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1 Introduction

In response to a question raised by Halmos in his book on ergodic theory ([10],

page 29) it was proved that a locally compact group admits a (bicontinuous) group

automorphism acting ergodically (with respect to the Haar measure as a quasi-

invariant measure) only if it is compact (see [9] for historical details and a general-

isation to affine transformations; see [5] for the case of Lie groups). A substantial

part of ergodic theory is now being extended to actions of ZZd (the group of inte-

ger d-tuples) and it is natural in this context to ask which locally compact groups

admit ergodic ZZd-actions by automorphisms. In this note we address the ques-

tion for connected Lie groups, (and more generally for almost connected locally

compact groups). Unlike in the case of d = 1, even for ZZ2 a connected Lie group

admitting such an action need not be compact; e.g. the group IR of real numbers,

the automorphism group consists of multiplications by non-zero real numbers and

it has subgroups isomorphic to ZZ2 which are dense, and hence act ergodically on

IR. The example readily generalises to actions of higher rank abelian groups, on

higher dimensional vector spaces; more generally the connected abelian Lie group

IRn×TT m (where TT m denotes the m-dimensional torus) admits ergodic ZZd-actions

by automorphisms for sufficiently large d, for any n ≥ 0 and m 6= 1 (see § 6 for

precise results in this respect). We show here, in particular, that the general class

of connected Lie groups with such actions is not much larger; we assume only ex-

istence of a dense orbit for the action, a condition which is satisfied if the action

is ergodic; the condition however turns out to be equivalent to ergodicity in the

present instance (see Theorem 1.1). However the abelian groups do not exhaust

the class, and in fact there exist nonabelian Lie groups with ergodic ZZ2-actions on

them by automorphisms (see § 6.4).
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The original question of Halmos was limited to automorphisms preserving the

Haar measure. Since for d ≥ 2 there exist noncompact groups with ergodic

ZZd-actions by automorphisms, one may ask whether some of them are measure-

preserving. The answer turns out to be in the negative in the case of connected

noncompact groups (see Corollary 1.3).

By a vector group we mean a Lie group which is (topologically) isomorphic to

IRn for some n. We say that an automorphism τ of a Lie group is unimodular

on a τ -invariant connected Lie subgroup S if the restriction of the derivative dτ

to the Lie subalgebra corresponding to S is unimodular as a linear transformation

(namely, has determinant 1).

We recall that two measures are said to be equivalent if they have the same

class of sets as sets of measure 0. A measure µ is said to be quasi-invariant under

an action by a group H if every element of H transforms µ to a measure equivalent

to µ. The Haar measure of any locally compact group is quasi-invariant under

the action of the group of all bicontinuous automorphisms. An action is said to

be ergodic with respect to a quasi-invariant measure if every invariant Borel set is

either of measure 0 or the complement of a set of measure 0. When a continuous

action on a locally compact second countable space X is ergodic with respect to a

measure with full support, the orbits of almost all points are dense in X (see e.g.

[10], for instance).

Theorem 1.1. Let G be a connected Lie group. Suppose that there exists an

abelian group H of continuous automorphisms of G such that the H-action on G

has a dense orbit. Then the following conditions are satisfied:

i) there exists a compact subgroup C contained in the center of G such that G/C

is a vector group (in particular [G, G] is contained in C);

ii) either G is abelian or [G, G] is not closed, and in the latter case there exists

τ ∈ H such that the restriction of τ to [G, G] is not unimodular;

iii) the H-action preserves a σ-finite measure equivalent to Haar measure on

G;

iv) the action of H is ergodic with respect to the Haar measure on G;

v) if the H-action preserves either the Haar measure on G or a finite measure

equivalent to it, then G is compact.

Remark 1.2. Conclusion (i) signifies in particular that G is a two-step nilpotent

Lie group and further that if it is simply connected then it is a vector group.

Condition (ii) rules out more groups from admitting an action as in the Theorem.

In particular, the nonabelian quotients of the Heisenberg group are excluded.

A locally compact group G is said to be almost connected if G/G0 is compact,

where G0 is the connected component of the identity in G. Using a theorem of
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Montgomery and Zippin on the structure of almost connected locally compact

groups together with Theorem 1.1 we deduce the following.

Corollary 1.3. Let G be an almost connected locally compact group and suppose

that there exists an abelian group H of bicontinuous automorphisms of G whose

action on G has a dense orbit. Then there exists a compact normal subgroup C of

G such that the following holds:

i) G/C is a vector group;

ii) if G is connected and finite-dimensional then C is contained in the center of

G;

iii) if the action of H on G preserves either the Haar measure on G or a finite

measure equivalent to it, then C = G (namely G is compact).

Remark 1.4. We note that the conclusion as in assertion (ii) of the above corollary

may not hold if G is not assumed to be connected and finite-dimensional; e.g.

if K is a compact group then G = KZZd

has the shift action by ZZd, which is

ergodic; choosing K to be a finite nonabelian group this shows the necessity of

the connectedness condition while choosing it to be a connected nonabelian group

shows the need for the finite-dimensionality condition.

