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1 Introduction

In this paper we study mappings U from an open set  of the plane R? into R2
whose components u; and up are o-harmonic functions in the sense that they are
weak solutions to the divergence form elliptic equation

div (6Vu;) =0 in Q, i=1,2 (1.1)

where ¢ is a symmetric, uniformly elliptic matrix with measurable entries. Our
starting point for this investigation has its origin in applications to homogenization.
In order to describe such applications and the results of the present paper, it is
necessary to introduce some notation. We shall denote by M?* the class of real,
two by two symmetric matrices and by M%, K > 1, the subclass of matrices
o = {0;;} € M?* satisfying the uniform ellipticity condition

K1 €P< 048 <K | €2 for every €€ R?
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Let © be an open set in R?, we shall refer to any given 0 € L®(Q, M%) as
a conductivity and a mapping U € WL2(Q, R?) will be said o-harmonic if its
components u; and u, are weak solutions to (1.1). In places, we shall consider
Q = R?. We set Q@ = (0,1) x (0,1) and we shall deal with functions which are
1-periodic with respect to each of its variables z; and zy, which we will call Q-
periodic, or for short, periodic. This will be indicated by the subscript { in the
relevant function spaces. For instance

L (R?*, M) = {o € L®(R*, M%) |
o(z1 +m, 22 +n) = 0(z1,22) for ae. (z1,72) € R%, Vm,ne Z} ,
Wy (B2, ) = {U € W7 (R?, B?) |
U(zy + m,z2 +n) =U(zy,22) for ae. (z1,72) € R, Vm,ne€ Z} .
It is also convenient to define, for any two by two matrix A,

Wyi(R:L R ={U e W2(RE, R?) | U — Az e W (RL, R} . (1.2)

oC

We are especially interested in boundary conditions of periodic type because
of their central role in homogenization and in particular in the so-called G-closure
problems. Let us review some very basic facts in homogenization theory.

1.1 Connections with homogenization

We recall the definition of effective (or homogenized) conductivity restricting our
attention to dimension two. Let o € L°(R?, M) be given and let Q2 be a bounded
open and simply connected set with Lipschitz boundary. Let f € W~12(Q, R) and
set o.(z) = o(£). Consider the problem

{ —div(oe(z)Vue(z)) = f in Q
ue € Wy (Q, R)

Then it is well known (see for instance [10]) that u. — up in W12(Q, R) where uq
solves the following (homogenized) problem:

—div(ohemVuo(z)) = f in Q
uo € Wo(Q, R)
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The new (constant) matrix onom, called homogenized conductivity, belongs to M3,
and it is determined by the following rule

: _
WER b= il WV, Ve (13)

A topic of great interest in material science and in optimal design is the so-called G-
closure problem. The simplest non trivial example is the so-called two-phase problem
which we now describe. Assume that

o(z) = (Kxp(z) + K~ (1 - xz(z)))]

where E is a measurable subset of (). The G-closure problem in this case can be
roughly described as follows. The given data are the conductivities in each phase
(KI and K~'I), the wolume fractions p, 1 — p with p € [0,1]. The unknown is
the set F, called the microgeometry. As E varies, so does the homogenized matrix
Ohom- The goal is to characterize the exact range of ono, as the measurable set F
varies in the family of all possible measurable subsets of ) satisfying the constraint
| E |= p (more precisely its closure in the space of symmetric matrices equipped
with its natural norm).

The study of the two-phase problem has been initiated by Hashin and Shtrikman
[32] and it has been completely solved only twenty years later by Tartar and Murat
[65], [64] and by Cherkaev and Lurie [44]. Many interesting G-closure problems
are still open. For instance the three-phase problem in which o takes three distinct
values with prescribed volume fractions, has attracted considerable attention.

To outline the role played by our results in this context, we need some further
notation and preliminary background.

We denote the set of real two by two matrices by M and the subsets of matrices
with strictly positive and non-zero determinant, by M and M. respectively.

We change the definition (1.3) to an equivalent but more convenient one:

VAEM , tr(AowomAT) =  inf /Q tr [DU(y)o(y)DU(y)"] dy.  (1.4)

Uew,'2(R?,R?)

The infimum in (1.4) is taken on a class of vector fields rather than functions. We use
the notation D (rather than V) to denote the gradient of vector valued mappings.



Our convention is that for F' = (f, g),

.DF= ( f.’L‘l fzz )
g:cl g.’l:z

Obviously (1.4) implies (1.3). By the linearity of the Euler-Lagrange equations
associated to the variational principle (1.3), the latter implies (1.4). Hence the two
definitions are indeed equivalent.

Given A € M, denote by U4 a solution (unique up to an additive constant) of

Div |o(y)(DUA(y))T| =0 in R?
{ U4 £ Wul,ﬁ(R2,R2) ] : (15)

where for any matrix B, DivB is the vector whose ¢-th component is the divergence
of the vector whose components form the ¢-th column of B.

Note that by (1.5), U4 is a solution of the Euler-Lagrange equations associated
to (1.4). It is easily seen using by integration by parts that

VAEM |, opomAT = /Q o(y) DUA(y)Tdy . (1.6)

The auxiliary problem (1.5) is usually called the cell problem. Solutions to (1.5) will
be called, with a slight abuse of language, periodic o-harmonic mappings. Recall
that they are unique up to translation by a constant vector. We now state some of
the main results of the present paper.

In the sequel, K > 1 and o € L*(R?, M) are given.
Theorem A Set A € M, and let U4 be a solution to (1.5). Then
(i) U4 is a homeomorphism of R? onto itself.
Moreover
(ii) we have that

det DU# > 0 almost everywhere in RZ. (1.7)

See Theorems 2.1 and 3.1 for details.

The next results are applications to the study of G-closure problems. We first
state them and then make some comments about their significance and potential for
applications.



Theorem B Set
dy, := €ss 11615 Vdeto .

Then
det opom > d2, (1.8)

and, for every A € (—d,, dy,) and for every A € M,

tr(AdnomAT) — 2Adet A
det Ohom — A2 -

_ 1 tr[DU(y)o (y) DU (y)T] — 2 det DU (y)
inf / 5
UEeW, 2 (R2,R?) | Q| /e deto(y) — A

dy . (1.9)

To state the next result it is convenient to make the following definitions.
Let S € M5, set s = v/det S and let A € [0,s]. We define a set of quasiconformal
matrices and a corresponding function space as follows:

(8,0 = {G e M? : (2 + A?)det G > Mr(GAdj(S)GT)} if A €[0,5)
TSN =N {G e M ¢ (52 + A%) det G = Mr(GAd)(S)GT)} if A=s ;

(1.10)
W(o,\,A)={U € W/ﬂl’f(Rz,Rz) : DU(z) € m(o(z),)) ae.z€Q}. (1.11)
It is easy to check that S~% € m(S, \) for every A € [0, s], hence
VAe[0,s] , m(S,A)#0 . (1.12)
We continue to adopt the notation of Theorem B and we set
Qm={z€Q : y/deto(z) =dn} (1.13)
Theorem C If we assume that

0<|Qm|<1 , (1.14)

then
det onom > d2, (1.15)



and, for every A € m(0hom, dm),

tr(AonomAT) — 2dndet A
det Ohom — d2 B

. tr[DU (y)o (y) DU (y)”]
erl({rl,lizm A) /Q {XQ’" ) 2det o(y) +

We now outline the role of these results in the study of the G-closure problems
focusing, to fix ideas, on the issue to prove bounds on oy in the two-phase problem.
To be useful, these bounds must depend solely on the two given numbers K and
p. The first elementary observation is that for any admissible A, one achieves a
particular bound by choosing U = Az in (1.9). We call the latter choice the trivial
test field.

Proceeding in this way one obtains a family of bounds depending on the
parameter A. Optimization over the admissible values of A delivers a so-called
translation (or compensated compactness) bound. It is well known that for
suitable choices of the matrix A these (lower) bounds are optimal. In other
words, for each chosen value of opom satisfying the bounds as an equality, one
can find a corresponding microgeometry (or at least a corresponding sequence of
microgeometries) with explicitly computable homogenized matrix matching (or at
least approaching with arbitrary precision) that chosen value.

However, the optimality of the trivial test field, is somewhat accidental. It
doesn’t hold as soon as the G-closure problem has a slightly more complicated
structure. For instance, in the three-phase problem, the bounds obtained by such
a simple use of the variational principle are known to be optimal only under
undesirable restrictions on the volume fraction of the phases, see [52], [56], [16],
[15] and [29].

To explain the progress made with Theorems B and C, we need to say a bit
more about the so-called translation method. It may seem rather surprising that the
choice of the trivial test field in (1.9) leads to an optimal bound. This little miracle,
can be partially explained. The variational principle (1.9) is build in such a way to
use already what (in the slightly different context of multi-well problems) are called



the ”minor relations”. In other words, implicit use has already been made of the
fundamental fact that given any A € M and any U € W'ul’f(Rz, R?) one has

/Q trace DU (z)dz = traceA

and
/Q det DU(z)dz = det A . (1.17)

This fact is often expressed by saying that A — trA and A — det A are null-
lagrangians on the space Wul,ﬁ(R2,R2). The equality (1.17) is a special instance
of a much more general phenomenon leading to the notion of gquasiconvezity :
a continuous functions F' on the space of two by two matrices is quasiconvex if
U € W, 2(R?, R?) implies

/Q F(DU)dz > F(A)

By Jensen’s inequality, convex functions have this property and if the target space
of U has dimension one, the set of quasiconvex functions, reduces itself to the set
of convex functions [67]. However, if both the domain and the target space have
dimension greater than one, there exist quasiconvex functions which are not convex.
The compensated compactness developed by Murat and Tartar [66], [54] is the
natural mathematical tool to find bounds on homogenized coefficients by using the
existence of these functions. Due to its elegance, simplicity and generality, the
method has been a tremendous source of stimulus and results in material sciences,
optimal design and their connections to certain branches of the calculus of variations.
The task to give a list of these results and connections will not be attempted here.
We refer to the book of G. W. Milton which includes a very detailed and inspired
overview [51] (see also [70]).

Unfortunately, in its general form, the compensated compactness method faces
another difficulty, namely that very little is known about the set of quasiconvex
functions. In practice, in two dimensional conductivity, all the bounds obtained with
this approach select only the determinant (or not relevant modifications of it) in the
(unknown) class of all quasiconvex functions and use it as efficiently as possible. This
is what we will call the conventional translation method. Use of different quasiconvex
functions (unconventional translation method) is in principle possible but, at present,
no other efficient candidates are available, at least in dimension two.



Here, a crucial point is that the bound obtained using the conventional
translation method can be seen to be equivalent to the bound that one obtains from
(1.9) after inserting the trivial field first and then optimizing over A\. The question
of improving upon this choice when the latter is not optimal is an important and
interesting one. This issue motivates the results of Section 7 in this paper. Theorem
7.1 provides a more detailed formulation than Theorem B.

Indeed, Theorem 7.1, in conjunction with Corollary 7.1, states that, under a mild
condition on the matrix A, the class of relevant test fields in (1.9) can be restricted
to a narrow subset of the classical space Wﬁl,f, namely the space of quasiconformal
mappings which have dilation bounded by a certain constant depending only on K
and A. (For the precise statement see Section 6).

Let us emphasize that Theorem B is the “periodic” version of a result of K.
Astala and M. Miettinen ([7], Proposition 2.1). The fundamental advantage of the
new version relies in the quasiconformality of the minimizers outlined in the previous
observation. Such property is not known for minimizers of the variational principle
of Astala and Miettinen. (The precise definition of quasiconformality can be found
in §1.3).

An example in which a non affine (but quasiconformal) test field in the above
class delivers optimal bounds can be found in [57]. Corollary 7.1 in Section 7
shows that the latter has a quite general character: under an assumption on A,
but no further assumptions on ¢, the minimizer in (1.9) is quasiconformal even if
the microgeometry is not optimal for the G-closure problem. Moreover one also
has an a priori bound on the dilatation of this quasiconformal map which, again,
depends only upon K and A.

The reason why one can make an efficient use of this information, as observed
in [57], is a celebrated result by K. Astala [5], [6] later refined by Eremenko and
Hamilton [22], which allows for a very good control of the so-called area distortion
of quasiconformal mappings.

Let us now stress the qualitative difference between Theorem B and Theorem C,
assuming that (1.14) holds. The variational principle (1.16) is rather unconventional.
By (1.12), the set m(0hom,dm) is non empty and correspondingly, as proved in
Lemma 7.4, for any matrix A € m(0hom,dm), the functional space W (g, dy,, A) is
also non empty.

Next we note that, for fixed A, the quadratic form associated to the variational
principle (1.9) is bounded above and below by positive constants depending on .



Therefore, for fixed A, the corresponding functional is strictly convex. However as
A — d,, the quadratic form degenerates: its maximum eigenvalue diverges. In
fact, one can check that this happens (almost everywhere) in the set @y, which, by
assumption, has positive measure. In contrast, the quadratic form associated with
(1.16) is bounded above and below (uniformly with respect to z).

