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Cartan-decomposition subgroups of SU(2,n)
Alessandra lozzi and Dave Witte

Abstract. We give explicit, practical conditions that determine whether or
not a closed, connected subgroup H of G = SU(2,n) has the property that
there exists a compact subset C of G with CHC = G. To do this, we fix a
Cartan decomposition G = KATK of G, and then carry out an approximate
calculation of (KHK)N At for each closed, connected subgroup H of G. This
generalizes the work of H. Oh and D. Witte for G = SO(2,n).

1 Introduction

Definition 1.1.  [14, Defn. 1.2] Let H be a closed subgroup of a connected,
simple, linear, real Lie group G. We say that H is a Cartan-decomposition
subgroup of G if

e H is connected, and

o there is a compact subset C' of G, such that CHC = G.
(Note that C is only assumed to be a subset of G it need not be a subgroup.)

Example 1.2.  The Cartan decomposition G = K AK shows that the maximal
split torus A is a Cartan-decomposition subgroup of G.

It is known that G = KNK [9, Thm. 5.1], so the maximal unipotent
subgroup N is also a Cartan-decomposition subgroup.

If R-rank G = 0 (that is, if G is compact), then every (closed, connected)
subgroup of G is a Cartan-decomposition subgroup.

If R-rankG = 1, then it not difficult to see that every (closed, connected)
noncompact subgroup of G is a Cartan-decomposition subgroup (cf. [5, Lem. 3.2]).

It is more difficult to characterize the Cartan-decomposition subgroups
when R-rank G = 2, but H. Oh and D. Witte [14] studied two examples in detail.
Namely, they described all the Cartan-decomposition subgroups of SL(3,R) and
of SO(2,n), and they also explicitly described the closed, connected subgroups
that are not Cartan-decomposition subgroups. Here, we obtain similar results for
SU(2,n). Unfortunately, the results are rather complicated to state.

Notation 1.3. Let G = SU(2,n) and fix an Iwasawa decomposition G =
KAN and a corresponding Cartan decomposition G = KAtK, where At is the
(closed) positive Weyl chamber of A in which the roots occurring in the Lie algebra
of N are positive. Thus, K is a maximal compact subgroup, A is the identity
component of a maximal split torus, and N is a maximal unipotent subgroup.

To simplify, let us restrict our attention here to subgroups of N.
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Theorem 1.4. (cf. 3.4) Let G = SU(2,n) and let H be a closed, connected
subgroup of N. Then H is a Cartan-decomposition subgroup of G if and only if

1. H satisfies at least one of the eight conditions in Proposition 4.1; and

2. H satisfies at least one of the five conditions in Proposition 5.1.

Theorem 1.5. Let G = SU(2,n) and let H be a closed, connected, nontrivial
subgroup of N. Then H is not a Cartan-decomposition subgroup of G if and
only if H belongs to one of the eleven types of subgroups explicitly described in
Theorem 6.1.

For subgroups H that are not contained in N, there is no loss of generality
in assuming that H C AN (see 7.1), and that H satisfies the additional tech-
nical condition of being compatible with A (see 7.3). Under these assumptions,
Theorem 7.4, Proposition 7.6, and Lemma 7.8, taken together, list the possibil-
ities for H and, in each case, determine whether H is a Cartan-decomposition
subgroup or not.

Our results require an effective method to determine whether a subgroup is a
Cartan-decomposition subgroup or not. This is provided by the Cartan projection.

Definition 1.6.  (Cartan projection) For each element g of G, the Cartan
decomposition G = KA*K implies that there is an element ¢ of AT with
g € KaK. In fact, the element a is unique, so there is a well-defined function

p: G — At givenby g € Kpu(g) K.

The function u is continuous and proper (that is, the inverse image of any compact
set is compact). Some properties of the Cartan projection are discussed in {1]
and [7).

We have u(H) = AT if and only if KHK = G. This immediately implies
that if y(H) = A", then H is a Cartan-decomposition subgroup. Y. Benoist
and T. Kobayashi proved the deeper statement that, in the general case, H is
a Cartan-decomposition subgroup if and only if u(H) comes within a bounded
distance of every point in A*.

Notation 1.7. For subsets U and V of At, we write U =~ V if there is a
compact subset C' of A, such that U C VC and V C UC'. This is an equivalence
relation.

