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Abstract The anomalous behavior of YbInCuy and similar compounds is modeled by the
exact solution of the spin one-half Falicov-Kimball model in infinite dimension-
s. The valence-fluctuating transition is related to a metal-insulator transition
caused by the Falicov-Kimball interaction, and triggered by the change in the
f-occupancy.

1. INTRODUCTION

The intermetallic compounds of the YbInCu, family exhibit an isostructural
transition from high-temperature state with trivalent Yb ions in the 453 con-
figuration to the low-temperature mixed-valent state with Yb ions fluctuating
between 413 and 414 configurations [1]. The transition is particularly abrupt
in high-quality stoichiometric YbInCuy samples [2] with a transition tempera-
ture equal to T;, = 42 K at ambient pressure; the susceptibility and the resistivity
drop at T, by more than one order of magnitude in cooling, while the volume
expansion is small, AV/V ~ 0.05. The valence change inferred from AV/V
by using the usual ionic radii of Yb3+ and Yb2* is about Any =~ 0.1, which is
consistent with the valence measurements by the L;rr-edge absorption [1, 4].
The critical temperature depends strongly on external pressure, magnetic field,
and alloying [5, 6]. A recent review of the experimental data is given in Ref. [7]
and here we just recall the main points which motivate our choice of model.

The integer-valent phase (" > T) is characterized by a Curie-Weiss sus-
ceptibility [1, 6] with very small Curie-Weiss temperature © < Ty,. The Curie
constant corresponds to the free moment of one magnetic f-hole ina J = 7/2
spin-orbit state with per; = 4.53up. The electrical resistance is large and has
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a small positive slope; it remains almost unchanged in magnetic fields up to 30
T [5]. In some systems, like Yb;_,Y;InCuy, the magnetoresistance is slightly
negative, while in YbInCuy (or YbIn;_,Ag,Cuy for z = 0.15) it is slightly
positive [5]. The Hall constant is large and negative, indicating a small number
of carriers [4, 8]. The thermoelectric power has a rather small slope which one
finds in a semiconductor with a nearly symmetric density of states [9]. Recent
data on the optical conductivity of YbInCuy [10] shows the absence of a Drude
peak at high temperatures and a pronounced maximum of the optical spectral
weight at about 1 eV. The high-temperature ESR data for Gd3* embedded in
YbInCuy resemble those found in integer-valence semi-metallic or insulator
hosts [11]. Thus, the high-temperature phase indicates the presence of a well
defined local moment but gives no signature of the Kondo effect. The over-
all bebhavior of the high-temperature phase is closer to that of a semi-metal or
paramagnetic small-gap semiconductor than to a Kondo metal.

The mixed-valent phase (I' < T;) behaves like a Pauli paramagnet with
moderately enhanced susceptibility and specific heat coefficient [6]. The elec-
trical resistance and the Hall constant are one order of magnitude smaller than
in the high-temperature phase [4, 8]. The thermoelectric power [9] has a very
large slope typical of a valence fluctuator with large asymmetry in the density
of states. The susceptibility, the resistivity and the Hall constant do not show
any temperature dependence below T, which is also typical of valence fluc-
tuators. The optical conductivity shows a major change with respect to the
high-temperature shape. The peak around 1 eV is reduced, the Drude peak
becomes fully developed, and an additional structure in the mid-infrared range
appears quite suddenly below T}, [10]. A large density of states at the chemical
potential y is indicated by the ESR data as well [12]. Thus, the transition at 7},
seems to be from a paramagnetic semimetal to a valence fluctuator.

In contrast to usual valence-fluctuators, which are quite insensitive to the
magnetic field, the YbInCuy family of compounds also exhibit metamagnetic
transitions when T' < T,,. The Yb moment is fully restored at a critical field
H(T), with a Zeeman energy pp H, comparable to the thermal energy kgT,,.
The metamagnetic transition defined by the magnetoresistance or the magneti-
zation data [7] gives an H-T phase boundary H.(T) = H%+/1 — (T/T,)Z. The
zero-temperature field HY is related to T, as kT, /upH? = 1.8 [7].