Therefore Theorem C achieves the following tasks. It effectively shows that
the limit (in the variational sense) as A — d;, of the family of functionals given
by Theorem B exists and it computes it. At the same time, it shows that,
despite the degeneracy mentioned before, the limit is a quadratic form which is
uniformly bounded above and below. Its explicit form depends on position in an
unconventional but instructive way. An attempt to fully exploit this new formula
will be the subject of future work.

We emphasize the fact that Theorem C uses the full strength of property (1.7)
of periodic o-harmonic mappings.

Theorem C is proven in Section 7 and is complemented by Corollary 7.2, which
treats the extremal cases | @, |= 0, 1 not comprised in the assumption (1.14).
We hope that these results may provide a useful tool for bounding the effective
conductivity. Let us describe some of the examples which are covered by Theorem
C and Corollary 7.2 in order to put our work into context.

Assume that o is not isotropic in the sense that there exists a set of positive
measure where the two eigenvalues, (called the principal conductivities) of o are
distinct.

This category of examples includes the following well studied cases.

First: the single-phase polycrystal problem.

Here the only data is K > 1. The conductivity has the form
RT(z)diag{K, K~!)R(z) where z — R(z) is a measurable field of matrices in SO(2)
(which is called a rotation of the original crystal). Obviously vVdeto =1 at almost
every point, hence d,, =1 and | @,, |= 1. Therefore one needs Corollary 7.2 rather
than Theorem C. The corresponding classical literature includes [34], [21] and [48]
and it is based on the idea of duality. In the language we will introduce later in this
section, these are the first papers in the field of composites where the idea of stream
function shows its power. In this case Corollary 7.2 reproduces the known results and
it adds an extra information. Indeed, under a condition on A, the minimizer of the
corresponding variational principle is a K-quasiconformal mapping with dilatation
constantly equal to K.



Second: two-phase polycrystal problem.

Here the data are two crystals, i.e. two constant diagonal and positive matrices
o, and oy, (giving the conductivity of the pair of given crystals). To distinguish this
example from the first we assume det o, # det o,

The conductivity has the form o(z) = R (z)(0aXs +0sXs) R(z), where z — R(z)
is a measurable field of matrices in SO(2) and x, and x, are characteristic functions
summing up to one. Phase a is characterized as the set where the principal
conductivities of o and those of g, are the same.

If the volume fraction of each phase is not prescribed, the problem is simpler
but non trivial. Its study was initiated in [45] and completed later by Francfort
and Murat [25] in an interesting paper which, unfortunately, has not been fully
appreciated.

Several papers deal with examples using various form of duality including [36],
[61] and [62]. Some other work partly focusing on the case with prescribed volume
fraction, uses duality in conjunction with more complex arguments [24], [31] and
[55] (section 7.3). More recently, quasiconformal mapping are having an increasing
impact on the two-phase polycrystalline problem, [57], [7] and [53].

For the case of prescribed volume fraction, Theorem C gives several extensions
of results that one can prove by duality. For instance it imposes the following very
constrained behavior: the (quasiconformal) minimizer of (1.16) has constant and
prescribed dilation in the “weakest phase” (i.e. the phase where det o is smaller).

Moreover, still in this category of examples, there are some cases in which
Theorem C implies that the minimizer cannot be the trivial field, hence showing, in
a very direct way, the lack of optimality of bounds obtained using the conventional
translation method.

In Section 8 we discuss on further applications to homogenization of our results.
The first is a partial solution to a conjecture made by G. W. Milton [50]. These
are statements about higher integrability the gradient of o-harmonic functions. The
higher integrability for planar quasiconformal mapping dates back to the work of
Bojarski [14], see also [12] and [11]. It was later extended to o-harmonic functions
in any dimension in the work of N. Meyers, [65]. Gehring established higher
integrability for quasiconformal mappings in any dimensions [27]. However these
approaches did not give a precise evaluation of the best ezponent. Gehring and
Milton made conjectures about the best exponent in any dimension for the case of
quasiconformal mappings and o-harmonic functions respectively. Milton made an
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even more challenging conjecture about integrability of a precise power of | Vu |~}
for o-harmonic mappings.

Gehring’s conjecture was proved for dimension two, by Astala [5] in a
fundamental advance. Using this result Leonetti and Nesi [42] proved Milton’s
conjecture in dimensions two. However the result for | Vu |~! depends very strongly
on boundary conditions and in [42], the authors were only able to treat Dirichlet
and Neumann boundary conditions making very heavy use of results by Alessandrini
and Magnanini, [2]. In Theorem 8.1, we extend the result to periodic o-harmonic
mappings which are the most interesting from the point of view of applications to
homogenization.

We also prove in Proposition 8.1, that o-harmonic mappings satisfy the change
of variable formula and we give some example in this direction.

We summarize this subsection with an observation. Some recent advances
obtained in two dimensional G-closure problems, have been obtained by two
apparently distinct arguments. The first [56], was based on work by Bauman, Marini
and Nesi {9], exploiting the properties of positivity of the Jacobian determinant of
o-harmonic mappings with affine boundary data. The second, [57], was based on
work by K. Astala [5] (later refined in [22]) on quasiconformal mappings. In this
paper, we show that these two contributions are very tightly linked by a number of
structural properties.

1.2 Univalence

Let us now put into context Theorem A above. The ancestor of such a result is
a Theorem due to Radé [60] (see proofs by Kneser [35] and Choquet [17]) which
states that if U is a harmonic mapping (that is o-harmonic with o = I) on a disk B,
whose boundary data & = Ulgp form a homeomorphism of B onto a closed convez
curve I, then U is univalent. As a consequence of a result by H. Lewy [43], one also
obtains that the Jacobian determinant of U is nonvanishing inside B.

We refer to the survey by Duren, [20] about developments on the study of
univalent harmonic mappings in the plane. Let us also quote the recent interesting
counterexamples by Melas [47] and by Laugesen [46] to the extension of Radd’s
Theorem to higher dimensions.

Let us mention also generalizations to harmonic mappings between certain
Riemannian two-dimensional manifolds, Schoen and Yau [63], Jost [33], and
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to mappings whose components are solutions to quasilinear degenerate elliptic
equations of the type of the p-laplacian, Alessandrini and Sigalotti [4].

But, here, we are especially interested at the generalization of Radé’s Theorem to
o-harmonic mappings. A result in this direction has been proven by Bauman, Marini
and Nesi [9] for the case of a smooth conductivity o, and was already applied to
issues of homogenization. In Theorem 2.1 we give a proof to the part (i) of Theorem
A, that is of the univalence of the periodic o-harmonic mapping U4 solving the
problem (1.5). To the best of our knowledge, this is the first available result of
univalence in the periodic setting, also in the case of a smooth ¢. Our approach is
based on the analysis of the structure of the level lines of the o-harmonic functions
obtained by linear combinations of the components of U4 . This analysis relies on
arguments and concepts introduced in Alessandrini and Magnanini [2] which enable
to treat, in a generalized sense, critical points of a o-harmonic function v and develop
a corresponding index calculus also when the conductivity ¢ is discontinuous and
the gradient Vu is not defined in a pointwise sense. We review these concepts
at the beginning of Section 2. Moreover, as a by-product of this approach, we also
obtain a generalization of Rad4’s Theorem to g-harmonic mappings with nonsmooth
o, Theorem 2.3, and some results on necessary and sufficient conditions for local
univalence of o-harmonic mappings, Theorem 2.2.

Part (ii) of Theorem A, namely (1.7), requires a different analysis. In fact, once
univalence is proven, it can be seen rather easily, for instance by a regularization
argument , that U4 satisfies

detDUA > 0 almost everywhere

see also, for an alternative derivation, Remark 2.3 below. It seems less trivial to
show that, for a locally univalent c-harmonic mapping U, detDU is non vanishing
almost everywhere. The main subject of Section 3 is in proving that indeed, for
any such U, log(detDU) is locally a BMO function, see Theorem 3.1. This, as
is well-known from the theory of Muckenhoupt weights (see for instance Garcia -
Cuerva and Rubio de Francia [26]), implies that, locally, for some small ¢ > 0,
(detDU) ™ is integrable. The main tools that we use for the proof of Theorem 3.1
are a reverse Holder inequality for nonnegative solutions of the adjoint equation for a
nondivergence elliptic operator due to Bauman {8}, later refined by Fabes and Strook
[23], see Theorem 3.4, and the results by Reimann [60] about the transformation rules
of the space BMO under quasiconformal mappings, see Theorems 3.2, 3.3. In fact
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we shall show that, modulo a suitably chosen quasiconformal change of coordinates,
detDU is the solution of an adjoint equation for a nondivergence elliptic operator.
Hence, from the above mentioned results by Bauman-Fabes-Strook and Reimann,
it will turn out that, independently of the quasiconformal change of coordinates,
log(detDU) locally belongs to BMO.

1.3 Connections with quasiregular mappings

We recall that, given f € W2(Q, R?), the dilatation quotient for f is defined for
almost every z € Q as
maxjgj=1 |0¢ f (z)]

ming= |0 f(z)]
where O denotes directional derivative in the direction &, and that, for a given

K >1, f € Wl2(Q, R?) is said to be a (sense preserving) K-quasiregular mapping
if

Df(x) = (1.18)

Di(z) < K, and detDf > 0, for almost every z € (), (1.19)

where Df denotes the jacobian matrix of f. A mapping f will be said K-
quasiconformal if in addition it is injective. We also recall that equivalent conditions
to (1.19) are given by

tr(DfDfT) < (K + K ')detDf almost everywhere in (2, (1.20)

or else
Ifz| < | f.| almost everywhere in Q, (1.21)

where the standard 1dent1ﬁcat10n z = x; + ixy is used. See, as a basic reference for
quasiregular mappings in the plane, Lehto and Virtanen [41].
The connections between o-harmonic and quasiregular mappings are many-sided.
First of all, the components u; and u; of a o-harmonic mapping U are also the
components of quasiregular mappings. In fact, to each o-harmonic function v ( that
is a solution to (1.1)) we can associate in a natural fashion, which generalizes the
harmonic conjugation, a new function, the so-called stream function 4, which is a
solution to the dual equation
div (:=Vi) =0 in £,

deto
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and which is such that the mapping f = u + & turns out to be K-quasiregular.
These facts, which can be traced back to the functional analytic approach for two-
dimensional elliptic equations due to Bers and Nirenberg [12] (see also Bers, John
and Schechter [11] Chapter I1.6, and Vekua [69]), have been the starting point for
the geometric study of o-harmonic functions in [2], see also the discussion at the
beginning of Section 2.

Second, we stress the well-known fact that quasiregular mappings are indeed
o-harmonic for some suitable o. In fact by the Ahlfors-Bers representation [1], any
quasiregular mapping f can be written as

f=Fox

where F' is holomorphic and x is quasiconformal. Being the components of F
harmonic, we obtain that the components of f are o-harmonic where o can be
chosen as follows

T ) -1
o(z) = { det Dx(Dx*Dx)™* if detDx #0 ,

if detDx=0 . (1.22)

Notice that o € L=(Q}, M%) where K is the supremum of the dilatation of f (which
is the same as the one of x) and also that deto = 1 everywhere.

Another type of connection between o-harmonic and quasiregular mappings
emerges from Theorem 3.1, which we illustrated before, since o-harmonic mappings
share with quasiregular mappings the property log(detDU) € BMO .

It might seem spontaneous, then, to wonder whether locally univalent o-
harmonic mappings are indeed quasiregular. On a crude level, one could say that the
answer is definitely negative, as it can be seen by the univalent harmonic mapping

1
U(z) = (x1+§($f—$§) : 962—901952) , 21+ <1,

whose dilatation quotient is given by

1+ (2} +23)"/2
1— (22 + 22)1/2

DU (.’ZJ) =

which blows up as (z2 + 22)'/2 — 1, see [20]. What we see, in this example, is that
the harmonic mapping U is not quasiregular on the whole unit disk, the domain on
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which it is univalent, but it is such on any of its compact subdomains. Therefore, a
more refined way of posing the question is whether, for a given conductivity o, locally
univalent o-harmonic mappings are locally quasiregular. This question is the object
of Sections 4 and 5. We wish to stress that, at least at present, this investigation
is not specifically related to applications to homogenization. However we believe
that it can be of some independent interest, and might present stimulating open
problems.

The first significant result in this direction (see, for details, Theorem 4.1,
part(iii)) is that if, for a given conductivity o, there exists one locally univalent
o-harmonic mapping which is also locally quasiregular, then every locally univalent
o-harmonic mapping is also locally quasiregular. This fact can be expressed by
saying that, for a univalent o-harmonic mapping U, being locally quasiregular,
is a property that depends on ¢ only and not on the specific mapping U. We
shall denominate X the class of those conductivities o having such a property, see
Definition 4.1.