Specialising to ZZd-actions on connected Lie groups we prove the following.

Theorem 1.5. Let G be the Lie group IRn ×TT m, where n and m are nonnegative

integers, and let d ≥ 1. Then G admits an ergodic ZZd-action by automorphisms if

and only if m 6= 1 and d ≥ n − [n/2] + 1, where [n/2] denotes the largest integer

not exceeding n/2.

In [8] it was shown that if the action of the group of all automorphisms of a

connected Lie group G has a dense orbit on G then G is a nilpotent. Here we

deduce Theorem 1.1 from this, via a closer study of the automorphism groups of

these Lie groups. Theorem 1.1 will be proved in § 4, after various preparatory

results. Corollary 1.3 is proved in § 5. Therorem 1.5 is proved in § 6 where we

give also an example of a nonabelian Lie group on which there exists an ergodic

ZZ2-action by automorphisms.
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in the earlier version of the results presented in § 2.

The author would also like to thank the EPSRC for generous support (under

Grant GRK99015) and the Isaac Newton Institute, Cambridge for warm hospitality

while this work was done.
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2 Orbits on vector spaces

In this section we let V be a vector space over IR, of finite positive dimension; the

dimension will be denoted by n. By GL(V ) we denote the general linear group of

V . If S is a subspace of V or a Lie subgroup of GL(V ) then we denote by dimS

the dimension of S.

Proposition 2.1. Let H be an abelian Lie subgroup of GL(V ). Suppose that there

exists v ∈ V such that the H-orbit of v spans V . Then dim H ≤ n. Moreover, if

H-orbit of V is open then dimH = n, and the map h 7→ h(v), for all h ∈ H is a

homeomorphism of H onto the orbit of v.

Proof: Let S be the stability subgroup of v under the H-action and let h0 ∈ S.

Since H is abelian h0 then fixes h(v) for all h ∈ H and since the H-orbit of v spans

V this implies that h0 is the identity element. Thus S is the trivial subgroup. As H

is a Lie subgroup this implies that dimH ≤ dim V = n. Now suppose that the orbit

is open. Then we also have dimH ≥ dimV and hence dimH = n. Furthermore,

as H is second countable, for any open orbit the map of H onto the orbit is a

quotient map, and since S is the trivial subgroup in the present instance it is a

homeomorphism. This proves the proposition.

For a linear transformation τ we shall denote by det τ the determinant of τ .

Corollary 2.2. Let H be an abelian Lie subgroup of GL(V ) such that the H-action

on V has an open orbit. Then H contains all positive scalar transformations. The

subgroup H ′ = {τ ∈ H | |det τ | = 1} is of dimension n − 1 (and in particular has

no open orbit on V ).

Proof: Let S be the subgroup of GL(V ) consisting of all positive scalar transfor-

mations. Then SH is also an abelian Lie subgroup whose action on V has an open

orbit. Therefore by Proposition 2.1 we have dim SH = dimV = dim H . Since S

is a connected Lie subgroup this implies that S is contained in H . Moreover SH ′

is an open subgroup of H and since the latter has an open orbit in V it follows

that SH ′ also has an open orbit in V . Hence dim SH ′ = dimV and since S ∩ H ′

is trivial this implies that dimH ′ = dimV − 1. This proves the corollary.

Proposition 2.3. Let H be a Lie subgroup of GL(V ) with an open orbit on V .

Let E denote the set of points of V whose H-orbits are not open in V . Then E

has 0 Lebesgue measure.

Proof: Let VIC = V ⊗ IC, the complexification of V , and GL(VIC) be the group of

IC-linear automorphisms of VC . Let H̃ be the Zariski-closure of H in GL(VIC). We

realise V and GL(V ) as subsets of VIC and GL(VIC) respectively, in the usual way.

Since by hypothesis H has an open orbit on V it follows that H̃ has a Zariski-open
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orbit on VIC , say Ω. Since VIC is an irreducible algebraic variety it follows that the

complement of Ω in VIC is an algebraic variety of dimension at most n − 1. Hence

in particular V − Ω is a set of 0 Lebesgue measure. On the other hand for any

v ∈ V ∩ Ω the H-orbit of v in V is of the same dimension as the H̃-orbit of v in

VIC (see the argument in the proof of Lemma 1.22 in [15]), and hence it is open in

V . Thus E is contained in V − Ω and hence has 0 Lebesgue measure.

We note also the following.

Corollary 2.4. Let H be an abelian subgroup of GL(V ) such that the H-action

on V has a dense orbit, and let H̃ be the Zariski-closure of H in GL(V ). Then H

is dense H̃ (in the usual topology).

Proof: Let v ∈ V be a point whose H-orbit is dense in V . As H̃ is an algebraic

subgroup of GL(V ) all its orbits are locally closed (see [3], for instance). Since the

H̃-orbit of v is dense, this implies that it is also open. Hence by Proposition 2.1

the map h 7→ h(v) is a homeomorphism of H̃ onto the H̃-robit of v. Since the

H-orbit of v is dense in V , and in particular in the H̃ orbit of v, this implies that

H is dense in H̃ .