Theorem 1.8. (Benoist [1, Prop. 5.1], Kobayashi {8, Thm. 1.1]) A closed, con-
nected subgroup H of G is a Cartan-decomposition subgroup if and only if p(H) =
AT,

Remark 1.9. We may consider SO{2,n) to be the subgroup of SU(2,n) con-
sisting of the real matrices. Then, because A C SO(2,n), we see that SO(2,n)
is a Cartan-decomposition subgroup of SU(2,n). More generally, a subgroup of
SO(2,n) is a Cartan-decomposition subgroup of SO(2,n) if and only if it is a
Cartan-decomposition subgroup of SU(2,n). (For example, this follows from the
fact that the Cartan projection for SO(2,n) is the restriction of the Cartan pro-
jection for SU(2,n).) Thus, our results generalize those theorems of H. Oh and
D. Witte [14] that are directed toward SO(2,n).
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Remark 1.10. One may define a partial order <« on the set of closed, con-
nected subgroups of G by

H, < H, if there is a compact subset C' of G, such that H; C CHC'.

(So H is a Cartan-decomposition subgroup of G if and only if G < H.) We see
from [1, Prop. 5.1] that H; < H; if and only if there is a compact subset C' of A,
such that p(H;) C p(Hz)C. Thus, it is of interest to calculate u(H), for each
subgroup H of G. Our results solve this problem: for each (closed, connected)
subgroup H, we give an explicit subset U of At, such that u(H) =~ U. For
the cases where u(H) % AT, these results are summarized in Tables 1, 2, and 3
of Section 8, and the subset U is given in a standard form that makes it easy
to determine whether H; < H,. Thus, we determine the order structure of the
relation <, and also determine precisely where each subgroup lies in this partial
order.

The interest in Cartan-decomposition subgroups is largely due to the follow-
ing basic observation that, to construct nicely behaved actions on homogeneous
spaces, one must find subgroups that are not Cartan-decomposition subgroups.
(See {7, §3] for some historical background on this result.)

Proposition 1.11. (Calabi-Markus phenomenon, cf. [10, pf. of Thm. A.1.2})
If H is a Cartan-decomposition subgroup of G, then no closed, noncompact sub-
group of G acts properly on G/H .

H. Oh and D. Witte [15, 16] used this proposition as a starting point
to study the existence of tessellations. (A homogeneous space G/H is said to
have a tessellation if there is a discrete subgroup I' of G, such that I' acts
properly on G/H, and I'\G/H is compact.) In particular, when n is even,
they determined exactly which homogeneous spaces SO(2,n)/H have a tessellation
(under the assumption that H is connected). These results depend not only on the
characterization of Cartan-decomposition subgroups, but also on the calculation of
u(H) for each subgroup H, and on the maximum possible dimension of subgroups
with a given image under the Cartan projection. In [4] we use some of the results
of the current paper to study tessellations of homogeneous spaces of SU(2,n).

Here is an outline of the paper. Section 2 describes the notation we use
to specify elements of SU(2,n). Section 3 recalls some general results on Cartan-
decomposition subgroups, and defines a representation p. Section 4 determines
whether H contains large elements with ||p(h)|| approximately equal to |A|f.
Similarly, Section 5 determines whether H contains large elements with ||p(h)||
approximately equal to ||A||. By combining the calculations of the preceding two
sections, Section 6 determines which subgroups of N are Cartan-decomposition
subgroups. Then Section 7 determines which other subgroups of G are Cartan-
decomposition subgroups. Section 8 determines the maximum possible dimension
of a subgroup of H with any given image under the Cartan projection.
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the Isaac Newton Institute for Mathematical Sciences (Cambridge, U.K.). We
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2 Explicit coordinates in SU(2,n)

Notation 2.1.  We realize SU(2,n) as isometries of the indefinite Hermitian

form
n

(v | w) = V1 Wnyz + V2Wnt1 + Z V;W; + VUn41W2 + Unq2Wi
=3
on C**%. The virtue of this particular realization is that we may choose A to
consist of the diagonal matrices in SU(2,n) that have nonnegative real entries,
and N to consist of the upper-triangular matrices in SU(2,n) with only 1’s on
the diagonal. Thus, the Lie algebra of AN is

th, ¢z 7 e t ot ER }
0 t, y iy -7 <2 ZEC’
a+n={ |0 0 0 —yf —zt ME L (2.1)
00 0 —t, —3 ”’fegR’
000 0 —t Y

where ¢ or 77 denotes the conjugate of a complex number ¢ or 7, and z! or y'
denotes the conjugate-transpose of a row vector z or y. Note that the first two
rows of any element of a + n are sufficient to determine the entire matrix.