Next, in Theorem 4.1 part (ii) and Corollary 4.1, we collect a number of necessary
and sufficient conditions to have o € ¥,. A practical sufficient condition is also
found, namely deto € C., see Theorem 4.2.

Explicit examples of conductivities o not belonging to ¥y are found in Examples
5.1, 5.2. We also provide examples of ¢ € X, which can be dramatically
discontinuous, see Example 5.3. It seems to us that an interesting open problem,
which is suggested by these examples, is the study of the structure of £, as a proper
non empty subset of Ux>1L%°(Q, M¥%). In fact, Example 5.3, in partial contrast to
what suggested by Theorem 4.2, shows that £, cannot be characterized only in
terms of regularity properties. In this respect, we refer also to the considerations
developed in Remark 5.3.

A further connection with quasiregular mappings, which we already touched
upon in §1.1, arises from the variational principle (1.9). In fact, the construction of
the minimizer of in (1.9), see Theorem 7.1, suggests in a natural fashion to associate
to each o-harmonic mapping U, a family of mappings ¢y », depending linearly on U
and affinely on the real parameter A. We shall show that, provided that detDU > 0
almost everywhere, then the mapping ¢y, has the remarkable property of being
globally quasiregular for every A > 0, see part i) of Proposition 6.1. This fact will
be crucial in the proof of Theorem C, see also Corollary 7.1. Moreover we prove
interesting properties of univalence of ¢y . Namely, if U is locally univalent and
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sense preserving, so is ¢y for every A > 0 (see part ii) of Proposition 6.1), and if
U = U# is the solution to (1.5) with detA > 0, then @y, is a homeomorphism of
R? onto itself for every A > 0, see Proposition 6.2.

2 Conditions for univalence

The main subject of this Section is the proof of part (i) of Theorem A which we
rephrase as follows.
Theorem 2.1 Let 0 € L°(R?, M) and let A € M. If U4 € W,2(R% R?) is a
o-harmonic mapping, then U4 is a homeomorphism of R? onto itself.
Remark 2.1 The existence and uniqueness up to an additive constant vector field of
such an U# is well-known and can be obtained by standard Hilbert space arguments
(see, e.g. [10]).
Remark 2.2 Theorem 2.1 is adequate for the purpose of the applications to
homogenization given in Sections 6 and 7. It should be noted that it suffices to
prove the statement in the special case when A is the identity matrix I. The general
statement then follows by the observation U4 = AoU” and the fact that if det A # 0,
z — Az is obviously an homeomorphism.

Similarly, the choice of the cell of periodicity @ = (0,1) x (0, 1), made in Theorem
2.1 is not essential. Again the change of coordinates, this time in the independent
variables, by

x—)((l) g)x, € R? (2.1)

with 8 > 0, allows one to recover any admissible cell of periodicity.

Before proceeding to the proof of Theorem 2.1, we need to recall a few facts about
the geometry of solutions of divergence form elliptic equations in two variables (we
shall mainly refer to [2]).

If Q2 is simply connected and u € W.?(Q, R) is a weak solution to

div(cVu) =0 in Q , (2.2)

then there exists, and it is uniquely determined up to an additive constant, a function
@ € WL3(Q, R) such that

Vi=JoVu ae z€ (2.3)
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where
0 -1
=(14")

Such a function is called the stream function associated to u, and we have, in the
weak sense
div(zZ=Va) =0 in

det o
With the usual identification between R? and C we set

f=u+it , z=x1+1iz2 . (2.4)

Then we have B
f: =uf, +vf, ae in 9 (2.5)

where the coefficients v, u € L>(§2) only depend (explicitly) on o and satisfy
v |+|pl<EF <1 ae in Q
More details can be found in [2]. In particular, for any domain D CC ,

feWY(D,C) and | fz|< %55 |f.| ae in D . (2.6)

By definition, any f satisfving (2.6) is said a K-quasiregular mapping. It is well
known that on any compact subset of 2, f has the representation

f=Fox (2.7)

where x is K-quasiconformal and F' is holomorphic, (see for instance [12] and [41]).
Consequently, letting A = RF, h = SF, we obtain the representations

u=hoy , G=hoyx . (2.8)

Notice that we also obtain that the notion of stream function is invariant under
quasiconformal changes of coordinates. That is, if u solves (2.2) and x : @ — R? is
a quasiconformal mapping, then, clearly, v = u o x~! is a solution to

div(tVv) =0 in G=x(Q) , (2.9)
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where 7 = T} 0 is defined by

DxoDxT _ . —
Tyo = ZE&F-ox' . (2.10)
We note that the stream function ¥ associated to v via (2.9) is given by ¥ = oy~ L.

Let us recall that by convention, the Jacobian matrix of a mapping x = (¢, ) is
defined by

_ ( Gz QO
Dy ( 8. B, ) ; (2.11)
Returning now to (2.8), we shall say that zy € Q is a geometric critical point if
Vh(x(z0)) = 0.
We observe that geometric critical points are isolated and furthermore that, in
a small neighborhood of any geometric critical point zp, the level set {u = u(z)}
is composed by I + 1 simple arcs whose pairwise intersection consists of {z} only.
Here I = I(zp,u) is the positive integer given by the multiplicity of the zero of 8,h
at the point x(2p). Such a number is called the geometric indez of u at z;. Now let
D cc , be an open set such that 8D contains no geometric critical points. We
denote by I(D, ) the sum of the geometric indices of the geometric critical points
2z, of u within D. Observe, in particular, that, when » is smooth and 8D is piecewise
regular, the index I(D,u) can be computed by the following contour integral

I(D,u) = —5= [5p d(argVu) . (2.12)

The following stability result for the geometric index will be used in the sequel.
Lemma 2.1 Let {o,} C L®(Q, M%) and let u,, € W.L2(Q, R) be weak solutions
to

div(c;mVuy) =0 in Q (2.13)

such that u, — u in W2(Q) where u is a non constant solution to (2.2). Given
any D CC (2 such that dD contains no geometric critical points of u, then, for m
sufficiently large, 0D contains no geometric critical points of u,, and we have

limy, 00 I(D, uy,) = I(D,u) . (2.14)

Proof. See Proposition 2.6 in [2]. O
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Lemma 2.1 will be used in conjunction with the following regularization
argument.
Lemma 2.2 Let 0 € LP(R2, M), let A € My and let U € Wii?(R?, R?) be the
o-harmonic mapping such that U € W,s(R%, R?) and U(0) = 0. There exists a
sequence {op} C Li°(R?, M*)NC*®(R?, M®) such that o, — o in Lf, (R?, M?) for
every p < oo and almost everywhere. Setting U,, to be the o,,-harmonic mapping
with Uy, € W, a(R?, R?) and Up,(0) = 0, we have Un, — U in Wii?(R?, R?).
Proof It follows the standard procedure of constructing regularized solutions by
first mollifying the coeflicients. O

We shall also repeatedly make use of the following simple fact.
Lemma 2.3 Let o € L®(Q, M%) and let u € W,22(Q, R) be o-harmonic. If z° € Q
is not a geometric critical point of u, then there exists a neighborhood D C Q of
z° on which the level lines {u = t} of u are simple arcs and 4 is strictly monotone
along them.
Proof If z° is not a geometric critical point, then in the representation (2.7) we
have F'(x(x%)) # 0, therefore F' is locally invertible and hence near z°, f is a
quasiconformal homeomorphism. Consequently, near f(z°) we have

wofl=x , wofl=x, .0

The proof of Theorem 2.1, given below, will require the following three propositions
in which the following conventions will be used. Given u; and uy solutions to (2.2),
we will fix their stream functions 1, Uy by prescribing 4; (0) = 4(0) = 0 and we set
U = (i, 4,). For any fixed £ € R? with | £ |= 1, we set

u= () =Gu+&us , G=0)=bih+&by, , f=u+id . (2.15)

Clearly, u, 4 and f depend on £ but we will not keep track of this dependence in
the notation. We stress here that for any choice of £ the vector u defined in (2.15)
is also a solution to (2.2) in R? and @ is its associated stream function. Hence f is
K-quasiregular on C.

Proposition 2.1 Let  be a connected open set in R?, let ¢ € L®(Q, M%) and
U € W,22(Q, R?) be o-harmonic. If for every &, | £ |= 1, f is univalent , then U is
univalent.

Proof Suppose by contradiction that there exist distinct points z!, 22 € Q such that

U(z') = U(x?). Then, for each &, u(z') = u(z?). Hence one can find ¢ such that
E1( (') — U1(2?)) + & (Tia(zt) — U2(2?) =0
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For this choice of £, f is manifestly not injective. O

Proposition 2.2 Let the hypotheses of Theorem 2.1 be satisfied and let u be defined
by (2.15). For every &, | £ |= 1, u has no geometric critical points in B2,

Proof In view of Lemma 2.1 and Lemma 2.2, there is no loss of generality in
assuming, in addition, that o has C* entries. By elliptic regularity theory, this
implies that u is smooth. For r > 0, we set @, = (—r,7) x (—r,7). By assumption
each component of Vu — £ is periodic and therefore so is each component of Vu
since & is constant. Now, since u is not identically constant, it has finitely many
critical points in, say, Q3. Hence, we may find z = (%3, 2») with #3, % € (0,1) such
that u has no critical points on the line segments

lvE{iL'l—_—.'fl , I.’E2|<3} y lhE{SEQI.’fz s !1?1|<3} ‘
By periodicity, » has no critical points also on the translated segments
liz{xlzilﬂ:Z , |.’L‘2|<3} , lhE{.’L'z:i'g:l:Q ) |$1|<3} ]

Setting

Qo(Z) = {(z1,22) | |21 —Z1|<2 , [22—%2|< 2}
we have that 0Q2(Z) is contained in the union of the translate segments above and
moreover, denoting the horizontal sides of 8Q»(Z) by st and the vertical one by s%.,
the periodicity implies

Jo»  dargVu = fs'l dargVu ; [ dargVu= f”i dargVu
Hence taking into accounts the orientation of 0Q2(Z), we readily obtain
1(Q2(z),u) = —5 Joga(zy dargVu =0

Therefore, according to (2.12) » has no critical points inside Q2(Z). By periodicity,
it has no critical points at all. O
Proposition 2.3 Let the hypotheses of Theorem 2.1 be satisfied and let f be defined
by (2.15). Then for every &, | £ |=1, f is univalent.

The proof of Proposition 2.3 requires the following Lemma.
Lemma 2.4 Let L > 0 and let G be an open set contained in the strip
{xr € R?| |zo|< L}. Let

u € ﬂR>0W1’2(G N Bg; R)
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be a weak solution of the Dirichlet problem

div(cVu) =0 in G
u=0 on O0G

where 0 € L®(Q, M¥%). If M =|| © ||po(g)< 00, then u = 0.
Proof of Lemma 2.4 For any fixed R > 0, let us set

1 when lzy| <R
n(z1) = @%ﬂl when R< |z;| <2R
0 when 2R < |z |

Using ¢(z) = n2(z)u(z) € Wy(G) as a test function in the weak formulation of
(2.12), we are led to the Caccioppoli inequality

2 < 2
/G (0Vu, Vuyy? < 4 /G (Vn, Vn)u
which implies

(0Vu, Vu) < 4 T2 < SLMzK% 0 as R— oo

/G'n{|z'1|<R} GN{R<|z1|<2R} R?

Hence | Vu |= 0 and, consequently v = 0. O
Proof of Proposition 2.3. By Proposition 2.2, the level lines of u are composed
by pairwise disjoint simple arcs, having limit points at infinity only. Let us show
that each level line {u =t} is connected.

By standard local boundedness estimates (see for instance [30]) and by the
periodicity of u — (€,z), we have that, for any L > 0, there exists M > 0 such
that on any strip

Srr={z€R® | r—=L<(,z)<r+L} , reR ,

we have
lu— (&) <M

In particular, we have

u(z) = oo uniformly as (£,z) — +oo ,
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respectively. Moreover, there exists L > 0 such that, for every ¢t € R, the level line
{u = t} is contained in the strip S; ;, and also

u>1t when (£,z)>t+L
u<t when (£,z)<t+L

The proof will be completed once we have shown that every level line {u = t} is
connected. In fact by Lemma 2.3, we obtain that % is strictly monotone on such
level lines. Suppose, by contradiction, that the level line {u = ¢} were disconnected.
Then either {u > t} or {u < t} would be disconnected and it would have at least one
component, say G, contained in S; ;. Up to a rigid transformation of coordinates we
can apply Lemma 2.4 to u — ¢t in G and obtain v =t in G. This is a contradiction
because, in &, we have either u >t oru < t¢. O

Proof of Theorem 2.1 We set A to be the identity. The general case follows by
Remark 2.1. Propositions 2.3 and 2.1 imply that U is univalent. For the sake of
completeness, we provide an elementary self-contained proof of the ontoness of U/
and of the continuity of U~!. Let us begin by proving that U is onto. The arguments
used in the proof of Proposition 2.3 show that there exists L > 0 such that any level
line of u; is contained in some vertical strip of width 2L. Similarly any level line of
U is contained in some horizontal strip of the same width. Moreover

ui(z1, T2) = foo uniformly as z; - too i=1,2
Therefore for every t € R,

inf up=—-00 , sup us=+00 .
{u1=t} {u1=t}

Hence, by continuity, uz|{u,~¢ attains to every real value and therefore U maps R?
onto itself. Next we prove that U~! is continuous. Fix an arbitrary convergent
sequence y™ — y° in R? and set 2° = U~!(y%),z" = U~ (y"). We need to show that
z™ — z°. Suppose, by contradiction that, up to subsequences

either z" -z € R? , z! #£2°

or | 2" |— oo

In the first case,

U(z') = lim U(z") = lim y" = y° = U(z?)

n—co n—roo
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and the univalence would be violated. In the second case, since U — x is periodic
and bounded, we would have

0f_ 1 no|__ : ny |__
| 9" |= lim |y" |=| lim U(z") |= 400 .

