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CHAPTER 1

Introduction

The aim of this survey is to outline important results in the theory of uniformly
hyperbolic dynamical systems on compact spaces as well as its extension to nonuni-
formly hyperbolic systems, and to indicate techniques used in the development of
the basic theory. Accordingly, there are comments on possible methods of proof in
the earlier parts, whereas later portions give an impressionistic view of several main
developments of the subject. For much of the hyperbolic theory the book [KH] is
a useful reference; the basic core is efficiently developed in [Ye].

This survey is intended for the Handbook of Dynamical Systems to be published
by Elsevier Science Publishers. Hyperbolicity is central to several other surveys in
this volume [S-HK, S-BP, S-C, S-P, S-K, S-B] and a few more have some com-
mon topics. (Citations of surveys in this Handbook are distinguished by the prefix
“S-”; those articles are listed first in the bibliography.) Accordingly, this survey
concentrates on aspects of hyperbolicity that are not discussed elsewhere in this
volume. Nevertheless, in order to provide a reasonable overview some occasion-
ally substantial overlap could not be avoided. Notations used here without being
defined are adopted from [S-HK].

This article benefited from helpful discussions with A. Katok and F. Ledrappier.
I want to thank the Institut des Hautes Etudes Scientifiques and the Isaac Newton
Institute for their hospitality and support while this survey was completed.

1. Historical sketch

There are two intertwined strands of the history of hyperbolic dynamics: Ge-
odesic flows on one hand and hyperbolic phenomena ultimately traceable to some
application of dynamical systems. Geodesic flows were studied, e.g., by Hadamard,
Hedlund, Hopf (primarily either on surfaces or in the case of constant curvature)
and Anosov—Sinai (negatively curved surfaces and higher dimensional manifolds).
Hyperbolic phenomena appear in the work of Poincaré (homoclinic tangles in celes-
tial mechanics [Pc]), Perron (differential equations [Pn1]), Cartwright, Littlewood
(relaxation oscillations in radio circuits [C, CL, Lw]), Levinson (the van der Pol
equation, [Lv]) and Smale (horseshoes, [S3, S2]), as well as countless others in
recent history.

a. Homoclinic tangles. Poincaré came upon hyperbolic phenomena in revis-
ing his prize memoir [P¢| on the three-body problem before publication. He found
that homoclinic tangles (which he had initially overlooked) caused great difficulty
and necessitated essentially a reversal of the main thrust of that memoir [B-GJ.
He perceived that there is a highly intricate web of invariant curves and that this
situation produces dynamics of unprecedented complexity. This is often viewed as
the moment chaotic dynamics was first noticed. He concluded that in all likelihood

7



8 1. INTRODUCTION

the prize problem could not be solved as posed: To find series expansions for the
motions of the bodies in the solar system that converge uniformly for all time.

b. Geodesic flows. A major class of mathematical examples motivating the
development of hyperbolic dynamics is that of geodesic flows of Riemannian mani-
folds of negative sectional curvature. Hadamard considered (noncompact) surfaces
in R3 of negative curvature [Hd1] and found that if the unbounded parts are “large”
(do not pinch to arbitrarily small diameter as you go outward along them) then
at any point the initial directions of bounded geodesics form a Cantor set. (Since
only countably many directions give geodesics that are periodic or asymptotic to
a periodic one, this proves the existence of more complicated bounded geodesics.)
Hadamard was fully aware of the connection to Cantor’s work and to similar sets
discovered by Poincaré, and he appreciated the relation between the complicated
dynamics in the two contexts. Hadamard also showed that each homotopy class
(except for the “waists” of cusps) contains a unique geodesic. A classic by Duhem
[D] seized upon this to eloquently describe the dynamics of a geodesic flow in
terms of what might now be called deterministic chaos: Duhem used it to illustrate
that determinism in classical mechanics does not imply any practical long-term
predictability. To today’s reader his description amounts to a shrewd translation
of symbolic dynamics into everyday language. Indeed, several authors trace back
symbolic dynamics to this paper of Hadamard, Birkhoff among them, who writes
about “the symbols effectively introduced by Hadamard” [Bh3, p.184]. (It is an
unresolved question just when symbol spaces began to be perceived as dynamical
systems, rather than as a coding device.)

Geodesic flows on negatively curved surfaces were again studied intensely in
the 1920s and 1930s. For constant curvature, finite volume and finitely gener-
ated fundamental group the geodesic flow was shown to be topologically transitive
[Kb, Lb], topologically mixing [HI11], ergodic [Hol], and mixing [HI2]. (In the
case of infinitely generated fundamental group the geodesic flow may be topo-
logically mixing without being ergodic [Sd]). If the curvature is allowed to vary
between two negative constants then finite volume implies topological mixing (Hed-
lund [H13] attributes this to [Gt]). Finally Hopf [Ho2] considered compact surfaces
of nonconstant (predominantly) negative curvature and was able to show ergodicity
and mixing of the Liouville measure (phase volume). This is interesting because
despite the ergodicity paradigm central to statistical mechanics, the Boltzmann
ergodic hypothesis (under which the time average of an observable, which is an
experimentally measurable quantity, agrees with the space average, which is the
corresponding quantity one can compute from theory) there was a dearth of exam-
ples of ergodic Hamiltonian systems. To this day the quintessential model for the
ergodic hypothesis, the gas of hard spheres, resists attempts to prove ergodicity.

c. Picking up from Poincaré. Birkhoff picked up some of Poincaré’s leads,
addressing issues that arose from the mathematical development of mechanics and
celestial mechanics such as Poincaré’s last geometric theorem and the complex dy-
namics necessitated by homoclinic tangles [Bh2, Section 9], and developing ergodic
theory, notably the pointwise ergodic theorem.

The work of Cartwright and Littlewood during World War II on relaxation
oscillations in radar circuits [CL, C, Lw] consciously built on Poincaré’s work.
Further study of the van der Pol equation by Levinson [Lv] contained the first ex-
ample of a structurally stable diffeomorphism with infinitely many periodic points.
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(Structural stability originated in 1937 [AP] but began to flourish only 20 years
later.) This was brought to the attention of Smale. Inspired by Peixoto’s work,
which carried out such a program in dimension two [Px], Smale was after a pro-
gram of studying diffeomorphisms with a view to classification [S4]. Until alerted
by Levinson, Smale suspected that only Morse-Smale systems (finitely many peri-
odic points with stable and unstable sets in general position) could be structurally
stable [S1]. He eventually extracted from Levinson’s work the horseshoe [S3, S2].
Smale in turn was in contact with the Russian school, where Anosov systems (then
C- or U-systems) had been shown to be structurally stable, and their ergodic prop-
erties were studied by way of further development of the study of geodesic flows in
negative curvature.

d. Geodesic flows and modern hyperbolic dynamics. Hopf’s argument
had shown roughly that Birkhoff averages of a continuous function must be con-
stant on almost every leaf of the horocycle foliation, and, since these foliations are
C?, the averages are constant a.e. He realized that much of the argument was in-
dependent of the dimension of the manifold, but could not verify the C' condition
in higher dimension. Anosov showed that differentiability may indeed fail in higher
dimension, but that the Hopf argument can still be used because the invariant lam-
inations have an absolute continuity property [S-HK, Al, AS, PS2, Bm], see
Subsection 2.3g. It is interesting to note that hyperbolic sets were sometimes said
to constitute “a Perron situation”, for example by Alekseev [All, Definition 12] (in
which the Smale horseshoe makes an appearance as well). Independently, Thom
(unpublished) studied hyperbolic toral automorphisms and their structural stabil-
ity (the automorphism, (2 1), is deplorably often called the “Arnold cat map” by
physicists because of the figures in [AA]). The initial development of the theory
of hyperbolic systems in the 1960s was followed by the founding of the theory of
nonuniformly hyperbolic dynamical systems in the 1970s (during which the hyper-
bolic theory continued its development). One of the high points in the develop-
ment of smooth dynamics is the proof by Robbin, Robinson, Mané and Hayashi
that structural stability indeed characterizes hyperbolic dynamical systems. For
diffeomorphisms this was achieved in the 1980s, for flows in the 1990s. Starting
in the mid-eighties the field of geometric and smooth rigidity came into being. At
the same time topological and stochastic properties of attractors began to be bet-
ter understood with techniques that nowadays blend ideas from hyperbolic and
one-dimensional dynamics.

e. The slowness of the initial development. It is interesting that Poincaré’s
insights took some time to have a deep impact on dynamics, particularly given such
popularization as Duhem’s and the great stature Poincaré acquired in his lifetime.
He was a popularly known figure and was repeatedly put forward for the Nobel
prize in physics [Is] (before his own physics Nobel prize, Subrahmanyan Chan-
drasekhar is said to have described Poincaré as the best physicist never to get a
Nobel prize). Hadamard developed some of Poincaré’s ideas in papers where he
elegantly brought out the technical points. But he, too, appears as if he was ahead
of his time, for example in considering surfaces not as objects to be studied using
analytic functions. His geometric approach, inspired by Poincaré, of analysis situs
was not immediately appreciated. And although at almost any time in the 20th
century there was progress on some of Poincaré’s subjects, there was no mass move-
ment and no quick and thorough absorption of his ideas. Two main issues seem to
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have stood in the way. That Poincaré had no school surely played a role. Unlike
the formidable Gottingen mathematics department that churned out young PhDs
in assembly-line fashion, Poincaré’s (and Hadamard’s) environment had no tradi-
tion that emphasized systematic dissemination. Secondly, even though Poincaré
published diligently, his writing is a pleasure to read only if one wants to be per-
suaded rather than be illuminated on the details of his argument. The prize paper
had not been read with full care by the time the prize was assigned, and Hermite
complained that it was not only impossible to get to the bottom of his reasoning
by reading, but that queries would be answered only by an exasperated “it is so, it
is like that”.

The story of dynamics from the 1960s is quite different, and the initial explosion
of activity was propelled not least by the redoubtable machines in Berkeley and
Moscow that produced young practitioners and converted some reseachers from
related areas. The choice of questions to investigate and publicize, combined with
the computer revolution simultaneously provided for a rapid diffusion of the new
ideas to the scientific community. By now dynamics as a whole has remained a
(large) discipline, but has also acquired the status of a general method. Hyperbolic
dynamics has been a major component in this development.

2. Outline of this survey

Hyperbolic dynamical systems exhibit complicated dynamics in terms of sensi-
tive dependence on initial conditions, strong recurrence properties, positive entropy,
intertwining of periodic and nonperiodic orbits, a great abundance of periodic or-
bits, and the existence of a Markov model. On the other hand, hyperbolicity is also
characterized by structural stability, and to a remarkable degree a classification is
possible. Furthermore, even though periodic data give a large number of moduli of
differentiable conjugacy, there are interesting results about smooth conjugacy and
rigidity.

The next chapter of this survey gives definitions and basic examples as well
as the theory of stable and unstable laminations. The stable/unstable manifolds
theorem, also known as the Hadamard—Perron Theorem, can be taken as the base
of all that follows [KH, Fn2]. Alternatively one can prove some central basic
facts (Hartman—Grobman Theorem, expansivity, shadowing, structural stability)
independently, e.g., using the hyperbolic fixed point theorem (Subsection 2.1h).

Later in Chapter 2 we describe the two main methods for proving the sta-
ble/unstable manifolds theorem, the Hadamard and Perron-Irwin methods. Both
rely on successive approximation, i.e., the Banach Contraction Principle. The
Hadamard graph transform method considers manifolds that approximate the un-
stable ones and applies the Banach Contraction Principle to the action of the dif-
ferential on such candidates [Hd2]. It was specifically put forward to obviate the
need for analyticity assumptions, as they had been made until then, mainly by
Poincaré, and were even made later for this situation [Bh1l, p. 45]. The Perron—
Irwin method finds the stable manifold of a point by looking for bounded orbits.
One considers bounded candidate constructs and an action on these by the map
whose (unique) fixed point (parametrized by a point on the stable subspace) must
be an orbit. Perron [Pn1, (13) p. 144], [Pn2, (10) p. 51], [Pn3, (30) p. 719] used a
variant of Picard iteration (or variation of parameters) for solutions of differential
and difference equations; Irwin [I] simplified this approach and combined it with
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the Banach Contraction Principle to obtain a short proof with strong conclusions
[Ro4, Section 5.10}, [LW, Ycl.

Numerous core facts can be proved without using stable manifolds, and the
survey [Yc], based partially on [Sh], shows how to take this route to present the
basic theory in great brevity. It also uses the Perron-Irwin method to give a shorter
proof of the stable manifold theorem. This method also gives smoothness of the
invariant manifolds very easily, but it provides no information on the transverse
behavior of stable/unstable laminations.

Chapter 3 discusses the orbit structure of hyperbolic dynamical systems, in-
cluding stability, classification and invariant measures.

Chapter 4 ends the survey of (uniformly) hyperbolic dynamics with an account
of some results about smooth conjugacy and rigidity of hyperbolic dynamical sys-
tems.

The last chapter is a brief outline of the theory of nonuniformly hyperbolic
systems, to be surveyed separately in [S-BP]. Although this theory differs from
that of (uniformly) hyperbolic systems at various levels, the underlying idea is
to strive for analogous results and to so do by applying the same ideas, albeit in
substantially refined form. One notable distinction is that invariant measures play a
much more central role and many uniform or continuous quantities associated with
a hyperbolic dynamical system have measurable counterparts in the nonuniformly
hyperbolic case. Our outline is a little more detailed than that in [S-HK], but
much less so than the supplement in [KH]. A definitive account is forthcoming
[BKP].

There is also a rapidly developing theory of partially hyperbolic dynamical
systems, in which directions of exponential behavior are uniformly separated from
a direction of subexponential behavior. The point of view in this theory is rather
different, however. The central goal is to use the hyperbolic parts of the dynamics to
overcome the subexponential behavior in order to arrive at global conclusions, such
as ergodicity. This requires hypotheses of being in a situation that is sufficiently
distinct from the product of a hyperbolic dynamical system with a nonhyperbolic
one. Because of this different character and due to its present scope this area is
surveyed separately [S-B]. We only give the briefest glimpse of it in Section 3.7.

a. Linearization and hyperbolicity. The primary distinction that sets apart
smooth dynamics from general topological dynamics is the availability of the lin-
earization provided by the differential; one can use the linear part of a map to draw
conclusions about local behavior of the map itself. As noted in [S-HK] among
the elliptic, parabolic, and hyperbolic situations the latter is the one where lin-
earization is most powerful. What makes hyperbolic dynamics distinct from the
other two classes is that for the linearization of a map eigenvalues off the unit cir-
cle correspond to exponential behavior under iterates, and such behavior is robust
enough to produce analogous behavior for the map itself and to engender structural
stability.

b. Structural aspects. This local aspect of hyperbolic dynamics combined
with the recurrence arising from compactness of the space provides for complex and
interesting features of the global structure. In accordance with the main dichotomy
between topological and measurable dynamics there are separate but not entirely
unrelated features of interest: In contrast to the individual instability of orbits, the
topological dynamics of hyperbolic systems is distinguished by structural stability.
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On the side of measurable dynamics there is the important motivation that Hamil-
tonian hyperbolic flows, in particular geodesic flows of negatively curved manifolds,
are ergodic (with respect to volume); this provides nontrivial classes of examples
satisfying the Boltzmann ergodic hypothesis.

An important feature of hyperbolic dynamical systems is that they admit a
Markov model both topologically and measure-theoretically. As a consequence
some features characteristic of hyperbolic dynamical systems are: Maximally sen-
sitive dependence of an orbit on initial conditions, strong mixing properties, many
invariant measures, an abundance of periodic points both in terms of density and
exponential growth of their number as a function of the period, and structural
stability. All of these can be proved independently of the existence of a Markov
model.

c. Regularity. There are two regularity aspects that pervade the theory of
hyperbolic dynamics and are worth previewing early. On one hand there is the
regularity of the dynamics. Assuming that the diffeomorphism or flow under con-
sideration is C! may suffice for the study of purely topological properties, but the
typically needed minimal assumption for doing hyperbolic dynamics is that the
map under consideration be C't* for some o > 0, i.e., have a Holder continuous
derivative [Pu3, RoY, Bw2, PPR]. (A map f: X — Y between metric spaces is
said to be a-Holder continuous if d(f(z), f(y)) < Kd(z,y)* for all z, y € X, Holder,
if this holds for some a > 0.) Subsection 3.3d gives a situation where this makes
a decisive difference. In the theory of nonuniform hyperbolicity this hypothesis is
quite essential. It is useful to exercise some care in ensuring that such a moderate
assumption suffices for any given aspect of the theory, but in this survey we set such
care aside and usually assume the dynamical system to be rather smooth, e.g., C*.

On the other hand, the structures associated with hyperbolic dynamics are
Holder continuous. More precisely, invariant structures are usually either as smooth
as the map itself or Holder continuous with an exponent usually dominated by the
above o but otherwise determined from possibly subtle dynamical information.
This is the case for the invariant foliations or laminations as well as for conjugacies
[HW]. Furthermore, the class of Holder continuous real-valued functions naturally
arises as an important one. One reason is that if the corresponding terms of two
sequences are exponentially close then the same goes for the image sequences under
a Holder continuous map. Another is that this class is invariant under conjugacy
of hyperbolic systems because the conjugacies are Holder continuous themselves.
That Holder continuity is the natural and prevalent regularity is related to the ex-
ponential rescaling by the dynamics in the domain and range of invariant functions
or the operators used to produce the particular structure or object.



CHAPTER 2

Hyperbolic sets and stable manifolds

1. Definitions and examples

a. Hyperbolic linear maps, adapted norm. A continuous linear map
A: E — E of a Banach space is said to be (A, p)-hyperbolic if 0 < A < p
and Sp(A)N{z € C| X < |2|] £ u} = @, where Sp(4) = {# € C | Ac —
zId is not an automorphism} denotes the spectrum (Ac is the complexification).
We say that A is hyperbolic if there exist A € (0,1), # > 1 such that A is (), u)-
hyperbolic, or equivalently, Sp(A) does not meet the unit circle [DS].

For a hyperbolic linear map there are subspaces E;, E,, called the stable and
unstable subspaces, respectively, with £ = E; ® E,,, A(E,;) C E;, A(E,) =
Sp(4), ) = Sp(4) N {|z| < 1}, and Sp(A ) =Sp(4)N{|z| > 1}. An adapted or
Lyapunov norm is a norm ||-|| equivalent to the given norm |-| such that ||T ', | <A,
||(T ) Y < 1/p and ||zs + zu|| = max(||zs|, |z for z; € E; and z, € E,.

(Settmg |5 + || = ||zs]|% +||7w||?> works equally well.) To construct such a norm
take n € N sufficiently large and set

lzall = T (zs)|/ X for 4 € By, |zl = D 1T (wu) |4 for z,, € By

1=0 =0

and ||zs + 7.l := max(|jz, ||, ||z |])-

b. Hyperbolic sets. The definition of a hyperbolic set is traditionally given
in terms of the action of iterates of the derivative extension on vectors; we give this
definition after an alternative one suggested by Mather [Mt2], via hyperbolicity of
the derivative action on vector fields, and the cone-field definition of Alekseev and
Moser.

Let M be a smooth manifold, U C M an open subset, f: U — M a C!
embedding. A compact f-invariant set A is said to be hyperbolic if the differential
of f defines a hyperbolic linear map on the space of bounded sections of TA M by
X +— DfoXo f~!. The spectrum o(f) of the complexification of this map is called
the Mather spectrum [Mt2].

An equivalent criterion can (with some diligence) be found in the work of
Alekseev [All] and appears in an article of Moser [Mos2, Lemma 4]. It requires
that for some metric there exist A < 1 < g and v > 0 such that for every x € A
there is a decomposition T, M = S, & T, with

DfyH, C Int Hf(zy and Df, ™ Vi(z) C Int Vg,

13



14 2. HYPERBOLIC SETS AND STABLE MANIFOLDS

where

Hy:={¢+n| €S, neTy, |nll <€}
Vor={(+n| €€ S neTy, €l <vlnl}

and furthermore || D fo|| > pl|€| for £ € H, and [|Df, €|l > A71||€]| for € € Vi(zy.
H, and V, are called invariant horizontal and vertical cone fields.

Requiring existence of the (not necessarily invariant) distributions S and T is
used simply as a convenient way of expressing the fact that the cones are “comple-
mentary”. It suffices to exhibit the invariant cones.

This is also equivalent to existence of a Riemannian metric (called a Lyapunov
or adapted metric [Mt2]) in an open neighborhood U of A such that for any z € A
the sequence of differentials (Df)sn: Tyn M — Tpn1 M, n € Z, admits a (A, p)-

splitting, i.e., there exist decompositions T, M = E}@E] such that D fE;;lE = E}':(E)
and

IDF 1 <A IDF Il u

It immediately follows that E} and E, have locally constant dimension and
are continuous.

Compact hyperbolic sets have interesting dynamics because the hyperbolic local
picture is combined with nontrivial recurrence, which is an essentially nonlinear
phenomenon.

c. Basic sets, Axiom A, Anosov diffeomorphisms. A certain complete-
ness is often quite important:

Let A be a hyperbolic set for f: U — M. If there is an open neighborhood
V of A such that A = AJ, :=(,c; f*(V) then A is said to be locally mazimal or
i1solated, and V is called an isolating neighborhood. There are several definitions of
a basic hyperbolic set, we take it to be a topologically transitive locally maximal
hyperbolic set.

For diffeomorphisms f: M — M we introduce Aziom A: Per(f) = NW(f)
and the nonwandering set NW (f) is hyperbolic.

The horseshoe (below) is locally maximal by construction. So is the following
class of examples, which was one of the primary motivations to study hyperbolic
dynamics:

A C? diffeomorphism f: M — M of a compact manifold M is said to be an
Anosov diffeomorphism [Al] if M is a hyperbolic set for f.

Clearly, any sufficiently small C'-perturbation of an Anosov diffeomorphism is
an Anosov diffeomorphism. (For other hyperbolic sets the existence of a nontrivial
invariant set for perturbations is not as evident, see Subsection 3.5a.) The Anosov
situation is special in a substantial way: Except in the Anosov case hyperbolic sets
usually have zero Lebesgue measure (Subsection 3.3d).

d. Examples.

1. The Smale horseshoe. The prototypical example of a hyperbolic set is Smale’s
original “horseshoe” [S2] described in [S-HK] and [KH]. Let A be a rectangle in
R? and f: A — R? a diffeomorphism of A onto its image such that the intersection
AN f(A) consists of two “horizontal” rectangles Ag and A; and the restriction
of f to the components A* C f~1(A), i = 0,1, of f~1(A) is a hyperbolic affine
map, contracting in the vertical direction and expanding in the horizontal direction.
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The maximal invariant subset of A is A = () f~™(A). This is the product
of two Cantor sets, hence a Cantor set itself. One can take the Euclidean metric,
A =1/2, u =2, and the splitting into the horizontal and the vertical directions as
the hyperbolic splitting.