Notation 2.2. Because the exponential map is a diffeomorphism from n to N,
each element of N has a unique representation in the form exp u with u € n. Thus,
each element h of N determines corresponding values of ¢, z, y, 5, x and y (with
t1 =ty =0). We write

Phy Thy Yhs Thy X, Yh

for these values.

Notation 2.3. We let a and 8 be the simple real roots of SU(2,n), defined
by a(e) = a1/as and B(a) = a3, for an element a of A of the form

a = diag(ay, a3, 1,1,...,1,1,a;",a7").
Thus,
e the root space u, is the ¢-subspace in n,
e the root space ug is the y-subspace in n,

e the root space uy4+p is the z-subspace in n,

the root space Uy42p is the n-subspace in n,

the root space ugg is the y-subspace in n, and

the root space uzq+2s is the x-subspace in n.
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Notation 2.4.  For a given Lie algebra h C n, we use 3 to denote h N (Ugy25 +
Uga+25 + Uzp). In other words,

3={veh|d,=0and z, =y, =0}

(We remark that if ¢, = 0 for every u € §, then [h,h] C 3 and 3 is contained in
the center of §.)

Notation 2.5. For h € SU(2,n), define

hint1 Rinte
A(h) = det ' ' ;
(h) © (h2,n+1 h2,n+2>

The following results collect some straightforward calculations that will be
used repeatedly throughout the paper.

Remark 2.6. For

0 ¢ z 19 X
00y wy -7
u=|0 0 0 —yt —zf|en and h=expu € N,
000 0 -9
000 0 0
we have
( b o4l n— 37y —3zlel® — Re(ém) + 3514*ly[* \
T = . . —_
2P 4 Ligy — Lglyl* 41 (x— Lg%y + L Im(Bayt))
exp(u) = 01 y iy — zlyl? -7 — jya! — Jidy + §olyl?
00 Id —yt —at 4+ 14yt
0 0 0 1 —é
\0 0 0 0 1 /
and

—nl® + xy — X|zly|* + tzy!)? — ily|* Re(nd)
Ahy=  — 3yIm(zy') + 5y I9° — mzlyl*|8f
+1i (Zylol*lyl? + Im(zy'g) + 3x|y[* + 3ylz|*) -

When ¢ = 0, these simplify to:

1

0 =z n—tzy ix—%|x|2\

01 y iy—3ly* —7—3jyz’
exp(u)= |0 0 Id —yt —zt
00 0 1 0

\0 0 0 0 1)
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and '
a0 = el ey
~ 4 i (Im(zy'7) + gxlyl* + Jylzf?) .
Similarly, when y = 0, we have
1)..[2 -
1., —3l” — Re(¢m)
(1 ¢ z n+ igy +i(X—é|¢|2y \
. —___ l._
exp(u) = 01 0 1y n — 5i0y ’
0 0 Id 0 —zt
00 0 —é
\0 00 0 1 ]
and
A(h) = (xy + 3510%* = Inl*) + i (31=[%y) - (2.2)

Remark 2.7. For

0 ¢ = n ix 0 ¢ & 7 ik
u = 0 y iy —7 and G = 0 § iy —7], (2.3)
we have
0 0 ¢j—¢y —ai!+ayt+igy —idy —2iIm(ci!+ 47 — ¢n)
[u, %] = 0 0 —2i Im(yit) gat — yit +igy —idy | >
and

[[ua i}, '&] = (2.4)

(o 0 0 —(¢7— dy)it + 2i4 Im(yj') )
00 0 * .

3 Preliminaries on Cartan-decomposition subgroups

Notation 8.1. We employ the usual Big Oh and little oh notation: for func-
tions fi, fo on H, and a subset Z of H, we say f; = O(f2) for z € Z if there is
a constant C, such that, for all large 2 € Z, we have ||f1(z)|| < C||fa(2)||. (The
values of each f; are assumed to belong to some finite-dimensional normed vector
space, typically either C or a space of complex matrices. Which particular norm
is used does not matter, because all norms are equivalent up to a bounded factor.)
We say fi = o(f2) for z € Z if ||fi(2)||/|if2(2)|| = 0 as 2 = co. Also, we write

fl P fz if fl = O(fz) and fz = O(fl)
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Definition 3.2.  Define p: SU(2,n) — GL(C**?2 AC™*?) by p(h) = hAh,s0 p
is the second exterior power of the standard representation of SU(2,n). Thus, we
may define |[p(h)]| to be the maximum absolute value among the determinants of
all the 2 x 2 submatrices of the matrix h.