This is also a contradiction. O

Remark 2.3 Observe that if U is o-harmonic and locally one-to-one on a connected
open set {1, then it is either preserving or reversing the orientation. In the sequel
it will be convenient to assume that U is orientation preserving. This property can
always be achieved, up to replacing uy with —u;. Notice also that a possible way
of interpreting such an orientation character is in terms of the monotonicity of us
along the level lines {u; = const.}. Namely, if, locally, us is non-decreasing in the
i;-direction, then U is orientation preserving. If, else, us is non-increasing in the ;-
direction, then U is orientation reversing. Let us now take U orientation preserving,
£ = e; and form locally w = ugo f~! where f = (uy,%;). For every u;, w = w(uy, %)
is a non-decreasing function of 4, that is

%20 for a.e. (ul;ﬁl) .

Now, being f~! locally defined as a quasiconformal mapping, by the chain rule and
the null set invariance property

ow _ 1
8111 (’U,l (.’L'), Uy (.’E)) = Wf(m’) det DU(.’L‘)

for a. e. z € ). Therefore
det DU(z) > 0 for ae z€ . (2.16)

Theorem 3.1 in the next Section sharpens the above bound by showing, in particular,
that the strict inequality holds almost everywhere in (2.16).

We give now two further results concerning univalence. The first one, Theorem
2.2, gives a localized interpretation of the results discussed above. We emphasize the
fact that Theorem 2.2 below, while providing necessary and sufficient conditions for
the local injectivity of a o-harmonic mapping U, shows a curious parallelism with
the standard inverse mapping theorem for differentiable mappings.

Theorem 2.2. Let 2 C R? be a connected open set. Let ¢ € L%®(Q, M%) and let
U € W2(Q, R?) be a o-harmonic mapping. We adopt the conventions established
by (2.15). The following properties are equivalent.
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(i) » has no geometric critical points for every &, | £ |=1,
(ii) f is locally one-to-one for every &, | £ |= 1,
(ii1) U is locally one-to-one,
(iv) U is locally one-to-one;
Proof of (i) = (ii) Suppose that for a given &, u has no geometric critical points,
then locally f = F oy where x is quasiconformal and F' is holomorphic with F”’ # 0.
Thus f is locally one-to-one.
Proof of (ii) = (iii) This is given by Proposition 2.2.
Proof of (iii) = (i) Up to replacing U with RU, with R a suitable constant
orthogonal matrix, we may assume without loss of generality that £ = e; = (1,0).
Suppose, by contradiction, that u = wu; possesses a geometric critical point z°.
Without loss of generality we can also assume z° = u;(z°) = 0. In a neighborhood
of g = 0, the level line {u; = 0} is composed by 2(I + 1) simple arcs departing from
zp = 0, with I > 0. On each such arcs, us is continuous and strictly monotone, either
decreasing or increasing. We can select at least two of the above arcs, say # and
%, on which u, has the same type of monotonicity (say increasing) in the direction
exiting from zp = 0. Consequently, us is not one-to-one on § U v, so contradicting
the local injectivity of U.
Proof of (ii) < (iv) Replacement of U by U, leads to replacement of f by —if.
Therefore, the equivalence [(iii) < (i)] implies [(ii) < (iv)]. O

The final theorem in this section provides an extension of the Radé Theorem
(see [59], [35] and [17]) to o-harmonic mappings.
Theorem 2.3 Let Q C R? be a bounded simply connected open set, whose boundary
00 is a simple closed curve. Let ® = (¢1, ¢2), ® : Q2 — R? be a homeomorphism of
0 onto a convex closed curve I" and let D be the bounded convex domain bounded
by I

Let 0 € L®(Q, M%) and let U € W.12(Q, R?) N C(Q, R?) be the o-harmonic
mapping whose components are the solutions of the Dirichlet problems

div(cVu;) =0 in Q
u; = @; on 002 , i=1,2

Then U is a homeomorphism of Q onto D.

Proof The proof follows the scheme initiated by Kneser ([35], see also [20]) for the
case of harmonic mappings, and developed in [9] for o-harmonic mappings with
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smooth ¢. There is only one step which requires a new argument and it concerns
the local univalence of U. We focus on this and omit the rest of the proof.

In view of Theorem 2.2, it suffices to show that, for every &, | € |= 1, u = (£, U)
has no geometric critical points.

Setting ¢ = (£, &), we have that u solves

div(cVu) =0 in Q
u=4¢ on 0N

By the convexity of I', for every &, | £ |= 1, ¢ is unimodal on 99, that is Q) may
be split into two simple arcs on which ¢ is, alternatively, increasing and decreasing.
By Theorem 2.7 in [7] (see also [4], Theorem 2.3 and Corollary 2.6) we have that
the unimodality of ¢ implies that » has no geometric critical points in Q. O

3 The Jacobian of a o-harmonic mapping and
BMO

The main subject of this Section is the proof of part (ii) of Theorem A. This will
follow by Theorem 3.1 as explained in Remark 3.1.
We recall that ¢ € L], (R?) belongs to BMO(R?) if

loc

1
||¢l|*—sg£2<m/Ql¢—¢Q |)<OO

where Q is any square in R? and ¢g = I%I Jo ¢- Given an open set D C R?, BMO(D)
is defined as the space of functions ¢ € L} (D) such that, when extended to zero
outside D, belong to BMO(R?) and the norm || ¢ ||, is defined accordingly. We also
recall that (BMO(D), || - ||«) is a Banach space. The main object of this section is
the following.

Theorem 3.1 Let U € W,-2(Q, R?) be a o-harmonic mapping with o € L*(Q, M%)
which is locally one-to-one and sense preserving. For every D CC €2 we have

log(det DU) € BMO(D) . (3.1)

The proof of Theorem 3.1 needs a few preparatory results. It will presented at the
end of this Section.
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Remark 3.1 It is well known from the theory of Muckenhoupt weights ([19] and
[26]) that, for a nonnegative function w, logw € BMO(R?) if and only if there exists
€ > 0 and C > 0 such that w® € A?(R?) that is

(I%I lo we) (ﬁ Jo w“e) <C , (3.2)

for every square Q C R?. Therefore, in the hypotheses of Theorem 3.1, for every
D cc Q, there exists €, C > 0 such that

(ﬁ /Q (det DU)f) (I—é_l /Q (det DU)‘E) <C (3.3)

for every square Q C R?. In particular we deduce
det DU >0 ae. in Q (3.4)
and also, setting U4 as defined in Theorem 2.1 with det A # 0, one has
det Adet DUA >0 ae. in R? | (3.5)

which, in conjunction with Theorem 2.1, completes the proof of Theorem A in the
introduction.

We recall below two fundamental results (Theorems 3.2 and 3.3) which will be
needed for a proof of Theorem 3.1.
Theorem 3.2 (Reimann) Let f be a quasiconformal mapping on the open set
D C R?, then for every D' CC D

logdet Df € BMO(D')

Proof. See [60], Theorem 1 and Remark 2. O
Theorem 3.3 (Reimann) Let f : D — G be a quasiconformal mapping, D, G C R?.
For every D' CC D, there exists C > 0 such that

vofll<C vl for every veBMO(F(D')

Proof. See [60], Theorem 4. O
The next theorem requires the notion of adjoint equation for a nondivergence
elliptic operator. Let G C R? be an open set. Let {a;;} € L*(G, M%) and set

— T2 9%
L=3%=1% 505,
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We say that v € LL (G) is a weak solution of the adjoint equation
[*v=0 in G (3.6)
if
JovLu=0 for every ue W*(G)
Theorem 3.4 (Bauman-Fabes-Strook). For every w € L (G), w > 0, which is a
weak solution of the adjoint equation (3.6) we have

1
(L/w2)2<CL/w (3.7)
| Q1 /e T 1Ql/e '

for every square ) such that 2¢) C G. Here C' > 0 only depends on K, the ellipticity
of {a”}
Proof This Theorem is a slight adaptation between [8], Theorem 3.3 and [23],
Theorem 2.1. A proof is readily obtained by following the arguments in {23]. The
only additional ingredient which is needed here, is the observation that, with no
need of any smoothness assumption on the coefficients of L, for the special case
when the dimension is two (which is of interest here), for any ball B C G and any
f € L?(B) there exists and it is unique, the strong solution

u € W*(B) N W,*(B)

to the Dirichlet problem

Lu=f in B,

u=0 on 0B,
see [64], Theorem 3. O
Proof of Theorem 3.1 (Preparation) Let U = (u;, us) satisfy the hypotheses of
Theorem 3.1 and let

[ =w +ii (3.8)

be the quasiregular mapping introduced in the previous section via (2.2)-(2.4). In
view of Theorem 2.2, for every = € €2, we can find a neighborhood D of z, D CC Q
such that Ulp and f|p (i.e. the restrictions of U and f to D) are univalent.
Therefore, for the proof of Theorem 3.1, it suffices to show that (3.1) holds for
any sufficiently small D CC Q, such that U|p and f|p are univalent. We set

G = flp(D)

27



and v : G = R? given by
V=Ulpo(flp)™ (3.9)

where, by definition (f|p)~! : G — D. From now on, with a slight abuse of notation,
we will drop the subscripts denoting restrictions to D. We have DU = (DV o f)Df,

and hence
log(det DU) = log(det DV') o f + log(det Df) . (3.10)

In view of Theorems 3.2 and 3.3, the thesis will be proved as soon as we show that
log(det DV') belongs to BMO on compact subsets of G. The advantage in replacing
U by V', lies in the observation that, in contrast with det DU, det DV satisfies an
equation of the type (3.6) for a suitable choice of the operator L*.

In fact, letting v; and ©;, be the first component of V' and its stream function
respectively, we can compute

vi(z) = uy 0 f7Hx) = uy 0 (uy + i) N (z) =31 ,

By (z) =y o fH(x) = @y o (ug +it1) M (z) = 22 . (3.11)
Moreover, by definition (see (2.9) and (2.10)),

Vﬁl = JTV’Ul s (312)
where DfoDfT
- _ g -1

Hence, using (3.11) and (3.12)
0 _ 0 -1 T11 Ti2 1
1 o 10 Ti2 Ta2 0 ’
10
T = ( 0 ¢ ) (3.14)

c=detT =det(oco f7!) € L®(G)

that is

where, by construction,
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so that

K?2<c< K? (3.15)
almost everywhere.
Furthermore, by (3.11),
det DV = 22 2d(e))
8:1:2

Consequently, vs satisfies
azl[('“2)z1] ‘52—2[0(1)2%2]=0 weakly in G

Differentiating the equation above with respect to z;, we see that w = det DV is a
distributional solution of

(w)w1$1 + (cw)l‘zmz =0 in G
In other words, w is a weak solution of the adjoint equation
L*w=0 in G (3.16)

where

o 92

oz? + C(’)x%

On use of (3.16) and (3.15) we may now apply Theorem 3.4.
We summarize the resulting statement below.

Proposition 3.5 For every cube () such that 2¢Q) C G, we have

L=

(Wllfq(detDV) )1 <c—/ det DV |,

where C' > 0 only depends on K.

Proof of Theorem 3.1 (Conclusion) A well known characterization of BMO in
terms of the reverse Holder inequality (see e.g. [26] Theorem 2.11 and Corollary
2.18), shows that Proposition 3.5 implies log(det DV) € BMO(G’') for every
G' CC G. Thus, possibly after replacing D with D' = f~1(G’), we have, by (3.10)
and Theorems 3.2 and 3.3 that log(det DU) € BMO(D). O
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4 o¢-harmonic mappings and quasiconformality

We introduce the following class of conductivity matrices o.
Definition 4.1 Let  C R? be a connected open set. We write

o€ Yg

if o € L®(Q, M%) for some K > 1 and, for every z° € , there exists a
neighborhood D, z° € D CC  and a univalent o-harmonic mapping U : D — R?
which is also quasiconformal.
Theorem 4.1 Given o € L*(Q2, M%), the following conditions are equivalent
(i) 0 € Bge
(i) for every z° € £, there exists a neighborhood D, with 2° € D ccC Q, a
quasiconformal mapping x : D — R?, and a mapping ¢ € W'*°(x(D); R?) such
that

T,o =JD¢T on x(D) , (4.1)

where the transformation 7' is defined according to (2.10).