3 Orbits on nilpotent Lie groups

Given a connected Lie group G we shall henceforth denote by Aut (G) the group

of all continuous automorphisms of G (we recall that all such automorphisms are

differentiable and even real analytic). We realise Aut (G) also as a group of linear

transformations of the Lie algebra of G, by identifying each automorphism τ with

its derivative. We note that if G is simply connected then Aut (G) is an algebraic

subgroup of the group of linear transformations of the Lie algebra (see [7] for more

general conditions under which this holds). A subgroup of Aut (G) will be said to

be algebraic if it is an algebraic subgroup of the linear group. A subgroup is said

to be almost algebraic if it is an open subgroup of an algebraic subgroup.

Proposition 3.1. Let G be a simply connected nilpotent Lie group. Suppose that

there exists an abelian Lie subgroup H of Aut (G) whose action on G has an open

orbit. Then G is a vector group.

Proof: We shall suppose that there exist a nonabelian simply connected nilpotent

Lie group G and an abelian Lie subgroup H of Aut (G) having an open orbit on

G, and arrive at a contradiction. Replacing H by the connected component of the

identity in its Zariski closure (which is also an abelian subgroup of Aut (G)) we

may assume that H is a connected almost algebraic subgroup.

Let G be the Lie algebra of G. Since H is an abelian connected almost algebraic

subgroup of Aut (G), it can be expressed as DW , where D is a subgroup consisting
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of automorphisms whose action on G is diagonalisable over the reals (with positive

eigenvalues), and W consists of automorphisms for which all eigenvalues of the

action on G are of absolute value 1; we first decompose H as SU where S consists

of semisimple elements and U consists of unipotent elements, then decompose S

as DM , where D consists of elements diagonalisable over IR and M is a compact

subgroup, and put W = MU . We can now decompose G as ⊕λ∈Λ Gλ, where Λ

is a set of characters (multiplicative homomorphisms) λ : D → IR+ (into positive

reals) and Gλ = {ξ ∈ G | δ(ξ) = λ(δ)ξ for all δ ∈ D}; we assume Λ to be such that

each Gλ is nonzero for all λ ∈ Λ. Then each Gλ is invariant under the H-action on

G. For each λ ∈ Λ let Wλ denote the subgroup consisting of factors of elements of

W on Gλ (when the latter is viewed as G/(Σµ6=λ Gµ)). Since H has an open orbit

on G the factor action on Gλ has an open orbit. Since H = DW and the factor

action of D is by scalars, by Corollary 2.2 this implies that dimWλ = dimGλ − 1,

for all λ ∈ Λ. Hence dim W ≤ Σλ∈Λ dimWλ = dimG − |Λ|, where |Λ| denotes the

cardinality of Λ.

Since G = Σλ∈Λ Gλ and G is nonabelian, it follows that there exist λ, µ, ν ∈ Λ

with ξ ∈ Gλ, η ∈ Gµ, [ξ, η] ∈ Gν and [ξ, η] 6= 0. Then for any δ ∈ D we have

ν(δ)[ξ, η] = δ([ξ, η]) = [δ(ξ), δ(η)] = λ(δ)µ(δ)[ξ, η]. As [ξ, η] 6= 0 this implies that

ν(δ) = λ(δ)µ(δ) for all δ ∈ D. This means that any element δ of D is determined

by {λ(δ)}λ6=ν and hence dimD ≤ |Λ| − 1. Therefore dimH ≤ dim D + dimW ≤

(|Λ| − 1) + (dimG − |Λ|) = dimG − 1. But this is a contradiction since H has an

open orbit on G. This shows that G must be abelian.

The next proposition concerns certain restrictions that are applicable to groups

which are not simply connected.

Proposition 3.2. Let G be a nonabelian connected Lie group. Suppose that G has

a compact subgroup C contained in the center, such that G/C is a vector group.

Suppose further that there is an abelian group H of continuous automorphisms of

G whose action on G has a dense orbit. Then there exists τ ∈ H such that the

restriction of τ to [G, G] is not unimodular.

Proof: Let G be the Lie algebra of G and H̃ be the the connected component

of the identity in the Zariski-closure of H in GL(G) containing H , Aut (G) being

realised as a group of Lie automorphisms of G, as before. Since H is abelian H̃ is

also abelian. As in the proof of Proposition 3.1 we decompose H̃ as DW where

D is a subgroup of GL(G) which is diagonalisable over the reals (with positive

eigenvalues) and W consists of elements all whose eigenvalues on G are of absolute

value 1. Now suppose that for all τ ∈ H the restriction of τ to [G, G] is unimodular.

Then the restriction of τ to [G,G] is unimodular for all τ ∈ H̃ and in particular

it holds for all δ ∈ D. Since the action of D is diagonalisable over the reals there

exists a D-invariant subspace V of G such that G = V ⊕ C where C is the Lie
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ideal corresponding to C. Furthermore, we can decompose V as V = ⊕λ∈Λ Vλ,

where Λ is a set of characters on D with values in IR+ and for each λ ∈ Λ,

Vλ = {v ∈ V | δ(v) = λ(δ)v for all δ ∈ D}; we assume Λ to be such that Gλ is

nonzero for all λ ∈ Λ.