We now introduce convenient notation for describing the image of a sub-
group under the Cartan projection .

Notation 3.8.  For functions fi, fo: RT — R*, and a subgroup H of SU(2,n),
we write p(H) = [fi(||Al]), f2(||A]])] if, for every sufficiently large C > 1, we have

p(H) = {a€ At | C7 A (lall) < lle(a)ll < Ch(llal) }-

(If f1 and f, are monomials, or other very tame functions, then it does not matter
which particular norm is used.)

We have At = {a € A| a1y > az2 > 1}, so, for a € AT, we have
lall = a11 < a1, @22 = [lp(a)]| < a}; = ||a||.

Thus A* = [||A]|,||~]j*], so, from Theorem 1.8, we see that H is a Cartan-
decomposition subgroup of G if and only if u(H) ~ [||h||, ||h||2] . This observation,
which is essentially due to Y. Benoist (in a much more general context, cf. [1,
Lem. 2.4}), leads to the following result.

Proposition 3.4. (cf. [14, Prop. 3.24]) A closed, connected subgroup H of
SU(2,n) is a Cartan-decomposition subgroup if and only if

1. there is a sequence {hy} in H, such that h,, = o0 as n — oo, and
plhm) X ||hm|i?*; and

2. there is a sequence {hn} in H, such that h, — oo as n — oo, and
p(hm) X R .

The following result aliows us to replace H by a conjugate subgroup when-
ever it is convenient.

Lemma 3.5. (cf. [1, Prop. 1.5], [8, Cor. 3.5]) Let H be any closed, connected
subgroup of SU(2,n). For every g € G, we have u(g~'Hg) ~ u(H).

In particular, H is a Cartan-decomposition subgroup if and only if g Hg
s a Cartan-decomposition subgroup.

4 When is the size of p(h) quadratic?

In this section, Proposition 4.1 is a list of subgroups that contain a sequence
{hm} with p(hw) X< ||h=||?, and Proposition 4.3 is a list of subgroups that do not
contain such a sequence. Then Proposition 4.4 shows that both lists are complete.
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Proposition 4.1.  Assume that G = SU(2,n). Let H be a closed, connected
subgroup of N. There is a sequence hy, — 0o in H with p(hy) X ||Aml||? f either

1. there is an element u of b with ¢, =0, such that the vectors z, and y, are
linearly independent over C; or

2. there is an element z of 3, such that |n,|® # x.y,; or

3. there are elements v of h and z of 3, such that ¢, = 0, and x|y.|> +
Yzleul? + 2Im(zyl7) # 0; or

4. there is an element u of Yy, such that ¢, # 0, y, = 0, y, = 0, and
|z,]? + 2Re(¢uTa) = 0; or

5. Ugayzp C b and there is an element u of by, such that ¢, # 0, y, #0, and
Yo =0; or

6. there are elements u and v of §, such that ¢, #0, y. #0, ¢, =0, y, =0,
2,720, y,=0, and z,y} =0; or

7. Uga42s C 3, and there are nonzero elements u and v of b, satisfying ¢, # 0,
Yu 75 0; ¢v = 0; Yo = 0; Yo # 0; and :c,,yl = _i¢uyv; or

8. dimh = 3, 3 = Uga42p, there exist u,v € h\ 3, such that y, # 0, y, =0,
yo =0, |2,)? + 2Re(é7) > 0, and we have ¢y # 0 for every h € h\ 3.

Remark 4.2. In Conclusions (6) and (7), the restriction on z,y} is not nec-
essary; it was included to avoid overlap with Conclusion (2). Namely, if z,y} #
—i¢.Yy, then [u,v] satisfies y = 0 and 5 # 0, so Conclusion (2) holds. Also, it is
not necessary to assume y, # 0 in Conclusion (7), because Conclusion (6) holds if
y» =0 (and z, # 0). Thus, (6) and (7) may be replaced with the following:

(6*) there are elements u and v of h, such that ¢, #0, y, #0, ¢, =0, y, =0,
z, # 0, and y, = 0; or

(7*) Uza426 C 3§, and there are nonzero elements u and v of b, satisfying ¢, # 0,
y'll'#O, ¢‘u:07 yu=0,and -'171;740

Proof.  We separately consider each of the eight cases in the statement of the
proposition.