(iii) for every 2’ C 2 and for every locally univalent o-harmonic mapping U : ' —
R?, U is quasiregular on the compact subsets of Q'.

Proof of (i) = (ii) Let us fix 2° € Q and let D, z° e D cCc Q, U : D — R? be
such that U is o-harmonic and quasiconformal. Let G = U(D) and x = U. Let

T="Ty0 (4.2)

(see (2.10)). We obtain u;0x ' =z;, i=1,2 in G and also

div(rV(ujox 1)) =0 in G, i=1,2 (4.3)
weakly. Therefore
div( = ) =0 , div( 712 ) =0 weakly in G . (4.4)
T21 T22

That is there exist functions p,q € WH*(G, R) such that

(Tll)zJ(pm) ; (TIZ)ZJ(QM)
T21 Dz, T22 Gz,
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Hence setting ¢ = (p,q) : G — R?,
T =JD¢" (4.5)

which, in combination with (4.4), gives (4.3).
Proof of (ii) = (iii) Let U : & — R? be o-harmonic, locally univalent and
sense preserving. It suffices to show that for every z° € Q' we can find D,
2 € D cc ¥, such that U|p is quasiconformal. Let D be the neighborhood
appearing in (ii), chosen small enough so that U|p is univalent. We shall show that,
locally, V = U o x~! is quasiconformal.

Given 7 = Ty,0, we have that V is 7-harmonic and, by (4.1) 7 = J D¢*. Let us
continue 7 outside of G, by setting 7 to be the identity and let us define

Tm = Php *¥T

where py, is the usual mollifying kernel and {A,,} is a suitable infinitesimal sequence.
Fixing G' CC G and m sufficiently large

Tm = J(D(phn) * 4))T in G'
Therefore, setting v, ;, ¢ = 1,2 as the weak solution to

div(r Vo) =0 in G
Vi = Vg on 8G”, 1=1,2 y

we also have
Lpvm; =0 in G, i=1,2 ,

where
> (i
Lm = Tmliia o
ij=1 ’8:3,—8:5]-

is the nondivergence elliptic operator associated to 7,,. Consequently, since the
Tm are elliptic uniformly with respect to m, for every G CC G' we obtain ([64],
Theorem 1, Lemma 10)

|| Un,i ”Cl,a(Gll) —+ H Um,i HW2,2(GII)S C || Ui ”lez(G’)S C || V; HW1:2(G)
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where o, C' are independent of m. Hence, at the possible expenses of passing to a
subsequence,

Umi —>v; in CY(G")YNW2ZA(G") as m — o0

and v; € Co%(G) N W2A(@), i = 1,2 are strong solutions to

loc loc

Lv;=0 in G

where ,
L= Ei,j:l(T)ij#amj
In particular, for any G’ CC G, there exists C' > 0 such that
|DV )< C <o in G
and, applying (i) of Theorem 2.2 to V, there exists ¢ > 0 such that
det DV >¢>0 in G

Consequently V is quasiconformal in G’.
Proof of (iii) = (i) It suffices to prove that for every z° € Q, there exists a
neighborhood D, z° € D cC Q and a univalent o-harmonic mapping U : D — RZ.
This existence result may be achieved in several ways. (See [9]). We give a proof
here. Let D CC 2 be a square centered at z°. Up to a dilation, we may assume
that its sides have length one. Let us continue the restriction of o to D periodically.
Theorem 2.1. provides us with the requested univalent o-harmonic mapping U. O
The following corollary of Theorem 4.1 provides some additional equivalent
characterization of ¥,.. We continue the numbering of the statements in Theorem
4.1.
Corollary 4.1 Given o € L®(Q2, M%), o belongs to X if and only if one of the
following two statements holds
(iv) for every z° €  there exists a neighborhood D, z° € D ccC  and two
quasiconformal mappings x, v : D — R? such that

o=J({(Dx)'Dy)T in D
(v)

Z e ch

det o
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Proof of (iv) Algebraic manipulation shows that (iv) is equivalent to (ii) through
the relation ¥ = ¢ o x.
Proof of (v) In view of the equivalence (iii) < (iv) in Theorem 2.2, it suffices to
observe that a o-harmonic mapping U is locally quasiregular if and only if U is such.
O

Unfortunately, the above equivalent characterizations are not very useful in
practice to check whether a given o belongs to ¥.. The next theorem provides
a sufficient condition (which is not necessary as shown in the Examples 5.2, 5.3 of
Section 5, see also Remark 5.2) but it is easier to check.
Theorem 4.2 Let 0 € L*°(Q2, M%). If for every D CC 2, there exists o > 0 such
that det o € C*(D, R) then o € Eg.
Proof Let ' C Q and let U = (uy,uz) : Q' — R? be a o-harmonic, locally univalent
and sense preserving mapping. Let f = u; +14; and let D CC Q' be any subdomain
on which f is univalent. The calculation used to prove Proposition 3.5, shows that
the components v; and vy of V = U o f~! are the weak solutions to

div(rVv;) =0 in G=f(D) , i=1,2

where 7 is given by (3.13). By (3.14)
(10
=10 ¢

c=detT = (deto)o f! .

Therefore — € CP(G, M?) for some § > 0.

Consequently V € CL?(G) (see for instance [30]) and, as already pointed out in
the proof of (ii) = (iii) in Theorem 4.1, we deduce that V is locally quasiregular.
Hence also U = V o f is such and condition (iii) of Theorem 4.1 is satisfied. O
Remark 4.1 The characterizations (ii), (iv) of X, are given in terms of
representations of ¢ which have a non-symmetric structure. This observation
suggests to extend the present results to the case of nonsymmetric matrices o. In
fact the theory of geometric critical points as outlined in Section 2 also applies to the
non-symmetric case (see for instance [3] and consequently one obtains that various
present results (for instance Theorem 2.1, Theorem 2.2 and Theorem 4.1) can be
extended to the nonsymmetric case in straightforward manner. On the other hand,

with
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the generalization of Theorems 3.1 and 4.2 to the nonsymmetric case, do not appear
equally easy and might deserve further investigation.

5 Examples

In this section we shall examine whether certain special conductivities belong to ¥.
Example 5.1 Given K > 1, let us consider the following conductivity defined on
R

0'($ .’E)_ K11 if 122 >0
PEITUKT i zize <0

We shall show that o ¢ T4, by constructing a o-harmonic mapping U = (uy, uz)
which is not quasiconformal near the origin. Introducing polar coordinates (x4, z2) =
(rcosf,rsiné), we set

(5.1)

_ [ rrcosA(5+6)] , -Z<0<0 ,

U1($1,$2) = { P A Sin[)\(g _ 9)] ’ 0<0< z_r , (5'2)
_J resinfu(3+6)] , -§<6<L0

U2($1’$2) - { T”B COS[/JI(% - 9)] 3 0 S 0 S % ’ (53)

where A, u, A and B are positive constants which shall be chosen later on. By (5.2)
and (5.3), we have defined u; and up in the sector —7/4 < 0 < w/4. We extend
them to all of the plane, by the following reflection rules

uy(r,0) = —uy(r, 5 = 0)
{ uy(r,0) = i (r, -5 — 9; ) (5-4)

uy(r,0) = ua(r, 5 — 6) ,
{ up(r,0) = —ua(r,—5 —0) , (5.5)

for every r > 0, 8 € R.
One can verify that U = (uy, us) is o-harmonic on all of the plane provided that
the following transmission conditions are fulfilled:

ui(r, 01) = u(r,07) , t=1,2 r>0 , (5.6)
%%(Ta(ﬁ-) = K%L(T,O_) , 1=12 r>0 -

34



In fact, the corresponding transmission conditions on the remaining angles of
discontinuity of o, are automatically satisfied thanks to the reflection rules (5.4)
and (5.5). Consequently we have that U is o-harmonic if and only if A, 4, A and B
satisfy

cos(A%) = zilsin()\ﬁ) ,
I_(sm(/\f) = Acos(A}) (5.7)
sin(uf) = Boos(p})

Kcos(uf) = +Bsin(ul)
A solution of (5.7) is found by choosing A = B = K and A, p such that

0<A<l<u<?2 |
tan(3) = & : (5.8)
tan(Ef) = K :

With the choices (5.8), we compute

tr(DUDUT)
det DU

Thus, we have shown that U is not quasiregular near the origin. Let us now prove
that U is univalent in the unit ball Bg(0), for any R > 0. In view of Theorem 2.3,
it suffices to verify that the curve ® : 8Br — R? given by the restriction of U to
O0Bp is a simple closed convex curve.

This verification can be performed by direct calculations, or else, it can be
obtained, in a more general framework, by the arguments which shall be introduced
in Proposition 5.1 later in this section.

Remark 5.1 Given o as in (5.1), in view of (iii) of Theorem 4.1, if ¢/ = ¢ in a
neighborhood of the origin, then o' ¢ .

In particular, we have that a periodic conductivity oy not belonging to ¥, is
readily constructed by imposing oy(z1, 2) = (21, z2) when | 21 |< 1/2, |22 |< 1/2
and continuing it periodically on the rest of R2.

Example 5.2 We consider here the family of conductivities o of the form

o(z1,72) = ¥(O)1

> const.r* # — 400 as r — 0t .

where v € L*(0,27), K™! < v < K and we analyze the necessary and sufficient
condition on 7 to have o € ¥y near the origin.
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Proposition 5.1 Let 0 = Xy < A; < Ay < --- be the eigenvalues, repeated according
to multiplicities of the periodic Sturm-Liouville problem

(v¢') + Ay¢p =0 , 0€(0,2m) ,
o(0%) = ¢(2r7) (5.9)
L (79)(0F) = (v¢')(2n7)

The conductivity o = y(0)] € Ly near the origin, if and only if

)\1 - )\2 -
Proof Let ¢, ¢1, - - -, be a complete sequence of eigenfunctions corresponding to the
eigenvalues A\g < Ay < Ay < ---. We recall that, for the periodic eigenvalue problem

(5.9), we have that A\g = 0 is a simple eigenvalue and that the multiplicity of the
remaining eigenvalues is at most two, see [18] (Chapter 8, Theorem 3.1). Therefore
we have 0 = Xy < A\; < A < ---. We consider the o-harmonic mapping

U= (r"™¢,(8) , *2¢,())

and shall show that it is univalent near the origin. Moreover it is quasiconformal
if and only if Ay = A;. It is well-known that ¢; and ¢, have exactly two zeroes on
the unit circle and that the zeroes of ¢, separate those of ¢;. The same holds for
the absolutely continuous functions ¢} and ¢, see [18], Chapter 8, Theorem 1.1.
It follows that ® = Uj,, is a simple closed curve surrounding the origin. We shall
prove that U, p, is univalent, by applying Theorem 2.3 and showing that the curve
® is convex. It is convenient to parameterize ® by setting ¢ = ¢(f) where

¢ dr
t:/o%—).

As a function of ¢, ¢; and ¢ are T-periodic where
2r dr

r=["1%,
o (7)

$i+Xghi =0, i=12, (5.10)

and we have
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where g(t) = v*(6) and ¢t — 6(t) is regarded as the inverse function of 6 — ¢(6). We

use the notation %? = ¢. We obtain that ® is absolutely continuous and T-periodic.

Therefore, we can check the convexity of ® by computing its curvature
= b2d1 — dadhr
= — ——
((¢1)% + (¢2)%)2

The sign of « is governed by the numerator o = (¢2¢1 —¢.2q.5.1) of the latter expression.
By (5.10)

a=g(=Xo10s + Mdadr) .

Hence, if A\; = )3, then a/q is a constant multiple of the Wronskian determinant of
the pair ¢,, ¢, which is a nonzero constant.