Consider the factor action of H̃ on G/C. Since the H-action on G has a dense

orbit so does the H-action on G/C, and since G/C is simply connected this implies

that the H-action on G/C has a dense orbit. Hence the action of the Zariski-closure

of H has a dense orbit on G/C and as seen earlier such an orbit is open. It follows

therefore that the H̃-action on G/C has an open orbit. It is easy to see that for

each λ ∈ Λ, (Vλ + C)/C is a H̃-invariant subspace of G/C and the latter is a direct

sum of those subspaces. Hence the H̃-action on each (Vλ +C)/C has an open orbit.

For each λ let mλ denote the dimension of (Vλ + C)/C. Then by Corollary 2.2 the

preceding conclusion implies that the subgroup of GL((Vλ + C)/C) consisting of

factors of elements of W is of dimension mλ − 1. On the other hand the subgroup

of GL(G/C) consisting of factors of elements of H̃ has dimension equal to the

dimension of G/C, which is the same as Σλ∈Λ mλ. Since H̃ = DW this implies that

the dimension of the group consisting of factors of D on G/C equals the cardinality

of Λ. Therefore for any {αλ}λ∈Λ there exists δ ∈ D such that δ(v) = αλv for all

λ ∈ Λ and v ∈ Vλ.

Now let ξ1, . . . , ξn be a basis of V such that each ξi is contained in some Vλ.

Then the set {[ξi, ξj ] | i, j = 1, . . . , n} spans [G,G]. In particular it contains a basis

of [G,G]. This implies that there exist nonnegative integers nλ, λ ∈ Λ, not all

zero, such that the determinant of the restriction of any δ ∈ D to [G,G] is given

by
∏

λ∈Λ
λ(δ)nλ . Since for all {αλ}λ∈Λ there exists δ ∈ D such that δ(v) = αλv

for all λ ∈ Λ and v ∈ Vλ, this shows that the restriction of δ to [G,G] can not

be unimodular for all δ ∈ D. This contradicts our earlier observation, and hence

it follows that there exists τ ∈ H such that the restriction of τ to [G, G] is not

unimodular. This proves the proposition.

4 Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1, following the notation as in

the hypothesis.

Proof of Theorem 1.1: i) It was shown in [8] that if the automorphism group

of a connected Lie group G has a dense orbit on G, then G is a nilpotent Lie

group. In particular the group G as in the hypothesis is nilpotent. Hence it has a

unique maximal compact subgroup C and the latter is contained in the center of

G. Furthermore, G/C is a simply connected nilpotent Lie group. The action of H

on G factors to G/C and the factor action has a dense orbit. Recall that as G/C
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is simply connected its automorphism group is an algebraic subgroup of the linear

group of its Lie algebra. Let H ′ be the Zariski closure in Aut (G/C) of the group

of automorphisms arising as factors of elements of H on G/C. Then the H ′-action

on G/C has a dense orbit. Since H ′ is an algebraic subgroup, for its action on the

Lie algebra all orbits are open in their closure (see [3]) and in particular the dense

orbit is open. This shows that the H ′-action on G/C has an open orbit. Since H

is abelian so is H ′ and hence by Proposition 3.1 the preceding conclusion implies

that G/C is a vector space. This shows that assertion (i) holds.

ii) Suppose that G is nonabelian. Then assertion (i) as above and Proposi-

tion 3.2 imply that there exists τ ∈ H such that the restriction of τ to [G, G] is

not unimodular. Now if [G, G] is closed then, being contained in the compact sub-

group C, it would be compact; this is however not possible since any continuous

automorphisms of a compact abelian Lie group is unimodular. This proves (ii).

iii) Now let G be the Lie algebra of G and C be the Lie subalgebra corresponding

to C. Let ∆ = {ξ ∈ G | exp ξ = e}, where exp denotes the exponential map and

e is the identity element in G. Then ∆ is a discrete subgroup of C and C/∆ is

compact. We realise H as a subgroup of GL(G), as earlier. Clearly ∆ is invariant

under the H-action on G. We now form the semidirect product of H and ∆ with

respect to the action of H on ∆ and denote it by Γ. The latter can be realised as

a group of affine automorphisms of G, the elements of ∆ being identified with the

corresponding translations. Let A be the Zariski-closure of Γ in the group of affine

automorphisms of G (which is a real algebraic group). Clearly ∆ is Zariski-dense

in C and hence the orbits of A on G are precisely the inverse images of orbits of

the factor action on G/C. The factor action has a dense orbit, say O′, and since A

is an algebraic subgroup the orbit is also open. Furthermore, by Proposition 2.3

the complement of O′ in G/C has 0 Lebesgue measure. Together with the earlier

observation this implies that the A-action on G has an open orbit, say O, whose

complement has 0 Lebesgue measure. Therefore to prove assertion (iii) it is enough

to show that the action of A on O admits an invariant measure equivalent to the

restriction of the Lebesgue measure on G. Let S be the stability subgroup of

a point, say p, in O and consider the homogeneous space A/S equipped with a

(locally finite) measure µ which is quasi-invariant under the action of A (on the

left); such a measure exists and is unique up to equivalence of measures (see [12]).

