnets. Therefore,
at low temperatures, if this condition holds the M separated particles will condense into a
string configuration.

All these string solutions found for deformational type of strings arise also in the case
when the electron is interacting with Jahn-Teller phonons. In this case the electron(hole)
Hamiltonian and the Hamiltonian of electron-phonon coupling is very different from the
discussed case since there are two symmetry different orbitals which are associated with
different hopping integrals and with two competing, symmetry different, deformations (see,
a detailed discussion of the Jahn-Teller Hamiltonian in Ref.?!). In spite on this fact when
these orbitals are degenerate the problem of the string formation may be simplified and,
after estimation of expectation values for the Jahn-Teller Hamiltonian, can be effectively
reduced to the equations presented above, eqs(6,7,8,11) (see, for details in Ref.??). That is,
for the Jahn-Teller deformations there may arise two type of electron strings, insulating and



highly conducting. For the conducting strings the number of particles self-trapped into a
single string is determined with the aid of the equation(7) while for the insulting Jahn Teller
string (when N = M) the number of particles M self-trapped into the string is determined
by eq.(8) with the change of the constant ¢ by
2
e —2 (12)
C11 — G2
where A is a constant of the Jahn-Teller electron-phonon coupling and ¢;;, ¢;2 are conven-
tional elastic modulus for a crystal with a cubic symmetry. In general for, any short-range
type of electron-phonon interaction as, for example, with Holstein phonons in Holstein model
there may arise the described electron strings. The number of particle in the string is defined
by eqs(7, 8) while the string length depends on the type of the string and must be estimated
by a minimization Eg(n) with respect to the values n, numerically. For each type of phonons
which have a short-range interaction with electrons(holes) the coupling constant in egs.(7,
8) must be defined, respectively, while the main eqs.(7,8,6) remain the same.

The case when a single electron or a hole is interacting with polar phonons,.i.e with
longitudinal optical phonons with the frequency wy is relevant to most of oxides having a
considerable ionic bonding and may be considered analogously. In this case the constant of
the electron- phonon interaction y2(q) = 4we?/(q?€e*fiwy). We adopt the Pekar formalism®® to
the tight-binding model where all Pekar equations decribing electronic and phonon degrees
of freedom must be treated in a form of discrete equations (see, for example in Ref.?).

Then the value of total energy including the Coulomb and exchange contributions from
the long-range Coulomb forces between fermions may be calculated analogously to the case
of short-range electron-phonon interaction presented above (see, also for example, in the
Refs®®). That is, first, with the aid of the Hartree-Fock many-body wave function of the M
self-trapped particles ¥(1,2, ..., M) (see, eq.(4)) we have calculated the pair and off-diagonal
correlation functions, and then with the use of these functions the dependence of the total
energy on n and M having the form:

tEﬂS =2d+ E:n (0.6 + log(M)) — Epn (1.4 — log(n) + log(M)) —
_2 (M —n) sin(mn)
M?2sin(%2)

(13)

where we introduced the notations E, = 2¢./t and E, = 2¢.a/t and a = (1 — € /€9)

A minimization of this expression with respect to M and n gives an estimation for the
length of the string N and the number of particles M trapped into the string. For the value
of M one may get an analityc expression in the form:

2sin (7n)

M= 22
(E. — Ep)mn

(14)
The value of the doping n may be calculated numerically after the next substitution of eq.
(14) into eq.(13) and next minimization with respect to only one variable, n. In the limit
when the string has a very low density » < 1 the values of M and N may be presented by
analityc formula:
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N~ MY%exp(1.6/a — 1.4) (16)

The total energy of the string per electron equals jstring = 2d —2+2/N — nE,. To be in a
ground state this string energy must be smaller than the energy of an individual polaron j,
equal to 2d — E,. The comparison of these two energies gives the precise criterion for the
string formation. The conducting string corresponds to the ground state iff

B, <2—2/N +nkE,, (17)

which is roughly means that the polaron shift must be smaller than the string bandwidth
2t.

Thus, we arrive at the conclusion that in oxide compounds having ionic character of
the bonding the formation of highly conducting electron strings created by a polarization
potential is possible. The string length is typically much larger than the number of self-
trapped holes, which is determined by the dielectric constants of the solid.

Our findings are probably relevant to stripe formation observed in HTSC¥18173 T,
check if this criterion, eq.(17) is satisfied for the HTSC and to estimate the length of the
string we choose the typical parameters of HTSC (for example, for La;CuQ,, € = 30,
€0 = 5, the interatomic distance a = 3.84 and the hopping integral ¢ = 1leV). Then by a
minimization of eq.(13) we obtain that 7 holes will be trapped into the string with the length
equal to N = 40 interatomic distances or ~ 1504. The value of M may be also estimated
with the use of eq.(16) which approximately gives the same number. Note that this cigar-
shape 7—particle string has a lower energy than 7 separated polarons and this string is
highly conducting which is in contrast with an insulating string created by strong short-
range electron-phonon interaction®. It is probable that in other HTSC undoped materials
the size of the strings is not that much different.

Thus, we arrive at the conclusions that in polar oxide materials, like HTSC there may
arise electronic strings which are linear multi-particle ” electronic molecules”. At low temper-
atures the electron strings may be ordered in CuO planes creating a nematic liquid crystal.
The striped phase in HTSC observed in numerous experiments may correspond to such a
liquid crystal of strings. It seems that our conclusion about the important contribution of
the phonons into the origin of the stripe phase is confirmed in recent experiments which dis-
cover a huge influence of isotope effect on the critical temperature of the stripe ordering® and
strong lattice fluctuations in YBCO? which may be associated with the string’s dynamics.

The observed stripes may be related to the hole strings arising for a small hole doping.
Such strings may well form a Wigner crystal. In the limit of the very small doping the
localized strings have no orientational order. It will take very long time to equilibrate to
establish the orientational order. With the next increase of the doping, the inter-string
interaction increases and at some critical value of doping there arises a transition into a
Wigner crystal where there is an orientational order. It is also possible that instead of the
transition there will be a crossover to an orientational order. At the next increase of the
doping, at the some next critical value, such Wigner crystal is melted and the new phase a
liguid crystal forming from these conducting strings does arise. With next increase of the
hole doping the concentration of these strings increases and they may form either a nematic
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or smectic liquid crystal which probably constitutes a stripe phase observed in Refs!3 718173,

Note that in all these transitions or in the crossover arising with the change of the doping
the only change occurs is that the change in the distance between the strings while the
strings structure (like, a doping or a length)) is not changed. With the isotope changes?
the structure of individual strings is changed and, therefore, the critical temperature of the
stripe ordering must be changed.

In summary, we found that in oxides HT'SC there may arise highly-conducting electron
strings which are linear electronic molecules. Note that to find such molecules we have to
treat the kinetic and potential energies of electrons on equal footing. A single electronic
molecule has a cigar shape with the length of the order of 10-20 nanometers and consisting
of 7-10 holes. For other oxides the string parameters will not be changed as much. It is also
very natural that such "polymeric” electron molecules may form a liquid crystal which may
be associated with the stripe phase of HTSC?.
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