If A< )\2, then
d {a .
—(=]=(A1—-A .
That is, the extremal points of a/q are exactly the critical points of ¢; and ¢. An
inspection of the signs of o on such four points, based on the separation properties
of ¢; and ¢,, shows that « never changes its sign. Therefore @ is convex.
We are left with the examination of the quasiconformality of U near the origin.
We compute

tr(DUDUT) _ rVA—V3y(4)" + §2) + Ve —VADy (4" + ¢3)
det DU «

and this quantity is bounded near the origin if and only if A; = Xp. O

Remark 5.2 It is important to notice that both cases Ay = A2 and A\; < A2 can
occur. For instance, if «y is w/2-periodic, then it can be checked that we can choose
¢2(0) = ¢1(8 — 7/2) and hence A; = Aa. Conversely, Example 5.1, provides us with
a case in which A\; < A;. Indeed, in that case, we have A\; = A2 < u? = ..
Remark 5.3 By the theory developed by Uhlenbeck [68], we observe that among the
set of coefficients v, K~ < v < K (endowed with some metric such as L2(0, 2x), or
CY([0, 27])), we have that the property that A\; < A is generic. It is thus tempting to
formulate the conjecture that, among the class of uniformly elliptic conductivities,
the property o € ¥ is also generic. Let us stress that such a loose formulation of
the conjecture is intentional, since the question of which topology should be placed
on the class of conductivities appears as a central issue of the conjecture itself.
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Remark 5.4 The analysis performed in Proposition 5.1 could be generalized also
to certain anisotropic conductivities for which the separation of variables in polar
coordinates is still possible. Namely we could consider as well conductivities with
the following structure

_ [ cos@ —sinf BB 0 cosf sin@
7=\ sin@ cosé 0 () —sinf cosd

with 8,7 € L°(0,2r), K < f,7 < K.
In this case, the relevant Sturm-Liouville problem is

{ (v¢') + A2 =0 , 0€(0,27)
$(0*) = ¢(277) ,
(v¢)(07) = (v¢')(277)

Example 5.3 By Theorem 4.2 we know that the Holder regularity of deto is a
sufficient condition for & € X,.. The Example 5.2 (recall also Remark 5.2), shows
that such condition is not necessary. Now we show that there exist conductivities
in X4 whose determinant has discontinuities of very general type.

We consider B )h(z2) 0
o(z1,22) = ( 0 U(z1)m(z2) ) (5.11)

where h,k,I,m € L®(R) satisfy VK- < h,k,I,m < K. Let U be a univalent
o-harmonic mapping defined near the origin and let us set

o1 dt T2 dt
b= [ o e@=[ o

It is readily verified (by arguments analogous to those used in the proof of Theorem
4.1) that, up to the bilipschitz mapping x : (z1, z2) = (&1, £2), the components of U
satisfy almost everywhere

2
afl (Q?])h(xl) a€2 =0 s ’L=1,2 .

Hence, in the &-coordinates, u; and wup satisfy a uniformly elliptic equation
in nondivergence form. Consequently £ — U is a CV* mapping and hence

m(e2)k(az) o
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quasiconformal. Observe that, in this example,

Lo = ( o5 v(gl))

where
B(&2) = m(z2)k(z2) , (&) = Uz1)h(z1)

and therefore T, 0 manifestly satisfies (ii) in Theorem 4.1.

6 Generating quasiregular mappings from o-
harmonic mappings

Given an open set Q, K > 1 and ¢ € L*(Q, M%), any o-harmonic function u
generates a K-quasiregular mapping f = u + ¢% via conjugation with its stream
function % (see (2.3) and (2:4)). In this section we show that any o-harmonic
mapping U which is sense preserving (i.e. such that det DU > 0 almost everywhere),
generates a one parameter family of quasiregular mappings. In particular one
element of this family is exactly K-quasiregular. We recall that typically, o-harmonic
mappings can be taken to be sense preserving by Remark 2.3. We will see later in
the Example 6.1, that the classical way to generate K-quasiregular mappings from
a given g-harmonic function v is a special case of our construction.
We will also see in Section 7, that the family of mappings introduced in the
present section, has a central role in questions concerning homogenized coefficients.
We denote by
o1(z) < oa(z) (6.1)

the eigenvalues of o, at the point z € Q. Let U = (u1,u2) € W€, R?) be o-
harmonic and let U = (3, 42) be the mapping whose components are the stream
functions of u; and u, respectively (see (2.3)). For A > 0 we define

dua = AU + JU (6.2)

and

kk(x)zmax(dz)(\x),al)(‘x)) , Ky =|| kx(@) |lzm) - (6.3)
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We denote by Dy (z) the dilatation quotient of ¢y, see (1.18).
Proposition 6.1 Let o0 € L®(Q, M%) and let U € Wi*(Q2, R?) be o-harmonic.
i) If det DU > 0 almost everywhere in , then, for any A > 0, dy » is K -quasiregular.
More precisely
Dyr(z) < kx(z) almost everywhere

and hence
|| Do [lzeo@< K - (6.4)

In particular ¢y, is K-quasiregular.

ii) If, in addition, U is locally univalent, then, for every A > 0, ¢y, is locally
univalent.

Proposition 6.2 Let 0 € L{°(R?*, M) and let A € M. If U € W, Z(R? R?)
(see (1.2)) is a o-harmonic mapping, then, for every A > 0, ¢ya y = AUA + JUA is,
in addition, an homeomorphism of R? onto itself and therefore a K-quasiconformal
mapping.

Remark 6.1 An immediate corollary of Propositions 6.1 and 6.2 is that under the
assumptions of Proposition 6.2, ¢ya is actually K-quasiconformal.

Remark 6.2 At the end of the Section, (Example 6.3) we show that one can
construct an example in which || Dy, ||z=(@)= K > 1 for every A > 0. Therefore, in
general, one cannot choose A so that ¢, is conformal and, moreover, the inequality
in (6.4) cannot be improved for A = 1.

In the sequel trF' and AdjF denote the trace and the adjugate of a matrix F
respectively. We recall that, by definition, for two by two matrices AdjF = JFJT
and, also that FAdjFT = (det F)I. The proof of Proposition 6.1 is based upon a
simple algebraic fact.

Lemma 6.1 Let A € M and § € M?. For A € R, set

B = XA+ Adj(AS) . (6.5)
Then
(det S — XA))A = —AB + Adj(BS) , (6.6)
det B = det A(det S + A?) + Atr(ASAT) , (6.7)
(det S — A?)?det A = det B(det S + A?) — Mtr(BSBT) . (6.8)
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Proof of Lemma 6.1 To verify (6.6), we compute its right hand side according to
definition (6.5):

—AB + Adj(BS) = —)?A — MAdj(AS) + Adj(AAS) + Adj[Adj(AS)S] =
~X2A — AAdj(AS) + AAdj(AS) + (AS)AdjS = —A2A + Adet S .
This proves (6.6). To prove (6.7) and (6.8), we use the identity
det(F + G) = det F + det G + tr[F(AdjG)7]

which holds for any pair of two by two matrices ' and G. The calculation is omitted.
O

Proof of i) of Proposition 6.1 We fix z € Q2. The strategy is to apply Lemma
6.1 with the following choices: S = o and A = DU, with U a o-harmonic and sense-
preserving mapping. By (2.3) DU = DUoJT and therefore Adj(DUc) = JDU
which, by (6.2), implies

Doy = ADU + JDU = ADU + Adj(DUo) .

We set B = D¢y, take A > 0 and then apply Lemma 6.1. Since U is sense
preserving, (6.8) implies

det Dy a(det o + A2) — Mr(DoyroDgh,) > 0 . (6.9)

Set 0 < a}, < a2 to be the singular values of D¢y (i.e. the eigenvalues of the square
root of the matrix D¢f;, Doy,»).
Using (1.19), we see that ¢y ) is L-quasiregular if and only if

a3
Dyr=—=2<1L . (6.10)
ax
We write (6.9) in these new variables. We have,

a3a;(det o + A?) = det Doy x(det o + A%) >

Atr(Dou oDl ,) > Aoz(a))® + a1(a3)?) (6.11)

The latter inequality, follows by the so-called Von-Neumann theorem (saying that
the tr(DéyroDéf;,) is minimized when o and Déf;, Dy, are simultaneously
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diagonal and their eigenvalues are ordered with opposite monotonicity). Recalling
(6.10), we regard (6.11) as an inequality in the variable Dy, and we obtain

DU,)‘(x) < kA(lf) (612)
with k) defined in (6.3). This implies (6.4). Moreover, since K~! < gy < 03 < K,

kx(z) < K max G ,\) , (6.13)

hence ¢y is K-quasiregular.
Proof of ii) of Proposition 6.1 Let us, temporarily, assume in addition that
g € C®(Q,M?). By (i) of Theorem 2.2 we have that det DU > 0 everywhere.

Consequently by (6.8), we obtain
det Doy 5 = det(ADU + Adj(DUo)) =
(det o + M%) det DU + tr(DUocDUY) > 0 everywhere .

Now we remove the smoothness assumption. Let {0y} be a sequence of mollified
conductivities, such that, for any p > 1, o, = o in LY. Fix 2° € Q. Since U is
locally univalent, there exists p > 0 such that setting G = U~}(B(U(z°), p)), U is
one to one on a neighborhood of G.

Let U,, be the o,-harmonic mapping in G such that Uylee = Ulsg. By
Theorem 2.3 each U, is univalent in G, moreover, we have U,, — U in W,-2(G, R?).
Consequently

Pun, ) —> dux in VVI},’;Z(G, R?) .

By the above arguments, for every m, ¢y,, » is locally univalent. Using Lemma 2.1
and the equivalence (i) < (iii) of Theorem 2.2, we obtain ii). O

Proof of Proposition 6.2 By (3.5), VA € M, U“ is sense preserving. Hence,
by Proposition 6.1, ¢ya ) is quasiregular. Therefore it is enough to show that
VA € M, ¢ya ) is an homeomorphism. Let us outline the strategy of the proof
first. We will show that there exists F\ € M, and Cy € L{*(R? M%) such that
duay € Wﬂl,}% (R?, R?) and it is a C)-harmonic mapping. Then, by Theorem 2.1, it
is an homeomorphism.

We fix A € M, and A > 0 and, for short, we write ¢\ = ¢ya . We set

det Doy (z)

&) =1 | it det Dea(c) =0 .

D¢3 (z)Doa(z) -
{—3— if det D¢y(z) #0 (6.14)
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By Proposition 6.1, G, defines a measurable field of matrices which is symmetric
with det G, = 1 almost everywhere. Moreover, by (6.4), one has

K' I <Gy < K,I

almost everywhere. In other words G € L°(R?, M¥%, ). Note, for future reference

that this clearly implies
Gy' € LP(R*, Myk,) (6.15)

By construction ¢, satisfies the Beltrami equation
D¢T D¢y = Gy det Do, (6.16)
which we rewrite as
Gx'D¢; = AdjDg¢;
which implies
Div(Gy'D¢l) =0 . (6.17)

Observe that we obtained the same type of equation through a different calculation,
in § 1.3, see in particular (1.22). So far we have never used the fact that U4 € Wﬁl’f.

Now we need this assumption. Indeed, we observe that U4 can be decomposed as a,
sum of an affine term and a periodic one. More precisely, one has

UreWZ , B=JT /Q Adj(DUAq) .

In the language introduced in Section 1.1, we have
Aahom =JB 3 (618)

where opom is the homogenized conductivity see (1.6). The only property that is
needed here is that oynom iS a constant, symmetric and positive definite matrix.
Therefore setting C, = G5' and using (6.15) and (6.18), one has that ¢y is Cy-
harmonic and also ¢y — FA\x € Wn1’2(R2, R?), where F, = AA + JB. In other words,
¢ is a solution to (1.5) when o and A are replaced by C, and F), respectively.
In view of Theorem 2.1, to conclude the proof we need to show that F\ € M.
Indeed, using (6.7) and the formulas below it, one easily checks that

det Fy = (A2 + det opom ) det A + Atr(AowemAT) > 0
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because both terms in the sum are such. O

We conclude this section with three examples.
Example 6.1 The classical way to construct the quasiregular map f = u + 44 from
a given o-harmonic function u and the new way of generating quasiregular mappings
explained in this section are actually related in a simple fashion. Indeed, given the
o-harmonic function u, set U = (u,0) and ¢y = U + J U. Then it is easy to see that
év1 = (u,w) so that ¢y; = f up to the identification between R? and C. Clearly, U
satisfies det DU > 0, in fact det DU = 0 almost everywhere. Therefore, the classical
way can be seen as a very special case of the new one.
Example 6.2 If o has constant determinant (det o = d?) almost everywhere on a
measurable set E, by (6.9) for any o-harmonic mapping U,

det Doy (det o + A?) — Atr(DgypoDé,) >0 , almost everywhere in E .
In particular, since VB € M
2vdet o det B — tr(BoBT) <0
one has that
2d det Dy = tr(Déyao D) , almost everywhere in E .
Therefore ¢y 4 is K-quasiregular on E and satisfies the Beltrami equation

g
D¢5,d'D¢U,d = (\/M

If o is the identity on E, ¢y 4 = ¢y, is therefore holomorphic in the interior of E.
Example 6.3 This example justifies Remark 6.2. Set €2 to be a ball centered at the
origin and of radius one. Define for z # 0,

-1
) det D¢yg , almost everywhere in E .

x
o(z) =K 'n®@n+Kt®t , n= Tz t=Jn ; U=g|z %!
Z |
Notice that such a conductivity o can be viewed as special case of those treated in

Remark 5.4.
One can check that U is o-harmonic in  and it is univalent. A calculation shows

that
DU(z)=|z |* ' (Kn®@n+t®n) , DU)o(@) =z ¥ (n®n+Ktadt)
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and hence
Dyr(z) =(A+1) |z [F ' (Kn@n+t®t) .

Therefore, it is readily verified that the dilatation is K for any A.