To account for these features we need a model in which the non-magnetic,
valence-fluctuating, metallic ground state can be destabilized by increasing
temperature or magnetic field. Above the transition, we need a paramagnet-
ic semiconductor with an average f-occupancy that is not changed much with
respect to the ground state. The correct model for this system is a periodic
Anderson model supplemented with a large Falicov-Kimball (FK) interaction
term. The temperature or field induced transition suggests that one should place
the narrow f-level just above the chemical potential . The hybridization keeps
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the f-count finite below the transition, while large f-f correlations allow only
the fluctuations between zero- and one-hole (magnetic) configurations. The
low-temperature phase is close to the valence fluctuating fixed point and shows
no Kondo effect. However, because of the Falicov-Kimball term, there is a
critical f-occupation at which there is a transition into the high-temperature
state with a large gap in the d- and f-excitation spectrum. The ny is driven
to criticality either by temperature or magnetic field. In the high-temperature
phase the hybridization can be neglected because the f-level width is already
large due to thermal fluctuations, and quantum fluctuations are irrelevant. Un-
fortunately, the above model would be difficult to solve in a controlled way,
and here we consider a simplified model in which the hybridization is neglect-
ed at all temperatures. This leads to a spin-degenerate Falicov-Kimball model
which explains the collapse of the non-magnetic metallic phase at T;, or H,,
and gives a good qualitative description of the high-temperature paramagnet-
ic phase. However, the deficiency of the simplified model is that it yields a
negligible f-count in the metallic phase and predicts a large change in the Yb
valence at T, or H,. It is clear that we can not obtain the valence fluctnating
ground state and maintain the average f-occupancy below the transition with-
out hybridization-induced quantum fluctuations. In what follows, we describe
the model, explain the method of solution, and present results for static and
dynamic correlation functions.

2. CALCULATIONS

The Hamiltonian of the Falicov-Kimball model [13] consists of two types of
electrons: conduction electrons (created or destroyed at site ¢ by d;fa or d;;) and
localized electrons (created or destroyed at site ¢ by fiTU or f;z). The conduction
electrons can hop between nearest-neighbor sites on the D-dimensional lattice,
with a hopping matrix —¢;; = —t*/ 2v/D; we choose a scaling of the hopping
matrix that yields a nontrivial limit in infinite-dimensions [14]. The f-electrons
have a site energy F, and a chemical potential u is employed to conserve the
total number of electrons n4t +ngy, +n4+ns, = Nter. The Coulomb repulsion
Uy between two f-electrons is infinite and there is a Coulomb interaction U
between the d- and f-electrons that occupy the same lattice site. An external
magnetic field h couples to localized electrons with a Landé g-factor. The
resulting Hamiltonian is [15, 16]

H= Z IJ’JU ddefT +Z Ef - )fggfio'
ij,0
+U Z diadw wl.fw’ + Uff Z szszfLsz.L
t,00" %,0

_/J'tha(2d11;adi0 +gfi1;yfia)- (L1

1,0
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The model can be solved in the infinite-dimensional limit by using the methods
of Brandt-Mielsch [15]. We consider the hypercubic lattice with Gaussian
density of states p(e) = exp[—e2/t*?]/+/mt*, and take t* as the unit of energy
(t* = 1). Our calculations are restricted to the homogeneous phase.

The local conduction-electron Green’s function satisfies Dyson’s equation

TN ple)
G (z)—/z_i_u_za(z)_ede, (1.2)
where z is a complex variable and ¥7 is the local self energy which does not
depend on momentum [14]. In infinite dimensions, 37 is defined by a sum of
skeleton diagrams, which depend on the local d-propagator G but not on %;;.
The exact self-energy functional for the FK model is obtained by calculating
the thermodynamic Green’s function [17] of an atomic system coupled to an
external time-dependent field A% (7)

Tom(T) = —%mf <TTe—ﬂHat°md,,(T’)d;(T)S(,\)> : (1.3)

atom
where the S-matrix for the A-field is
SO = Ty~ Jo 47 J dr' Ml (r)do (), (1.4)

and Hj4om, is obtained from the Hamiltonian (1.1) by removing the hopping and
keeping just a single lattice site. The exact solution for G%[{ A, }] at Matsubara
frequency iw, = inT(2n + 1) is given by,

. Wo w1
TG

ngn]_l A
where wg and w; are the f-occupation numbers (wy = 1 — wg, wy = Zy/2)
and [15]

GS (1.5)

1 1
Zo(\, p) = 2PF2 ] ————26"2 T ———, (1.6)
n (iwn)Gl, 13 (iwn) G
with
Z(\p) = Zo(\ p) + 26 PEB 2y (X, — U). (1.7)
The bare Green’s function satisfies
- 1

with A, the Fourier transform of the external time-dependent field.
The self-energy functional ¥2[G?] can now be obtained [15] by using the
Dyson equation for the atomic propagator,

2y =[Gg.1 - [Ga] Y, (1.9)
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and eliminating G, [{Am}] from Egs. (1.5) and (1.9). The mapping onto the
lattice is achieved by adjusting G, in such a way that GZ[{\, }] satisfies the
lattice Dyson equation (1.2).