An important manifestation of (nonlinear) horse-
shoes in modern times contributed to the develop-
ment of hyperbolic dynamics. When studying unpre-
dictability in relaxation oscillations of certain radar
circuits (tuned to outside normal operating parame-
ters), Cartwright and Littlewood [CL, C, Lw| came
up with a careful and somewhat elaborate mathemat-
ical description of the situation. When Smale conjec-
tured that structural stability necessitated finiteness of the set of periodic points
[S1], Levinson pointed out that systems such as that of Cartwright and Little-
wood are structurally stable but have infinitely many periodic points. Upon careful
study of Levinson’s work [Lv] Smale saw that the essential geometric ingredient is
a picture that he eventually distilled into the horseshoe [S3, S2].

2. Transverse homoclinic points and horseshoes. The appearance of horseshoes
in mathematical models of real-world phenomena, is quite widespread. Indeed, in a
sense this is the mechanism for the production of chaotic behavior (Theorem 5.8.1),
at least in dimension two. In disguise, one of the earliest appearances of this phe-
nomenon occurred in the prize memoir of Poincaré [Pc}, where homoclinic tangles
gave a first glimpse at the serious dynamical complexity that can arise in the three-
body problem in celestial mechanics. Homoclinic tangles always produce horse-
shoes, so in trying to solve the three-body problem Poincaré essentially discovered
the possibility of nontrivial hyperbolic behavior. A related appearance of horse-
shoes in this context is in the work of Alekseev, who used their presence to show
that capture of celestial bodies can indeed occur [AKK, Al2].

We give a brief description of how transverse homoclinic points give rise to
horsehoes. A full treatment can be found in [KH].

Consider the hyperbolic linear map f: R? — R2,
f(z,y) = (2z,y/2) in a neighborhood of the origin.
The segment of the y-axis consists of points asymp-
totic to the origin in positive time and the segment of
the z-axis consists of points asymptotic to the origin
in negative time, while all other points move along hy-
perbolas zy = const. If we extend our map such that
the preimage of the y-axis and the image of the z-axis
intersect transversely at a point p then p is called a
transverse homoclinic point for the fixed point 0. In
this case f™(p) — 0 as |n| — oo. Since these unsta-
ble and stable manifolds of 0 (see Section 2.2) are invariant under f, the images
f™(q) are also homoclinic points, i.e., intersection points of the unstable and stable
manifolds of the origin. Since the intersection at ¢ is transverse and f is a dif-
feomorphism, the same is true at f"(q) for any n. We thus immediately obtain a
countable number of transverse homoclinic points. Between any two of these we
have “homoclinic loops”. f maps these loops to each other, e.g., the loop between
g and r to that between f(¢g) and f(r). Since the unstable manifold has no self-
intersections, we get increasingly thin loops accumulating on the unstable manifold,
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and likewise for the stable manifold. Thus, these invariant curves (the stable and
unstable manifolds of 0, produce a complex web of tangles [KH, Figure 6.5.2] that
necessitates the presence of horseshoes near 0.

Poincaré encountered this situation in his revised prize memoir [Pc, B-G], and
it illustrated the potential orbit complexity in the three-body problem. Birkhoff
subsequently proved that there are infinitely many periodic points in a neighbor-
hood of the origin [Bh2, Section 9], but he did not find all the periodic orbits pro-
duced by a horseshoe. While Cartwright and Littlewood were aware of Poincaré’s
work, Smale was not.

3. The Smale attractor. To obtain the Smale attractor [S-HK, KH, S4] or
solenoid on the solid torus M = S* x D?, where D? is the unit disk in R?, define
coordinates (¢, x,y) such that ¢ € S* and z2 + y? < 1 and let

1 1 1 1.
f:M_)M7 f((p,:z:,y):(2go,ﬁx+§cosgo,ﬁy+—2-smgo).

Then A := Yy, /(M) is an attractor on which
f is expanding. Locally it is the product of a Cantor
set with an interval, but it is connected. The stable
manifolds are the sections C = {6} x D?, the unsta-
ble manifold of each point is entirely contained in the
attractor.

Smale called this map the DE-map, for “derived
from expanding”. The attractor is the natural exten-
sion [S-HK] of the double self-covering = +— 2z of the

circle.

4. Toral automorphisms. Any automorphism Fr, induced on T" = R"/Z" by
a hyperbolic linear map L of R™ with integer entries and determinant +1 is an
Anosov diffeomorphism.
There is a Euclidean norm in R" that makes L
| contracting in £~ (L) and expanding in E+(L); it pro-
jects to T", where we have an invariant splitting into
l subspaces parallel to E*(L) and E—(L). One can take

-1

A= r(LrE_(L)) +0, u= T(L_1[E+(L)) — 6 for any

I

/\ small § > 0, where 7(-) denotes spectral radius. Simple
inst 11 d it 21
instances are { ; o | and its square { I | J.

5. Automorphisms of infranilmanifolds. The only known manifolds that sup-
port Anosov diffeomorphisms are infranilmanifolds (of which tori are a special case).
On these one can construct hyperbolic automorphisms [KH, S4]. Suppose G is a
simply connected Lie group and I' is a discrete cocompact subgroup. If F: G —» G
is an automorphism such that F(I') = T' (hence F' projects to I'\G) and DFIId is

hyperbolic then there is a splitting of the Lie algebra £(G) = T1aG = Et® E~ and
a norm on £(G) such that DF—! - and DF |- 2Te contractions. (This implies

that G is nilpotent.) Via translations we obtain a splitting, which is a hyperbolic
splitting for F'. By construction this splitting and this norm are invariant under
left translations, so they induce a splitting and a norm on the compact quotient
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I'\G. The factor f: I'\G — I'\G of F is then an Anosov diffeomorphism. Specific
examples of such infranilmanifoldautomorphisms are given in [KH, S4].

6. Further ezamples. Other classical examples are the DA-map (“derived from
Anosov”) and the Plykin attractor [KH]. As we note below, perturbations of all
of the above examples are examples as well. Therefore, we have C'-open sets of
hyperbolic systems.

7. Repellers. E is determined by the positive semiorbit of z and can thus
naturally be defined in the noninvertible case, but E is determined by the negative
semiorbit of x, which is not uniquely defined for noninvertible maps, making the
notion of hyperbolicity less straightforward. However, there is no ambiguity in
choosing the expanding part if it is the entire tangent space:

Let f: U - M be C'. A compact invariant set A is said to be a hyper-
bolic repeller if there exists a Riemannian metric in a neighborhood of A such that
IDf(@)|| > ||v] for all v € TAM.

Obviously for an expanding map (i.e., a map with ||Df(v)|| > Allv|| for some
A > 1 and all v € TM) the whole manifold is a hyperbolic repeller. The map
z +— 2z (mod 1) od S? is a standard example. The maximal invariant sets in [0, 1]
for quadratic maps az(l1 — z) with a > 4 are examples of Cantor sets that are
hyperbolic repellers.

e. Hyperbolic sets for flows. Let M be a smooth manifold, ¢: RxM — M
a smooth flow, and A C M a compact ’-invariant set. The set A is said to be
a hyperbolic set for the flow ¢t if there exist a Riemannian metric on an open
neighborhood U of A and A < 1 < p such that for all z € A there is a decomposition
d
T.M = El ® E} ® E; with %h—o‘pt(m) € EO\ {0}, dimE? = 1, DptEf = EX,
and

1Dey <X 1D~ Il < u7"

Equivalently, a compact (*-invariant set A C M is hyperbolic if for some metric
there exist constants A < 1 < y such that for all £ € A there is a decomposition
T:M = E2® S, ® T (in general not Dy*-invariant), a family of horizontal cones
H, D S, associated with the decomposition S; & (E2®T;), and a family of vertical
cones V,; D T, associated with the decomposition (S, ® E%) & T, such that for ¢t > 0

D(pth C Int H(pt(m), D(,D—tva; C Int V,p—t(m),
d
4 |Dyel > €lllogn for € e I,
d -
Z1De7€l > |i€]llog A for £ €V, .

A C! flow ¢t: M — M on a compact manifold M is said to be an Anosov flow
[A1] if M is a hyperbolic set for *.

Hyperbolicity does not depend on the parametrization of time: If A is a hyper-
bolic set for ¢ and 4 is a time change of ¢! then A is hyperbolic for /.

f. Examples.

1. Geodesic flows. The central example of Anosov flows is provided by geodesic
flows—these were an important motivation for developing the hyperbolic theory
[A1]. Given a Riemannian manifold M one can define the geodesic flow g* on the
unit tangent bundle 7'M := {v € TM | ||v|]| = 1} by ¥*(v) = ¥ (t), where 7, is
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the geodesic defined by 4,(0) = v. In other words, one follows the geodesic in
the direction v for time ¢ and then takes the tangent vector there as the image.
Equivalently, one can describe the flow as the Hamiltonian flow for free particle
motion (no potential) on M restricted to the energy level 1/2. (Considering a
different energy level or, equivalently, vectors of another fixed length changes only
the speed along the geodesics, hence amounts to a constant time change [S-HK]
only).

If the sectional curvature is negative everywhere and the manifold is compact
then the geodesic flow is an Anosov flow. To see this one can verify the definition
in terms of contracting and expanding subspaces [K12], which leads to a study of
Jacobi fields, the Jacobi equation, and the associated Riccati equation. This has the
advantage that, done carefully, it establishes connections between pinching control
of curvature and “bunching” control of contraction and expansion rates of the flow
(this plays a role in the transverse regularity of the invariant laminations, which are
called the horospheric foliations in this context; see Section 2.3). On the other hand,
one can verify the cone criterion in the definition of hyperbolicity, which is more
geometric [KH]. We briefly outline this approach, skipping the basic connection
between Jacobi fields and dynamics, which can be found in [S-K]. Denote by R the
curvature tensor. Jacobi fields Y: ¢ = Y (t) € T,4) M along a geodesic y: R — M
are obtained as solutions of the Jacobi equation

Y(t)+ K@Y () =0,

where dots denote differentiation with respect to ¢t and K (¢) := R(%(t), -)¥(t). They
arise from variations of geodesics, which causes their behavior to reflect the dy-
namics of the geodesic low. For p € M, v € T, M denote by +, the geodesic with
Y2(0) = P, %(0) = v. Then there are isomorphisms ,: T,TM — T,M & T,M,
¢ — (z,z') such that ¢, (Dg¢) = (Y (t),Y(t)), where Y is the Jacobi field along
4, with Y(0) = 2 and Y (0) = 2’. This allows us to describe the dynamics of the
geodesic flow in terms of the evolution of Jacobi fields and to speak of the action
g* (or Dg*, rather) on Jacobi fields. In order to establish that the geodesic flow
in SM is an Anosov flow it is sufficient to obtain invariant cones. To that end
we study the Jacobi equation Y + K'Y = 0 with a negative-semidefinite symmetric
operator K. Introduce a norm on T,M & T,M by ||lu,v| := +/(u,u) + (v,v) for

u,v € T,M. Then the family of cones C' given by ||<I/'Y:11’]|)2 > 0 is invariant because
if LY—’Y—>2 =0 then
1Y, Y|

d (vY) _ (., V)+ T, IINY|? -2V V)V Y) + (¥, T))

dt||y,Y|? Iy, Y|4
_ YY) - (kYY) (YY)
v,y Ty

This does not quite prove hyperbolicity, but then we only used that the curvature is
nonpositive. With negative curvature and slightly more narrow cones one obtains
strict invariance and exponential expansion in the cones [KH]

.
4
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Hyperbolicity in geodesic flows is the subject of the survey [S-K]. To the extent
that there is any overlap, that survey is usually the better place to consult. For
this and other aspects of geodesic flows see also [Pt2].

2. Suspensions. Given a diffeomorphism f: M — M of a manifold one can de-
fine the suspension flow [S-HK] on M x[0,1]/(z,1) ~ (f(z),0) as the flow integrat-
ing the vertical vector field. Its return map to M x {0} gives the original diffeomor-
phism. If f has a compact invariant hyperbolic set A then Ax[0,1]/(z,1) ~ (f(z),0)
is a compact invariant hyperbolic set for the suspension flow. Many recurrence
properties of the map f are clearly inherited by the suspension flow, but this
is not true for topological mixing; suspension flows are never mixing (consider
U=V = M x(0,¢) or note that the constant speed flow on the circle is an obvious
topological factor and is not mixing). Transitive Anosov flows are either mixing,
i.e., of geodesic type, or a suspension (Subsection 3.3b).

Given a smooth function ¢: M — Rt one may also consider the special flow
over f under ¢ [S-HK] defined on

M, :={(z,y) e M xR | 0 <y < p(z)}/ (=, p(x)) ~ (f(x),0)

: : 0 i i :
by integrating the vertical vector field —. The function ¢ = 1 gives the suspension;

0
whether mixing is inherited by a specia%,ﬂow depends on f and ¢. If f is a mixing
Anosov diffeomorphism then the special flow under ¢ is mixing if and only if ¢ is
not cohomologous to a constant (Anosov alternative).

3. Further examples. An obvious way of producing new flows from old ones
is to impose a time change. In most cases this will change a geodesic flow to a
nongeodesic one, for example. Similarly to diffeomorphism situation one can also
consider perturbations, but by structural stability this does not change the orbit
structure. Nevertheless, some particular kind of perturbations are of interest in
regard to finer information. Adding a “magnetic force term” to a geodesic flow is
an example.

Unlike the discrete-time case, however, there is at present no hope, much less
any strategy, for classifying Anosov flows. The reason is that there are several
distinctive examples available. An historically important one is that by Franks
and Williams, an Anosov flow in dimension three that is not transitive [FrW],
in contrast to all known discrete-time examples. They call it anomalous. A much
more recent new class of examples is due to Foulon [Fo2]. These are smooth contact
Anosov flows on closed three-manifolds, as are geodesic flows on compact negatively
curved surfaces. But in these examples the three-manifolds are not the unit tangent
bundle of any surface.

g. The Banach Contraction Principle. The truly basic technical fact un-
derlying much of the development of hyperbolic dynamics, including the existence
of stable and unstable manifolds, is the Banach Contraction Principle, itself a de-
scription of a class of simple dynamical systems. It is worth recalling in a form that
includes basic facts about the dependence of the fixed point on the contraction
[Yc].

Let X, Y be metric spaces, X complete, A € [0,1) and T: Y x X — X such
that d(Ty(z),Ty(z')) < Ad(z,z'). Then each T, has a unique fixed point ¢(y).
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Furthermore, d(¢(y), z) < d(z, T,(z))/(1 — A) and hence

n - ATy (p(y), Tyley"))
d(e(y), e(y)) < T

Thus ¢ is continuous if T is and a-Hoélder if T is. If Lip(7T") =1 < 1 then

for y,y' €Y.

d(e(y), v(y) = d(Ty(e(¥)), Ty (¢(y))) < lmax(d(y,y"), d(e(y), v(¥))) = ld(y,¥'),

so Lip(p) = 1. If T is C" then so is ¢ and Dyp = (Id —D(’?i,(p(y))T)_1 o D?;,‘p(y))T,

where DX and DY are partial derivatives.
This is proved by bounding the distance between successive iterates of a point
by a geometric series; the last conclusion uses the Implicit Function Theorem.
The Banach Contraction Principle is usually applied by constructing from the
underlying hyperbolic dynamics an action on a space of auxiliary “candidate” ob-
jects, which is a contraction. The fixed point then gives the desired item.

h. The hyperbolic fixed point theorem. Let 0 < A < 1 < y, E a Banach
space, A a (A, p)-hyperbolic linear continuous map, l|-|| an adapted norm, f: E - E
a Lipschitz continuous map with € :=Lip(f — A) < ¢p:=min(l — A, 1 — x~!). Then
f has a unique fixed point p € E and |lp| < ||f(0)||/(e0 — €).

Some proofs that rely on the Banach Contraction Principle can be made more
direct and shortened a little (by simplifying the construction of the action on the
auxiliary space) when one employs this fixed point result (itself a consequence of
the Banach Contraction Principle). The Hartman—Grobman Theorem, expansivity,
the Anosov Closing Lemma, shadowing, and structural stability can be obtained
this way [S-HK]. For the moment it is also interesting as a first illustration of
the pervasive Cl-stability observed in hyperbolic dynamics because many objects
associated with a hyperbolic dynamical system (invariant structures, conjugacies)
are often obtained via a fixed point statement and, like the fixed point p here,
depend nicely on the dynamical system. This is used in [Yc].

2. Stable manifolds

Stable and unstable manifolds are the most prominent feature of hyperbolic
dynamical systems. They are closely connected with the success of linearization and
localization, both because they are produced using linearization and localization,
and because they are themselves tools in local, semilocal and global analysis. While
one can base most of the structural analysis of hyperbolic dynamical systems on
these invariant laminations, it is also possible to derive a substantial collection of
core facts without these [S-HK, Yc¢|. Especially in the theory of nonuniformly
hyperbolic systems it has been useful as well to substitute “admissible” manifolds
for stable ones. These are easier to obtain and turn out to be sufficient for many
purposes.

a. The Stable Manifold Theorem. Let 0 < A < n < u, E a Banach space,
A a (), p)-hyperbolic linear continuous map, || - || an adapted norm, f: E — E a
Lipschitz continuous map with € :=Lip(f — A) < €g :=min(n — A, g —n). Then the
n-contracting manifold

W(f) = {x € B | supn ™" f"(a)]| < +oo}
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is the graph of a contraction ¢: E;, — E,, with ¢(0) = 0, Lip(f st(f)) <e+Aand

limy, oo 77| f™(z)|| = 0 for all z € Wp(f). If n <1and fis C" with 1 <7 < o0
then ¢ € C"; if Dof = A then Doy = 0, i.e., W, is tangent to E;. Note that if
n > 1 then the action of f on W, (f) may not be contracting.

Complementary n-expanding manifolds W, are defined and obtained as -
contracting manifolds of f~!. Note that this result does not make assumptions on
the size of A or u relative to 1; thus we obtain stable leaves for diffeomorphisms
and strong stable leaves for flows (n = 1), weak stable leaves for flows (A = 1) and
fast stable leaves when there is a further spectral gap inside the unit circle. (This
result also has a conclusion for A > 1, but this conclusion is lost when one applies
the localization procedure that gives results on compact manifolds, such as stable
and unstable laminations [KH, Yc]).

We apply this result to hyperbolic sets; already in the present form one can
appreciate that it guarantees existence of nonlinear objects corresponding to linear
objects with exponential behavior. We sketch two methods of proof.

b. The Perron-Irwin method. (See also [Pnl, I, LW, FHY, Yc¢|, [Ro4,
Section 5.10].) To find W* we write f = (fs, fu),

Es :={(z7)nen | 77 € By, [|(27)nen|l :=sup [|z3]] < oo},
n

Eu = {(xZ)nENo I x-,n;, € E,, ”(‘x::)nEN” = Sup le:” < 00}7
n

and define §: By xEs X Ey — Es X Euy (Ts, (TF)neN, (T )nen,) = (U5 )neN, (U5)neN, ),
where z0:=1z,, y?+1 = f,(z7,z7) and y? = 27+ A (27 - £, (27, z7)) for n € Np.
The sequence spaces can be thought of as candidates for orbits; indeed, a fixed point
of 0 is a bounded orbit (parametrized by its initial stable coordinate z,). To get
the theorem one therefore shows that € is a contraction depending smoothly on z,;
this gives existence, uniqueness, and smoothness of stable manifolds.

c. The Hadamard graph transform method. (See also [HPS, S-HK,
KH, Hd2].) To find W* (which is W* for f~!) choose v € (0,1) (depending on
contraction and expansion rates), and consider v-Lipschitz maps ¢: E, — E, with
©(0) = 0 (candidates for the unstable manifold). The graph-transform or Riccati
operator F defined by

graph(F(p)) = f(graph(y))

is a contraction with respect to the metric

d(p,¢) = sup lo(z) —¢'(2)|l/|l=|l
z€E,~{0}
and W*" is the graph of the unique fixed point.
This method revolves around the invariance of cone fields, which was introduced
in the definition of a hyperbolic set.

d. The Hadamard—Perron Theorem. The result that can be taken as the
base of stable manifold theory for both the uniformly and nonuniformly situations
is the Hadamard—-Perron Theorem, which we describe here in the same form as in
[S-HK, KH)]. It can be proved by the method of Hadamard [KH, Section 6.2d] or
by that of Perron—Irwin.
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Let A < p and choose 0 < v < min (1,4/p/A — 1) and

p— A p= (14722 )
Y+2+1/y A4+v)(v2+2v+2))
For r > 1 and for each m € Z let f,,: R® — R™ be a (surjective) C” diffeomorphism
such that fm(z,y) = (Amz + am(2,y), Bmy + fm(z,y)) for (z,y) € R* @ R*F,
where A,,: R* — R* and B,,: R*™* — R"~* are linear maps with ||A-!]| < p~t,
| B |l < A and 0, (0) =0, 8,,(0) =0, |lam|lcr < 9, ||Bml|lcr < 8. Then there is

1. a unique family {W;}};mez of k-dimensional C' manifolds

Wai = {(z, ¢}(2)) | = € R*} = graph ],

O<6<min(

and
2. a unique family {W,. }mmez of (n — k)-dimensional C' manifolds

Wi ={(¢m¥),y) | y € R**} = graph ¢y,

where ¢} : RF — R, o—: R** — R*, sup,,cz [|D¢i|| < 7, and the following
properties hold:
L (W) = Wosy, fm(WE) =Wk,
2. [fm (2]l < N|z]| for z € Wi, Ifn21 (2l < (&)~ 2|2]| for = € WL,
where M :=(1+v)(A+51+7)) < ﬁ —d=:y.
3. Let X < v < . If | fmar_10- -0 fm(2)|| < CvT||2| for all L > 0 and some
C > 0 then z € W,.
Similarly, if || .1, o-- -0 f-1, (2)|| € Cv~L||z|| for all L > 0 and some C > 0
then z € W,.

Finally, in the hyperbolic case A < 1 < p, the families {W,;}},,ez and {W, } ez
consist of C" manifolds.

This result can be applied to hyperbolic sets by looking at one orbit at a time
and taking the sequence of maps to be coordinate representations of the diffeomor-
phism at a given iterate. The uniformity of the estimates for different orbits gives
uniform results. But this uniformity is not an essential ingredient and accordingly,
the Hadamard-Perron Theorem is a central device for the nonuniformly hyperbolic
situation as well.

The application to flows goes via time-one maps and gives both strong and
weak (un)stable manifolds.

e. Stable and unstable laminations. Let A be a hyperbolic set for a C*
diffeomorphism f: V — M such that D f ‘A admits a (A, p)-splitting with A <1 < p

(see the definition oi hyperllglic set). Then for each z € A there is a pair of
embedded C?! discs W*(z), W*(x), called the local stable manifold and the local
unstable manifold of x, respectively, such that
1. T,W*(z) = By, T,W%z)=E}
2. f(W>(2)) c W*(f(2)), f1(W™(z)) C W*(f*(2));
3. for every & > 0 there exists C(d) such that for n € N
d(f"(), f"(¥)) < C(E)(A+ &) d(z,y) for y € W* (),

d(f " (z), f™(y)) < C(8)(n — 6) "d(z,y) for y € W*(z);
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4. there exists # > 0 and a family of neighborhoods O, containing the ball
around = € A of radius 8 such that

Wo(z)={y | f"¥) € Orzyy n=0,1,2,...},
W) ={y | f"(y) € Op-n(z), n=0,1,2,...}.
5. Global stable and unstable manifolds

Wi(z) = |J W (@), W)= | A=)
n=0 n=0

are well-defined and can be characterized topologically:
W(e) = {y € U | d(/"(2), /(%)) —= 0},

W) ={yeU [ d(f (@), f"(y)) —— O}

If Wé(z) N W4(y) # &, then W#(z) = W3 (y).