Then the map αS 7→ α(p) is a Borel isomorphism such that the image of µ under

the map is equivalent to the restriction of the Lebesgue measure on O. Therefore

it is enough to show that A/S admits an A-invariant measure equivalent to µ. Let

H̃ denote the Zariski-closure of H . Then A is a semidirect product of H̃ with C.

Since the action of H on C leaves invariant a lattice ∆ it follows that the action is

unimodular and therefore the action of H̃ on C is also unimodular. Since A is the

semidirect product of H̃ and C under the action, it follows that A is a unimodular
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group. We note also that S does not contain any nontrivial translations. Since

the quotient of A modulo the subgroup consisting of translations is abelian, this

implies that S is abelian. In particular S is unimodular. As A is also unimodular

this implies that A/S admits an A-invariant measure (see [14], Ch. III). This

proves (iii).

iv) We follow the notation as in the proof of (iii) above. To prove assertion (iv)

it suffices to prove that the Γ-action on O is ergodic, with respect to the restriction

of the Lebesgue measure on G. Realising O as A/S via the map as above, which is

a homeomorphism, we see that the Γ-action on A/S has a dense orbit. By duality

this implies that the S-action on A/Γ has a dense orbit. It is well-known that for

flows on homogeneous spaces with finite invariant measure the action of a subgroup

has a dense orbit if and only if it is ergodic (see [4], Theorem 6.1). Therefore the

S-action on A/Γ is ergodic and hence by duality the Γ-action on O is ergodic. This

proves (iv).

v) In view of (i) it is enough to prove assertion (v) only for vector groups. Now

let G = V be a vector group and Aut (G) be realised as GL(V ). Let H̃ be the

Zariski-closure of H in GL(V ). Since H has a dense orbit on V , as seen before it

follows that H̃ has an open orbit on V . If the action of H preserves the Lebesgue

measure then each element of H has determinant ±1. By Corollary 2.2 these two

observations imply that V can not be of positive dimension. Hence V is trivial and

thus G is compact.

Next suppose that the H-action preserves a finite measure equivalent to the

Lebesgue measure. For a finite measure µ on V such that the support of µ spans

V , the subgroup of GL(V ) consisting of transformations preserving µ is compact;

see [6]. Therefore H must be contained in a compact subgroup of GL(V ). Since

by hypothesis the H-action has a dense orbit this implies that V is trivial. This

completes the proof of the theorem.

5 Extensions

We next use the theorems of Montgomery and Zippin on the structure of almost

connected locally compact groups and deduce Corollary 1.3. A subgroup of a

locally compact group is called a characteristic subgroup if it is invariant under all

bicontinuous automorphisms of G; such a subgroup is necessarily normal. By a

Lie group factor of a locally compact group G we mean a factor group of the form

G/S which is a Lie group, S being a closed normal subgroup of G; if furthermore

S is a characteristic subgroup we shall say that G/S is a Lie group factor by a

characteristic subgroup. We first note the following fact which may be considered

‘standard’; a proof is included for the sake of completeness.
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Lemma 5.1. Let G be an almost connected locally compact group. Then G has a

unique maximal compact normal subgroup C, and G/C is a Lie group.

Proof: By Theorem 4.6 of [13] there exists a compact normal subgroup F of G such

that G/F is a Lie group. Therefore it enough to prove the lemma for the case of

Lie groups (with finitely many connected components). As before let G0 denote

the connected component of the identity in G. Dimension considerations, together

with the fact that the product of two compact normal subgroups is a compact

normal subgroup, show that G0 has a unique maximal compact connected normal

subgroup, say M . Because of the uniqueness property M has to be normal in

G. Now clearly it is enough to prove the lemma for G/M in the place of G and

hence we may assume that M is trivial. The center of G0 is a compactly generated

abelian subgroup (cf. [11], Theorem 1.2, Ch. XVI) and hence has a unique maximal

compact subgroup, say C. Then C is also a normal subgroup of G and passing to

quotient we may assume C also to be trivial. Now let F be any compact normal

subgroup of G. Since M is assumed to be trivial F is a finite subgroup. Hence

F ∩G0 is a finite normal subgroup of G0 and hence it is contained in the center of

G0. Since C is assumed to be trivial this implies that F∩G0 is trivial. Therefore the

order of F is bounded by the order of G/G0. Cardinality considerations therefore

show that G has a unique maximal compact normal subgroup.

Lemma 5.2. Let G be a connected finite dimensional locally compact group. Let Q

be the smallest closed subgroup of G containing every compact totally disconnected

normal subgroup of G. Then Q is a compact subgroup contained in the center of G

and G/Q is a Lie group.