The numerical implementation of the above procedure is as follows: We start
with an initial guess for the self energy 27 and calculate the local propagator
in (1.2). Using (1.9) we calculate the bare atomic propagator G, and find Zg
and Z. Next we obtain wg, w; and find G from (1.5). Using G§,, and G7, we
compute the atomic self energy and iterate to the fixed point.

The iterations on the imaginary axis give static properties, like ny, the f-
magnetization m ¢ (h, t), and the static spin and charge susceptibilities. Having
found the f-electron filling w; at each temperature, we iterate Egs. (1.2) to (1.9)
on the real axis and obtain the retarded dynamical properties, like the spectral
function, the resistivity, the magnetoresistance, and the optical conductivity. At
the fixed point, the spectral properties of the atom perturbed by A-field coincide
with the local spectral properties of the lattice.

3. RESULTS AND DISCUSSION

We studied the model for a total electron filling of 1.5 and for several values
of Ef and U. The main results can be summarized in the following way.

0.5
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Figure 1.1 Number of the f-holes plotted versus T'/t* for U/t* = 4. The E;/t* increases
from top to bottom, and is given by -0.7, -0.6, -0.5, and -0.2, respectively.

The occupancy of the f-holes at high temperatures is large and there is a
huge magnetic degeneracy. The f-holes are energetically unfavorable but are
maintained because of their large magnetic entropy. In Fig.(1.1) we show ny
as a function of temperature, plotted for U = 4¢*, and E; /t* from -0.2 to -0.7.
Below a certain temperature, which depends on U and Ey, there is a rapid
transition to the low-temperature phase. The transition becomes sharper and
is pushed to lower temperatures as E'y decreases at constant U. However, we
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restrict ourselves to continuous crossovers here, since the region with first-order
transitions leads to numerical instabilities.

The uniform f-spin susceptibility is obtained by calculating the spin-spin
correlation function [15, 16] and is given by x(T') = Cny(T)/T, where C =
92u% J(J +1)/3kp is the Curie constant. The x(7")/C is shown in Fig. (1.2)
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Figure1.2 Uniform static magnetic susceptibility of the f-holes plotted versus T'/t* forU/t* =
4. The values of Ef/t* are the same as in Fig(1.1). The corresponding values of T}, /t* are
estimated from the maximum of x(7'), and are given by 0.03, 0.08, 0.15, 0.35, respectively. The

T, increases from top to bottom.

for U/t* = 4 and for E; as quoted in Fig.(1.1). The T, is obtained from the
maximum of the x(7")/C and the values corresponding to various parameters
used in this paper are quoted in the caption of Fig. (1.2). The high-temperature
susceptibility follows an approximate Curie-Weiss law, but the Curie-Weiss
parameters depend on the fitting interval.

The interacting density of states pg(w) for the conduction electrons is shown
in Fig.(1.3) for U/t* = 4 and E¢/t* = —0.5, and for several temperatures.
(The energy is measured with respect to x.) The high-temperature DOS has
a gap of the order of U, and the chemical potential is located within the gap.
Below the transition 7 is small, the correlation effects are reduced, and pg(w)
assumes a nearly non-interacting shape, with large p; (1) and halfwidth W ~ ¢*,

The transport properties of the high-T phase are dominated by the presence
of the gap, which leads to a small dc conductivity with a weak temperature
dependence. The transport properties of the paramagnetic phase are unrelated
to the spin-disorder Kondo scattering (there is no spin-spin scattering in the
FK model). Below the transition the conductivity increases and assumes large
metallic values.

The intraband optical conductivity o(w) is plotted in Fig.(1.4) as a function
of frequency, for several temperatures. Above T, we observe a reduced Drude
peak around w = 0 and a pronounced high-frequency peak around w ~ U. The
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Figure 1.3 Interacting density of states plotted versus w/t* for U/t* = 4, Ez/t* = —0.5
(T, /t* = 0.14), and for various temperatures, as indicated in the figure.