7. Denote by W2(z) and Wk(z) the e-balls in W*(z) and W*(z) (local stable
and unstable manifolds). Then there exists an ¢ > 0 such that for any
z,y € A the intersection W2 (z) N W*(y) consists of at most one point [z, y]
and there exists a § > 0 such that whenever d(z,y) < d for some z,y € A
then W2(z) N W2(y) # @.

8. Let A be a compact hyperbolic set for f: U — M. Then there exists an
open neighborhood V; of A and o > 0 such that whenever z,y € A and
{z} = W*(z) N W*(y) C Vp then for any ¢ € T,W*(z) and n € T,W*(y)
the angle between £ and 7 is greater than «y.

Global stable and unstable manifolds are usually immersed in the phase space

&

in a complicated way. Those for 0 under the action of (i }) on T? are projections

of eigenlines, hence dense.

This is the stable manifold theorem for hyperbolic sets: there are stable and
unstable manifolds through every point of the hyperbolic set, and these form a pair
of Hélder continuous (see Section 2.3) transverse laminations with smooth leaves.
One can obtain it from the Hadamard—Perron Theorem, or by applying the stable
manifold theorem to the action on vector fields via a localization procedure [KH,
Lemma 6.2.7], [Yc, Section 2.4].

f. Fast leaves. The statement of the main stable manifold theorem and that
of the Hadamard—Perron Theorem carefully avoided specifying the sizes of the rates
A and p relative to 1. The benefit is that if 4 < 1 and the linear map A is (A, p)-
hyperbolic as well as hyperbolic then for f we obtain a fast stable manifold

Wy(f):={z€E| ilégﬂ‘"llf"(w)ll < +oo} C Wi(f) = W*(f).

Therefore, if the part of the spectrum of (the complexification of) A inside the unit
circle consists of several separated annuli then for sufficiently nearby f we obtain
a nested collection of stable manifolds. More specifically, if the spectrum of A is
contained in U£=_k{z € C| pi < |z] € Aig1} with Ay < 1 < p; and 79 = 1 then
we obtain fast stable manifolds

Wi (f)={z e E| Slégn{"llf"(x)ll < +oo} C W, (f)

for —k <4 < 0, which define the stable filtration, and likewise an unstable filtration.
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If the action of a diffeomorphism on vector fields (on a hyperbolic set, complexi-
fied) satisfies the same spectral assumption then there are subbundles E* associated
with the spectral annuli and characterized by ever faster contraction/expansion
rates and one obtains a stable and unstable filtration of the invariant laminations,
where TWp. = @, E7.

For the case of Anosov diffeomorphisms Mather showed that if nonperiodic
points are dense then the Mather spectrum (Subsection 2.1b) is of the form

1
o(f)= |J{z€C | m<lzl < Aiga}
i=—k
with A; < p;. According to a result by Pesin [Pel], for all ¢ > 0 there is a C?
neighborhood U of f such that

l
o(g) C U {zeC | pi—e<|z| < Aiy1+ €}
i=—k

for all g € U, i.e., the Mather spectrum is semicontinuous.

g. Slow leaves. From the preceding discussion the question arises whether
the subbundles E* associated to the annuli of the Mather spectrum are tangent to
invariant leaves. Except for the smallest and largest indices ¢ the Stable Manifold
Theorem gives no pertinent information. In general, there are assumptions on the
sizes of the spectral gaps that give invariant local C" manifolds (r depending on
the spectrum) tangent to E*, but these cannot always be glued together to give a
foliation, i.e., each point has such a slow manifold, but these are not equivalence
classes [JLP]. For perturbations of toral automorphisms satisfying the proper
spectral assumptions the slow subbundles integrate to continuous slow foliations
with C" leaves [LW], where r is again related to spectral parameters and cannot be
improved. In contrast to the fast leaves, the slow leaves are much less regular than
the diffeomorphism. Their degree of differentiability depends on spectral conditions
that require substantial separation of the rings in the Mather spectrum.

As the results may suggest, the methods employed in proving these theorems are
quite different from the robust Hadamard method, which underlies the construction
of stable manifolds (for which the Perron-Irwin method could also be used) as well
as the study of transverse regularity.

h. Local product structure. Consider a hyperbolic set A C M for an em-
bedding f: U — M. If for z € A and € > 0 we set Wi(z):={y € M |
d(f"(2), () < e forn € N} and W2(z) = {y € M | d(f~"(z), f"(3)) <
e for n € N}, then for sufficiently small € a map [,-]: A x A — M is well-defined
by setting W*(z) N W2(y) = {[z, y]}. We say that A has local product structure if
[z,y] € A for z,y € A. This is equivalent to local maximality.

i. Stable and unstable manifolds for flows. Let A be a (), u)-hyperbolic
set for a C” flow ¢*: M — M, r € N, A, 1 as in the definition, and o > 0. Then
for each = € A there is a pair of embedded C"-discs W*(z), W*(z), called the local
strong stable manifold and the local strong unstable manifold of z, respectively, such
that

1. T,W*(z) = E;, T.W¥(z) = E};

2. ¢ (W*(z)) C W*(¢t(x)) and ot (W*(z)) C W(p~(z)) for t > to;
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3. for every ¢ > 0 there exists C(d) such that
d(p'(z), ¢' () < CO)(A+0)'d(z,y)  fory € W*(x), t>0,
d(p~H(2), 07" W) < CE)(n— ) *d(wy) fory € W*(z), t>0;

4. there exists a continuous family U, of neighborhoods of € A such that
W(2) = {y | ¢'W) €Up, t>0, d(p'(z),¢'®)) —— 0},
W(@) ={y | ¢7*() € Upmse), £ >0, d(p™H(z), 07 (1)) —— 0}

5. Global strong stable and strong unstable manifolds

W (z) = | ¢t (W*(¢*(z))) and W"(z) := | ] o*(W*(¢*(2)))
t>0 t>0

are well-defined, are smooth injectively immersed, and are characterized by
W(@) = {y € M | dl¢*(@), ' () — 0},
We(z)={y € M | d(¢™"(2),9"4(3)) — O}.

With a little care one can replace the condition ¢ > ¢y in 2. by £ > 0.
The manifolds W% (z) := J,cg ¢*(W*(z)) and W (z) := U, g ¢*(W*(z)) are
called the weak stable and weak unstable manifolds of . They form Holder contin-

uous laminations with smooth leaves, as do the strong stable and unstable leaves
[A2]. Note that T,W% = E0® E; and T,W% = ES @ E}.

3. Regularity of the invariant laminations

a. Definitions. To discuss the regularity of these laminations (as opposed to
that of the leaves) in any detail we begin with definitions. Given a > 0 we say
that a map is C* if its derivatives of order |« are o — |a|-Holder continuous
(where 0-Hélder means just continuous). By C** we denote those C* maps whose
kth derivatives have modulus of continuity w. These regularity classes are the
appropriate ones for the invariant laminations, but we first need to describe how
to define their regularity.

The regularity of subbundles is unambiguously defined, e.g., through the op-
timal regularity of spanning vector fields in smooth coordinate systems. For the
dependence of the leaves on the base point several slightly different definitions are
possible. The canonical definition is via the highest possible regularity of lamination
charts. One may also look into the transverse regularity of k-jets. Alternatively,
one can examine the holonomy semigroup, i.e., for pairs of nearby smooth transver-
sals to the lamination one considers the locally defined map between them that is
obtained by “following the leaves”. By transversality this is well-defined, and for
smooth transversals one can discuss the regularity of these maps, which turns out to
be largely independent of the transversals chosen. This is what we will study, and
we refer to it as the regularity of holonomies or (transverse) regularity of the lami-
nation. There is little difference between these definitions in our context. Following
the discussion in [PSW] we can summarize the relation as follows:

THEOREM 2.3.1 ([PSW, Theorem 6.1]). Ifr € RU {oo}, r ¢ N~ {1} then a
foliation with uniformly C" leaves and holonomies has C” foliation charts.
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However, if r € N\ {1} then a foliation with uniformly C” leaves and holonomies
need not have C7" foliation charts. The problem are mixed partials. Without
assuming uniform regularity the above statements can fail drastically: There is a
foliation with uniformly C° leaves and with (nonuniformly) C* holonomies that
does not have a C? foliation chart [PSW, Figure 9]. In our context the regularity
is always uniform, so the above result implies that one can define regularity equally
well via holonomies or foliation charts. The essential ingredient for Theorem 2.3.1
is Journé’s Theorem 2.3.9, by the way. This leads to the following observation.

THEOREM 2.3.2. If r € RU {0}, r ¢ N\ {1} and the stable and unstable
foliations have uniformly C™ holonomies, then there are C" bifoliation charts, i.e.,
charts that straighten both foliations simultaneusly.

PRrROOF. The hypothesis implies that every point p has a neighborhood U on
which the inverse [z,y] — (z,y) € W(p) x WE(p) of the local product structure
map (Subsection 2.2h) is uniformly C” in either entry. By Theorem 2.3.9 it is
Cr. O

There is a connection between the regularity of the subbundles and that of the
lamination: For any r € NU {oo} and a € [0,1) or “a = Lip” a foliation tangent to
a C™t* subbundle is itself C™t® [PSW, Table 1]. (The reverse implication holds
only for r = oo because leaves tangent to a C™ subbundle are C™1.)

The invariant subbundles are always Holder continuous (Theorem 2.3.3). It
should be noted, however, that for a < 1 the o-Hoélder condition on subbundles
does not imply any regularity of the foliations. Indeed, without a Lipschitz condi-
tion even a one-dimensional subbundle may not be uniquely integrable, so already
continuity of the foliation cannot be obtained this way. On the other hand, there
turns out to be a recently discovered converse connection: If the holonomies are
a-Holder and individual leaves are C°° then the subbundles are S-Holder for every
B < a [HW]. (There are variants of this for leaves of finite smoothness and almost-
everywhere Holder conditions.) Furthermore, whenever bunching-type information
gives a particular degree of regularity for the subbundles, one can usually get the
same regularity for the holonomies, and vice versa.

b. Hoélder regularity. As mentioned earlier, the holonomies are always Holder,
this was first used to obtain absolute continuity of holonomies as the base for a proof
of ergodicity by the Hopf argument (Subsection 2.3g). One can give a lower bound
for the optimal Holder exponent in terms of contraction and expansion rates. Clas-
sical sources for this are [HPS, Fnl)|.

The relevant information about contraction and expansion rates is given by the
bunching parameter B*(f) :=sup{infyca(log ps(p) —logvs(p))/log s (p) | ps(p) <
ps(p) < 1 < vs(p), u3(p)llv]l/C < ||IDF™()]] < Cpg(p)llvll and |DF~"(w)|| <
Cv;™(p)||lu|| for v € E*(p), u € E*(p), n € N}. This is always positive by hyper-
bolicity and compactness. For example, in the symplectic case v5(p)us(r) = 1, so
B*(f) = 2supinf, log us(p)/log u¢(p) is close to 2 if and only if the contraction
rates us(p) and p¢(p) are close together.

PROPOSITION 2.3.3. If B*(f) ¢ N then E* € CB"(5) and W* e CB"(N; if
B*(f) € N then E* € CB"(f)-1,0(z|logz])

Precursors of this result go a long way back. For E* this is due to Hasselblatt
[Hb3] in this form, for the holonomies this is a consequence if B%(f) > 1; for the
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holonomies and B*(f) < 1 this is due to Schmeling-Siegmund-Schultze [SS], where
essentially Lyapunov exponents are used, see also [PSW]. One should note that
B*(f) could be quite large, but B*(f) and (the analogously defined) B*(f) cannot
simultaneusly exceed 2, so this result together with its stable counterpart never
claims that both laminations are C2?. This result also applies to the transverse
regularity of k-jets. Note that the definition of the bunching parameter above
involves rates of ratios, as it were, as does the work of Fenichel [Fnl]. Hirsch,
Pugh and Shub [HPS], on the other hand, use a ratio of rates instead, which is
a more stringent assumption (this is compared in [Fnl]), although they remark
[HPS, Remark 1, p. 38] that their methods would yield analogous results for rates
of ratios.
Two special cases are worth mentioning:

COROLLARY 2.3.4. 1. If E* has codimension one then there is only one
contraction rate and B*(f) > 1, hence E* and W* are C17e.

2. If, in addition, volume is preserved one also finds the same for the stable
subbundle and lamination.

This is one of the places where the smoothness of the diffeomnorphism matters;
for C! diffeomorphisms these statements fail badly [PPR].

For fractal hyperbolic sets (i.e., hyperbolic sets other than the Anosov case)
the holonomies appear to be Lipschitz-continuous off a subset of smaller fractal
dimension. This has been proved in special cases [HS] with a method that appears
general enough, and this should be useful for dimension calculations [B]. This is in
contrast to the situation with symplectic Anosov diffeomorphisms (Theorem 2.3.5).

c. Obstructions to higher regularity. There might be infinitesimal im-
provements to the above regularity result, but it is substantially optimal in a strong
sense. Anosov noted that the invariant foliations are generically not C? for area-
preserving Anosov diffeomorphisms; his idea underlies parts of Theorem 4.2.1 and is
described in Subsection 4.2a, where we discuss rigidity results related to unusually
high smoothness of the invariant foliations. Anosov also gave a volume-preserving
example where the subbundles are almost nowhere C*. In that example the optimal
Holder exponent is 2/3 almost everywhere (with respect to volume) [A1]. One can
make much stronger optimality assertions:

THEOREM 2.3.5. For an open dense set of symplectic Anosov systems the reg-
ularity predicted by computing B* only from periodic points is not exceeded (i.e., if
the rates compare badly at a single periodic point then the regularity is correspond-
ingly low—at that periodic point) [Hbl]. An open dense set of Riemannian metrics
do not have C*t1P horospheric foliations [Hb1].

Furthermore, for any € > 0 there is an open set of symplectic Anosov diffeomor-
phisms for which the subbundles and holonomies are C¢ at most on a (Lebesgue)
null set [HW].

This symplectic Anosov situation is the most interesting, because this is a nat-
ural context where getting Lipschitz holonomies on a sufficiently large set would
bypass the proof of absolute continuity of the foliations that is needed to get er-
godicity of volume. At the same time this context is rather complementary to that
of fractal hyperbolic sets as it was described in the previous subsection.
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d. Geodesic flows. When one considers geodesic flows one may obtain bunch-
ing information from curvature pinching (Subsubsection 2.1fl1). To that end the
sectional curvature of a compact negatively curved Riemannian manifold N is said
to be relatively a-pinched if C < sectional curvature < aC for some C: N — —R;.
If C is constant, the curvature is said to be (absolutely) a-pinched. It is not known
to which extent these notions can actually differ in examples. A classical result is
the following one, which is not easily found in this form in the literature.

THEOREM 2.3.6. Ifa € (0,1) and the curvature is a-pinched then the invariant
laminations are C?Va.

The best-known case is a = 1/4, giving C* laminations [HP], [K12, Theorem
3.2.17], and the cited proofs imply this result. A remarkable extension to weak
1/4-pinching is the following:

THEOREM 2.3.7 ([Hs]). For a Riemannian manifold with curvature in [—4, —1]
the Anosov splitting is differentiable a.e. with respect to every ergodic invariant
Borel probability measure on the unit tangent bundle.

Absolute pinching directly controls the Mather spectrum (Subsection 2.1b),
which is much stronger than the control required to obtain large values of B™.
Indeed, it suffices to assume relative pinching:

PROPOSITION 2.3.8. For a € (0,1) a compact relatively a-pinched Riemannian
manifold has C** horospheric laminations [Hb2].

Note that gives lower regularity than Theorem 2.3.6, but covers the same range
of exponents.

In the case of geodesic flows stable and unstable foliations are defined even in the
nonpositively curved case, whether or not the geodesic flow is Anosov (horospheric
foliations [S-K]). Therefore, pertinent regularity questions arise if the curvature is
allowed to be zero in some places. For surfaces the resulting foliations are Hélder
with C1*LP leaves under some minimal assumptions on flatness (the leaves are
always C3/2) [GW]. That in this setting the horospheres may not be C® was
shown by Ballmann, Brin and Burns [BBB]. Even for surfaces (where negative
curvature gives C1+Zy&mund holonomies) one may get non-Lipschitz holonomies (in
higher dimension the Lipschitz property can fail even in negative curvature [Hb1}).
If the curvature of a compact surface is negative except along a closed geodesic then
the horocycle foliation may fail to be 1/2-Holder at the corresponding orbit [GN]
(this applies to subbundles as well as holonomies). However, the actual Holder
exponent is arbitrarily near 1 if the curvature vanishes to sufficiently high order
at the closed geodesic (without being 1) [GN]. While the latter result holds in
noncompact situations under some boundedness assumptions on derivatives of the
curvature, without these the holonomies may fail to be Holder altogether even if
the curvature is negative and pinched and the volume is finite [BBB].

e. Bootstrap and rigidity. A somewhat complementary phenomenon is of
some interest in regard to questions relating to high smoothness of the invariant
foliations: There is an N € N depending on contraction and expansion rates, such
that if E* € CV then E* € C*® (bootstrap, [Hb4]). For instance, in the case of
sufficiently small perturbations of geodesic flows on constantly curved manifolds we
have N = 3; as we see later (Theorem 4.2.7) this implies that no such perturbation
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can have C? invariant foliations (except for isometric metrics). Put differently,
constant curvature metrics are rigid in the category of Riemannian metrics whose
geodesic flows have C2 horospheric foliations. This bootstrap was substantially
refined by Foulon and Labourie [FL], who showed that sufficiently high regularity
of a cocycle at a single periodic point forces high regularity everywhere.

f. Fast leaves. By work of Brin, Kifer [BrK] and Pesin [BrP] the subbundles
E® in Subsection 2.2f are Holder continuous with exponent «, say, and by a result
of Jiang, Llave, Pesin [JLP] the E* are o-Holder as a function of g € U.

Examples of this situation are given by perturbations of higher-dimensional hy-
perbolic toral automorphisms and of geodesic flows of nonconstantly curved locally
symmetric spaces.

An interesting observation is that even though transversely the fast lamina-
tions are usually only Holder continuous, the fast leaves defined by the Lyapunov
decomposition (Subsection 5.4b) Cl-laminate the next larger fast leaf of that de-
composition [LY, BPS]. This is not implausible because of the similarity to the
codimension one situation described above, where the foliation is C'. Combining
this with transverse differentiability or Lipschitz continuity (Subsection 2.3b) is
useful for calculations of the fractal dimension of hyperbolic sets.

g- Absolute continuity and ergodicity of Anosov systems. Picking up
Hopf’s work on ergodicity of geodesic flows on compact negative curved surfaces,
Anosov and Sinai [A1, AS] noted that the Hopf argument can be carried out in
higher dimension because the invariant foliations, while not necessarily C*, have
absolutely continuous holonomy maps between nearby leaves [S-HK]. (This prop-
erty requires the Anosov system to be a little better than Cl, see [RoY].) A
contemporary rendering of the arguments is in [Bm)].

For proving ergodicity of volume in uniformly hyperbolic systems, absolute
continuity can be bypassed by noting that volume, if invariant, is an equilibrium
state (for the logarithm of the unstable Jacobian, Subsection 3.6¢) and hence mixing
(Subsection 3.6c), which implies ergodicity [KH].

h. Leafwise regularity. There are several situations where the regularity of
some map is most easily seen to be high on each leaf of the invariant foliations.
Although the leaves do not necessarily depend very smoothly on their base point
one can nevertheless obtain global regularity from leafwise regularity. This was first
observed by [LMM1] and [HK] and the most elementary proof combined with the
strongest conclusion is due to Journé [J]:

THEOREM 2.3.9. Let M be a C* manifold, F*, F® continuous transverse fo-
liations with uniformly smooth leaves, n € Ny, a > 0, f: M — R uniformly C™t¢
on leaves of F* and F®. Then f is C™2.
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CHAPTER 3

Topological dynamics, stability, invariant measures

1. Expansivity and local stability

a. Expansivity. The restriction of a diffeomorphism to a hyperbolic set is
expansive: From 4. and 7. in Subsection 2.2e one sees that § := min(8,¢) is an
expansivity constant because if d(f"(z), f*(y)) < 0, for n € Z, then f(y) € On(s)
and y € W*(z) N W¥(z) = {z}.

This can also be proved via the hyperbolic fixed point theorem without using
stable and unstable manifolds [Yec].

b. The Hartman—Grobman Theorem. Let M be a smooth manifold, U C
M open, f: U — M continuously differentiable, and p € U a hyperbolic fixed point
of f. Then there exist neighborhoods Uy, U, of p, neighborhoods V1, V, of 0 € T, M
and a homeomorphism h: U; UU; — V3 U Va such that f = h~ 1o Dfy,ohon Uy
[Htl, Gm, KH], i.e., the following diagram commutes:

U1;>U2

o s
v, 2y,

A global version of the statement for Lipschitz-perturbations of linear maps is
given and proved in [S-HK, Yc¢, Pu2|. The connection between the two versions
is localization [KH, Lemma 6.2.7], [Yc, Section 2.4).

One can prove this result using stable and unstable manifolds or by obtaining
the conjugacy via the hyperbolic fixed point theorem.

Thus, beyond the apparent similarity between the dynamics of a map near
a hyperbolic fixed point and that of its linearization, these two are topologically
conjugate. This conclusion can easily be strengthened.

c. Local topological rigidity. Since two invertible linear contractions with
the same orientation are topologically conjugate, the Hartman—Grobman Theorem
implies that the topological character of f near p is determined already by the
orientation of f on stable and unstable manifolds and by their dimensions:

Suppose f: U — R", g: V — R” have hyperbolic fixed points p € U and q € V,
respectively, and for ¢ = +, —

dim E*(Df,) = dim E*(Dg,), signdet Dfp, = signdet Dgq .

(Dgq)

Then there exist neighborhoods U; € U and V3 C V and a homeomorphism
h: Uy — V; such that ho f =goh.

E'(Dfp)

31
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Thus there is a complete finite set of invariants of local conjugacy. (Complete-
ness of a set of invariants means that each set of values determines an equivalence
class.) In particular any C?! diffeomorphism is locally structurally stable in a neigh-
borhood of a hyperbolic fixed point.

This result is a primitive precursor to the classification of Anosov diffeomor-
phisms in Subsection 3.5e.

At the same time there are improvements in another direction: The regularity of
the linearizing homeomorphism is often better than only continuity. For example,
if the manifold M in the Hartman-Grobman Theorem is two-dimensional then
one can linearize by a C! local diffeomorphism [Ht2]. In general, the possibility of
linearization of higher regularity is a matter of the presence or absence of resonances
and is closely related to normal forms (Subsection 4.2a, Subsubsection 4.2b2).