Proof: Since G has a unique maximal compact normal subgroup (see Lemma 5.1)

it follows that Q as in the hypothesis is compact. By Theorem 4.6 of [13] every

neighbourhood of the identity in G contains a compact normal subgroup F such

that G/F is a Lie group, and since G is assumed to be finite-dimensional, for all

sufficiently small neighbourhoods such a subgroup is totally disconnected. This

implies that G/Q is a Lie group. It remains to show that Q is contained in the

center of G. Now let F be any compact totally disconnected normal subgroup of

G such that G/F is a Lie group. Since G/F is a Lie group all its compact totally

disconnected subgroups are finite and, as G/F is connected, they are contained

in the center of G/F . Thus Q/F is contained in the center of G/F . Hence for

any g ∈ G and q ∈ Q the commutator gqg−1q−1 is contained F . Since every

neighbourhood of the identity contains such a subgroup F it follows that Q is

contained in the center of G. This proves the lemma.

Proof of Corollary 1.3: Let the notation be as in the hypothesis. Let C be the

unique maximal compact normal subgroup of G, as obtained in Lemma 5.1. Then
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the H-action on G factors to G/C and the factor action has a dense orbit. Clearly

G/C has no nontrivial compact normal subgroup. Therefore by the preceding ob-

servation Theorem 1.1 implies that G/C is a vector group. This proves Assertion (i)

in the Corollary. Now suppose that G is connected and finite-dimensional. Let Q

be the subgroup of G as in Lemma 5.2. Since Q is a compact normal subgroup,

it is contained in C, as above. Then Q is invariant under all bicontinuous autor-

mophisms of G and hence the H-action on G factors to G/Q. The factor action also

has a dense orbit and, since G/Q is a Lie group, by Theorem 1.1 C/Q is contained

in the center of G/Q and G/C is a vector group. Now let F be a compact totally

disconnected normal subgroup of G such that G/F is a Lie group. We note that

F ⊆ Q ⊆ C. Now, C/F is a compact nilpotent Lie group (with finitely many con-

nected components) and hence its automorphism group is countable. Since C/F

is a normal subgroup on G/F and the latter is connected this implies that C/F

is contained in the center of G/F . Since every neighbourhood of the identity in

G contains a subgroup F as above, by an argument as in the proof of Lemma 5.2

this implies that C is contained in the center of G. This proves Assertion (ii). As-

sertion (iii) follows immediately from the corresponding assertion in Theorem 1.1,

applied to G/C. This completes the proof of the corollary.

6 Ergodic ZZ
d-actions

In this section we prove Theorem 1.5, characterising the class of connected abelian

Lie groups admitting ergodic ZZd-actions by automorphisms and also give an exam-

ple of a nonabelian Lie group with an ergodic ZZ2-action on it by automorphisms.

Proposition 6.1. The Lie group IRn × TT m, where m and n are nonnegative

integers and m 6= 1, admits an ergodic ZZd-action for d ≥ n− [n/2]+1, where [n/2]

denotes the largest integer not exceeding n/2.

Proof: Let k = [n/2] and l = n − 2k, namely 0 or 1 according to whether n is

even or odd respectively. Let p = k + l; we note that n − [n/2] = k + l = p. Let

H be the group (IC∗)k × (IR∗)l. We write IRn as ICk × IRl. Then on IRn we get

an essentially transitive action of H , by scalar multiplication by the entries in the

respective coordinates. We note that H is topologically isomorphic to IRp × C,

where C is a compact subgroup with two connected components, and hence it

has dense cyclic subgroup. It follows that H has a dense subgroup isomorphic to

ZZp+1. Thus we get an ergodic ZZp+1-action on IRn. This proves the proposition

in the case when m = 0. Now let m ≥ 2. Let d0, d1, . . . , dp ∈ H be p + 1

elements generating a dense subgroup and A0, A1, . . . , Ap be the automorphisms of

IRn = ICk×IRl corresponding to them (as above). Let T be a mixing automorphism

of TT m. Let S0 be the automorphism A0×T of IRn×TT m (the cartesian product of
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A0 and T ), and for i = 1, . . . , p let Si be the automorphism Ai × I, where I is the

identity automorphism of TT m. We show that the ZZp+1-action generated by the

commuting automorphisms S0, S1, . . . , Sp is ergodic. We note that the H-action on

IRn is essentially transitive and hence it is enough to show that the ZZp+1 action

on H × TT m generated by T0 × T and Ti × I, i = 1, . . . , p, where Ti, i = 0, . . . , p,

denote the translations of H by di, is ergodic. Since {d0, d1, . . . , dp} generate a

dense subgroup of H , which is isomorphic to IRp × C as above, the subgroup Λ

generated by {d1, . . . , dp} is discrete and cocompact in H . Therefore the space of

orbits under the ZZp-action on H × TT m generated by T1 × I, . . . , Tp × I can be

realised canonically as (H/Λ)×TT m. To show that the ZZp+1-action on H ×TT m is

ergodic it enough to show that the factor action of T0×T on this quotient is ergodic.

Since {d0, . . . , dp} generates a dense subgroup of H it follows that the translation

T0 of H/Λ by d0 is ergodic. Since T is mixing it follows that the cartesian product

T0 × T as above is ergodic.