7 Applications to homogenization

Theorem B stated in the introduction is contained in the following Theorem 7.1.
Given o € L°(R?, M), we set

dyn = ess irelg\/deta . (7.1)

Theorem 7.1 Let K > 1 be given, if o € L{°(R? M%), then the homogenized
conductivity opnen, satisfies
det ohom > d2, (7:2)

and, for every A € (—d,,dy,) and every A € M

tr(AohomAT) — 22 det A
det Ohom — A2 B

inf 1 / tr[ DU (y)o (y) DU (y)T] — 2A det DU (y)
2
UeW, 5 (R%;R?) | Q| /e deto(y) — A

dy . (7.3)

Moreover the minimizer of (7.3) is uniquely determined up to an additive constant
vector and is given by

bysr y = ANUP + JUP (7.4)
where UP> is the solution to (1.5) when A is replaced with
—AA + Adj(Aonom
B, = A+ Adi(4%hom) (7.5)

Remark 7.1 The variational principle (7.3) is similar to that proved in [7].

We show that Theorem 7.1 carries more information in the next Corollary 7.1.
To state the result, we need to recall the notation introduced in (1.10), (1.11). We
also recall that by (1.12), for every A € [0, s],

M(Chom, A) # 0 . (7.6)
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Corollary 7.1 Under the same assumptions as in Theorem 7.1,

and for every A € (0,d,,) and every A € m(ohem, A), the homogenized conductivity

satisfies
tr(AohomAT) —2Xdet A

det Ohom — A?

/ tr[ DU (y)o (y) DU (y)T] — 2,\ det DU (y)
UeW(a,\A) | Q | deto(y) -

Remark 7.2 We shall show (Lemma 7.4) that for any choice of o € L°(R?, M¥),
A € [0,dy,] and A € m(0nom, ), the mapping ¢y s, , defined in (7.4) belongs to
W (o, A, A). In particular, the latter space is never empty.
Remark 7.3 The main point of Corollary 7.1 is that if A € m(0nom,A), then
the minimizers ¢y;s, , of (7.8) are automatically K) quasiconformal. (See (6.4)).
Indeed, one can check that if A € m(onom,A), then det By > 0 and hence, by (3.5),
det DUB > 0 almost everywhere. Therefore, by Propositions 6.1 and 6.2, ¢y s, 18
K -quasiconformal.

We review below the definition and the basic properties of the orthogonal
splitting of two by two matrices into their conformal and anticonformal parts. Set

(7.8)

M, = Y(M + AdjM) M_ =

D=

(M — AdjM) (7.9)
and write the usual definitions
H+E{M€M : M —AdjM =0} , H ={MeM : M+AdjM =0} . (7.10)

Then one easily checks that VM € M , M = M, + M_ and that the decomposition
is unique and orthogonal in the sense that

AeHt , Bet~ = tr(ABT)=0 . (7.11)
We write VM € M, | M |*= tr(MMT). Then VM € M
| M P= (MM = tx(M, M)+ 4e(M_MT) =| M, [P 4 | M_ 2,

2det M = tr(My MT) — tr(M_MT) =| My P — | M_ |2, (7.12)
AdiM = M, — M_ .
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We state now four lemmas needed to prove the results of the present section. The
first two are essentially of algebraic nature.
Lemma 7.1 For F; H € M, A € R and S € M?® we define

f(F,5,)) = tr(FSFT) 4+ 2\ det F (7.13)
and
fH(H,S5,A) = sup. 2te(HFT) - f(F,5,))] . (7.14)

Then, as a function of the first variable, f is strictly convex if and only if
A2 < det S, convex but not strictly convex if and only if A2 = det S.
Moreover, the explicit expression of f* is given by

f1(H,8,A) =
T iSHT)— e .
t (HAd?jif%_))‘f)\d t H if I Y |< \/m l
HALSH ] if  A=VdetS and HSTEEH' (75
uHASHT] if  A=-—vdetS and HS™: e~
~+00 otherwise

Lemma 7.2 For FF € M, X € [0,Vdet S], S € M?® and H € m(S, A) (see (1.10)),
we define
FHE, SN = sup [26e(HFT) - £(F,S,\)] (7.16)
FeMy

where f(F,S,)) is defined in (7.13). Then

tr(HAdjSHT)—2X det H if | A\ |< \/m
*,+ H’ S, ) = det S—A2 1
o ) { t[HAjSHT] ¢ m AS and HS-E e gt

2det 5

(7.17)

The next two lemmas use part (ii) of Theorem A, namely (3.5).
Lemma 7.3 Under the assumptions of Theorem 7.1, det opoym > dfn. Moreover
setting @, as in (1.13) we have

| Qm |< 1= 4/det onom > dm (7.18)
l Qm |= 1= Vdetahom = dm .
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To state the next result, recall (7.4) and (1.11).
Lemma 7.4 Let 0 € L{°(R?, M%), A € [0,dy] and A € m(0hom, A) be given and
let ¢y, 5 be defined by (7.4). Then: i) ¢y, , € W(o, A, A) and ii)

dy =

1 / tr(Dy s, \(y)o(y)Ddys, y(y)T) — 2 det Doy s, ,(y)
| Q| /e det o — A2

tr(AonomAT) — 22 det A
det Thom — A2 ’

In particular, for any choice of o € L{°(R?, M%), A € [0,dn] and A € m(opom, A),

tI‘(B)\O'homB’f) + 2Adet B, = (7.19)

W\ A #0 . (7.20)

The above lemmas will be proved later.

Proof of Theorem 7.1, given Lemma 7.1, 7.3 and 7.4 By Lemma 7.3, (7.2)
holds. A possible proof of (7.3) follows the argument in [7]. Here we give a different
and conceptually more direct proof. First of all we note that, for fixed A, the
variational principle (7.3) has a unique minimizer up to an additive constant. Indeed,
by Lemma 7.1 applied for S = Adjo, VA € (—dp,d,,) the function

A tr(Ao(y)AT) — 22 det A
deto(y) — A2

is the polar of a strictly convex function and therefore itself a convex function.
Next we show that the minimizers satisfy (7.4). Indeed the minimizers satisfy
the following Euler-Lagrange equations

det o(y)—A2

Div [[D‘I’A(y)U(y)]T—)\AdJ'[D‘I’A(y)]T] =0 in R? (721)
U, € Wi3(R?, R?) : '

in the weak sense. In two dimensions, (7.21) is equivalent to the following conditions.
There exists By € M and there exist Uy € W;*(R?, R?) such that

DY 4(y)o(y) — AAdj(D¥4(y))
det o(y) — A2

= Adj(DUy + By) , almost everywhere (7.22)
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or equivalently, setting Up, = Uy + Boz and taking Adj to both sides of (7.22), we
have

—ADV 4(y) + Adj(DV 4(y)o(y))
DUpg,(y) = 2 deto(y) — )\2A ’

almost everywhere .  (7.23)

Using Lemma 6.1, and the definition of DW 4, (7.23) can be written as follows. There
exists By € M and there exist Uy € Wul’z(Rz, R?) such that U, = Uy + Byz satisfies

ADUg,(z) + Adj|[DUg,0(z)] = D¥4(z) . (7.24)

One can solve (7.24) with respect to Ug, if and only if the left hand side is the
differential of a vector field in the suitable space i.e. if and only if

{ Div{o(z)DUE (z)] = 0 in RZ

Us, € W2, (2, R?) (7.25)

in the weak sense. Note that (7.25) uniquely determines Up, in terms of By up to
an additive constant vector. From (7.25) and the definition (1.5), we see that

Ug, = U™ .
Using (7.24) and (7.25) we conclude
Uy(z) = ANUP + JUPe 4 ¢ | (7.26)

for some constant vector £. In view of (7.26) and recalling (7.4) and (7.5), to prove
the second part of Theorem 7.1, we are left with showing that By = B, as defined
in (7.5). Indeed, integration of both sides of (7.24) yields

A= /Q {ADU® + Adj[DUP°s(z)]}dz = ABo + Adj /Q [DUPo(z))dz .
The latter combined with (1.6) yields
A = ABy + Adj(ByOrom) - (7.27)

We now solve for By in terms of A in (7.27). By (6.6), By = B, (as defined in (7.5)).
Finally, evaluation of the right hand side of (7.3) via Lemma 7.4, gives equality with
its left hand side. O
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Proof of Corollary 7.1, given Lemma 7.1, 7.3 and 7.4 Lemma 7.3 implies

(7.7). By assumption, A € m(0nom,A) which, by Proposition 6.1 and (7.5), implies

that det By > 0. By Theorem 7.1, the right hand side of (7.3) is minimized by a

mapping satisfying (7.4). By Proposition 6.2 and the fact that det By > 0, such a

mapping is quasiconformal and, by Proposition 6.1, it belongs to W (o, A, A). O
The next Corollary complements Theorem C (see the Introduction), with the

analysis of the cases | @, |= 0,1 not considered in the hypothesis (1.14). We refer

to the notation introduced in (1.13).

Corollary 7.2

(i) If | @m |= 0, then (1.15) holds and, for every A € m(0hom, dm),

tr(AonomAT) — 2ddet A
det Ohom — d2, o

. / tr[DU(y)o (y) DU (y)"] — 2drm det DU(y)
1n
UeW (0,dm,A) JQ deto(y) — d2,

dy
(ii) If | Qm |= 1, then det onem = d2, and for every A € m(Gyom, dm),

T T
tr(AgpomAT) _ . / triDU()ow)DU )]
2 det ohom UeW(o,dm,A) JQ 2deto

Proof of Theorem C, given Lemma 7.1, 7.2, 7.3 and 7.4. By Lemma 7.3
det opom > d2,. By Lemma 7.4, the set W(o,dy, A) is non empty (so that (1.16)
makes sense) and the left hand side of (1.16) is smaller than or equal to its right
hand side. Hence it is enough to prove that the left hand side of (1.16) is greater
than or equal to its right hand side. For F' € M we set

g(F) = tr(FoFT) + 2d,, det F (7.28)
and then define
g" T (H) = sup 2tr(HFT) —g(F)] , HEM . (7.29)
FeMy
By (7.29),
VFeM, , YHe M, g(F)+g" (H) > 2tr(HFT) . (7.30)
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The notation reflects the obvious resemblance between ¢g** and the polar of the
function g denoted as usual by g*.

Choose two arbitrary constant matrices A € M and B € M, and set F' = DU,
H = AdjDV with U € W5 (R?, R?) (see (1.2)) and satisfying det DU > 0 almost
everywhere and V' € W, (R?, R?). Then use (7.30) and integrate over Q. We obtain

> . T _ *,+ . —
/Q g(DU)dz > 2 /Q tr(Adj(DV)DUT)dz /Q g7 (AdjDV)dz

2tr(Adj(A4)BT) — /Q g+ (AdjDV)dz . (7.31)

The last equality follows integrating by parts. Now we apply Theorem 3.1 which
implies

VB e M, , inf / 9(DU) = tr(BopomBT) +2d,, det B .
{UeWu{’g(RZ,RZ) : det DUS0 ae. z€Q}/Q
(7.32)
Using (7.31) and (7.32) we obtain
VAeEM , VBeM, , VV e W i(R,R?)
2tr(Adj(A)BT) — tr(BowemBT) — 2d,, det B < /Q gt (AdjDV)dz
which implies
VAe M , sup 2tr(Adj(A)BT) — tr(BopemBT) — 2d, det B <
BeMy
inf / g"*(AdjDV)dz . (7.33)
Vew, ;(R%,R%)/Q

By (1.13), (1.14), Lemma 7.3 and Lemma 7.1, the function B — tr(BoyomBT) +
2d,, det B is strictly convex and therefore the maximum over B € M in the left hand
side of (7.33) is given by the value of the polar function of tr(Boyen BT )+ 2d,, det B.
Using Lemma 6.1, one checks that the optimal B € M, & A € m(0hom,dm).
Therefore in (7.33) the sup over B € M. coincides with that taken over B € M.
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The latter is easily calculated using again Lemma 7.1. The previous remarks and
(7.33) imply

tr(Adj(A) Adj(0hom) Adj(AT)) — 2d.r, det(AdjA)
det Ohom — d,?n

T

tr(AgnomA”) = 2dmdet 4 -, [ g+(adiDV)dz . (7.34)
det ohom — d2, Vew, 2(R2,R?) /Q

To conclude the proof, we need to check that the right hand sides of (7.34) and

(1.16) are the same. This follows by Lemma 7.2 upon noting that, by (7.17), (7.28)

and (7.29) one has g*+(H) = f**(H,0,dy,). O

Sketch of the proof of Corollary 7.2 Case (i). This needs only minor

modifications to the previous argument and will be omitted.