2. Shadowing

Essentially by definition hyperbolic dynamical systems are distinguished by ex-
ponential divergence of any two orbits from each other. This constitutes the maxi-
mal sensitivity on initial conditions possible in smooth dynamics and is responsible
for the complexity of the dynamics. A central aspect of hyperbolic dynamnics
is, however, that this very instability of orbits coexists with and indeed causes a
remarkable robustness of the orbit structure on the whole. The key connection be-
tween these distinct features is the shadowing property: “Approximate orbits” can
always be approximated by genuine orbits. The basic technical device underlying
this property, in turn, is again the Hyperbolic Fixed Point Theorem (or the Banach
Contraction Principle).

a. Pseudo-orbits and shadowing. Let (X,d) be a metric space, U C M
openand f: U — X. For a € ZU{—oo} and b € ZU{oo} a sequence (zp)acn<y C U
is said to be an e-orbit or e-pseudo-orbit for f if d(zp41, f(zn)) < eforalla < n < b.
It is said to be d-shadowed by the orbit O(z) of z € U if d(zy,, f*(z)) < ¢ for all
a<n<hb.

That the latter condition is nontrivial is illustrated
by the simple example f: S — S, z — £+0.1-sin® 7z
(mod 1) where all orbits are homoclinic to 0 but a
pseudo-orbit can jump across 0.

b. The Anosov closing lemma. Let A be a hyperbolic set for f: U — M.
Then there exists an open neighborhood V' O A and C, ¢; > 0 such that for
€ < €p and any periodic e-orbit (zg,...,Zy,) C V there is a point y € U such that
f™(y) = y and d(f*(y),zx) < Ce for k =0,...,m — 1. In fact, d(f*(y), f*¥(z)) <
C amintm=k) . (d(z,y) + d(f™(z), f™(y))) [A1].

This can be derived from the Hyperbolic Fixed Point Theorem in Subsec-
tion 2.1h [Y¢] or from the Banach Contraction Principle [KH]. The Anosov Closing
Lemma does not assert that the periodic orbit lies in A, but this is clearly true if
A is a locally maximal hyperbolic set for f: U — M. Thus, in this case periodic
points are dense in A’ := NW(f ) A). In particular, periodic points are dense in a
basic set.

One can prove a counterpart of the Anosov Closing Lemma for flows using
Poincaré maps between successive transversals to a pseudo-orbit. Alternatively it
follows from the Shadowing Theorem for flows (Subsection 3.2d).
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c. Shadowing Lemma. Let M be a Riemannian manifold, U C M open,
f: U = M a diffeomorphism, and A C U a compact hyperbolic set for f. Then
there exists a neighborhood U(A) D A such that whenever § > 0 there is an € > 0
so that every e-orbit in U(A) is d-shadowed by an orbit of f.

The markedly sensitive dependence of an orbit on its initial point poses the
problem of extracting meaningful information from approximate knowledge of an
orbit segment. The Shadowing Lemma addresses this point and in particular helps
ascertain that numerical calculations reflect actual orbits accurately. Hyperbolic-
ity suggests that any initial error grows exponentially, but this result nevertheless
guarantees that the computed orbit represents a genuine one with satisfactory ac-
curacy.

However, shadowing as such does not guarantee that the numerical pseudo-
orbit is in any sense typical For the map Fy: R/Z — R/Z, z — 2z (mod 1)
any computer-generated orbit eventually becomes zero since the initial condition is
internally represented by a binary fraction and at each step the number of nonzero
binary digits after the point decreases. Thus the computer always computes an
actual orbit, but always one attracted to zero. Since the circle is a hyperbolic
repeller, this is highly untypical. Typical orbits are equidistributed with respect to
Lebesgue measure (Subsection 3.6e).

d. Shadowing Theorem. A stronger version provides for coherent shadow-
ing of entire continuous families of e-orbits.

Let M be a Riemannian manifold, U C M open, f: U — M a diffeomorphism,
and A C U a compact hyperbolic set for f.

Then there exist a neighborhood U(A) D A and €p,dp > 0 such that for all
0 > 0 there is an € > 0 with the following property:

If f': U(A) - M is a C? diffeomorphism ¢j-close to f in the C topology,
Y a topological space, g: Y — Y a homeomorphism, a € C°(Y,U(A)), and
deo(ag, f'a) :=sup,cy d(ag(y), f'a(y)) < € then there is a 8 € C°(Y,U(A)) such
that Bg = f'8 and dgo(a, ) < 6. Furthermore 3 is locally unique: If g = f'f3
and dgo (e, B) < 8o, then B = 8.

To see that this implies the Shadowing Lemma take Y = Z, f' = f, ¢ = 0,
and g(n) = n+ 1 and replace o € C°(Y,U(A)) by {Zn}nez C U(A) and “B €
CO(Y,U(A)) such that Bg = f'8” by {f"(z)}nez C U(A). Then d(zn, f*(z)) < &
foralln € Z.

The Anosov Closing Lemma is obtained by taking f/ = f, Y = Z/nZ, g(k) =
k+1 (mod n).

This result can be proved by utilizing stable and unstable manifolds [KH], or
by way of the hyperbolic fixed point theorem. In [KH] this result is used to prove
structural stability.

e. The specification property. Let f: X — X be a bijection of a set X.
A specification S = (1, P) consists of a finite collection 7 = {I1,...,I;,} of finite
intervals I; = [a;, ;] C Z and a map P: T(7) :=J.~, I; = X such that for ¢;,ts €
I € T we have ft2(P(t;)) = f*P(t2). S is said to be n-spaced if a; 1 > b; +n for
all € {1,...,m} and the minimal such n is called the spacing of S. We say that
S parameterizes the collection {Pr | I € 7} of orbit segments of f.

We let T(S) :=T(7) and L(S) := L(7) := by, — a;1. If (X, d) is a metric space
we say that S is e-shadowed by z € X if d(f™(z), P(n)) < ¢ for all n € T'(S).
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Thus a specification is a parameterized union of orbit segments Pf I of f.

If (X, d) is a metric space and f: X — X a homeomorphism then f is said to
have the specification property if for any € > 0 there exists an M = M, € N such
that any M-spaced specification S is e-shadowed by a point of A and such that
moreover for any ¢ > M + L(S) there is a period-q orbit e-shadowing S. Thus, any
finite collection of finite orbit segments can be embedded with arbitrary accuracy
in a single (periodic) orbit.

Note that the specification property implies topological mixing. One can also
show that expansivity and the specification property together imply positivity of
topological entropy (when card(X) > 1)[KH].

The specification property is mentioned here because it holds for topologically
mixing hyperbolic sets (Bowen’s specification theorem, Subsection 3.3a).

f. Specification for flows. Suppose ¢ is a flow on a set X. A specification
S = (7, P) cousists of a finite collection 7 = {[y,..., I} of bounded intervals
I; = [ai,b;] C R and a map P: T(r) := UIETI — X such that for ¢;,to € T € 7
we have %2 (P(t;)) = @' P(t;). S is said to be 0-spaced if a; 1 > b; + @ for all
i € {1,...,m} and the minimal such 6 is called the spacing of S. We say that S
parameterizes the collection {Pr | I € 7} of orbit segments of f.

We let T'(S) :=T'(7) and L(S) := L(7) :=maxT(7) — minT'(7). If (X,d) is a
metric space we say that S is e-shadowed by z € X if d(p?(z), P(t)) < € for all
t e T(S).

If (X, d) is a metric space and ¢ a flow then ¢ is said to have the specification
property if for any ¢ > 0 there exists an M = M. € R such that any M-spaced
specification S is e-shadowed by a point of A and moreover such that for any
s > M + L(S) there is a period-s’ orbit e-shadowing S with |s — §| < e.

g. Closing Theorems. In this subsection we describe further closing theo-
rems. The Anosov Closing Lemma perturbs nonwandering points to periodic ones
within the same dynamical system. In the absence of hyperbolicity this may be
impossible, such as for an irrational rotation. However, even for issues related to
hyperbolic dynamics it is important to have closing theorems that involve pertur-
bations of the dynamical system to close a nonwandering or recurrent orbit.

There are two important such results that require no hyperbolicity. The Pugh
Closing Lemma says that nonwandering orbits can be closed by a localized C*!
perturbation of the map [Pul] and the Mafié Ergodic Closing Lemma makes an
analogous assertion for almost every orbit with respect to any invariant Borel prob-
ability measure [M1]. Both are discussed in [S-HK]. See [Ad] for simpler proofs
of these results and for further developments.

The Hayashi Connecting Lemma [Hy] builds on the previous two statements
and belongs firmly into the hyperbolic context. Given a hyperbolic set A and
i = u,s let WiA) = Uyep Wi(z). Set D* = WE(A) — f(W2(A)) and D* =
Wx(A) — f~1(W2(A)). In case of a flow replace f by the time-one map. Homoclinic
points of A are those in (W*(A) N W*(A)) N\ A. The theorem says that an almost
homoclinic situation can be perturbed to a homoclinic one:

THEOREM 3.2.1 ([Hy]). Let M be a compact manifold, f a differentiable dy-
namical system, U a C' neighborhood of f, A a locally mazimal hyperbolic set.
Suppose there is a sequence (v;)ien of finite orbit segments that accumulates on
both D* and D" and such that each v; starts in a neighborhood of D*, leaves an
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isolating neighborhood of A (Subsection 2.1c) and then enters a neighborhood of D*.
Then there is a g € U coinciding with f in a neighborhood of A for which A has a
homoclinic point.

A simpler proof of a special case is in [X].
This lemma is the crucial device in the proof that structurally stable flows are
hyperbolic (Subsection 3.5b), but has already proved useful in other contexts.

3. Transitivity

In general, topological or smooth dynamical systems cannot be canonically
decomposed into topologically transitive pieces, unlike the ergodic decomposition
in the measurable category. The complexity of the orbit structure in hyperbolic
dynamical systems, however, essentially forces this topological irreducibility of the
nonwandering set, modulo finite unions. Thus, hyperbolic dynamical systems admit
a topological decomposition that is much more effective than an ergodic decompo-
sition is guaranteed to be: Each hyperbolic dynamical system breaks up into a
finite union of transitive pieces. The essential reason is that orbits are so inter-
twined as to produce “local transitivity”; compactness then implies finiteness of
the decomposition.

a. Spectral decomposition. Let A be a locally maximal hyperbolic set for
f:U — M. Then A := NW(f,) = Ui, Ai with A; C W*(z), A; € W*(a)
for x € A;, ff A, is topologically transitive and A; = Uf'=1 A;; disjointly with
f(Aij) = Ajj41 (where A, 41 := A1) and fhi A

In particular regionally recurrent Anosov diffeomorphisms (those where NW(f) =

M, see [S-HK]) are topologically mixing. Indeed, for Anosov diffeomorphisms the
following are equivalent:

~ topologically mixing.

1. f is regionally recurrent
W*(z) is dense for all z € M
W#(x) is dense for all z € M
Periodic points are dense
f is topologically transitive

6. f is topologically mixing
Using stable and unstable manifolds as well as the Anosov Closing Lemma (Subsec-
tion 3.2b) one can show that any topologically mixing locally maximal hyperbolic
set has the specification property (Subsection 3.2e). Together with expansivity this
implies positive topological entropy (unless card A < 1) as well as existence of a
unique invariant probability measure of maximal entropy, with respect to which
periodic points are equidistributed. (Alternatively one can deduce all this from
Markov partitions [S-C, KH], see Subsection 3.6b.)

Via the spectral decomposition this translates into existence of such measures
for the nonwandering set of any compact locally maximal hyperbolic set plus unique-
ness in the topologically transitive case [KH].

Sk W

b. Spectral decomposition and mixing for flows. Let A be a locally
maximal hyperbolic set for ¢*: Rx U — M. Then A’:= NW(? I A) = ULI A; with

A; C WO (2) N WO () for z € A; and ¢* . is topologically transitive. For each

i we either have A; C W*(z) N W¥(z) for £ € A; and * 15, topologically mixing,
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or p* A, is a special flow over a homeomorphism (which satisfies the hyperbolicity
condition Axiom A* [PeS] and Axiom A# [AJ]; it is Anosov if ¢ [y 19)-

The neat reduction to the topologically mixing case offered by the spectral
decomposition in discrete time has no counterpart for flows. The reason is that
suspensions are not mixing; they lack “mixing in the time direction” (Subsubsec-
tion 2.1f2). (In discrete time this is not an issue. For example, the spectral decom-
position of a single periodic orbit is into singletons, i.e., time can be absorbed into
the spectral decomposition).

The distinction arises from the difference between weak and strong (un)stable
foliations for flows. The spectral decomposition is achieved by considerations of
closures of (un)stable leaves. For flows this results in a decomposition into sets in
which weak leaves are dense, which guarantees topological transitivity. However,
topological mixing can only be obtained via density of strong (un)stable leaves, and
this cannot be achieved by further invariant decomposition. The fundamental dis-
tinction here is via suspensions on the one hand, where strong leaves are coherently
stacked and never dense, and, for example, geodesic (and contact) flows on the
other hand, where the contact structure forces a complete nonintegrability (or ac-
cessibility) of the strong subbundles, which produces dense strong leaves and hence
mixing. The point is that in the latter case traversing a small unstable-stable—
unstable-stable quadrangle always results in a displacement in the flow direction,
which causes the transverse mixing effects to produce “mixing in the flow direction”
as well.

Indeed, we have the Anosov alternative: Transitive Anosov flows are either
mixing or a suspension [PI11] (in the volume-preserving case this is due to Anosov
[A1l]). To be more precise, if there is a nondense strong leaf or if E° @ E* is
integrable then the flow is a suspension. The idea of the proof is that the closure
of a nondense strong leaf is a global section because every orbit intersects it by
transitivity. It is smooth, and furthermore, the return time is constant.

By the way, transitivity and density of periodic points are both equivalent to
density of weak stable leaves.

c. Transitivity of Anosov systems. The spectral decomposition implies
that a regionally recurrent (every point is nonwandering, [S-HK]) Anosov system
is transitive, and mixing in the discrete-time case. However, it is not known whether
Anosov diffeomorphisms are always topologically transitive. All known examples
are transitive [Mn2], and it is unknown whether there are any further examples.
Newhouse [Nh] showed that codimension one Anosov diffeomorphisms (i.e., those
for which one of the invariant subbundles is one-dimensional) are regionally recur-
rent.

On the other hand, it is known that Anosov flows need not be topologically
transitive by virtue of an example [FrW] in dimension three. However, codimen-
sion one Anosov flows on manifolds of dimension greater than three are regionally
recurrent and hence transitive [Vj1]. A related result is a condition on the Mather
spectrum—that it is contained in two sufficiently thin annuli—that implies regional
recurrence [Brl).

d. The Bowen—Ruelle alternative. At this point it is interesting to point
out a basic dichotomy: Except for the Anosov situation, hyperbolic sets are always
null sets. More precisely: A basic set (Subsection 2.1c) of a C'*® diffeomorphism
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or flow either has Lebesgue measure zero or else is a connected component of the
manifold [BR, Corollary 5.7]. Here is the proof, using Theorem 5.6 of [BR], which
says that a basic hyperbolic set is an attractor if and only if the Lebesgue measure
of the set of stable manifolds is positive. If m(A) > 0, where m is Lebesgue measure,
then m(W3) > 0 and m(W}) > 0, so A is an attractor for the diffeomorphism and
its inverse. The former implies W§ = A, the latter that W} is open. Hence A is
open (and closed). It is connected because the stable manifold of any periodic orbit
is dense (the spectral decomposition is obtained from closures of stable manifolds).

One should note that this alternative depends on the regularity assumption:
There is a horseshoe of positive Lebesgue measure for a C! diffeomorphism [Bw2].

4. Periodic points

Among the features of hyperbolic dynamics is the presence of periodic points
of arbitrarily high period and their great abundance and rapid growth in number.
The importance of periodic points is manifold. Poincaré recognized their utility as
reference orbits where local analysis can help understand much more complicated
nearby orbits. They themselves, their numbers and their growth rates provide useful
conjugacy invariants. In hyperbolic dynamics their abundance also lends impor-
tance to the invariant measures supported on periodic orbits. These are used in the
construction of important invariant Borel probability measures (Subsection 3.6¢).
Periodic points feature importantly in the survey [S-FM]. (-functions and related
subjects are discussed in [S-P].

a. Exponential growth and entropy. The combination of expansivity and
specification has various consequences that make up a good deal of the rich dy-
namics of symbolic systems and hyperbolic sets. These are outlined in [S-HK,
Chapters 2 and 4] with more complete proofs and references in [KH]. Suppose
f: X — X is a map of a compact metric space and for ¢ > 0 and m € N
denote by N(f,e,n) the maximal cardinality of a set S C X such that ¢ <

ming yes MaXo<i<n—1 A(f(z), f(y)). Then
h = lim lim 1 log N = lim [i ! log N
top(f) = lim M nso0—log (fie,n) = lim lim 00 ~ log N(f, €, 7).

If f is expansive with expansivity constant ¢ then P,(f) < N(f,¢,n) for any e < ¢
and in particular p(f) < hyop(f). If f has the specification property then P,(f) >
N(f,2e,n — M,); in particular p(f) > hiop(f)-

The proof simply uses that periodic points are J-separated by expansivity and
that the specification property produces separated sets consisting of periodic points.
More subtle arguments yield a much better asymptotic if both properties are com-
bined:

If X is a compact metric space and f: X — X an expansive homeomorphism
with the specification property then P, (f)e~™ee(f) is bounded [S-P, S-FM,
S-HK]|, [KH, Theorem 18.5.5]. Again, the argument is that expansivity gives
a large number of distinguishable orbit segments of given length through a small
ball, specification shows that any finite combination of these appears approximately
in an actual (periodic) orbit.
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An immediate consequence of the preceding result is that hyop(f) > 0 unless
card(X) < 1 (by specification). Since Bowen showed that a mixing compact lo-
cally maximal hyperbolic set has the specification property, this means a nontrivial
compact locally maximal hyperbolic set has positive topological entropy.

Bowen’s construction of equilibrium states from periodic orbits [S-HK, KH]
shows in yet another way that periodic orbits and the measures supported on them
reflect essentially all the dynamical complexity. These parts of Bowen’s work are
presented in [KH)], which also contains references to his papers.

b. The {-function. (See also [S-P].) The dynamical {-function of f defined
by

Cr(z) = expz P"T(f)z",

n=1

where z is a complex number, has radius of convergence e~?tr(f) > 0. Because
the coefficients are nonnegative there is a pole at e~"tr(f), This provides a novel
means for studying entropy and, for the case of flows, has been used to show that
topological entropy varies smoothly with the dynamical system [KKPW].

A beautiful result is that in the present setting this is always a rational function
[Mnl, Fd, S-FM, S-P].

c. Fine growth asymptotic. While the preceding asymptotic for periodic
orbit growth is already rather remarkable it can be substantially improved using
Markov partitions, which are introduced in [S-C]. These describe a compact locally
maximal hyperbolic set as a factor of a topological Markov chain, where the factor
map is an almost-conjugacy in that it is almost invertible. In particular, one can
arrange for (essential) bijectivity on periodic points. Therefore the asymptotic
growth of periodic points coincides with that of a topological Markov chain, which
can be calculated rather precisely in the transitive case. For some € > 0 one obtains
that |P,(f)e ™oe(f) — 1| < Ce~en.

d. Periodic orbit growth for flows. Combining expansivity and specifi-
cation for flows yields periodic orbit asymptotics much like before: Let X be a
compact metric space and ® an expansive flow with the specification property.
Then tP; .(®)e~*hr(®) is bounded, where P; . denotes the number of orbits of pe-
riod 7 € (t — €,t + €). The factor of ¢ is related to the fact that separated sets are
also “stacked” in the flow direction.

As before this applies to mixing hyperbolic sets and more subtle arguments
give sharper results. The coincidence of the Bowen measure of maximal entropy
(Subsection 3.6¢) and the Margulis measure (characterized by uniform expansion
on unstable leaves, see Subsection 3.6d, [KH]) implies that periodic points are
equidistributed with respect to Margulis measure. Toll used this to show the fol-
lowing result [T], [KH, Section 20.6]:

Suppose ®: R x M — M is a topologically mixing Anosov flow on a compact
Riemannian manifold M with P;(®) periodic orbits of period at most ¢. Then

ethiop(®)
Jim thiop (D) Py (®)etheor(®) = 1, j.e., P(®) ~ T (@)

This was further improved by Dolgopyat [DP, S-P|: For geodesic flows @

on smooth negatively curved compact surfaces and sufficiently strongly pinched
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negatively curved manifolds
telttop(®) 1
P(®) = / —— du+ O(etMor(®)=9)) a5 ¢t - 400.
2 log u
Because of the analogies to the prime number theorem (about asymptotic density
of primes), results such as these are referred to as prime geodesic theorems.

5. Stability and classification

Various notions of structural stability are presented in [S-HK]. It was noted
there that for hyperbolic dynamical systems the natural such notion is strong C*
structural stability. It means that a dynamical system is topologically equivalent
(conjugate or orbit equivalent, respectively) to any C* perturbation via a homeo-
morphism close to the identity. While smooth conjugacy and rigidity are important
and active subjects (see Chapter 4), the fundamental structural theory of hyperbolic
dynamics involves (Holder) continuous conjugacies.

a. Strong structural stability of hyperbolic sets. Let A C M be a hy-
perbolic set of the diffeomorphism f: U — M. Then for any open neighborhood
V C U of A and every § > 0 there exists ¢ > 0 such that if f': U — M and
der (f Iy f') < € there is a hyperbolic set A’ = f'(A’) C V for f’ and a homeomor-

phism A: A’ — A with dgo(Id, h) + dgo(Id, h~1) < & such that ho f’ I = ffA o h.
Moreover, h is unique when ¢ is an expansivity constant.

This result can be obtained fairly directly from the Shadowing Theorem [KH],
or from the hyperbolic fixed point theorem combined with localization and an in-
termediate step, but without the use of stable/unstable manifolds [Y¢|. Among
the original sources is [A1], and Moser cast the proof in terms of solving functional
equations [Mos2, Mtl]. Strong structural stability is one of the central features
of hyperbolic sets and one of the motivations for studying hyperbolic dynamical
systems. The corresponding result for flows produces an orbit equivalence. Either
way the conclusion is that under C* perturbations one cannot deform the topolog-
ical orbit structure; hyperbolic systems are topologically rigid. (This is sometimes
also referred to as “hyperbolic continuation”.)

For Anosov diffeomorphisms there is a related result of Walters [Wt1]: A C°
perturbation of an Anosov diffeomorphism f has f as a factor (topological stability).
Moreover, if the perturbation has a sufficiently large expansivity constant then the
factor map is a homeomorphism. This means that Anosov diffeomorphisms suffi-
ciently C? close to f are topologically conjugate to f, i.e., Anosov diffeomorphisms
are C? structurally stable within the class of Anosov diffeomorphisms. The result
of Walters was extended by Nitecki [N2], who showed that Smale’s sufficient con-
ditions for Q-stability (Subsection 3.5¢c, [S5]) suffice for topological Q2-stability, and
that Robbin’s sufficient conditions (Subsection 3.5b, [Rb]) for structural stability
suffice for topological stability.