Proposition 6.2. Suppose there exists a group H of continuous automorphisms

of V = IRn such that H is isomorphic to ZZd and the H-action has a dense orbit

on V . Then d ≥ n − [n/2] + 1.

Proof: Let v ∈ V be such that the H-orbit of v is dense in V . Let H̃ be the

Zariski-closure of H in GL(V ). Then as seen earlier the H̃-orbit of v is open on V .

Hence by Proposition 2.1 H̃ is n-dimensional. Therefore the stability subgroup of

v, say S, is discrete and, being algebraic, it is a finite subgroup. Since the H̃-orbit

of v is open in V (and hence locally compact) and the H-orbit is dense in it, it

follows that HS is dense in H̃ . Since H̃ is an abelian real algebraic group it has a

unique maximal compact subgroup, say C. Furthermore, as H̃ has an open orbit

on V it follows that dimC ≤ [n/2]; this may be seen from a decomposition as in the

proof of Proposition 2.1. Let W denote the connected component of the identity

in H̃/C. Then W is a vector group, and dimW = dim H̃ − dimC ≥ n− [n/2]. We

note that S is contained in C and hence HC is dense in H̃ . As H is isomorphic to

ZZd this implies that W contains a dense subgroup isomorphic to ZZd. Therefore

d ≥ dimW + 1 ≥ n − [n/2] + 1.

Proposition 6.3. Let G = IRn×TT 1 for some n ≥ 0 and let H be an abelian group

of continuous automorphisms of G. Then the H-action on G has no dense orbit.

Proof: Suppose that the H-action has a dense orbit. Let C be the maximal compact

subgroup of G, namely TT 1 as in the expression for G (it is determined uniquely by

the expression unlike the other factor). Let G be the Lie algebra of G and let H̃

be the Zariski-closure of H in GL(G) (automorphisms of G being identified with

automorphisms of G as before). Let C be the Lie subalgebra of G corresponding

to C. The group TT 1 has only one nontrivial automorphism, namely θ 7→ θ−1 for

all θ ∈ TT 1. It follows that for τ ∈ H , realised as an automorphism of G, the

12



restriction to C is ±I, where I is the identity automorphism of C. Since H̃ is the

Zariski-closure of H it follows that τ(ξ) = ±ξ for all ξ ∈ C and τ ∈ H̃. Since the

H-action on G has a dense orbit and G/C is a vector group, the factor action of

H on G/C has a dense orbit. Hence the factor action of H̃ on G/C has a dense

orbit. Since H̃ is an algebraic group, as seen earlier, the dense orbit is open in

G/C. Hence by Corollary 2.2 the factors of H̃ on G/C include all positive scalar

tranformations. Since H̃ is an abelian group of transformations whose restrictions

to C are ±I, this implies that there exists a H̃-invariant subspace, say W , of G

such that G = C ⊕W. Since G is abelian W is in fact a Lie subalgebra and hence

there exists a unique connected Lie subgroup W with W as the corresponding Lie

subalgebra. Then we have G = CW and C ∩ W is discrete. Since G/C is simply

connected this further implies that C ∩ W is trivial. Now if {wi} is a sequence

in W such that wi → g ∈ G and g = cw with c ∈ C and w ∈ W , then wi → w,

which shows that W is closed. But then for any c ∈ C, Wc ∪ Wc−1 is a closed set

invariant under all τ ∈ H , which contradicts the assumption that there is a dense

orbit. Hence the H-action has no dense orbit.

Theorem 1.5 is immediate from Propositions 6.1, 6.2 and 6.3. We conclude with

an example of a nonabelian connected Lie group with an ergodic ZZ2-action on it

by automorphisms.

Example 6.4. Let m ≥ 3 and consider an irreducible ZZ2-action on TT m such

that the corresponding linear action on IRm is diagonalisable over IR and all the

eigenvalues are positive; we recall that an action on TT m by automorphisms is said to

be irreducible if there is no proper closed subgroup of positive dimension invariant

under the action; actions as above may, for instance, be found for m = 3 by

application of Theorem 2.8 in [16]. Let V = IRm, Λ = ZZm and ∆ be the subgroup

of GL(V ) isomorphic to ZZ2 and leaving Λ invariant, defining the action as above.

Let {v1, . . . , vm} be a basis of V such that each vj is an eigenvector of all δ ∈ ∆.

Now let P = IC, the complex plane, and let G = P ⊕ V . We equip G with the Lie

algebra structure (over IR) defined by [x + iy + Σm
j=1 xjvj , x

′ + iy′ + Σm
j=1 x′

jvj ] =

(xy′ − x′y)v1, for all x, y, x1, . . . xm and x′
1, . . . , x

′
m in IR. Then G is a 2-step

nilpotent Lie algebra; [G,G] is the one-dimensional subspace spanned by v1 and V

is the center of G. Let G̃ be the corresponding simply connected Lie group. We

shall realise V also as a subgroup of G̃, via the exponential map (this is essentially

for notational convenience). Now let G = G̃/Λ, where Λ is the subgroup of V

as above. We shall construct an ergodic ZZ2-action on G by automorphisms of G.