Case (ii). By Lemma 7.3, det onom = d2,. To obtain the second statement, we modify

the argument above after formula (7.33). The left hand side in (7.33) is convex but

no longer strictly convex in the variable B. Therefore one has to apply to the left

hand side of the inequality the same argument used for the right hand side, taking

dym = v/det opom- The algebra is identical and it is omitted. O

Proof of Lemma 7.1 Let us fix A € R and § € M3. We compute the gradient

and the Hessian of the function F — p(F) = 2tr(HFT) — f(F, S, \):

Dp(F) = 2(H — FS — MAdjF) , (7.35)

S AT

where the four by four Hessian matrix of p has been written in two by two block
form. It is easy to see that H(p) is positive definite if and only if det S > A2 and
positive semidefinite if and only if det S = A\%. This proves the first part. To prove
(7.15), consider

(7.36)

A .
F)=2tr(HFT) —tr(FSFT) — 2 det(FS?) .
p(F) = 20x(HFT) - tr(FSFT) — 2——— det(F5?)
Setting X
A=FS: | s=+/detS (7.37)
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and writing VM € M, | M |?>=tr(MMT), one has

p(F) = B(4) = 2ur(HS A7)~ | A" =2 Zdet A (7.38)

We split A and HS -7 into their conformal and anticonformal parts and use the

properties reviewed earlier in this section. It is convenient to set
B=HS . (7.39)

Using this formalism, (7.9), (7.10), (7.11) and (7.12), one has

2tr(B, AT) + 2tr(B_AT)— | Ay | — | A_ —2—3(det A, +det A )=

A
2tr(BAY) + 2tr(B_AT)— [ Ay P — [ AP =221 A4 P = | A-P)

hence

B(A) = 2tr(B,AT)— | Ay (1 + %) +2tr(B_AT)— | A_ |2 (1 - 2) . (7.40)

Now we consider several cases.
Case 1: (| A |< s). By (7.40), p(A) is strictly convex and it is maximized at the
unique stationary point A°P* which satisfies

opt __ S opt _ §
AP = —<B, , A®'=_—"=B_. (7.41)

The value of the maximum is displayed in (7.15), first line.
Case 2: (A =s). By (7.40), p(A) is still convex but not strictly convex. Indeed

p(A) = 2tr(BL AT) — 2| A4 |* +2tr(B_AT) . (7.42)

From (7.42) one sees that necessary and sufficient condition for the supremum of p
to be finite is tr(B_ATL) = 0 for all A. This holds if and only if B_ = 0, which, by
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(7.9) and (7.10) is equivalent to B € H™*. In view of (7.39), the latter is equivalent to
HS-'2 € #*. The optimal A in this case is not unique, but each of them satisfies

1
AP = 3B+ - (7.43)

The anticonformal part of A°P* is arbitrary. The value of § at the optimal A’s is
instead uniquely determined and displayed in (7.15), second line.
Case 3: (A > s). By assumption A = s(1 + 20?) for some o # 0. By (7.40),

pA) =2tr(BLAT) —2 | AL P (1+0®) +2tr(B_AT) + 2 | A_ Po? . (7.44)

Therefore (7.44) is unbounded in the anticonformal part, consequently f* = 4-o0.
The remaining cases, A = —s and A < —s, are similar to Case 2 and Case 3

respectively and will be omitted. O

Proof of Lemma 7.2 Let us first rephrase the hypothesis H € m(S5, A) in terms of

the new variable B (see (7.39)). One has

Hem(S,\) < (s—A? | By P=(s+ A2 |B_2>0 if A€ (0,s)

Hem(S,s)<B_=0 . (7.45)

Now we proceed to analyze two cases.
Case 1: (0 < X < s). Recall, that the optimal A for the unconstrained problem
(relative to Case 1 of Lemma 7.1), satisfies (7.41). It follows that it satisfies

2 2
det A% = det A% 4 det A% = (si/\) 1B, | — (S L A) | B_ |

Therefore, by (7.45), A°®* € M, if and only if H € m(S,)). This shows that
A°P* a5 defined in (7.41) is also optimal for the constrained problem because the
constraint is automatically satisfied. Note that the hypothesis H € m(S, A) is not
only sufficient but also necessary to have det A°* > 0.

Case 2: (A =s). By (7.45), we have B, = 0. Hence by (7.40), we obtain

p(A) =2tr(B ATy -2 | AL . (7.46)

The function in (7.46) ought to be maximized over the open set M. If the
supremum is achieved at an interior point, then, this point must be stationary
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and then one easily verifies the corresponding value of § is given by (7.17), second
line. If the supremum were only achieved at some A belonging to the closure of
M, then det A = 0 which can be written as

| Ay =l A (7.47)

However, (7.46) does not depend on A_. Therefore the constraint (7.47) can be
always satisfied and therefore it is irrelevant and the supremum of  is not (strictly)

increased by it. O
Proof of Lemma 7.3 Our starting point is formula (1.6). We set A € M,.
Applying (1.17) to U4 and recalling that | @ |= 1, one has

/Q det DU = det A det opom = / det o (y) det DUA(y)dy =
Q

d? det DUA(y)dy + det o(y) det DUA(y)dy .
/Qm m (v)dy /Q o (y) (y)dy

Therefore applying (1.17) to U4,

det A(det opom — d2,) = /;2 o, (deto(y) = df) det DUA(y)dy

By (3.5) and (1.13), the integrand of the right hand side is strictly positive almost
everywhere. Therefore, the right hand side is nonnegative and hence det o(y) —d2, >
0. Now there are two cases. If | @, |= 1, then obviously det oyom = d2,. Otherwise,
the measure of Q\@,, is strictly positive, hence the right hand side in the above
formula is strictly positive and therefore so is its left hand side. O

Proof of Lemma 7.4 . We will check that for any choice of o € L{*(R?, M%),
A € [0,dp] and A € m(0Onom, A), the mapping @y s, , € W(o, A, A). By (7.4) and
(2.3), we have

D¢ys, , = ADUP* + DJUP» = ADU + Adj(DUP*0)
and by (6.8),
(det 0 —A?)? det DU = det Doys, 5(det o+X*) = Mr(Doys, o Ddjz, ) - (7.48)
By (3.5), det By > 0 = det DU®* > 0 almost everywhere and, by (7.5) and (6.8),
det By > 0 < det A(det opom + A?) — Mr(AcpemAT) > 0 A € m(0pom, A) -
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Finally it easy to check that, by construction, [, Déys, , = A. Using (7.48) it
follows that ¢yz, , € W(o,A, A). (Note that for A = dy,, both sides of (7.48)
vanish consistently with the definition of W (o, d,,, A) given in (1.10), (1.11)). This
establishes part i). Part ii) is a calculation following the same lines and it is omitted.
Finally (7.20) is an immediate consequence of part i). O

8 Threshold exponents and area formulas

8.1 Threshold exponents

We give a complete (and affirmative) solution to two conjectures due to G. W.
Milton [50]. The conjectures have been discussed in detail in a paper by Leonetti
and Nesi, [42]. They can be, roughly, stated as follows. If ¢ € L*(£2, M%), under
reasonable boundary conditions, any o-harmonic function satisfies the property that
| Vu | and | Vu |~! belong to some precise family of L? spaces. The original
conjectures were posed in a rather general framework and were formulated in any
dimensions. We focus here on dimension two. In [42], the authors were able to treat
Dirichlet or Neumann boundary conditions relying on previous work by Alessandrini
and Magnanini [2]. However, a more satisfactory statement should include periodic
boundary conditions. Now we fill that gap.
Given a vector £ € R?, | £ |=1, let u be a solution to the problem

{ div(o(z)Vu) = 0 , TE€Q (8.1)

u - <§: .'E) € Wﬁ1’2(R27 R)

Note that, according to the notation introduced in (2.15), u = (£, U?) where U is
the o-harmonic mapping solving (1.5) when A = I. Set

——2K and ——2

these are in fact the threshold exponents introduced by Milton. We shall show that
Vp<pk, |Vule IP(Q) and Vg<gqx, |Vu|le LYQ) .

In fact more is true and the precise statement requires the notion of the weak-L?
spaces of Marcinkiewicz (see, for instance [39]). We recall that a measurable function
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f belongs to LE,, (@), 1 < p < oo, if and only if there exists a constant ¢ > 0 such

weak
that, for everv measurable set F C @, one has
[1f1el B
E
Theorem 8.1 For every £ € R%, | £ |= 1, we have
| Vu l€ Lt (@) (8.2)
| Vu |7le L (Q) - (8.3)

Sketch of the proof. Formula (8.2) follows immediately from Theorem 1 in [42],
which provides an optimal form of the local higher integrability property of first
derivatives, as obtained by Bojarski [13], [14] for quasiregular mappings, and by
Meyers, [49], for solutions of elliptic equations in divergence form in any space
dimension. Formula (8.3) follows from Theorems 2 and 3 in [42] and the observation
that the set of geometric critical point is empty in this case because of Proposition
2.2. 0

8.2 A first area formula: geometric interpretation for
functions of onom-

This is a continuation of the analysis developed in [42]. Here we give the periodic
version of that result.

Let 0 € LP(R%,, M%), Set £ € R?, | £ |= 1. Let u be a solution to (8.1)
and let %, f be defined according to (2.3), (2.15). As explained in Section 2, f is
K-quasiregular. Therefore (see § 1.3 and Section 6) there exists G € L{°(R?, M%)
such that det G = 1 almost everywhere and such that f € W5 (R?, R?) is a weak

solution to
Div(G(z)DfT(x)) =0 in R?

where A is the two by two matrix which has [, Vu = £ on the first column and
Jo Vi = Jopom¢ on the second one. The only not obvious statement is that
Jo Vit = Jonem€ and this is a consequence of (2.3), of the definition of opey, and of
an integration by parts. Clearly

det A = fQ det Df(z)dz = /Q (JVu, Vi) = (JE, JonomE) = (€, ChomE) > 0
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and therefore, by Theorem 2.1, f is univalent and hence quasiconformal. It follows
that
(Ghom€, €) =] F(Q) | (8.4)

and therefore the left hand side represents the area of f(Q). This observation is
similar to the one made in in the final part of [42], except that it now applies
directly to ohom.

8.3 A second area formula: geometric interpretation for
det onom in the two-phase problem.

We explore the properties of o-harmonic mapping U is some special case. We begin
with a preliminary result which is of independent interest.

Proposition 8.1 Let 0 € L®(Q, M%) (or 0 € LP°(R*, M¥%)). Let U be a o-
harmonic mapping which is sense preserving and univalent (det A # 0 and set
U = U“ the o-harmonic mapping defined by (1.5)). Then the change of variable
formula holds: for any measurable set £ C Q (E C @) and for any function
fe LNUQ),R) (f € L'(U(Q),R)

[ 7U@) | det DUG) |da= [ fw)dy - (85)

In particular the area formula holds.
Sketch of the proof This is a corollary of the Radé-Reicheldorfer theorem, see
for instance the book by Giaquinta, Modica e Soucek [28], Theorem 2, p. 223.
Indeed, our mapping U € T/Vlf,cp for some p > 2. This follows by N. Meyers’ theorem
[49]. Therefore it satisfies the Lusin property (see [28] Theorem 3, p. 223 ) and
therefore the (generalized) change of variable formula applies (see [28] (4), p. 219).
It remains to check that the Banach indicatrix function is one almost everywhere
in our case. This can be achieved as follows. First we note that U is differentiable
almost everywhere and therefore approximately differentiable almost everywhere
(see [28] Theorem 5, p. 200). Hence, the generalized Banach indicatrix function can
be interpreted in the classical sense. Therefore it is identically one by the injectivity
of the mapping U. O

Now we use Proposition 8.1 in a special but interesting case. Assume that
o€ Ly (R%, M5) and that, in addition, det o assumes only two distinct values say
d? and d}. For instance if o is isotropic (i.e. proportional to the identity) at any
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point then we are back to the two-phase problem presented in the Introduction.
If o is not isotropic, the next simplest example is when each eigenvalue of o
takes only two values, usually called principal conductivities of the basic crystals.
This is often referred to as the two-polvcrystal problem because of its physical
interpretation. The corresponding G-closure problem has been solved only in the
context of unconstrained volume fraction, [25]. Substantial progress has been made
more recently in the case when the volume fraction is prescribed. However a
complete understanding is yet not available. Let us give this problem a geometric
interpretation.

Our starting points are formulas (1.5) and (1.6). Arguing as in the proof of
Lemma 7.3, we obtain

det A det oyom = d3 det A + (d3 — d3) . det DUA(z)dz

where @); denotes the set where det o = d2.
Therefore if dy = dy, det opom = d2, while, if d; # ds and det A > 0

det opom — d2 _ Jo, det DU#(z)dx _UAQy) | |UA(Q2) |
- det A - detA  |UAQ) ]

(8.6)

The final equality is a consequence of Proposition 8.1.

Hence, the minimization (maximization) of det oyem is equivalent to the problem
of finding the “best” o-harmonic mapping with respect to the following criterion:
minimize (maximize) with respect to the microgeometry the (relative) area of
U4(Qy).

Unfortunately, the area distortion properties of generic o-harmonic mappings are
not very nice as suggested by the examples of Section 5. For this reason, at present
the only bound which can be deduced directly by (8.6) is

min(d?, d5) < det oo < max(d3,ds) .
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