The conjugacy is always Holder with Holder inverse. In dimension two one can
also show [PaV] that the Holder exponent of the conjugacy as a function of the
Cl-perturbation is continuous at the identity, i.e., is as close to 1 as desired if the
perturbation is sufficiently C'-small. The same can be achieved assuming conformal
behavior (only one contraction/expansion rate) in the stable/unstable directions.
This, combined with continuous dependence of the conjugacy on the perturbation
suggests that the Holder exponent of the conjugacy should in general tend to 1
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as the perturbation disappears. Unfortunately, this is far from true [HW]: For
any € > 0 there are linear Anosov diffeomorphisms conjugate to arbitrarily small
perturbations via a conjugacy that is almost nowhere bi-C* (i.e., almost nowhere
are h and h~! both C¢). The specific ¢ depends on the disparity in the expansion
or contraction rates of the linear map. The proof uses that when these disparities

B 0
are great, such as for the matrix A, := ( 0 B2/ +1)’ where B = (? i), then

for any small perturbation the bunching constant is quite small and for symplectic
perturbations the invariant foliations can be arranged to have low Holder exponent
(Theorem 2.3.5). Since the invariant structures for the linear system are analytic,
the conjugacy cannot be very regular.

b. Strong transversality and the Stability Theorem. A subtle defect of
the preceding result is that it refers to structural stability of the restriction to the
hyperbolic set—without further conditions there is no guarantee that the dynamics
of f off the hyperbolic set has any similarity to that of perturbations. In other
words, this is not full structural stability and additional conditions away from the
hyperbolic set are required in order to include the “dissipative” or wandering part.

A sufficient condition for structural stability can be expressed in terms of stable
and unstable manifolds. According to a result of Smale [S4] M = |, py( HWh(z) =
Uzenw (s W*(z) for an Axiom A diffeomorphism (Subsection 2.1c), which implies
that every £ € M has injectively immersed smooth stable and unstable manifold.
The strong transversality condition is that T,W*(z) + T,W*(z) = T M for every
x € M, i.e., stable and unstable manifolds are in general position. Note that the
sum may not be direct, e.g., for a circle map with one attractor and one repeller,
such as f: S — S, £+ £+0.1-sin 27z (mod 1). That a condition of this kind is
needed for structural stability arises from the observation that a tangency between
a stable and an unstable manifold could be radically affected by a perturbation,
causing a bifurcation [PaT].

One of the high points of smooth dynamics is the stability theorem:

THEOREM 3.5.1. C! structural stability is equivalent to Aziom A together with
strong transversality.

This was conjectured by Palis and Smale [PaS] in 1968 and sufficiency of Ax-
iom A and strong transversality for C? structural stability was proved by Robbin
[Rb] and then refined to C! by Robinson [Ro3], who also showed that stability and
Axiom A together imply strong transversality [Rol]. In 1986 Maiié achieved the
proof of necessity [M2]. This paper built on his development of numerous intricate
technical tools, such as the Ergodic Closing Lemma (Subsection 3.2g, [S-HK, M1]).

Robbin’s proof of structural stability for an Axiom A diffeomorphism f with
strong transversality goes as follows. The hyperbolic splitting on the components
of the spectral decomposition (Subsection 3.3a) is extended to an invariant neigh-
borhood. Strong transversality allows some consistency in doing this. This is
technically the most difficult part. To find a conjugacy to a nearby diffeomor-
phism g pass to C! vector fields by setting f~! o g = exp(¢) and looking for a
conjugacy h = exp(n). Then goh = ho f becomes (1 — f.)n = Re¢(n), where
f+ is the action on C? vector fields and R is a strong contraction for small &.
In the Ancsov case one can invert 1 — f, to get a unique 7 = (1 — f.) " 1Re(n)
by the Banach Contraction Principle. In the present situation one instead looks
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for a right inverse J of 1 — f, and then takes the unique n = JR¢(n). But one
needs J such that exp(n) is injective. This holds if either n has a small Lipschitz
constant or if f is expansive. Each of these is too restrictive, but these ideas can
be combined by requiring 1 to have small Lipschitz constant with respect to the
metric d¢(z,y) :=sup,cz d(f™(z), f*(y)). This is achieved by making J continuous
on d-Lipschitz vector fields as follows:

S, Df™ofo f*(z) if0 is a stable vector field

n=0

J(0 =
O)ie) {_ Yoo Dftofo f~™(z) if @ is an unstable vector field

makes sense locally and can be pieced together globally due to the consistent ex-
tension of the invariant laminations at the start.

Mané’s proof of the converse builds on extensive earlier work by himself and
others. As mentioned above, it was enough to prove Axiom A [Rol]. Hyperbolicity
of periodic points and their density in the nonwandering set had already been
achieved, but uniform hyperbolicity of the nonwandering set was still to be shown.
To this end Maiié proved that the closure of the set P; of periodic points with
i-dimensional stable manifold is a hyperbolic set. The argument uses induction,
starting from the previously known case ¢ = 0. Structural stability enters in showing
that for j # ¢ we have P; N P; # @: Otherwise one can construct a perturbation
with a new homoclinic point.

c. The Q-stability theorem. A diffeomorphism f: M — M is said to be C-
Q-stable if there exists an € > 0 such that whenever de1 (f, g) < € then f INws) and

I Nw ) are topologically conjugate. (The terminology derives from the historically

popular usage Q(f) := NW(f).)

This notion is reminiscent of structural stability of hyperbolic sets, however,
even if NW(f) is assumed hyperbolic it is a stronger requirement because the
assertion implies that the nonwandering set of a perturbation is no larger (no “Q-
explosions” [N1]). Thus it entails control of the nonwandering set plus topological
conjugacy. The point of such a notion is that interesting asymptotic behavior, in
particular recurrence, is concentrated on the nonwandering set, and hence stability
of the dynamics on it is what is truly essential for maintaining all asymptotic aspects
of the recurrent orbit structure (NW(f) contains all a- and w-limit sets).

Hyperbolicity is an important ingredient for (2-stability but again not sufficient
by itself. If NW(f) is hyperbolic let A; denote the elements of the spectral decom-
position. Then a cycle on NW(f) is a pair of periodic sequences a:é €A, (1=1,2)
with W (mjl) Nnw+ (:z:f 4+1) # @. A cycle for an Axiom A diffeomorphism produces
C" perturbations with an extra periodic orbit [Pal], so these need to be ruled out.
One obtains the 2-stability theorem:

THEOREM 3.5.2. A diffeomorphism is Q-stable if and only if it satisfies Az-
tom A and has no cycles.

This was conjectured by Palis and Smale [PaS] when Smale proved sufficiency
of Axiom A without cycles. As Palis [Pal] showed, Q-stability and Axiom A
together already imply the absence of cycles. After Mafné’s proof of the stability
theorem, his arguments were found by Palis to yield the £2-stability theorem as well
[Pa2].
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d. Stability of flows. For flows there are analogous sufficient conditions for
Q-stability [PS1] and structural stability [Ro2]. But the analogous stability and
Q-stability conjectures resisted for another decade beyond Mané’s work. Both were
settled by Hayashi in 1997 [Hy|, who developed the Connecting Lemma (Theo-
rem 3.2.1) for the purpose. This is a major extension of the Pugh Closing Lemma
[S-HK] and also simplifies the proof of Mané’s result for diffeomorphisms. An
alternate proof of the stability conjecture for flows was given by Wen [We], using
the Connecting Lemma as well. Earlier, Hu [Hu] had proved this result in dimen-
sion three. The central problem in passing from discrete to continuous time is the
possibility of fixed points on which periodic points accumulate. In such a situation
the arguments for the discrete-time case cannot be applied. Hayashi’s Connecting
Lemma can be used to show that this is an unstable situation, hence ruled out by
the assumption of structural stability.

e. Classification on infranilmanifolds. All known basic examples of Anosov
diffeomorphisms are automorphisms of a torus or of an infranilmanifold (Subsec-
tion 2.1d). By structural stability, C* perturbations give further examples. On
these manifolds there are no other examples by the following classification theo-
rem:

THEOREM 3.5.3 ([Fr, Mn2]). Every Anosov diffeomorphism of an infranilman
ifold is topologically conjugate to a hyperbolic automorphism.

This classifies all Anosov diffeomorphisms hitherto known. In particular, it
means that no topologically new Anosov diffeomorphisms can be found on infranil-
manifolds. An interesting example in this regard is that of a (codimension one)
Anosov diffeomorphism on a manifold that is topologically a torus but not diffeo-
morphic to one [FJ]. It is defined on X"#T", where X" is a nonstandard homotopy
n-sphere and n > 4.

Franks [Fr| proved this result on tori and assuming regional recurrence [S-HK]
(which is definitely necessary). Manning [Mn2] generalized the arguments to the
infranilmanifold setting and showed that transitivity is automatic. An outline of
the proof goes as follows: Any Anosov diffeomorphism is homotopic to a linear map
(given by the action on homology). Show that this map is hyperbolic. A precise
exponential asymptotic of periodic orbit growth resulting from the spectral decom-
position (see Subsection 3.3a) and the Lefschetz Fixed-Point Formula play the key
roles. Having noted that within the homotopy class of a hyperbolic automorphism
any map has the linear model as a factor (via a map respecting the stable/unstable
foliations) one finishes by showing that the semiconjugacy to the linear model is
indeed injective, hence a homeomorphism. See [KH] for a presentation in the toral
case. An intermediate step of independent interest is Manning’s proof of regional
recurrence, which implies mixing by the spectral decomposition. Note also Theo-
rem 4.2.2 below, where regularity hypotheses imply the infranilmanifold structure.

f. Manifolds that admit Anosov systems. The classification raises sev-
eral obvious but still open questions. First of all, which (infra)nilmanifolds admit
Anosov diffeomorphisms? It turns out to be precisely those whose fundamental
group admits an automorphism without one as an eigenvalue. In dimension six
these have been classified, in dimension five or less there are only tori [It]. A
special class is described by [DM] (infranilmanifolds of nilpotency class two and
in whose fundamental group the commutator subgroup has maximal torsion-free



5. STABILITY AND CLASSIFICATION 43

rank admit an Anosov diffeomorphism if and only if the torsion-free rank of the
abelianization of the fundamental group is at least three). Second, are there any
other manifolds that admit Anosov diffeomorphisms? Flat manifolds of this kind
have been characterized algebraically by Porteous [Pr] in terms of a standard rep-
resentation of the linear holonomy group in GL(n,Z). Necessary conditions have
been obtained by using that the existence of stable and unstable foliations imposes
topological restrictions. Hirsch [Hi] obtained such results, as did Shiraiwa [Shi],
who gives a list of manifolds that do not admit Anosov diffeomorphisms. A result
by Yano [Y] is that there are no regionally recurrent Anosov diffeomorphisms on
negatively curved manifolds.

An interesting observation is due to Brin [Br2]: For automorphisms of infranil-
manifolds there are two conditions on the Mather spectrum, each of which imply
that the manifold is a torus.

g. Codimension 1 Anosov diffeomorphisms. In the aforementioned pa-
per Franks [Fr] also showed that regionally recurrent codimension one Anosov dif-
feomorphisms (i.e., those with one-dimensional stable or unstable manifolds) are
topologically conjugate to a linear toral automorphism; Newhouse [Nh] showed
that regional recurrence follows from the codimension one assumption. Thus

THEOREM 3.5.4. Codimension one Anosov diffeomorphisms are conjugate to
linear toral automorphisms.

h. Holomorphic Anosov diffeomorphisms. For holomorphic Anosov dif-
feomorphisms some of the classification goes through. According to a result by
Ghys [Gh4], if f is a transitive complex-codimension one holomorphic Anosov dif-
feomorphism of a compact complex manifold M then M is homeomorphic to a torus
and f is topologically conjugate to a linear automorphism. In this case a new facet
is that one may have holomorphic (rather than topological) rigidity. The same pa-
per shows that if f is a holomorphic Anosov diffeomorphism of a compact complex
surface M then M is a complex torus and f is holomorphically conjugate to a linear
automorphism. Note that in particular the invariant foliations are holomorphic.

As a special case of the situation of complex-codimension one flows Ghys clas-
sifies holomorphic Anosov flows on compact complex 3-dimensional manifolds up
to finite covers.

i. Codimension one flows. An analogous classification for Anosov flows is
entirely lacking. One basic difference is that Anosov flows, unlike any known Anosov
diffeomorphisms, may fail to be regionally recurrent, as shown by an example of
Franks and Williams [FrW]. This has reduced hopes for a classification to those
classes of Anosov flows for which regional recurrence can be guaranteed. Among
these are codimension one Anosov flows on manifolds of dimension at least four
[Vj1].

The Verjovsky—Ghys Conjecture [Vj1, Gh2] states that codimension one flows
in dimension greater than 3 have a global cross-section, i.e., are special flows over
an Anosov diffeomorphism, which by Theorem 3.5.4 is topologically conjugate to
a toral automorphism. (Verjovsky conjectured this for free polycyclic fundamen-
tal group.) Thus codimension one Anosov flows would be classified up to orbit
equivalence.

Although there has been progress towards this conjecture, it remains open. It
has been proved under additional assumptions such as solvable fundamental group
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[P12], fundamental group that admits a normal abelian noncyclic subgroup {Bb1],
or volume preservation plus either differentiability (or almost Lipschitzness) of the
strong stable and unstable foliations (in which case one gets constant return time)
or almost C? codimension one (weak) foliation [Gh2, Si].

There is quite a bit of structural theory [Vj2]. For example, the universal cover
of a manifold with a codimension one Anosov flow is a Euclidean space, and the
lift of the flow is conjugate to the flow generated by 0/0z; [Pm)]. Indeed, M is an
Eilenberg—MacLane space K (w1(M),1), m1(M) has finite cohomology dimension,
is torsion free and has exponential growth. If m;(M) has nontrivial center then
dim M = 3 and M is orientable, with the flow topologically conjugate, up to finite
cover, to the geodesic flow of a compact hyperbolic surface [Vj1]. An Anosov flow
on a 3-manifold is, up to finite cover, conjugate to a geodesic flow on a surface if the
stable foliation is C2 [Gh1] or the holonomies are restrictions of projective maps
of the circle [Bb2].

Ghys [Gh3] classifies volume-preserving Anosov flows on 3-manifolds with
smooth invariant foliations into suspensions of hyperbolic automorphisms of the
torus and geodesic flows on surfaces of constant negative curvature (up to finite cov-
erings) as well as a new type of flow that differs from the old ones by a special time
change. This was the starting point for smooth rigidity theory (Subsection 4.2c).

Jj. Geodesic flows. For brevity a Riemannian metric with Anosov geodesic
flow is said to be an Anosov metric. A manifold with an Anosov metric is said to
be an Anosov manifold. In order to pursue anything like a classification of geodesic
Anosov flows one needs to characterize when a geodesic flow is Anosov, in partic-
ular one should establish how Anosov metrics relate to those of negative curvature
and which smooth manifolds admit Anosov metrics. Regarding this last question
Klingenberg [KI1] noted that for an Anosov manifold M there are no conjugate
points, every closed geodesic has index 0, the universal cover is a disk, 71(M) has
exponential growth, every nontrivial abelian subgroup of 7; (M) is infinite cyclic,
the geodesic flow is ergodic and periodic orbits are dense. These are the main
properties known for geodesic flows of negatively curved manifolds, so: this result
suggests that Anosov manifolds may admit a negatively curved metric. (It should
be noted that Anosov metrics need not be negatively curved [Ho2].)

Eberlein [E| has done much work to characterize Anosov metrics. For exam-
ple: For compact (M, g) without conjugate points he describes stable and unstable
spaces of perpendicular Jacobi fields and shows equivalence of complementarity of
these, the metric being Anosov, and vanishing of all bounded perpendicular Ja-
cobi fields. If g has no focal points, i.e., the length of a perpendicular Jacobi field
with initial value zero is increasing, then uniform exponential growth of all such
perpendicular Jacobi fields implies that g is Anosov.

We refer to [S-K] for a better account of this issue.

6. Invariant measures

Much of what might be surveyed here is contained in the Survey by Chernov
[S-C], some other subjects have been described in [S-HK]. Therefore we now
mainly point to the appropriate references.
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a. Periodic measures. (See also [KH].) For hyperbolic sets (or expansive
systems with specification) an abundance of ergodic measures arises from mea-
sures concentrated on periodic orbits. Many important invariant measures are
constructed by approximation with such measures (Subsection 3.6c).

b. Markov partitions. The definition, construction and significance of Markov
partitions is amply described in [S-C]. As was also previewed in [S-HK], this device
establishes that for many purposes hyperbolic dynamics is modeled by a symbolic
system. In the topological category this gives precise estimates on the growth of
the number of periodic points, for example. For measure-theoretic aspects this
makes earlier results about invariant measures for symbolic systems immediately
applicable. This makes the use of Markov partitions effective in many ways and
many facts in hyperbolic dynamics are relatively easy consequences.

c¢. Equilibrium states. Equilibrium states were defined in [S-HK] as mea-
sures maximizing pressure. Entropy is'a special case and the measure of maximal
entropy of an Anosov system is known as the Bowen—-Margulis measure (see Sub-
section 3.6d). In [S-C] equilibrium states are obtained using Markov partitions.
On the other hand, as outlined in [S-HK], one can prove existence and uniqueness
(as well as mixing) of equilibrium states using expansivity and specification. This
was first done by Bowen, and the elegance of this argument lies not least in the
fact that it is monolithic, as opposed to dividing the work between a reduction to
the symbolic case and dealing with the latter. His arguments are rendered fully in
[KH]. Recently Knieper {S-K, Kp| has shown that there is a unique measure of
maximal entropy also for the case of geodesic flow on rank-1 manifolds. These are
manifolds of nonpositive curvature where no geodesic admits a parallel Jacobi field
other than its tangent field. This is the dynamically natural generalization of neg-
ative curvature and is coherent with the eponymous notion for locally symmetric
spaces.

Equilibrium states are not only mixing, but define K-systems [Rul, Sn] and
are Bernoulli [G, L1, R, Bul].

d. The Margulis measure. The Margulis measure is the unique measure of
maximal entropy for an Anosov flow or diffeomorphism, but the construction given
by Margulis [Mg, KH] is completely different. We give a crude outline here.

For an Anosov flow ¢? on a manifold M consider the space C(W%) of func-
tions on M with compact support in a single weak-unstable leaf that restrict to a
continuous function on that leaf. While this is not a linear space, one can scale
functions and add any two functions whose supports are on the same leaf. Fix a
function fp among these whose support has nonempty interior in the correspond-
ing leaf. For ¢t > 0 define the functional Fi(f):= [fop™* dA\%  where A\* is the
Riemannian volume on the appropriate weak-unstable leaf. Now set C* = {F =
SRy, | i€Ne,ti > 0,F(fo) =1} and oF (F)(f) :=F(f o 9™ /F(foop™),
the projectivization of ¢** (F)(f) := F(f o ¢~t). The Tychonoff Fixed Point Theo-
rem gives an m € C* and h > 0 such that ¢**(m) = A*m. One can view m as the
asymptotic normalized pullback of Lebesgue measure on unstable leaves. It indeed
defines leafwise measures %%, and these are holonomy-equivariant.

An analogous construction for strong stable leaves gives corresponding measures
u°, although these are only approximately holonomy-equivariant. (For sufficiently
nearby leaves the values on holonomy-related functions have ratio close to 1.)
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From these measures on leaves we now construct a finite p*-invariant measure
on M by locally defining a weighted product measure. Every p € M has a neighbor-
hood U(p) which is a local product cube, i.e., using the local product structure we
can write U(p) as U%(p) x U*(p), where U%(p) c W (p) and U*(p) C W*(p). If
O c U(p) let

fo(a) = ' (({g} x U*(p)) N O) (g € U™(p)).

For ¢ € U*(p), A C U%(p) let py(A) := p®(A x {q}) wherever defined. This is
independent of ¢ € U*(p), so p(0) := [ fo(z) dug(z) is well defined. The measure
on M obtained by extending to Borel sets is finite and ¢*-invariant. Normalizing
it, we obtain the Margulis measure.

The Margulis measure is characterized by the uniform exponential scaling of
its conditionals under the flow. The scaling constant h is the topological entropy.
This directly leads to estimates of the Margulis measure of Bowen balls that show
absolute continuity with respect to the Bowen measure, and hence equality by
ergodicity [T], [KH, Theorem 20.5.15]. Furthermore, the holonomy-equivariance
also characterizes the Margulis measure [BM]. Finally, Hamenstidt. gave a new
description of this measure by showing that its unstable conditionals are spherical
measures for a distance defined through dynamical information [Hs1].

e. The Sinai—Ruelle-Bowen measure. A particularly interesting equilib-
rium state is the measure of maximal pressure for the logarithm of the unstable
Jacobian. It is known as the Sinai-Ruelle-Bowen measure or SRB-measure. Sup-
pose f is a diffeomorphism of a compact manifold M and A a connected Axiom A
attractor, for example A = M. (This means A is a closed connected locally maximal
hyperbolic attractor and periodic points of f [5 2T€ dense in A.) Then the following

are equivalent [Sn, Ru2, BR, Bw1, Yo|:

1. u is the equilibrium state for the logarithm of the unstable Jacobian,

2. The conditionals of x induced on unstable leaves are absolutely continuous
with respect to Riemannian volume on each leaf,

3. For Lebesgue-a.e. £ € M and for every ¢ € CO(M)

lim licp(f"'(ﬂc)) =/sodu-

The first of these three characterizations of the Sinai-Ruelle-Bowen measure is
interesting because it gives existence and strong stochastic properties (mixing, K,
Bernoulli) right away (Subsection 3.6c, [Rul, Sn, G, L1, R, Bu]). Note that for
an expanding map this simply means absolute continuity of the invariant measure.
By uniqueness of this measure the second characterization shows that only one
invariant Borel probability measure has absolutely continuous conditionals. The
last characterization has met with the widest interest, however.

It is interpreted as evidence that computed pictures of such an attractor are
accurate because almost every sufficiently long orbit segment gives a correct picture
of the attractor, the density variations reflecting those of this preferred measure.
One has to be a bit careful for two reasons: A computer might pick up only ex-
ceptional orbits, such as in the case of the map z — 2z (mod 1), where a binary
computer will always render the atom at zero rather than anything like Lebesgue
measure, which is the SRB-measure for this map (Subsection 3.2c). The other
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problem is that computers produce pseudo-orbits, about whose distribution noth-
ing has been said. One needs a statement about the effects on the SRB-measure of
superimposing noise on actual orbits. For some kinds of noise there are results to
the effect that the asymptotic distribution of almost all noisy orbits will approxi-
mate the SRB-measure. Thus, for objects proven to be Axiom A attractors it is
usually taken for granted that computed pictures are meaningful. Accordingly, the
Sinai—Ruelle-Bowen measure has been called the “physically observed” measure.

In the case of transitive Anosov diffeomorphisms this measure is also of in-
terest even though the manifold is an attractor in the trivial sense. In this case
there is a “complementary” measure obtained by considering the stable Jacobian.
These two coincide if and only if one of them is absolutely continuous (Subsec-
tion 4.1a has a criterion for when this is the case). Therefore, Anosov systems
are either volume-preserving or completely dissipative, i.e., successive pullbacks
of volume converge to a singular measure, the Sinai-Ruelle-Bowen measure. The
two-dimensional situation is of particularly outstanding interest because in this
case the Sinai-Ruelle-Bowen measure provides preferred parametrizations of the
(one-dimensional) unstable leaves.