shape of o(w) changes completely across T;,. Below T}, the Drude peak is fully
developed and there is no high-energy (intraband) structure. However, if the
renormalized f-level is close to u, the interband d-f transition could lead to an
additional mid-infrared peak. The ratio of the high-frequency peak in Fig(1.4)
and the corresponding value of 7, = 0.15t*, is U/T,, = 26. For the same
value of U and Ey = —0.7t* (T, = 0.03t*) we obtain U/T,, = 130, while
for By = —0.75¢* (T, = 0.02t*) we find U/T, ~ 200 (not shown). If we
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Figure 1.4 Optical conductivity plotted versus w/t* for various temperatures. The U, Ey, and
T, are the same as in Fig.(1.3).

estimate the f-d correlation in YbInCuy from the 8000 cm ™~ peak in the optical
conductivity data [10], we obtain the experimental value U ~ 1 eV. Together
with T, = 42 K [7] this gives the ratio U/T,, ~ 200. If we take U/¢t* = 4 and
adjust E¢/t* so as to bring the theoretical value of T}, in agreement with the the
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thermodynamic and transport data on YbInCuy, we get a high-frequency peak
in o(w) at about 8000 ¢ 1, 6000 cm~?, and 1500 cm ™1, for By = —0.75¢,
Ef = -0.7t*, and By = —0.5¢*, respectively.
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Figure 1.5 The f-electron magnetization m is plotted as a function of h/t* for various tem-
peratures. The U, E¥, and T, are the same as in Fig.(1.3).

The f-electron magnetization m(h) is plotted in Fig.(1.5) versus reduced
magnetic field h/t*, for several temperatures. Above the characteristic tem-
perature Ty =~ T, /2, the m¢(h) curves exhibit typical local moment behavior.
Below T;; we find a metamagnetic transition at a critical field H,; the m¢(h)
is negligibly small below H and the local moment is fully restored above H,.
Taking the inflection point of the m(h) curves, calculated for several values
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Figure 1.6 Normalized critical field is plotted as a function of reduced temperature T/T for
several values of Ey/t* and U/t". The full line represents /1 — (T'/T3)2 and Ty =T, /2.

of U and Ey, as an estimate of H.(T") we obtain the phase boundary which is
shown in Fig.(1.6), together with the expression H.(T')/H? = /1 — (T/Tz)2.
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Note, the T;; values in Fig.(1.6) differ by more than an order of magnitude, while
the ratio kT /up H? is only weakly parameter dependent.
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Figure 1.7 Field-dependent resistivity plotted versus h/t*. The different symbols correspond
to different temperatures, as indicated in the figure. The U and Ey are the same as in Fig.(1.3).

The metamagnetic transition is also seen in the field-dependent electrical
resistance R(h, T') which is plotted in Fig.(1.7) as a function of /4 /t*, for several
temperatures. A substantial change in the R(h,T") across T, or H, is clearly
seen.

4. SUMMARY

>From the preceding discussion it is clear that Falicov-Kimball model cap-
tures the main features of the experimental data for YbInCu, and similar com-
pounds. The temperature- and field-induced anomalies are related to a metal-
insulator transition, which is caused by large FK interaction and triggered by
the temperature- or the field-induced change in the f-occupancy. At high tem-
peratures, we find a large gap in p4(w); we expect a similar gap in the f-electron
spectrum as well. At low temperatures, both gaps are closed, and the renormal-
ized f-level renormalizes down to the chemical potential.

Our calculations describe doped Yb systems with broad transitions but appear
to be less successful for those compounds which show a first-order transition.
The numerical curves can be made sharper (by adjusting the parameters) but they
only become discontinuous in a narrow parameter range. The main difficulty
with the FK model is that it predicts a substantial change in the f-occupancy
across the transition and associates the loss of moment with the loss of f-holes.
But in the real materials the loss of moment seems to be due to the valence
fluctuations, rather than to the reduction of ny. The description of the valence
fluctuating ground state would require the hybridization and is beyond the scope
of this work. The actual situation pertaining to Yb ions in the mixed-valence
state might be quite complicated, since one would have to consider an extremely
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asymmetric limit of the Anderson model, in which the ground state is not Kondo-
like, there is no Kondo resonance, and there is no single universal energy scale
which is relevant at all temperatures [?].

We speculate that the periodic Anderson model with a large FK term will
exhibit the same behavior as the FK model at high temperatures. Indeed, if the
conduction band and the f-level are gapped, and the width of the f-level is large,
then the effect of the hybridization can be accounted for by renormalizing the
parameters of the FK model. On the other hand, if the low-temperature state of
the full model is close to the valence-fluctuating fixed point with the conduction
band and hybridized f-level close to the Fermi level, then the likely effect of the
FK correlation is to renormalize the parameters of the Anderson model.
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Abstract The anomalous behavior of YbInCuy and similar compounds is modeled by the
exact solution of the spin one-half Falicov-Kimball model in infinite dimen-
sions. The valence-fluctuating transition is related to a metal-insulator transition
caused by the Falicov-Kimball interaction, and triggered by the change in the
f-occupancy.