(1) Let hA* = exp(tu). Replacing H by a conjugate under U,, we may
assume that z, is orthogonal to y,; that is, z,yl = 0. Then it is clear that
o(h) = A(hY) < ¢4 < [|B].

(2) Let h* = exp(tz). We have h* <t and

A(RY) = XioYes = |75 |* = P (xays — Inaf?) < 22
Therefore p(h') x A(h?) < t* x ||AY||?.

(3) For any large t, let h = exp(tu+t%z). Clearly, we have |zx|+|yn| = O(t)
and |xx| + |ya| + || = O(t?), so h = O(#?).
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We have
ImA(RY) =¢* %(2 Im(z, 7 + .|yl + yz|zal?) | + O(%) x ¢4

Therefore, p(h) x t* < ||RY||2.

(4) For any large t, let h = exp(tu). Then hjni2 = tfx,, so it is easy to
see that h < t. We have p(h) < ¢* x ||h]®.

(5) Replacing H by a conjugate (under a diagonal matrix), we may assume
that ¢, = y,.. Then, by renormalizing, we may assume that ¢, =y, = 1. Let z
be the element of U344 With x; = 1. By subtracting a multiple of 2 from u, we
may assume X, = 0. For any large ¢, let h = exp(6tu + 36¢3z), 50 Ay n4o is real.
We have

Re A(h) = (366%)(6¢) + 11—2(6t)2(6t)2 +O(t?) < 14,

so p(h) x t* < ||h|f?.

(6) For each large t, let A be an element of exp(tu + Rv), such that hjny2
is pure imaginary. (This exists because the sign of —2|z|* is opposite that of
~=|8*ly|*.) We note that z, < 2 and |} + |xa| = O(t?), but ¢, < ys < ¢ and
lya| + |zayl| = O(t). Thus h = O(#?) and

p(h) < Re A() = e Punl? — oclunl!Ignl? + O(8%) = < [

(7) Because z,yl = —id,y,, we have z, # 0, so, for any large ¢, we may
choose h € exp(tu + Rv + Uzq42g), such that hy 9 = 0. Thus ¢ < yp X t, but
zh X yp X t2 and |gs| + [xa] = O(?). Then (because hyn42 = 0) it is easy to
verify that h = O(3). However

1 1
Im A(h) = 2_4Yh|¢h|2|yh|2 + §yh|wh|2 + O(t%) < 18.

So p(h) x [|A|}?.

(8) For any large ¢, choose s = O(1), such that Re(exp(su + tv)1,n42) = 0.
(This is possible, because —z|z,|* — Re(¢,7,) < 0.) Then we may choose h €
exp(su + tv + 3), such that Ai,42 = 0. Then ¢p < ¢, |z4| + |7a| = O(¢), and
fyn| + lyn| = O(1), so we have p(h) < t2 < ||A||. m

Proposition 4.3.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of N .

1. If dimbh = 1, § = 3, and we have |q|® = xpyn for every h € H, then
p(h) < h for every h € H.

2. If ¢ =0 and y, =0 for every h € ), § C Uzqa42p, and there is some u € b,
such that y, # 0, then u(H) = [||h|, |A|*/?], unless dim H = 1, in which
case p(h) < ||h|[*/? for every h € H.

3. Suppose ¢ = 0 for every h € h, and there is some A € C, such that
zn = Ay, for every h € H, and we have n, = i)y, and x, = |A|?y, for every
z€3.
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(a) If there is some u € B, such that x, + |A’y, + 2Im(A7,) # 0, then
p(H) = [||All, ||k][/?], unless dim H = 1, in which case p(h) < ||k||*/?
for every h € H.

(b) Otherwise, p(h) < h for every h € H.

4. If yo =0, yo = 0, and |z4|? + 2Re(dnTr) # 0 for every h € b\ Uzatap (s0
3 C Uaa42p), then p(h) < h for every h € H.

5 If 3 = 0, there is some u € b and some nonzero ¢g € C, such that
¢ # 0, and we have ¢, = ¢oyr and yn = 0, for every h € b, then
p(H) =~ [||k]], |8]|*3], unless dimH = 1, in which case, p(h) =< ||h|*/*
for every h € H.

6. If dimh < 3, 3 = 0, we have ¢, X y, and v = O(|@y| + |ys|) for every
v € b, and there exists u € b, such that ¢, # 0, then p(h) =< ||A|[*/? for
every h € H.