7. Partial hyperbolicity

Partial hyperbolicity requires A < 1 or g > 1 in the Stable Manifold Theorem
(Subsection 2.2a), but not both. Indeed, one requires TM = E+ @ E° ® E~ such
that [Df=_ DS 'S A < 1 and D IDF* [l < Aforn €N,

i.e., ET expands more than anything in E° and E~ contracts more than anything
in E°. Furthermore, one usually requires that D f" [ g0 has subexponential growth.

In this setting there are nontrivial center manifolds (unless E® = {0}). The extent
to which these systems can be understood is limited by the fact that no restriction is
imposed on the “subexponential part” of their behavior. For example, the product
of any dynamical system with only subexponential expansion with a hyperbolic
dynamical system is partially hyperbolic. Accordingly, hyperbolic methods may
give some global insights but do not help study the nonhyperbolic factor. Partial
hyperbolicity is almost always supplemented by assumptions that rule out products
of a hyperbolic system with one that has no exponential behavior. Then hyperbolic
techniques may resolve global issues that are dominated by the hyperbolic behavior.
Stable ergodicity (Subsection 3.7¢) is of this kind. As for nonuniformly hyperbolic
systems, we can ask how much of the uniformly hyperbolic theory works in the
partially hyperbolic situation.

This situation poses different challenges and has a very different flavor from
the theory of hyperbolic dynamical systems, whether uniformly hyperbolic or not.
Therefore this subject is surveyed separately [S-B]. In this section we only give a
fleeting impression of the issues that arise and the concepts used to address them.

a. Structural results. As suggested earlier, there is little reason to expect
much of the structural theory of the uniformly or nonuniformly hyperbolic situation
to hold for all partially hyperbolic systems because the effects of the subexponential
component in a partially hyperbolic system can be substantial.

Of expansivity, for example, there remains sensitive dependence on initial con-
ditions, i.e., for any point there are nearby points whose orbit moves away (simply
make sure to arrange for nontrivial distance in the hyperbolic direction). Likewise,
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product examples show that closing and shadowing cannot be expected. If the
subexponential direction is integrable then one might hope for orbits that at least
return to the same subexponential leaf, even if not close to the starting point. Such
results were obtained for geodesic flows on nonpositively curved manifolds [BBES].

There is a specific assumption on the invariant manifolds, accessibility, that
carries much of the hyperbolic theory to this setting.

b. Invariant foliations and accessibility. In the partially hyperbolic situ-
ation the distributions E+ and E~ are uniquely integrable to invariant laminations
W* and W?*, which satisfy

1. T,Wé(z) = E;, T;W%(z)=E};

2. f(We(z)) C W(f(2)), F-H(W(z)) C W*(f~}(2));

3. for every § > 0 there exists C(¢) such that for n € N

d(f™(z), f*(y)) < C(6)(A +6)"d(z,y) for y € W*(),
d(f (), F () < C(6)(u — 8)™"d(z,y) for y € W™ ().

The main difference to the hyperbolic case is that the dimensions of these leaves
do not sum to that of the ambient manifold.

How to overcome this defect is best explained in the case of a dynamical system
that is partially hyperbolic on a compact manifold M. In this case the invariant
laminations are foliations. The model situation that illustrates how hyperbolic
effects may dominate the dynamics is that in which the distributions E* are smooth
and E := Et @ E~ is totally nonintegrable. This means that the closure of the
space of vector fields tangent to £ under the Lie bracket is TM. This happens
in numerous homogeneous systems, such as time one maps of geodesic flows of
compact locally symmetric spaces of rank 1 [KH, Section 17.7] or left translations
of compact factors GL(n, R)/T" by the one-parameter subgroup e*4 for A diagonal
with distinct elements [KSp).

Such systems have many properties similar to hyperbolic systems: Topological
transitivity, ergodicity and the Bernoulli property of the main invariant measures
and exponential decay of correlations for smooth functions. However, they usually
have no periodic points.

The smoothness assumption of this discussion is fragile under perturbation, but
it is not essential. Without it, one can assume the accessibility property: Any two
points in the phase space can be connected by a path of finitely many segments,
each inside a stable or unstable leaf. Put differently, the neutral direction is only
locally meaningful, and one can move anywhere by a path that never has a neutral
component. This requires no differentiability and produces the same local effect of
connecting any two nearby points by a path that is piecewise tangent to the hyper-
bolic subspace. This is the key assumption for proving persistence of topological
transitivity [BrP].

c. Stable ergodicity. Ergodicity of volume or even ergodic components of
positive measure can not be expected in full generality, because this fails for prod-
ucts or time one maps of suspensions. However, ruling out situations of this kind
does give results of some interest. Volume-preserving Anosov systems are stably
ergodic, i.e., all volume-preserving C? perturbations are ergodic. This observation
has led to the question of which volume-preserving C? diffeomorphisms have this
property. Partially hyperbolic systems that do not have an obvious product-like
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structure seem like a good candidate and have been studied in this regard, beginning
with time one maps for geodesic flows of negatively curved manifolds [W].

Again, the required property is the accessibility property of the invariant fo-
liations (Subsection 3.7b). So far it is known that volume-preserving partially
hyperbolic systems are stably ergodic if they have the accessibility property and
are dynamically coherent (the center distribution is integrable to a foliation whose
leaves foliate the stable and unstable manifold of each of its elements). It is not
known whether these additional hypotheses can be dropped, but experts conjecture
that stable ergodicity is generic in the partially hyperbolic volume-preserving class
[GPS, PS4]. In other words, volume is “prevalently” ergodic.

One conjectures furthermore that any open set of ergodic volume-preserving
diffeomorphisms has an open dense subset of Bernoulli diffeomorphisms.
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CHAPTER 4

Smooth conjugacy, moduli and rigidity

As pointed out in [S-HK], the natural conjugacy notion for smooth dynam-
ical systems is topological conjugacy. This is particularly the case for hyperbolic
dynamical systems because of the abundance of periodic points: If two dynamical
systems are smoothly conjugate then their differentials at corresponding periodic
points are conjugate linear maps and hence have the same eigenvalue data. Thus
each periodic point carries a set of moduli (continuously varying invariants) of
smooth conjugacy, together referred to as the Lyapunov cocycle. In particular,
the topological rigidity (structural stability) of hyperbolic dynamical systems does
not extend to smooth rigidity because the Lyapunov cocycle can be changed by
C® perturbations. Therefore it is especially interesting that there are situations
in hyperbolic dynamics in which there is some smooth rigidity or in which smooth
conjugacy classes can be described nicely by reasonable criteria.

To the extent that there are results about smooth conjugacy these mostly
concern smooth conjugacy of a hyperbolic dynamical system with an algebraic
model. Before continuing, therefore, it is well to note another obstruction to smooth
conjugacy in this case. Algebraic models have transversely smooth subbundles and
foliations and hence so does any smoothly conjugate system. This obstruction
provides additional motivation for the works described in Section 2.3. It is of
a different nature than the Lyapunov cocycle, but turns out not to be entirely
independent of it. There are smooth rigidity results based on controlling only one
of these aspects.

1. Cohomology, Lifschitz theory, regularity

To utilize the coincidence of the periodic data of two systems for proving smooth
conjugacy one needs to pass to global information of a cohomological nature. Such
cohomology is also important in other contexts such as triviality of time changes.

a. The Lifschitz Theorem. The main tool for obtaining global information
from periodic data is the following result due to Lifschitz [Ls]:

THEOREM 4.1.1. Let M be a smooth manifold, f: U — M an embedding of
U C M, A a compact topologically transitive hyperbolic set, o: A — R Holder
continuous. If > & o(fi(z)) = 0 whenever f*(x) = = then there is a function
®: A = R, unique up to an additive constant, such that o = ® o f — &. Moreover,
P has the same Holder exponent as .

The Lifschitz Theorem gives expression to the abundance of periodic orbits
provided by the Lefschetz fixed point formula and gives Lipschitz transfer functions
when applied to Lipschitz functions; we call this the Lipschitz—Lifschitz Theorem.

The proof is easy: The transfer function ® is determined along a dense orbit
by choosing a value at one point of it. Uniform continuity follows from the Closing
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Lemma in Subsection 3.2b (using the Holder hypothesis) as does Hoélder regularity,
so ® extends to A.

For flows one gets an analogous result: If ¢ integrates to 0 over all periodic
orbits then it is the derivative of some ® in the flow direction. In other words,
periodic data suffice to distinguish coboundaries among cocycles and thus provide
global information.

From this basic result one can go in several directions. One is to consider
cocycles ¢ with values in different groups, another is to ask how smoothness of ¢
gives smoothness of ®. It is fairly clear that ¢ can be allowed to take values in
abelian groups (with invariant metric, e.g., compact). Indeed, for groups with a bi-
invariant metric an analogous result holds for those ¢ taking values in a sufficiently
small neighborhood of the identity. Finally, it also holds for simply connected
solvable Lie groups.

Concerning the regularity of the cocycle and the transfer function there is a
wide array of results. If f € C? and ¢ € C* then ® € C!. This slight strengthening
of the Lipschitz—Lifschitz Theorem was proved by Lifschitz and Sinai [LS]j in order
to show that a transitive Anosov system preserves an absolutely continuous measure
if and only if it has unit Jacobian over all periodic orbits. Lifschitz [Ls] showed that
if f is a toral automorphism and ¢ € C"** for some r € N, a € (0,1) and there is
an L! transfer function then there is a C™1% transfer function. This was proved in
[LMM1] in full generality, i.e., if ¢ € C* with @ € R \ Ny or a € {1, 00,w} then
® € C“. Here C*¥ denotes analyticity. This partially extends even to nonuniformly
hyperbolic systems [Ll].

A detailed treatment of further extensions of Lifschitz theory is outside the
purview of this survey. Various extensions were developed by Nitica and To6rok
{NT], and S. Katok [Ka] obtained an approximate finitary version. A surprising
result by Veech [V] has the same conclusion (for C* functions) in a nonhyperbolic
setting. One may naturally investigate analogous questions for actions of groups
other than Z or R, and there are results for the partially hyperbolic case (e.g.,
KK])).

b. Smooth conjugacy and periodic data. The lowest-dimensional situa-
tions are also those where periodic data alone give the strongest conclusions. The
following result is in the spirit of the preceding discussion.

THEOREM 4.1.2. Consider two Anosov diffeomorphisms of a compact surface
or two Anosov flows of a compact 3-manifold that are C* (k= 2,3,...,00,w) and
topologically conjugate via h. If the eigenvalues at corresponding periodic orbils are
the same or if b and h™1 are absolutely continuous with respect to Lebesgue measure
then h and h™' are C*—¢,

This is proved in [Ll], but smooth conjuacy for two-dimensional systems with
same periodic data was known before [LMMZ2], where a continuous-time analog
(for eigenvalue data) is also proved. Lifschitz theory shows that the contraction
and expansion rates agree also at nonperiodic points; this renders the conjugacy
smooth along stable and unstable leaves, which by Theorem 2.3.9 implies smooth
conjugacy. de la Llave’s technique allows an extension even to the nonuniformly
hyperbolic setting. Notice that in these results there is no mention of regularity of
the invariant foliations; this obstruction happens to automatically disappear. This
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is complementary to results below where regularity of the invariant foliations alone
gives smooth conjugacy to an algebraic model.

It should be noted that this result is false in higher dimension. This is shown
by examples with novel moduli of smooth conjugacy other than eigenvalue data
[L1]. Those moduli are related to Fourier coefficients on the torus.

c. Weak smooth equivalence and periodic data. We say that two diffeo-
morphisms f(*: M* = M? (i = 1,2) are weakly C” equivalent (or have the same
germ extension) if

1. they are topologically conjugate via h: M* — M?

2. M is covered by C charts {(U}, v}) | p € M*} such that p € Uy, ¢i(p) =0

and cp; depends continuously on p in the C™ topology (i = 1,2)
3. ()0}(1)(1,) ofMo (‘P;]é)_l = ‘P;(z) (h(p)) © f®o (‘Pi(p))_l near 0 for all p € M™.

In other words, fV) and 3 have the same coordinate representations at corre-
sponding points. The nontrivial requirement is, of course, that these local charts
depend continuously on the point. One can make an analogous definition for flows.

Clearly weak equivalence follows from smooth equivalence and implies coinci-
dence of the Lyapunov cocycles. In particular, this equivalence relation shares a
set of moduli with smooth conjugacy that was not yet described: The higher jet
data at coresponding periodic points.

In several particular instances—smooth rigidity on low-dimensional tori [LMM]1,
HK, FIK] and of actions of SL(n,Z) [KL]—the step from weak equivalence to
smooth conjugacy was carried out successfully. Thus there are some natural set-
tings where it is known that weak equivalence implies smooth conjugacy.

On the other hand, the examples of de la Llave that address problems with
the Lyapunov cocycle [L]] also show that weak smooth equivalence does not imply
smooth equivalence. It is an open question whether weak smooth equivalence might
nevertheless provide an avenue towards new rigidity results.

2. Smooth rigidity and invariant structures

As noted above, smoothness of invariant structures associated with a hyperbolic
dynamical system is necessary for smooth conjugacy to an algebraic model. There
are several important instances where such conditions are sufficient.

Smoothness of the invariant foliations of a hyperbolic dynamical system has
turned out to be sufficient for smooth conjugacy to an algebraic model in the
symplectic case. For geodesic flows even more can be said. Open questions concern
the precise amount of smoothness needed and possible conclusions in the absence
of symplecticity.

a. Smoothness of the invariant foliations in dimension two. The most
basic result in this direction is implicit: The proof by Avez [Av] that an area-
preserving Anosov diffeomorphism of T? is topologically conjugate to an automor-
phism actually gives a conjugacy as smooth as the invariant foliations. The defini-
tive result in this setting is worth giving here, because it is suggestive of the work
yet to be done in higher dimension.

THEOREM 4.2.1 ([HK]). Let f be a C* area-preserving Anosov diffeomor-
phism of T2. Then the invariant subbundles are differentiable and their first deriva-
tives satisfy the Zygmund condition [Zy, Section 11.3, (3-1)] and hence have modulus
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of continuity O(z|log z|) [Zy, Theorem (3-4)]. There is a cocycle, the Anosov cocy-
cle, which is a coboundary if and only if these derivatives have modulus of continuity
o(z|log z|) or, equivalently, satisfy a “little Zygmund” condition. In this case, or if
the derivatives have bounded variation [Gu], the invariant foliations are C™ and
f is C°° conjugate to an automorphism.

It is important to note how sharp the divide is between the general and the
smoothly rigid situation. Indeed, the constant defining O(z|logz|) is nonzero a.e.
except when the Anosov cocycle is trivial. Therefore this is the finest possible
dichotomy.

To obtain C* foliations it is actually shown first that triviality of the Anosov
cocycle implies C® subbundles, and a separate argument then yields C*° foliations.

Following Guysinsky one can explain the Anosov cocycle using local normal
forms. For a smooth area-preserving Anosov diffeomorphism on T? deLatte [dL]
showed that one can find local smooth coordinate systems around each point that
depend continuously (actually C') on the point and bring the diffeomorphism f
into the Moser normal form [Mosl]

e =5 )

where (z,y) are in local coordinates around a point p and the expression on the
right is in coordinates around f(p). The terms involving ¢, that depend on the
product zy correspond to the natural resonance ApA, 1 = 1 that arises from area-
preservation (actually from the family of resonances A, = )\g’"‘lz\; ™). The function
p is as smooth as f, and ¢,(0) = 1. Now we suppress the (continuous) dependence
of A and ¢ on p. Note that for a point (0,y) we have

_ (AT zy(1/9) (zy) + A e(xy)  AT2?(1/e)(@y) N\ _ [ ATt 0
Dj= ( Ay (zy) Azye' (zy) + Aw(wy)) B (/\yzw’(ﬂ) /\) '

In these local coordinates the unstable direction at a point (0,y) on the stable leaf
of p is spanned by a vector (1,a(y)). Since this subbundle is invariant under Df
and since f(0,y) = (0, Ay), the coordinate representation of Df from above gives
a(Ay) = A?y2¢’(0) + A2a(y). If the unstable subbundle is C? then differentating
this relation twice with respect to z at 0 gives A2a”(0) = 2A2¢’(0) + A%a"(0), i.e.,
¢'(0) = 0. This means that the Anosov obstruction is ¢’(0), where ¢ arises from
the nonstationary Moser-deLatte normal form. (Thus this is also the obstruction
to C! linearization.)

Hurder and Katok verify that A(p) := ¢,(0) is a cocycle and show that it is
nonzero a.e. unless it is null-cohomologous. (Guysinsky’s result that C1+BV = O
follows because bounded variation implies differentiability almost everywhere.)

b. Smoothness in higher dimension.

1. Nonconformality and obstructions. The complications in higher dimension
are due in large part to the simple fact that when the invariant foliations are not
one-dimensional there may be different contraction and expansion rates at any
given point. This effect is responsible already for the fact that in higher dimen-
sion the transverse regularity is usually lower than in the two-dimensional case,
see Section 2.3. Note that the results there never assert higher regularity for both
foliations than in the two-dimensional area-preserving case. If the obstruction van-
ishes that was used to show optimality of those results, then the regularity “jumps”
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up a little, and a further obstruction, associated with different contraction and ex-
pansion rates, may prohibit regularity C1+O(l1°82l)  Only when all those finitely
many obstructions vanish can we have C1TO=I10g2])  These obstructions are best
described in normal form [GukK], as is the Anosov cocycle.

2. Resonances. To give a sample we show that a “1-2-resonance” produces an
obstruction to C* foliations. To work with the simplest possible situation consider a
3-dimensional Anosov diffeomorphism f with fixed point p such that the eigenvalues
0< A< p<l<n<ooofDf, satisfy p = An. (This is a variant of the 1-2-
resonance A\; = A2 for a symplectic system.) Up to higher-order terms that might
arise from higher resonances the normal form of f at p is f(z,y,2) = (nz, py +
azz,\z). Representing E* along the z-axis by (1,v1(2), va(2) gives

Df0,0,2)(1,v1(2),v2(2)) = (0, az + pv1(2), Av2(2)),
which rescales to (1,az/n + pvi(2)/n, Ava(2)/n). Invariance of E* therefore yields

v1(Az) = az/n + pvi(2)/n.

Differentiating twice with respect to z gives Av}(0) = a/n + (/n)v1(0), which im-
plies a = 0 since A = u/7n. Thus the resonance term a in the normal form is an
obstruction to C' Anosov splitting. (One can verify this without using normal
forms, but the calculation is somewhat longer.) By the way, the work of Kanai
mentioned below (Subsection 4.2¢) made a rather stringent curvature pinching as-
sumption to rule out a number of low resonances. The refinements by Feres and
Katok that led to an almost complete proof of Theorem 4.2.7 centered on a careful
study of the resonances that might arise without such pinching assumptions. This
was delicate work because the issue are not only resonances at periodic points, but
“almost resonances” between Lyapunov exponents. The papers [FK, F1] contain
an impressive development of these ideas.

3. The Anosov cocycle. The next question is about an analog of the Anosov
cocycle in higher dimension. While there is one, its vanishing is known to be
necessary only for C? foliations [Hb5] and is not known to lead to higher regularity
of the invariant foliations. Thus it has not yielded any effective application, and
the central portion of the above approach falls apart.

4. The bootstrap. The bootstrap to C°° subbundles works in full generality,
even without area-preservation, although it usually starts at regularity higher than
C3 (see Subsection 2.3e, [Hb4, FL]). In other words, once the invariant foliations
have a sufficiently high degree of regularity, they are always C°°.

c. Smooth rigidity. The main issue in higher dimension is to conclude from
smoothness of the invariant foliations that there is a smooth conjugacy to an alge-
braic model, and to identify the right algebraic model in the first place. It is remark-
able that the major rigidity results make no assumption that allows to use theorems
such as the Franks-Manning classification (Theorem 3.5.3 and Theorem 3.5.4).

A result that appeared after systematic development of the continuous time
situation (see also [BFL, Theorem 3]) will serve to illustrate this:

THEOREM 4.2.2 ([BL]). Let M be a C*° manifold with an C* affine connec-
tion V, f: M — M a topologically transitive Anosov diffeomorphism preserving V
with E*, E® € C*®. Then f is C* conjugate to an automorphism of an infranil-
manifold. The invariant connection hypothesis can be replaced by invariance of a
smooth symplectic form.
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Note the absence of a topological hypothesis. (There is a finite-smoothness
sharpening of this result [F2] that does not use the powerful theorem of Gromov
central to the proof by Benoist and Labourie.)

Now we turn to the continuous time case, where these developments are most
significant.

1. The ideas of Ghys and Kanai. The history begins with the work of Ghys
[Gh3], who classified volume-preserving Anosov flows on 3-manifolds with smooth
invariant foliations into suspensions of hyperbolic automorphisms of the torus and
geodesic flows on surfaces of constant negative curvature (up to finite coverings)
as well as a new type of flow that differs from the old ones by a special time
change. If the flow is known to be geodesic then the smooth conjugacy to the
constant curvature geodesic flow preserves topological and metric entropies, and
hence by entropy rigidity (Subsection 4.2d, [K2]) the original metric is constantly
curved. The work towards classification of flows with smooth invariant foliations
has followed this model closely. Before describing this, let us mention in passing
the secondary issue of reducing the regularity at which the classification becomes
possible. In the situation of Ghys one can use an analysis of 3-dimensional volume-
preserving Anosov flows and a result entirely analogous to Theorem 4.2.1 [HK] to
conclude

THEOREM 4.2.3 ((Gh3, HK]). A negatively curved metric on a compact sur-
face is hyperbolic if its horocycle foliations are C1to(=llogz])

In higher dimension the seminal work is due to Kanai [Kn]. He was the first to
implement the following strategy: If one assumes that the invariant foliations are
smooth then one can study Lie bracket relations between the stable and unstable
subbundles. The interaction between these and the dynamics can be used to build
an invariant connection (named after him now [S-K]) and to show that it is flat,
which in turn is used to build a Lie algebra structure that is identifiable as a
standard model.

He obtained the following result:

THEOREM 4.2.4 ([Kn]). The geodesic flow of a strictly 9/4-pinched negatively
curved Riemannian metric on a compact manifold is smoothly conjugate to the
geodesic flow of a hyperbolic manifold if the invariant foliations are C°.

Two groups picked up this lead, with the primary aim of removing the pinching
hypothesis, which in particular rules out nonconstantly curved locally symmetric
spaces as models. It also emerged that the main import of the assumptions is
dynamical rather than geometric, and that therefore one should look for theorems
about flows more general than geodesic ones.

2. Smooth rigidity. Feres and Katok [FK, F1] built on Kanai’s idea by refining
his arguments with intricate analyses of resonance cases for Lyapunov exponents
to cover most of the ground in terms of the admissible algebraic models.

THEOREM 4.2.5 ([F1]). Consider a compact Riemannian manifold M of neg-
ative sectional curvature. Suppose the horospheric foliations are smooth. If the
metric is 1/4-pinched or M has odd dimension then the geodesic flow is smoothly
conjugate to that of a hyperbolic manifold. If the dimension is 2 (mod 4) then the
geodesic flow is smoothly conjugate to that of a quotient of complex hyperbolic space.