1. INTRODUCTION

The intermetallic compounds of the YbInCuy4 family exhibit an isostructural
transition from high-temperature state with trivalent Yb ions in the 4f'3 con-
figuration to the low-temperature mixed-valent state with Yb ions fluctuating
between 4118 and 4 14 configurations [1]. The transition is particularly abrupt
in high-quality stoichiometric YbInCuy samples [2] with a transition tempera-
ture equal to T, = 42 K at ambient pressure; the susceptibility and the resistivity
drop at T}, by more than one order of magnitude in cooling, while the volume
expansion [3] and the valence change [1, 4] are small (AV/V =~ 0.05 and
Anyg =~ 0.1, respectively). Using the usual ionic radii of trivalent and divalent
YD, the relative change of the lattice parameter is found to be consistent with
the valence change seen in the Lrr-edge absorption. The critical temperature
depends strongly on external pressure, magnetic field, and alloying (chemical
pressure) [5, 6]. A recent review of the experimental data is given in Ref. [7]
and here we just recall the main points which motivate our theoretical model.

The integer-valent phase (' > T,) is characterized by a Curie-Weiss sus-
ceptibility [1, 6] with very small Curie-Weiss temperature © < T,,. The Curie
constant corresponds to the free moment of one magnetic f-hole ina J = 7/2
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spin-orbit state with pers = 4.53p5. The electrical resistance is large and has
a small positive slope; it remains almost unchanged in magnetic fields up to 30
T [5]. In some systems, like Yb; ., Y,InCuy, the magnetoresistance is slightly
negative, while in YbInCuy (or YbIn;_,Ag,Cuy for z = 0.15) it is slightly
positive [5]. The Hall constant is large and negative, indicating a small number
of carriers [4, 8]. The thermoelectric power has a rather small slope which one
would find in a semiconductor with a nearly symmetric density of states [9].
Recent data on the optical conductivity of YbInCuy [10] shows the absence of
a Drude peak at high temperatures and a pronounced maximum of the optical
spectral weight at about 1 eV. The high-temperature ESR data for Gd®t em-
bedded in YbInCuy resemble those found in integer-valence semi-metallic or
insulator hosts [11]. The striking feature of the high-temperature phase is the
presence of a well defined local moment but the absence of any signature of the
Kondo effect. The overall behavior of the high-temperature phase is similar to
that of a semi-metal or paramagnetic small-gap semiconductor.

The mixed-valent phase (I' < T,) behaves like a Pauli paramagnet with
moderately enhanced susceptibility and a specific heat coefficient [6] v ~
50mJ/mol K2. The electrical resistance and the Hall constant are one order of
magnitude smaller than in the high-temperature phase [4, 8]. The thermoelec-
tric power [9] has a very large slope which is typical of a valence fluctuator with
large asymmetry in the density of states. The susceptibility, the resistivity and
the Hall constant do not show any temperature dependence below T;,, which is
also typical of valence fluctuators. The optical conductivity is Drude like but
there is also an additional structure in the mid-infrared range, which appears
quite suddenly below T, [10]. A large density of states at the chemical potential
u is indicated not just by the transport data but also by the ESR data [12].

In contrast to usual valence-fluctuators, which are quite insensitive to the
magnetic field, the YbInCuy family of compounds exhibit metamagnetic
transitions when 7' < 7,,. The Yb moment is fully restored at a critical field
H,(T), with a Zeeman energy ppH, comparable to the thermal energy kgT,.
The metamagnetic transition defined by the magnetoresistance or the magne-
tization data [7] gives an H-T phase boundary H.(T) = H?\/1 — (T/TP)2.
The zero-field temperature 770 and the zero-temperature field H? are found to
be related as kgT?/upH? = 1.8.