This would give an example of a nonabelian two-step nilpotent Lie group admitting

an ergodic ZZ2-action by automorphisms.

For any α ∈ IC∗ and a1, . . . , am ∈ IR+ (positive reals) let D(α, a1, . . . , am) be the

linear transformation of G defined by z +Σm
j=1 xjvj 7→ αz + Σm

j=1 ajxjvj for all z ∈

IC∗ and x1 . . . , xm ∈ IR; we note that D(α, a1, . . . , am) is a Lie automorphism of G if
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and only if |α|2 = a1. Now let δ and δ′ be a pair of generators of ∆ and let a1, . . . , am

and b1, . . . , bm be the eigenvalues of δ and δ′ respectively, corresponding to the

eigenvectors v1, . . . , vm respectively. We note that a1 and b1 are not commensurable

with each other, since otherwise the subset {tv1 + Λ | t ∈ IR} of V/Λ would

be pointwise fixed by a nontrivial element δ of ∆, while in fact in view of the

irreducibility of the ∆-action on V/Λ for any nontrivial δ in ∆ the set of fixed

points is discrete. Hence the subgroup generated by a1 and b1 is dense in IR+.

Therefore we can choose α, β ∈ IC∗ such that |α|2 = a1 and |β|2 = b1 and the

subgroup generated by α and β is dense in IC∗.

Let Φ be the subgroup generated by D(α, a1, . . . , am) and D(β, b1, . . . , bm). It

is isomorphic to ZZ2 and consists of Lie automorphisms of G. Thus we get a ZZ2-

action on G̃, and since Λ is invariant under the action, we get a factor action on

G = G̃/Λ, by automorphisms. We shall show that this action is ergodic. To that

end it is enough to prove that the action on G̃ by the group of affine automorphisms

generated by automorphisms from the Φ-action and translations by elements of Λ

(as Λ is contained in the center of G̃, the left and right translations are the same).

We note that the exponential map is a Borel isomorphism such that the image of

the Lebesgue measure on G is equivalent to the Haar measure on G and it commutes

with the ZZ2-actions on the spaces. Therefore it is enough to show that the action

on G by the subgroup generated by Φ and translations by elements of Λ is ergodic

with respect to the Lebesgue measure on G.

Since the ∆-action on V is diagonalisable, with positive eigenvalues, there ex-

ists a unique vector subgroup of GL(V ), say W , such that ∆ is a lattice in W .

Let A be the subgroup of GL(G) consisting of all Lie automorphisms of the form

D(z, x1, . . . , xm), with z ∈ IC∗ and x1, . . . , xm ∈ IR+, whose restriction to V is

an element of W . Then Φ is contained in A and, since the absolute values of the

IC∗-components of elements of A are determined by the restriction to V , it follows

that Φ is a lattice in A.

Now let H be the subgroup AV of affine automorphisms of G, V being viewed

as a group of translations by elements of V , as before. Then Γ = ΦΛ is a lattice in

H . We note that the complement of V in G is a single H-orbit, since the factors

of H on G/V include scalar multiplications by all nonzero complex numbers. Let

p ∈ P ⊂ G, p 6= 0, and let S = {h ∈ H | hp = p} be the stability subgroup of

p; we note that S contained in A. We consider H/S equipped with a measure

quasi-invariant with respect to the H-action (such measures exist and any two of

them are equivalent; see [12]). Then the map hS 7→ hp, for all h ∈ H is a Borel

isomorphism of H/S onto the orbit of p in G, such that sets of measure 0 correspond

to sets of measure 0. Since the complement of the orbit has zero measure it is now

enough to show that the Γ action on H/S is ergodic. By a well-known duality

principle this holds provided the S-action on H/Γ is ergodic.
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Recall that H is a semidirect product of the abelian subgroups A and V . In view

of the irreducibility of the ∆-action on V/Λ no nontrivial δ has a fixed point in V ,

and this implies that every element of V is of the form δwδ−1w−1 (in multiplicative

notation) and in particular we have V ⊆ [H, H ]; since H/V is abelian we get

[H, H ] = V . Also, it can be verified that H is a direct product of the circle group

with a simply connected solvable Lie group for which eigenvalues of the adjoint

actions are all real (and positive). Therefore by Green’s criterion (see [2], Ch. VII;

see also [4] for more general results) the S-action on H/Γ is ergodic if the S-action

on H/V Γ is ergodic. Since S contained in A this would hold if the S-action on A/Φ

is ergodic. Now consider the A-action on P , which is an invariant subspace. The

A-orbit of p is P − {0}. Since α and β generate a dense subgroup of IC∗ it follows

that the Φ-orbit of p is dense in P −{0}. Since S is also the stability subgroup of p

under the A-action on P , this implies that ΦS is dense in A. Since A is an abelian

group and Φ is a lattice in A, this shows that the S-action on A/Φ is ergodic. This

completes the proof of the assertion that the action of Φ on G is ergodic.
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