Some of the results proved along the way to this conclusion did not assume
that the flow under consideration is geodesic. The refinements over Kanai’s work
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were, in the case of the first hypothesis, a more delicate argument for vanishing of
the curvature of the Kanai connection. Under the second hypothesis Feres shows
that if the Kanai connection is not flat then the invariant subbundles split further
(resonance considerations enter here), and a connection associated with this further
splitting must be locally homogeneous.

Roughly simultaneously the complete result about smooth conjugacy was ob-
tained by Benoist, Foulon and Labourie [BFL]. Not only does it include all geodesic
flows, but it requires only a contact structure, which turned out to require substan-
tial additional work. This makes it a proper counterpart of the three-dimensional
result of Ghys:

THEOREM 4.2.6 ([BFL]). Suppose ® is a contact Anosov flow on a compact
manifold of dimension greater than 3, with C*° Anosov splitting. Then there is an
essentially unique time change and a finite cover on which the flow is C* conjugate
to the geodesic flow of a negatively curved manifold.

What enables the authors to give a monolithic proof (as opposed to covering
the various classes of symmetric spaces one by one) is a rigidity result by Gromov
[Gr, Z]. This is the place where substantial regularity is needed, and on an m-
dimensional manifold one can replace C* in hypothesis and conclusion by C* with
k > m? 4+ m 4 2. This theorem is invoked in the first major step of the proof, to
produce a homogeneous structure: The diffeomorphisms of the universal cover that
respect the splitting and the flow form a Lie group that acts transitively. (Gromov’s
theorem produces this structure on an open dense set, and the Kanai connection
is used to extend it.) Step two determines the structure of this group and its Lie
algebra, and step three develops the dynamics of the group and relates it to the
expected algebraic model.

The Feres—Katok approach needs a slightly different minimal regularity. In
fact, if one adds the a posteriori redundant assumption of (nonstrict) 1/4-pinching
(or merely strict 4/25-pinching) then C® horospheric foliations always force rigidity
[Hb4).

We note an amplified version for the case of geodesic flows in which the conju-
gacy conclusion for geodesic flows is replaced by isometry of the metrics due to a
more recent rigidity result by Besson, Courtois and Gallot, Theorem 4.2.10.

THEOREM 4.2.7. If the horospheric foliations of a negatively curved compact
Riemannian manifold are C™ then the metric is locally symmetric (up to isometry).

It should be emphasized that the above result subsumes several classification
steps. First of all, one obtains an orbit equivalence, which implies coincidence
of the Lyapunov cocycles (periodic data). But furthermore, the original result in
[BFL)] directly arrives at a smooth conjugacy, which means that periods of periodic
orbits are preserved as well. This is an extra collection of moduli for the continuous
time case. Finally, in the case of geodesic flows, there is, in addition, the Besson—
Courtois—Gallot Theorem 4.2.10, which gives the isometry.

3. Related issues. While the regularity of the invariant subbundles is usually
substantially lower than in the two-dimensional case, it is widely believed that the
minimal regularity for such smooth rigidity results should be C? or even C1+1P, j.e.,
quite close to that in Theorem 4.2.1. Indeed, these foliations are hardly ever C1+LiP
(Theorem 2.3.5), and if they are C? then the Liouville measure coincides with the
Bowen—Margulis measure (Subsection 3.6¢) of maximal entropy [Hs3, S-K|, which,
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according to the Katok Entropy Rigidity Conjecture (Subsection 4.2d), should im-
ply that the manifold is locally symmetric. Optimists might suspect that rigidity
already appears from C1to(@llogzl) o C1+little Zygmund” o Lyt there is no evidence
to that effect (save for Theorem 2.3.5).

Another result of Ursula Hamenstadt is worth remarking on here. It says that
for contact Anosov flows with C! invariant foliations fixing the time parametrization
fixes all other moduli of smooth conjugacy.

THEOREM 4.2.8 ([Hs2]). If two conjugate (not just orbit equivalent) Anosov
flows both have C' Anosov splitting and preserve a C? contact form then the con-
jugacy is C2.

The C' assumption on the splitting is not vacuous, but not stringent either,
being satisfied by an open set of systems. Note that the conjugacy preserves both
Lebesgue and Bowen—Margulis measure. If one keeps in mind that smooth con-
jugacy has been established mainly with one side being algebraic, this result is
striking in its generality.

Inasmuch as they refer to flows, the hypotheses of the preceding rigidity results
do not distinguish between the regularity of the strong versus weak invariant foli-
ations. The reason is that for geodesic flows strong and weak foliations have the
same regularity due to the invariant contact structure: The strong subbundles are
obtained from the weak ones by intersecting with the kernel of the smooth canonical
contact form.

Plante [P11] showed that the strong foliations may persistently fail to be C1,
namely when the asymptotic cycle of volume measure is nonzero. Even though the
latter is not the case for (noncontact) perturbations of geodesic flows, these flows
may still fail to have C* strong foliations (see [Pt1, Bl], where the contact form is
“twisted” by an extra “magnetic force term”, which does not produce a nontrivial
asymptotic cycle).

d. Entropy rigidity. A different rigidity conjecture was put forward by Ka-
tok in a paper that proved it for surfaces [K2].

1. The conjecture and its source. The result that prompted the conjecture is
that for the geodesic flow of a unit-area Riemannian metric without focal points on
a surface of negative Euler characteristic £ the Liouville and topological entropies
lie on either side of +/—27F, with equality (on either side) only for constantly
curved metrics. Katok [K2, p. 347] conjectured that Liouville measure has max-
imal entropy only for locally symmetric metrics, i.e., that only in these cases do
the topological and Liouville entropies agree. One can restate this as saying that
equivalence of Bowen—-Margulis and Lebesgue measure only occurs for locally sym-
metric spaces. This conjecture has engendered an enormous amount of activity and
remains unresolved. The exact nature of the results in [K2] suggests some variants
of this conjecture, however, that have been adressed more successfully.

2. Results in special situations. Flaminio [Fl] proved several interesting results
in this regard. First of all, the conjecture holds locally along one-parameter per-
turbations of constantly curved metrics. On the other hand, in dimension 3 it is
no longer the case that a hyperbolic metric (with unit volume) maximizes Liouville
entropy. Therefore, the Katok entropy rigidity conjecture cannot take quite so neat
a form as it does for surfaces. Foulon has shown that for flows in dimension three
it extends beyond the geodesic realm:
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THEOREM 4.2.9 ([Fol]). A smooth contact Anosov flow on a three-manifold
whose topological and Liouville entropies coincide is, up to finite covers, conjugate
to the geodesic flow of a constantly curved compact surface.

Foulon conjectures that three-dimensional C'°® Anosov flows for which Bowen—
Margulis and Lebesgue measure are equivalent must be C*° conjugate to either a
suspension of a toral automorphism or the geodesic flow of a compact hyperbolic
surface.

3. General partial results. That a metric is locally symmetric has been proved
under a stronger but suggestive hypothesis [L5]. Consider the universal cover M
of the manifold in question and for each z € M define a measure A; on the sphere
at infinity by projecting the Lebesgue measure on the sphere S; M along geodesics
starting at z (Lebesgue or visibility measure). Use a construction of the (Bowen—
)Margulis measure [Mg] to define measures v, on the sphere at infinity [Hs1]. If
there is a constant a such that A; = av, for all £ then M is symmetric (by [L4, Yu]
it is asymptotically harmonic, by [FL] and Theorem 4.2.10 below it is symmetric).

In fact, one can also define a harmonic measure 7, at infinity for every z € M by
using Brownian motion. In the case of surfaces its class coincides with the Lebesgue
class only when the curvature is constant [L3, K4]. Musings by Sullivan [Su, p. 724]
have led to the “Sullivan conjecture”, analogous to the Katok conjecture, that in
higher dimension the coincidence of the harmonic and visibility measure classes
happens only for locally symmetric spaces.

If any two of these three measures here defined are proportional for every z
then M is symmetric (again by [L4, Yu, FL, BCG]). The goal can be restated
as the requirement to relax the hypothesis from proportionality to mutual absolute
continuity [L5].

4. The work of Besson—Courtois—Gallot. Coming from rather a different direc-
tion, Besson, Courtois and Gallot found themselves addressing a related issue by
showing that topological entropy is minimized only by locally symmetric metrics.
Strictly speaking, their result concerns the volume growth entropy h of a compact
Riemannian manifold, which is the exponential growth rate of the volume of a ball
in the universal cover as a function of the radius. This is a lower bound for the
topological entropy of the geodesic flow with equality if the sectional curvature is
nonpositive [Mn3] (in fact, when there are no conjugate points [FrM]).

THEOREM 4.2.10 ([BCG]). Let X,Y be compact oriented connected n-dimensional
manifolds, f: Y — X continuous of nonzero degree. If go is a negatively curved lo-
cally symmetric metric on X then every metric g on'Y satisfies h®(Y, g) Vol(Y, g) >
| deg(f)|A™(X, go) Vol(X, go) and for n > 3 equality occurs iff (Y, g) is locally sym-
metric (of the same type as (X, go)) and f is homotopic to a homothetic covering
(Y,9) = (X,90)- In particular, locally symmetric spaces minimize entropy when
the volume is prescribed.

5. Magnetism. A complementary result, about leaving the realm of geodesic
flows, is contained in the work [PP] of the brothers Paternain: “Twisting” any
Anosov geodesic flow (by adding a “magnetic” term to the Hamiltonian) strictly
decreases topological entropy.
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CHAPTER 5

The theory of nonuniformly hyperbolic systems

An introduction to the theory of nonuniform hyperbolicity can be found in
[S-BP, KH], and [S-K] discusses some aspects related to geometry. A compre-
hensive treatment is in preparation [BKP]. This chapter aims to present the spirit
of the work as well as some aspects of its present state. Key results and techniques
are included. One should note right away that “nonuniform” here is used in the
sense of “not necessarily uniform”, intending to generalize and include the theory
of (uniformly) hyperbolic systems.

1. Contrast with the uniform case

Although this theory shares with that of uniformly hyperbolic systems the
use of linearization and other aspects of smoothness of the dynamical system, one
pervasive distinction is that the heart of the approach is in invariant measures.
This may be viewed as the intrinsically natural generalization, but is also closely
connected to the Oseledets Multiplicative Ergodic Theorem. Nevertheless, some
results do not involve measure theory in their statements. A nice example is that
a C'*@ diffeomorphism of a surface with positive topological entropy has a (hyper-
bolic) periodic point [KH, P]. This is an illustration of the fact that the theory
of nonuniformly hyperbolic dynamical systems includes results that require no hy-
perbolicity assumption of any kind. Some of these hold in full generality (although
they may be of limited usefulness when there is no hyperbolicity), others (such as
the preceding sample) make mild assumptions that imply just enough hyperbolicity
to yield nontrivial conclusions.

Before describing the theory of nonuniform hyperbolicity, it is good to recall the
collection of facts that embody the hyperbolic paradigm in the uniform case: Ex-
pansivity, closing and shadowing lemma, Lifschitz theorem, spectral decomposition,
Markov partitions, equilibrium states, absolute continuity of foliations, ergodicity
of volume, the Bernoulli property of volume. This gives a list of desiderata for the
theory of nonuniformly hyperbolic systems.

After introducing the framework in which the theory is developed, we give the
structural results aimed at recovering the features just listed for the uniform case.
This leads to a useful comparison between the two situations.

This chapter owes a great debt to the supplement by Katok and Mendoza in
[KH)]. Several results and proofs are directly adapted from there.

2. Lyapunov exponents

The definition of nonuniformly hyperbolic systems requires the notion of that
of Lyapunov exponents. Even when one is not interested in the maximal possible
generality, the natural setting for these is that of cocycles.

61
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a. Cocycles. In thissection let f: X — X be an invertible measure-preserving
transformation of a Lebesgue probability space (X, B, ). (The Lebesgue assump-
tion is not actually used frequently, but since it imposes only an extremely mild con-
dition that is satisfied in all applications, we retain it throughout.) We call any mea-
surable function A: X xZ — G L(n, R) satisfying A(z, m+k) = A(f*(z), m)A(z, k)
a measurable linear cocycle over f, or simply a cocycle. Any cocycle A can be ob-
tained from its generator by setting

A(fm™Yx))- - A(z) for m > 0,
Alz,m) = { A(f™(z))~!---A(f~H(=))~" form <0,
Id for m=0.

Sometimes, if it does not cause confusion, we do not make a distinction between a
cocycle and its generator and refer to the latter as a cocycle. A cocycle A over f
induces a linear extension F' of f to X x R™ by F(z,v) := (f(z), A(z)v).

Although not strictly necessary, it is illuminating to define an exponential split-
ting in a nonuniform way, working by analogy to the hyperbolic situation. To that
end consider a sequence ({-, )m)mez of inner products on R” with associated norms
|| - [|[m and angles £,(-,-) between subspaces of R™.

DEFINITION 5.2.1. Given € > 0 < XA < p < oo and a cocycle A over f, a point
z € X is said to admit a (A, y, €)-splitting if for each m € Z there are positive
numbers ¢, and 7y, and a decomposition E}, & EY = R" such that A(z, m)E:, =
E;i1, Alg,m)Ey, = E}, ,, andfor k€N

L JA(f™(2), E)vlim+k < cm+rX*|[v]|m for v € Ep,,

2. |A(f™(x), —k)v||m—k < cm—tts”"||v]|m for v € EZ,,

3. L(ES,,EY%) > Ym,

4. emir < cme® and Ypak > Yme
Thus we require exponential estimates in subspaces that are transverse up to a
subexponential degradation, and the degradation of the “contraction” and “expan-
sion” estimates happens at a small exponential rate.

If Ae® < 1 we call E}, the stable subspace, and if ue® > 1 then EY is called the
unstable subspace. If both hold then z is said to be a hyperbolic orbit for A.

—ek

The case of a (A, ) splitting from the (uniformly) hyperbolic situation is in-
cluded here by taking ¢ = 0, which makes the exponential estimates and the
transversality uniform. If A is the derivative cocycle and A < 1 < pu are such
that every z admits a (A, u)-splitting then X is a hyperbolic set.

b. Lyapunov exponents.
DEFINITION 5.2.2. For a cocycle A: X — GL(n,R) over a transformation
f: X — X and for (z,v) € X x R* the (possibly infinite) number
— 1
X (z,v,A) =% (z,v) = limm_,ooﬁ log || A(z, m)v||

is called the upper Lyapunov exponent of (x,v) with respect to the cocycle A. If
limy, 00 (1/m) log || A(z, m)v]|| exists then we denote it by x*(z,v) and call it the
Lyapunov exponent of (z,v) with respect to the cocycle A.

One can check that for a linear cocycle A over f:
1. xT(z,v) = x*(z, M) for (z,v) € X x Rand XA € R~ {0},
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2. ¥ (z,v+w) <max{x*(z,v), xT(z,w)} for v,w € R?,

3. X*(z, v+ w) = max{x*(2,v), X*(z, w)} if x*(z,v) # x*(z, w).
This implies that for a cocycle A, each real number x and each z € X the set
Ey(z) = {veR* | x*(z,v) < x} is a linear subspace of R” and if x, > x, then
Ey, (z) C Ey, (). Furthermore, for each z € X there exists an integer k(z) < n
and a collection of numbers and linear subspaces

X (@) < X,(8) <+ < Xy (@), 0} C By (0) € By (2) € C By

(z) =R"
such that if v € Ex-i+1 (z) ~ By, (z) then x*(z,v) = x, +1(z). These numbers are
called the upper Lyapunov exponents at x with respect to the cocycle A, and the
collection of linear subspaces is the filtration at x associated to the cocycle A. The
multiplicity of the exponent x,(x) is defined as /;(z) = dim By, (z) — dim By, , (z),

and the spectrum of A at x is the collection of pairs
Sp, A ={(x;(2),li(2)) | i=1,...,k(z)}.

c. The Oseledets Multiplicative Ergodic Theorem. The Lyapunov ex-
ponents of an orbit O(x) are the exponential growth rates of vectors under iteration
of the differential. In other words, x*(z,v) := lim,, o (1/m)log||D f"l v||. The

T

Oseledets Multiplicative Ergodic Theorem shows that with respect to an f-invariant
Borel probability measure this is well-defined almost everywhere. Furthermore, at a
given z, the Lyapunov exponent attains at most dim M different values and there is
a Lyapunov decomposition into subspaces corresponding to the various Lyapunov
exponents, whose dimension defines the multiplicity of the corresponding expo-
nent. In fact a stronger property of regularity holds almost everywhere which can
be briefly described by saying that all deviations from the limiting behavior are
subexponential. (This appears to trace back as far as Perron [Pn3], see [BP].)

THEOREM 5.2.3 (Osedelec Multiplicative Ergodic Theorem, [S-BP, Os, Ra, Wt2]).
If (X, p) is a Lebesgue space, f: X — X a measure-preserving transformation and
A: X = R" a measurable cocycle over X with log™ ||A*(z)|| € L1(X, i) then there
is a set Y C X such that u(X \Y) =0 and for eachz € Y:

1. There exists a decomposition R™ = @ff;) H;(z) that is invariant under the
linear extension of f determined by A. The Lyapunov exponents x, (z) <
" < Xy (z) exist and are f-invariant and
.1 Az, m)v|
(5.2.1) m_l_l)rzxtloo ] log ol = £x; (z)
uniformly in v € H;(z) \ {0}.
2. For SC N:={1,...,k(z)} let Hs(x) := @D;cs Hi(x). Then

i~ logsin [£(Hs(™()), Hys(/™ (&) = 0.

3. Tempering and Lyapunov metrics

An important related device is that of tempering and Lyapunov metrics, which
introduces coordinate changes that bring the differential into a block form adapted
to the Lyapunov decomposition and the Lyapunov exponents. The price is a dis-
tortion (of lengths and angles) that may grow exponentially, but at an arbitrarily
slow rate. The main benefit of using these unbounded but tempered coordinate
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changes is that they reduce local questions of relative behavior of orbits near a
reference orbit satisfying the conclusion of the Multiplicative Ergodic Theorem to
the uniformly hyperbolic setting (with respect to mildly oscillating distorting coor-
dinate systems). This in particular allows one to use the Stable Manifold Theorem
directly. Thus, the Lyapunov metric we encountered early on in the hyperbolic the-
ory as a convenience is a device of significant importance in nonuniformly hyperbolic
dynamics.

DEFINITION 5.3.1. A measurable function C: X — GL(n,R) is said to be tem-
pered with respect to f, or simply tempered, if

Jim ~log |0+ (/@) = 0

for almost every z € X. If A,B: X — GL(n,R) are measurable maps defining
cocycles A, B over f, then A and B are said to be equivalent if there exists a
measurable tempered function C: X — GL(n,R) such that
A(z) = C™1(f(2))B(z)C(z)
for almost every =z € X.
This is clearly an equivalence relation and if two cocyles A, B are equivalent we

write A ~ B. Also we say that a cocycle A over f is tempered if its generator A is
tempered.

THEOREM 5.3.2 (Osedelets—Pesin e-Reduction Theorem). Suppose (X, ) is a
Lebesgue space, f: X — X a measure preserving transformation and A: X —
GL(n,R) a measurable cocycle with log™ ||AX(z)|| € L (X, n). Then there ezists a
measurable f-invariant function k: X — N, and numbers x, (x),..., Xi(z) (z) € R,

Ii(z),..., k@) (z) € N depending measurably on x such that Y li(z) = n and for
every € > 0 there is a tempered map Ce: X — GL(n,R), called the Lyapunov
change of coordinates, with the property that for almost all z € X the cocycle

Ad(z) = C7H(f(2))A(z)Ce(z)
has the Lyapunov block form
Al(=z)
AZ(z)
Ac(z) = . ,
Af(z) (z)
where each AL(z) is an l;(z) x l;(z) matriz and
H -1, I . - . €
145(2) 717 Ak € [0, e,
Furthermore k(z) and x,(z) are as in Theorem 5.2.3 and for almost every x € X
we can decompose R as @fg) H;(z) such that l;(z) = dim H;(z) and C.(z) sends
the standard decomposition EBfS) R (®) ¢ @ffl) H;(z).
Before proving this result we define the Lyapunov metric. Let Y € X be the

set provided by Theorem 5.2.3. Thus if x € Y then R* = @ H;(z). Given € > 0
define a new scalar product on H;(z) by

(u, U);,i = Z (A(z, m)u, Az, m)v)e—i’mxi (-'v)e—ze|m|1
mez
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where (-,-) is the standard scalar product on R® and (e 2™Xi(®g=2elmly . g
called the Pesin tempering kernel. This is well-defined because by (5.2.1) there is

a constant Cj(z, €) such that [ A(z, m)v|| < Ci(z, )€™ @ ecmI/2||y|| and therefore

(4, v)y; < Ci(z,€) Y e Imle.
meEZ

Since A(z,m + 1) = A(f(z), m)A(z) we have
(A(z)v, A(x)'UXf(m),i = Z A(f (), m)A(x)v||2e_2mXi(f(w))e—%lml

meZ
= 3 Az, m+ Lyo|Pe™ i Pe2eml = 3 || A(a, k)u||%e™ i (g —2elkl ¥

MmEZ kcZ
with 2y, (z) — 2e < 9 :=2x,(z) — 2¢(|k — 1| — [k|) < 2x;(z) + 2¢. Therefore

A(z)v, A(z)vY,,. .
6_26 < ( ( ) ( ) )f((c),", S eze.
eXi (®) (v, v)
DEFINITION 5.3.3. The scalar product

k(z)

(U, v); = Z(vi) U; {_;;,1;7

i=1

(5.3.1)

14
x,i

on R", where v; is the projection of v to H;(z) with respect to EBf(:wl) H;(z), is
called the Lyapunov scalar product, and the norm || - ||/, induced by it the Lyapunov

norm or Lyapunov metric.

PROOF OF THEOREM 5.3.2. Define a positive symmetric matrix Cc(z) by (-, -), =
(C(z)-,Ce(z)-) and set Ac(z) := C-(f(x))A(z)Cc(zx). Thus if u,v € H;(x), then

(A(z)u, A(z)) = (CTH(f(2)) Alz)u, CTH(f (2)) A()0) j(z) 5
= (4e(2)CT (), Ac(2)CTH (2)0) () 1
so applying (5.3.1) to v = C-(z)u we obtain
(2059 IIAe(x):II2 < 20 @+,
2]

It remains to prove that C.(z) is tempered. Since the angles between the
different subspaces have a subexponential lower bound by part 2 of Theorem 5.2.3,
it is enough to consider block matrices. Note that log ||A*!|| is bounded and hence
Theorem 5.2.3 can be applied to A.. Set Xy = {z € X | |CE!(z)|| < N}. For
any N € N, by the Poincaré Recurrence Theorem there exists Y C X such that

w(Xn NY) = 0 and for each y € Y there is a sequence my — oo such that
f™(y) € Y for all k. Then

Ay, mi)ll < 1CH ™ W)IIA, m)HICZ W)

and therefore for almost every point ¥y € Y the spectra of A, and A are the same.
Thus this holds for almost every € X = [Jycy X, and for these points Ac(z) :=
C:H(f(z))A(z)Ce(z) implies

— 1 n
T 0~ L0g |G ("(2) | = 0.
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LEMMA 5.3.4 (Tempering-Kernel Lemma). Let (X, 1) be a Lebesgue space, f: X —
X a measure-preserving transformation and K: X — R a positive measurable func-
tion such that limy, o (1/m)(log K(f™(z)) = 0. Then for any € > 0 there exists a
measurable K.: X — R such that

K. (z)

K. (z)> K(z) ande ¢ < ————— <e".

(2) > K(z) K@)

Applied to ||Cc(z)|| this gives the following relation between the Euclidean norm
and the Lyapunov norm: ||-|| < ||-||Z € Ke(z)||- || and e7¢ < K (f(z))/K(z) < e°.