To account for these features we need a model in which the non-magnetic,
valence-fluctuating, metallic ground state can be destabilized by increasing
temperature or magnetic field. Above the transition, we need a paramagnetic
semiconductor with an average f-occupancy that is not changed much with
respect to the ground state. The correct model for this system is a periodic
Anderson model supplemented with a large Falicov-Kimball (FK) interaction
term. The temperature or field induced transition suggests that one should
place the narrow f-level just above the u, so that the metallic ground state can be
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destabilized by either thermal fluctuations or a magnetic field. The hybridization
keeps the f-count finite below the transition, while large f-f correlations allow
only the fluctuations between zero- and one-hole (magnetic) configurations.
The low-temperature phase is close to the valence fluctuating fixed point and
shows no Kondo effect. However, because of the FK term, there is a critical
f-occupation at which there is a transition into the high-temperature state which
has a gap in the excitation spectrum and has all states shifted with respect to
. In the high-temperature phase the hybridization can be neglected because
the f-level width is already large due to thermal fluctuations, and quantum
fluctuations are irrelevant. Unfortunately, the above model would be difficult
to solve in a controlled way, and here we consider a simplified model in which
the hybridization is neglected at all temperatures. This leads to spin-degenerate
FK model which explains the collapse of the non-magnetic metallic phase at
T, or H,, and gives a good qualitative description of the high-temperature
paramagnpetic phase. However, the deficiency of the simplified model is that it
yields a negligible f-count in the metallic phase and predicts a large change in the
Yb valence at T}, or H,. It is clear that we can not obtain the valence fluctuating
ground state and maintain the average f-occupancy below the transition without
hybridization-induced quantum fluctuations. In what follows, we describe the
model, explain the method of solution, and present results for static and dynamic
correlation functions.

2. CALCULATIONS

The Hamiltonian of the FK model [13] consists of two types of electrons:
conduction electrons (created or destroyed at site ¢ by d;!a or d;,) and local-

ized electrons (created or destroyed at site ¢ by fifa or fiz). The conduc-
tion electrons can hop between nearest-neighbor sites, with a hopping matrix
—ty; = —t*/ 2v/D, where we have chosen to examine hypercubic lattices in
D-dimensions, and we choose a scaling of the hopping matrix that yields a
nontrivial limit in infinite-dimensions [14]. The bare density of states p(e) on
a hypercubic lattice is a Gaussian

exp[—€* /%], (1.1)

1
p(E) = \/7—1"[:*

and we take ¢* as the unit of energy (¢* = 1). The f-electrons have a site energy
Ey, and a chemical potential x is employed to conserve the total number of
electrons ngt + ngy +nypr +ng) = niet. The Coulomb repulsion Uy s between
two f-electrons is infinite and there is a Coulomb interaction U between the d-
and f-electrons that occupy the same lattice site. An external magnetic field A
couples to localized electrons with a Land€ g-factor. The resulting Hamiltonian
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is [15, 16]
H =Y "(~tij — pdij)dl,djs + Y (By — w)f} fio
ij,O' ?:,0'
+U Y. dl digfL fior + Ugs Z f%fnf,-&fu

i,00!

—thZa(zd* d,,, + 971 fis)- (1.2)

,U

The model can be solved in the infinite-dimensional limit by using the methods
of Brandt-Mielsch [15]. Our calculations are restricted to the homogeneous
phase.

The local conduction-electron Green’s function satisfies Dyson’s equation

ol — ple)

G7(z) = p—T g _Ede, (1.3)
where z is a complex variable and %7 is the local self energy which does not
depend on momentum [14]. In infinite dimensions, X7 is defined by a sum of
skeleton diagrams, which depend on the local d-propagator G° but not on £;;.
The exact self-energy functional for the FK model is obtained by calculating
the thermodynamic Green’s function [17] of an atomic system coupled to an
external time-dependent field A?(7)

Cliom(r) = ~ 5 Trg (Tre PHotmdy ()} ()S(V), (1)
where the S-matrix for the A-field is
S()\) =Te” ff dr ff d’l”}\(’l‘,’l”)d;(‘l')dg(‘r')’ (1.5)

and H o, is obtained from the Hamiltonian (1.2) by removing the hopping and
keeping just a single lattice site. The exact solution for GZ(\,) at Matsubara
frequency w, = 7T (2n + 1) is given by,

Wo u

G = + ,
SN (61 b (e M

(1.6)

where wg and w; are the f-occupation numbers (w; = 1 — wp, wo = Zp/Z)
and [15]

2P/ H 1.7

Zo(A, p) = 267/ H (w G

(zwn)GOn
with
Z(\p) = Zo(\, p) + 26 PE=H Zy(\, 1 — U). (1.8)
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The bare Green’s function satisfies

1
5, = 1.9
0% ™ G +p—Ag’ (1.9)

with ), the Fourier transform of the external time-dependent field.
The self energy functional XZ[GY] can now be obtained [15] by using the
atomic Dyson equation

»g =[Gq " —[Gal ™, (1.10)

and eliminating G§, [{Am }] from Egs. (1.6) and (1.10). The mapping onto the
lattice is achieved by adjusting G§,, in such a way that GZ[{\n, }] satisfies the
lattice Dyson equation (1.3).

The numerical implementation of the above procedure is as follows: We start
with an initial guess for the self energy 3 and calculate the local propagator
in (1.3). Using (1.10) we calculate the bare atomic propagator G7, and find Zg
and Z. Next we obtain wy, w; and find the atomic Green’s function G from
(1.6). Using G§,, and G5, we compute the atomic self energy and iterate to the
fixed point.

The iterations on the imaginary axis give static properties, like ny, the f-
magnetization m¢(h, t), and the static spin and charge susceptibilities. Having
found the f-electron filling w; at each temperature, we iterate Eqgs. (1.3) to (1.10)
on the real axis and obtain the retarded properties, like the spectral function,
the resistivity, the magnetoresistance, and the optical conductivity. At the fixed
point, the spectral properties of the atom preturbed by A-field coincide with the
local spectral properties of the lattice.

3. RESULTS AND DISCUSSION

We discuss the FK model for a total electron filling of 1.5, U/t* = 4, and
E;/t* from —0.2 to —0.7, with the ensuing values of T, /t* between 0.02 and
0.07. The main results can be summarized as follows:

Above Ty, the occupancy of the f-holes is large and the system has a huge
magnetic degeneracy. The f-holes are energetically unfavorable but are main-
tained because of their large magnetic entropy. In Fig.(1.1) we show ny as a
function of temperature, plotted for several values of E¢. Below a certain value
of ng(T') there is a rapid transition to the low-temperature phase. The tran-
sition becomes sharper and is pushed to lower temperatures as £y decreases.
However, we restrict ourselves to continuous crossovers here, since the region
with first-order transitions leads to numerical instabilities.

The uniform f-spin susceptibility is obtained by calculating the spin-spin
correlation function [15, 16] and is given by x(T') = Cny(T)/T, where C =
g2 u%J(J+1)/3kp is the Curie constant and n(T') is a slowly varying function
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04
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Figure 1.1 Numberofthe f-holes plotted versus T'/t". Different curves correspondto Ey /t* =
—0.5, —0.6 and —0.7 (the E; increases from top to bottom) with T, /¢t* = 0.07, 0.04, and 0.02
respectively.

for T > T,. x(T)/C is shown in Fig. (1.2) for the same parameters. The
high-temperature data follow an approximate Curie-Weiss law. However, the
Curie-Weiss parameters depend on the fitting interval, and © is unrelated to T,.
Below T, the f-susceptibility is negligibly small; the total susceptibility is due
to conduction electrons and is Pauli like.

FK model: static susceptibility

n=1.5 u=4t
40

(=
o

—— e=-0.71 (Tv=0.021)
- e=-061 (TV-0.04))
——- em-051 (Tv-0.071)

magnetic susceptibllity

TInunils af t

Figure 1.2 Uniform static magnetic susceptibility of the f-holes plotted versus T'/t*. Different
curves correspond to Ef/t" = —0.5,—0.6 and —0.7 (the E5 increases from top to bottom)
with T, /t* = 0.07, 0.04, and 0.02 respectively.

The interacting density of states pg(w) for the conduction electrons is shown
in Fig.(1.3). For U=4, p4(w) has a large gap at high temperatures, with the
chemical potential located within the gap. Below the transition ny is small,
the correlation effects are reduced, and pg(w) assumes a nearly non-interacting
shape, with g in the high-DOS region.
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FK model: T-dependent DOS

n=1.5 e=-0.51 u=4t

—— T=3.121
B ORTY
-~~~ T=0471

08

20 -10 00 10
Tin unlia ot t

Figure 1.3 Interacting density of states plotted versus w/t* for various temperatures, as indi-
cated in the figure.

The transport properties of the high-T phase are dominated by the presence of
the gap, which leads to a small temperature-independent dc conductivity. The
transport properties of the paramagnetic phase are unrelated to the spin-disorder
Kondo scattering, as there is no spin-spin scattering in the model. Below the
transition the conductivity increases and assumes Jarge metalli¢ values.