4. Regular neighborhoods

Now we can apply this theory of measurable cocycles to diffeomorphisms of
compact smooth manifolds. We assume that f € Diff'**(M) for some o > 0.
This assumption is pervasive in the theory of nonuniformly hyperbolic dynamical
systems. The Osedelec—Pesin e-Reduction Theorem 5.3.2 says that for a given € > 0
and for almost every z € M there is a linear transformation C¢(z): T,M — R"
such that

(5.4.1) D (z) := Ce(f(z)) 0 Dy f 0 C71(2)

has the Lyapunov block form as in Theorem 5.3.2 and C. is a tempered function.

a. Existence of regular neighborhoods. We denote by B(0,r) the stan-
dard Euclidean r-ball in R™ centered at the origin.

. For almost every z € M there is a neighborhood on which f acts much like the
linear map D, (z) in a neighborhood of the origin:

THEOREM 5.4.1 ([Pe2]). Let f € Diff'**(M), o > 0, dim M = n and suppose
f preserves a Borel probability measure y. Then there exists a set A C M of full
measure such that for any e > 0 we can find a tempered function q: A — (0, 1] with
e~ < q(z)/q(f(z)) < e* and embeddings U, : B(0,q(x)) = M such that
1. ¥.(0) =z,
2. if fo:= \Il;(lm) ofoW,: B(0,q(z)) & R™, then Dyf, has the Lyapunov block
form,
doi(fzs Dofz) < € on B(0,q(z)),
4. there are K > 0 and A: A = R measurable with e~ < A(f(z))/A(z) <
et and K~1d(Us(y), Us(2)) < [y — 2li < A(2)d(¥a(y), Ta(2)) for y,z €
B(0, ¢()).

DEFINITION 5.4.2. The points x € A are called completely reqular points. The
set N(z) :=¥,(B(0,q(z))) is called a regular neighborhood of z € A.

w

It is here and in establishing Holder continuity of the invariant subbundles that
the C*** assumption is needed.

b. Hyperbolic points, admissible manifolds, and the graph trans-
form. Let M be a compact Riemannian manifold, o > 0, f € Diff'**(M) and u
an invariant Borel probability measure on M. By Theorem 5.2.3 there is a Borel
set A C M of full measure such that the Lyapunov exponents x, (z) < x,(z) <
< Xga) (z) are defined at every x € A and T M = Hy(z) ®- - - ® Hy(g)(z), where

H;(z) is a linear subspace of v for which lim, ;e (1/n)log ||Dz f™(v)|| = x; ().
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In the linear theory there is no special value of the exponents—a constant
rescaling of a cocycle changes the Lyapunov exponents but not the Osedelec de-
composition or other structures associated to the cocycle. But using the linear
theory for nonlinear systems requires localization procedures to transfer informa-
tion from the linearization to the dynamical system itself. At this point 0 acquires
a particular role as a value for the Lyapunov exponents and we need to pay special
attention to the sign of the exponents.

Let s(z):=max{s € N | x,(z) <0 for 1 <4 < s}, u(z) :=min{u € N | x,(z) >
0 for u <7 < k(x)},

Es(x) = H1(117) ©---D Hs(z)(x)v
Eo(x) = Hs(a:)+1($) Q---D Hu(:z;)—l(x)’ and
Eu(x) = Hu,(:z:) (III) S0 Hk(z) (JI)

Then T, M = E*(z) ® E°(z) ® E*(z). We call these subspaces stable, neutral, and
unstable, respectively. If E°(z) = {0} then we say that z is a hyperbolic point for
f, i.e., all the Lyapunov exponents of z are different from zero. There always is a
hyperbolic point for surface diffeomorphisms leaving invariant an ergodic measure
of positive entropy. From now on we only consider hyperbolic points.

To simplify the exposition assume that dim M = 2 and the stable and unstable
subspaces are one-dimensional. By the Osedelec—Pesin Theorem 5.3.2 and localiza-
tion we can consider families of maps on R?, and identify the stable subspace with
the z-axis and the unstable one with the y-axis. Let Rs = [—4,d]x[—d, d]. The stage
is now set for applying the Hadamard Graph Transform Method [Pe2, Ru3, PS3]
or the Perron-Irwin method [FHY, BP] to produce stable and unstable manifolds.
But for many purposes it is sufficient to use admissible manifolds:

DEFINITION 5.4.3. A 1-dimensional submanifold V C Rjs is called an admis-
sible (s,7,08)-manifold near 0 if V = graphyp = {(¢(v),v) | v € [-4,4]}, where
@: [—6,8] — [, 6] is a C* map such that ¢(0) < §/4 and [Dy| < 7.

Similarly, a 1-dimensional submanifold V' C R; is called an admissible (u,7,d)-
manifold near 0if V' = graph ¢ = {(v, p(v)) | v € [-6, 6]}, where p: [-§, 8] — [-4, ]
is a C' map such that ¢(0) < §/4 and |Dy) < 7.

If z is a hyperbolic point and R(z, §) := ¥, (Rs) we say that W C R(z,d) is an
admissible (s,~y,d)-manifold near z if W = U (V) with V an admissible (s,~,4)-
manifold near 0. Similarly define admissible (u,y, §)-manifolds near z.

Admissible manifolds may not be invariant, but admissibility is, as one can
show via the Hadamard graph transform method:

PROPOSITION 5.4.4. Let f: R?2 — R? be a C' diffeomorphism such that f(0) =
0 and f(u,v) = (Au + hyi(u,v), Bv + h2(u,v)) for (u,v) € R, where |D,h;| < €
forz € R? (i = 1,2), |Al < e7X, |B7Y < e X and x > 0, € € (0,1) such that
1/(1 —2€) < 1+4e < eX < 1/e. Then for v € (0,ee™X] and V an admissible
(u,~, 8)-manifold near 0, f(V) is an admissible (u,, §)-manifold near 0 and there
exists A > 1 such that || f(y) — f(2)|| > M|y — 2|| fory,z€ V.

Admissible manifolds allow us to use some sort of local product structure in
regular neighborhoods.

LEMMA 5.4.5. Ifv < 1 then any admissible (s,~, §)-manifold near 0 intersects
any admissible (u,~y,d)-manifold near 0 at exactly one point and the intersection is
transverse.
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PROOF. If %, ¢%: R = R are C! maps such that graph ¢® and graph ¢® are
admissible (u,7,d)- and (s,~, §)-manifolds, respectively, then p* o p*: R > R is a
contraction because [ op®(v) —p*op®(w)! < ¥2|v—w|. By the Banach Contraction
Principle there is a unique fixed point v. But (v, ¢*(v)) = (¢* o ¢*(v), ¢*(v)) is
obviously the only point in graph ¢ N graph ¢°.

Transversality: (7,&) € T(y,es(v)) 8raPh 0*NTy s (v)) graph o* implies £| < v|n|
and [n| < y[¢], hence (n,£) = (0,0). O

COROLLARY 5.4.6. Let z € M be a hyperbolic point for f € Diff'**(M). Then
any admissible (s, y)-manifold near x intersects any admissible (u,~y)-manifold near
x transversely and in exactly one point.

5. Hyperbolic measures

Up to this point there were no hyperbolicity assumptions of any kind. In fact,
one of the strengths of the theory of nonuniformly hyperbolic systems is that it
can make interesting statements about dynamical systems without any such as-
sumption. On the other hand, the theory has brought new insights into uniformly
hyperbolic dynamics as well. In this section we study measures for which all Lya-
punov exponents are nonzero a.e.

a. Pesin sets.

DEFINITION 5.5.1. We say that an f-invariant Borel probability measure u for
f € Diff'**(M), o > 0, is an f-hyperbolic measure if E° = {0} a.e., i.e., the
Lyapunov exponents are nonzero a.e.

For a completely regular point z € M (Definition 5.4.2) let r(z) be the radius
of the maximal ball contained in the regular neighborhood N(z); we say that r(z)
is the size of N(z).

For hyperbolic measures, one has exponential behavior a.e., which is a much
weaker assumption than uniform hyperbolicity. To extend the theory of uniformly
hyperbolic systems to this situation, one uses that for any given hyperbolicity es-
timate (with fixed constants) there is a (possibly empty) set, where this estimate
holds, and that the union of these sets is the entire regular set. In other words, there
are sets of arbitrarily large measure, called Pesin sets, on which one has uniform
hyperbolic estimates:

THEOREM 5.5.2. Let M be a compact surface, « > 0, f € Diff'**(M) and p
an f-hyperbolic measure. Then for any 6 > 0 there exists a compact set A5 and
e = €(0) > 0 such that u(As) > 1 — § and the positive Lyapunov ezponent X, the
functions D, from (5.4.1), Cc from the e-Reduction Theorem 5.8.2 for ¢ = €(0)
applied to A= Df, q from Theorem 5.4.1, v from Definition 5.5.1 and the splitting
T:M = E*(z) ® E%(z) are continuous on As.

PROOF. By the Luzin Theorem there is a set A} such that u(A}) > 1-4/2,
XJ 1 is continuous and x; := inf{x(z) | z € Aj} > 0. Take 0 < € < x,;/100. Again

&

by the Luzin Theorem there is a set AZ with p(A%) > 1 — §/2 on which D,, g, ,
E?® and E* are continuous. Take A5 = A} N A2, O

DEFINITION 5.5.3. For é > 0 we call As a §-Pesin set, or simply a Pesin set.
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One of the difficulties is that these Pesin sets are not usually invariant. Nevertheless,
one obtains measurable invariant laminations. Often it is easier and sufficient to
work with admissible manifolds instead.

6. Stable manifolds

The Hadamard—Perron Theorem applied in the nonuniform case also gives in-
variant laminations, but instead of uniformity in the size of leaves there is a mea-
surable lower bound only. The same goes for the angle between stable and unstable
leaves. In the uniform case the picture of stable leaves along an unstable one can
be arranged (via local coordinates) as a horizontal line (unstable leaf) crossed by
vertical ones. The nonuniform situation is best imagined as a horizontal line with a
“fence” of vertical line segments, in the gaps of which there are somewhat crooked
short line segments, between which there are much shorter line segments, some of
them possibly quite close to horizontal, ef c.

Their lack of regularity nonwithstanding, the invariant foliations do retain ab-
. solute continuity [Pe2, PS3]. Among the consequences is that the ergodic decom-
position of a hyperbolic measure consists of sets of positive measure. In particular,
there are at most countably many components.

7. Structural theory

Several of the central results of the uniform theory have counterparts in this
setting. Among these are the Closing Lemma (which produces a hyperbolic periodic
point), the Shadowing Lemma, the existence of Markov partitions (which here are
approximate, or infinite [KT]), and the Lifschitz Theorem. There is also a spectral
decomposition of a Pesin set for a hyperbolic measure into a finite union of orbit
closures. While there is no structural stability, a vestige of it remains in certain
stability properties of hyperbolic measures under perturbation: If y is a hyperbolic
measure for lim f,, then it is a weak limit of hyperbolic measures p,, for the f,
(Corollary 5.8.4).

a. The Closing Lemma. The Closing Lemma for nonuniformly hyperbolic
systems was originally proved in [K3]:

THEOREM 5.7.1. Let M be a compact surface, o > 0, f € Diff'**(M) and p an
[ -invariant hyperbolic measure. Then (V§ > 0)(3a > 0)(Vh > 0)(38 > 0)(Vm € N):
If z, f™(x) € As with d(x, f™(z)) < B then there is a hyperbolic periodic point
z = f™(z) whose stable and unstable manifolds are admissible (s,~,1)- and (u,7y,1)-
manifolds, respectively, for some v < 1 and such that for some p € (0,1) and all
0 < i < m we have d(fi(2), fi(z)) < ahmax{p™*, u'}.

b. The Shadowing Lemma.

THEOREM 5.7.2 (Shadowing Lemma for nonuniformly hyperbolic systems). Let
M be a compact surface, o > 0, f € Diff!**(M) and p an f-invariant hyperbolic
measure. For § > 0 there is a neighborhood As of As such that for a > 0 sufficiently
small there is a 8 > 0 such that every B-pseudo-orbit (T, )mez in As is a-shadowed
by the orbit O(y) of somey € M.

SKETCH OF THE PROOF. For sufficiently small 8 > 0 consider a [-pseudo-
orbit (Z,;)men in As. For some ¢ < 1 we inductively construct a ¢*¥3-pseudo-orbit
(a:fn)meN for every k € N:
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For m € Z and i« = —1,0,1,2 choose z,4; € As such that z,,; lies in a
Lyapunov chart around z,,4;. Choose an admissible (u,y)-manifold V% near z,,_;
with ;-1 € V%, for v small. Similarly choose an admissible (s, y)-manifold V2
near Zm41 with f(zm) € V. If B is sufﬁmently small then f(V¥) and f~1(V, )
are admissible manifolds near z,,, so let z}, € f(V;¥) N f~1(V;2). Likewise produce
%}, 1. Now there is a { < 1 such that d(f(x,,ln),a:,ln_,_l) < Cd(f(Zm), Tm+1)- Iterate
this construction starting with 8 = (1 — {)a and let y = limy_, o, z§. Then

d(f'(v),z:) = tim d(f'(y),27) < B/(1- () = .

c. The Lifschitz Theorem.

THEOREM 5.7.3 (Lifschitz Theorem for nonuniformly hyperbolic systems). Let
M be a compact Riemannian manifold, a > 0, f € Diff'**(M), p an f-invariant
hyperbolic measure and ¢: M — R Holder-continuous with S o o(fi(p)) = 0
whenever f™(p) = p. Then there is a measurable Borel function h such that
@ = ho f— h almost everywhere with respect to p.

REMARK. The proof only requires ¢ to be a Borel function whose restriction
to As is Holder continuous with respect to a Lyapunov metric, with uniform Hélder
exponent and constant for all § > 0. Note that the function h obtained in the
theorem has the same property.

PRrROOF. Take § > 0 and suppose p is ergodic. Then there exists z € supp u
such that supppu C O(z). Assume z € As and O(z) N A; is dense in As. Define
h(f"(z)) = Zz_o ©(f*(x)). To extend h to As continuously we need to show that
h is uniformly continuous on O(z) N As. Take o > 0 and fix the corresponding 3 in
the Closing Lemma. If ny > ny are such that d(f"2(z), f**(z)) < B, then by the
Closing Lemma there exists a 4 < 1 and a hyperbolic periodic point z satisfying
d(f{(f™(z)), fi(z)) < amax{p™~™ "% u'} whenever 0 <i < ng —n; — 1.

Now since ¢ is Holder continuous, i.e., |o(z) — ¢(y)| < Cd(z,y)" for some
C>0and 0 <r <1, we have

lo(f™ %4 (2)) — o(f4(2))] < Ca” max{u™ " ~™~), iy,

10)
no—ni1—1 ng—ni1—1
B @) - k@) =| Y (U E@) - @)+ Y o)
no—ni—1 7'_.0 ] no—ni—1 . 200"
<Ca Y max{uw ™D ] o(fi()] < 200 Zﬂ”= —

i=0 =0 =0

Thus h is defined and continuous on As. Extend h to |J;o, f(As) as follows:
On f(As)NAsset b =pof~1+hof~1, and so on. Since p (U2, f(As)) =1, his
defined almost everywhere and clearly satisfies the conditions of the theorem. [

REMARK. As in the uniformly hyperbolic case one can, in fact, show that the
unstable distribution is Holder continuous with respect to a Lyapunov metric on
As, similarly to the previous remark. Hence the restriction of the Jacobian to
the unstable distribution is also Holder continuous with respect to a Lyapunov
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metric. Indeed, the most important application of the Lifschitz Theorem concerns
the logarithm of the unstable Jacobian.

8. Entropy and horseshoes

The theory also contains a beautiful result in line with our division into elliptic—
parabolic and hyperbolic dynamical systems: The entropy of an ergodic hyperbolic
measure, if positive, is approximated arbitrarily well by the topological entropies
of horseshoes [KH)]. In the case of surfaces, positive entropy of a measure implies
hyperbolicity and hence by the Variational Principle the topological entropy is
approximated by that of horseshoes. In other words, horseshoes are the mechanism
for the production of exponential orbit growth. It should be noted that for interval
maps the same happens even without smoothness and that in higher dimension the
situation is entirely different. Entropy can be produced by other effects [Hm)].

Recall that a compact f-invariant set A is a horseshoe for f € Diff! (M) if there
exist s,k € N and sets Ag,...,Ax_1 such that A = AgU---U Ap_1, f¥(A;) = Ay,
f(A;) = Agy1 mod k, and fF s, 18 conjugate to a full shift on s symbols. If
dimM = 2 and p is an ergodic hyperbolic measure for f € Diff (M) let x(u) =
min{|x,| | ¢ = 1,2}. For a hyperbolic horseshoe A we can then define x(A) =
inf{x(u) | p is supported on a periodic orbit}.

THEOREM 5.8.1. Let M be a compact surface, « > 0, f € Diff!™*(M) and p
an ergodic f-invariant hyperbolic measure with h,(f) > 0. Then for any p > 0
and any finite collection of functions ¢1,...,pr € C(M) there exists a hyperbolic
horseshoe A satisfying the following conditions:

L. hiop(f1,) > hu(f) = p-
2. A is contained in a p-neighborhood of supp u.

3. x(A) > x(u) — p-
4. There exists a measure v = v(A) supported on A such that fori=1,...,k

|/‘PidV_/90idM| <p.

Several easy consequences are worth noting.

COROLLARY 5.8.2. For f and i as in Theorem 5.8.1 there exists a sequence of
f-invariant measures p, supported on hyperbolic horseshoes A,, such that

1. pp, = p in the weak™ topology and
2. hy, (f) = hu(f).

COROLLARY 5.8.3. For f and u as in Theorem 5.8.1 and ¢ > 0
— il m
hu(f) < hmm_ﬂ,oa logcard{z € M | f™(z) ==, x(z) > x(u) — €}

In particular hiop(f) < p(f), where p(f) is the exponential growth rate of periodic
points.

PrOOF. If A is a hyperbolic horseshoe for f then

heop(f1,) = mm_,oo%bgcard{x €A | f™(z) =z}

Therefore by Theorem 5.8.1 the corollary follows. O
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The following corollary shows that hyperbolic measures are “stable” or persistent
under C! perturbations. This, of course, is a consequence of the structural stability
of hyperbolic horseshoes.

COROLLARY 5.8.4. Given f and p as in Theorem 5.8.1 and f,, € Diff't* (M)
such that f, — f in the C! topology there exist f,-invariant ergodic measures
satisfying

1. pn — p weakly,

2. by, (fn) = hu(F),

3. x(kn) = x()-

COROLLARY 5.8.5. The entropy function h: Diff't*(M?) — R is lower semi-
continuous.

ProoF. By Theorem 5.8.1 h(f) = sup{h(f TA) | A is a hyperbolic horseshoe}.
By structural stability of horseshoes lower semicontinuity follows. O

9. Sinai-Ruelle-Bowen measure

Because of its important role in the study of attractors, especially numerical
experiments, there is great interest in producing a counterpart of the Sinai—Ruelle—
Bowen measure outside the uniformly hyperbolic context.

In the nonuniformly hyperbolic case the description of Sinai—-Ruelle-Bowen
measure goes as follows: A measure p satisfies the Pesin entropy formula [Pe3]
hy = [ A} dim E*dp (where the A} are the positive Lyapunov exponents and
the E' the corresponding subspaces) if and only if p has absolutely continuous
conditionals on unstable manifolds [L2, LY]. In the nonuniformly hyperbolic case
such a measure (also called Sinai—Ruelle-Bowen measure) is also the asymptotic
distribution for a set of points of positive Lebesgue measure [PS3, L2]. In that
case it also has a (possibly countable) spectral decomposition. For this it is essential
that no Lyapunov exponent is zero.

Existence of such a measure is harder to obtain [HY, H], despite some notable
successes, such as with the Hénon attractor [BY]. An excellent 1993 survey is
Yo]. Simple examples suggest the difficulty. Smooth systems may fail to have a
Sinai-Ruelle-Bowen measure even if hyperbolicity breaks down only in the most
benign way. The example is a hyperbolic automorphism of T? perturbed so as to
remain hyperbolic except at the fixed point, where the derivative has an eigenvalue
one and the other less than one [HY]. (This is also an example of nonuniqueness of
equilibrium states [K1].) It is interesting that the introduction of benign singular-
ities to the uniformly hyperbolic setting is not nearly as problematic [Ch]. When
studying attractors, an essential problem is that sets of positive Lebesgue measure
may have asymptotic distribution unrelated to the invariant measure of interest.

Nevertheless, there are some remarkable successes. First of all, the equivalence
of the three characterizations of the Sinai—-Ruelle-Bowen measure that constitute its
main interest (equilibrium state, absolute continuity on unstable leaves, asymptotic
distribution for Lebesgue-a.e. points, see Subsection 3.6e, [S-BP]), have a useful
counterpart in the nonuniform situation. A measure satisfying Pesin’s entropy
formula [S-BP] (entropy is the integral of the positive Lyapunov exponents) is also
absolutely continuous on unstable leaves and represents the asymptotic distribution
of a set of points of positive Lebesgue measure [L2]. Therefore it is clear what to
look for, and such a measure is again called a Sinai-Ruelle-Bowen measure.
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The other success is that for some important attractors of nonuniform type, a
Sinai-Ruelle-Bowen measure has been found. The Hénon attractor (for appropriate
parameters) is the most prominent example [BY], and the techniques developed in
that context have been greatly improved to cover an entire class of attractors [WY],
specifically, attractors with one expanding direction that experience strong contrac-
tion in all other directions. This ongoing work of Wang and Young already gives a
remarkably comprehensive and systematic framework for identifying hyperbolicity
and stochastic properties.

10. Comparison

The list of structural results that transfer (with appropriate modification) from
the uniform to the nonuniform situation is quite impressive, which can be taken as a
testament to the basic robustness of the hyperbolic paradigm. Closing, shadowing,
spectral decomposition, Markov partitions and absolute continuity remain valid
with relatively moderate adjustment. Expansivity could be recovered in a substan-
tially restated fashion that is hardly worthwhile. Ergodicity of volume is elusive as
yet, but the counterpart is positive measure of ergodic components [S-BP, P].

More difficulties appear in conjunction with the theory of equilibrium states.
Those with the Sinai-Ruelle-Bowen measure are a clear indication, but the recent
successes are impressive. Remarkably, uniqueness (and ergodicity) of the measure
of maximal entropy was proved recently for the case of geodesic flows on rank 1
(weakly hyperbolic) manifolds [S-K].
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