The intra-band optical conductivity o(w) is plotted in Fig.(1.4) as a func-
tion of frequency, for several temperatures. Above the transition, o(w) has
a high-energy peak around w ~ U and a greatly reduced Drude peak. At
low temperatures, the Drude peak is fully developed and there is no intra-band
high-energy structure. However, we expect the renormalized f-level to now be
close to u and the inter-band d-f transition could lead to the appearance of an
additional mid-infrared peak.

FK model: optical conductivity

n=1.5 e=-0.5t u=4t

T=1.15t

~ T=047
—=—- T=0.181
— T=0.08t

OPTICAL CONDUCTIVITY

20 o a0 50 80
Tinuntsof1

Figure 1.4 Optical conductivity plotted versus w/t* for various temperatures. as indicated in
the figure.



Calculations in finite magnetic field show that the local moment is restored for
H larger than a critical field H, that is strongly parameter dependent. The field
induced f-electron magnetization m(H) is plotted in Fig.(1.5) as a function of
H, and shows a typical metamagnetic transition. There is a qualitative difference
in the m¢(H) curves for T < T and T' > TY.

Figure 1.5 The f-electron magnetization my is plotted as a function of the magnetic field for
different temperatures, as indicated in the figure. Here By /t* = —0.5 and 72 /t* = 0.07.

The metamagnetic transition is also seen in the field-dependent electrical
resistance which is shown in Fig.(1.6). The effect of the magnetic field on the
resistance is much more pronounced for T < T than for T' > T?.

OC resistivity versus field
n=1.5, E=-0.5, U=4

DC rasislivity
@

[} 0.05 0.1 0.15 02
Hin units of *

Figure 1.6 Field-dependent resistivity plotted versus H for various temperatures. The different
simbols correspond to different temperatures, as indicated in the figure.

Taking the inflection point of the m(H) curves as an estimate of H.(T') we

4] #*

find that the phase boundary can be fitby the expression, H.(T') = H®+/1 — (T/T?)?,

as shown in Fig.(1.7) for several values of U and E. The ratio kyT. /g H? is
found to be between 1.5 and 2.0. A similar result follows from Fig.(1.6).
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1 (1Y) "
i .
08 odt
Bho
L %
T os od,
> © u=3e=-05 %
= o u=4e=-03 P)
' # u=4e=-0.2
—— sqit[i~(TTc)] o
a2 [,
!
, .
9 0.2 04 D‘, 08 1
T,

Figure 1.7 Critical field normalized as a function of temperature. H, 0 is the zero-temperature
critical field, and T is the zero-field critical temperature. The different curves correspond to
E/t* = —0.5,—0.6 and —0.7 and their respective T values differ by more than an order of
magnitude.

4. SUMMARY

From the preceding discussion it is clear that Falicov-Kimball model captures
the main features of the experimental data for YbInCuy and similar compounds.
The temperature and field induced anomalies are related to a metal-insulator
transition, which is caused by the FK interaction and triggered by the change
in the f-occupancy. The behavior of correlation functions across T, indicate
that the renormalized f-level E7} shifts in cooling from high to low energies.
Actually, we expect the high-temperature gap which we find for large U in
pa(w) to appear in the f-electron spectrum as well.

Our calculations describe doped Yb systems with broad transitions but appear
to be less successful for those compounds which show a first-order transition.
The numerical curves can be made sharper (by adjusting the parameters) but they
only become discontinuous in a narrow parameter range. The main difficulty
with the FK model is that it predicts a substantial change in the f-occupancy
across the transition and associates the loss of moment with the loss of f-holes.
But in the real materials the loss of moment seems to be due to the valence
fluctuations, rather than to the reduction of ny. The description of the valence
fluctuating ground state would require additional terms in the Hamiltonian and
is beyond the scope of this work. The actual situation pertaining to Yb ions in
the mixed-valence state might be quite complicated, since one would have to
consider an extremely asymmetric limit of the Anderson model (E} ~ p and
Uss = 00). In this limit, the ground state is not Kondo-like, there is no Kondo
resonance, and there is no single universal energy scale which is relevant at all
temperatures [18].



10

It is tempting to speculate that the periodic Anderson model with a large
FK term will exhibit the same behavior as the FK model at high temperatures.
Indeed, if the conduction band and the f-level are gapped, and the width of
the f-level is large, the effect of the hybridization can be accounted for by
renormalizing the parameters of the standard FK model. On the other hand, if
the low-temperature state of the full model is close to the valence-fluctuating
fixed point with the conduction band and hybridized f-level close to the Fermi
level, then the effect of the FK correlation is to renormalize the parameters of
the usual Anderson model.
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