7. If dimb = 2, 3 = Uga428, and & # 0 and y, # 0 for every h € h\ 3, then
p(H) = [[|A], |1R]*?] .

Proof.  We separately consider each of the seven cases in the statement of the
proposition.

(1) Because A(h) =0 for every h € H, it is clear that p(h) < h for every
heH.

(2) We have I‘I)hl + th| = 0(.’1);,), 80 hl,n+2 = ixh|2+ IXh| and h,‘,j = O(wh) =
O(|h1,n42["/?) whenever (,5) # (1,n +2). Thus, p(h) = O(||[[*/?).

We have p(exp(tu)) < Im A(exp(tw)) < t* < ||exp(tu)||*/%. If dmH > 1,
then there is some nonzero v € §, such that y, = 0. Then, for A € exp(Rv), we
have p(h) < |z4]* + |xn| < h.

(3) Replacing H by a conjugate under U,, we may assume that A = 0,
so zp = 0 for every h € H, and 7. = x, = 0 for every z € 3 (which means
3 C uzg). Therefore, the Weyl reflection corresponding to the root o conjugates b
to a subalgebra either of type (2) or of type (4), depending on whether or not there
is some u € B, such that x, + |A|?y, + 2Im(A\7;) # 0.

(4) By assumption, the quadratic form |z|?+2Re(¢7) is definite on h/3, so
|z|* + |92 + |n]|* = O(|z|?> + 2Re(47)) . Therefore, h;; = O({h1n+2|"/?) whenever
(,7) # (1,n+2). Furthermore, h;; = O(1) whenever i # 1 and j # n+2. Thus,
p(h) < h.

(5) For any sequence {h,} — oo in H, we write @m, Tm,Ym, Ym, m, Xm for
., , €tc.

We have ¢ < Ym. If zm = O(lym|*’?), then p(hnm) < ReA(hn) X
y2 < ||hm|[*/3. (This completes the proof if dimH = 1.) If |ym|*? = o(am),
then Ay X hintz X |Zm|2, but hij = O(|zm| +y2) = O(|:vm|4/3) whenever
(i,7) # (1,n +2), and h;; = O(ym) = O(|zm|*®) whenever i # 1 and j # n +2.
Therefore

p(an) = O(lzml*lzm[® + |2 *|2m|*?) = O(lem|*®) = O(||hnll*®).

If dim H > 1, then there is some (large) h € H with y, = 0 (and hence
¢r =0). Thus p(h) < |zp|> < h.
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X

(6) For any sequence {hm} — oo in H, we show that p(h,) < A(hy)
| ||?/2. We write ¢um, Zm, Yms Yms msXm fOT @4, , etc.

If ym = o(¢2), then hynyz X @3, but h;; = O(¢3,) whenever (i,5) #
(1,n +2), and h;; = O(¢2) whenever ¢ # 1 and j # n + 2. Thus, p(hn) <
Re A(hm) X ¢5, X ||Anm |2

We may now assume that ¢2, = O(ym). Thus, there is some v € b, such
that ¢, = 0 and y, = 1. (Note that, because y, < ¢,, we have y, = 0.) Because
[u,v] € 3 = 0, we must have np,,] = 0, so 2y, = —iduy, # 0. In particular,
Ty 0,80 Ty X Y-

We have hint2 = O(Ixm|2) = O(y72n)’ but hi; = O(|¢mYm| + |ym|) =
O(lym[*?) whenever (i,5) # (1,n +2), and h;; = O(ym) whenever i # 1 and
J#n+2. Thus, hyp = O(yfn) and p(hnm) = O(Y?n)

Furthermore, we have

1 1
Im A(hm) = 5 Ymlbm[[ym|” + S¥mlznl* + O dm) X yo,
because Ym |2m|? X y2,, and the terms 4 Ym{¢m|*|ym|* and Fym|zm|® cannot cancel
(since they both have the same sign as y,, ). We conclude that p(hn) <X A(hn) X
3

ym *

All that remains is to show y2, = O(hn). If #2, = o(ym), then

1
Rehinys = —§|$|2 +O(¢hY) X Y,

as desired. If y,, = o(¢?2), then

Rehynya X 0(85,) + o(¢5,) + 9] X ¢,
80 Ym = 0(¢2,) = o(¢) = 0(hm), as desired. Thus, we may assume that y, < ¢Z,.
Because Ty, = YmZy + O(¢n) and z,y}, = —idmy, = —idm, we have

Im(hinss) = Olym) = glémlm+ |3 I (@nlyman)uh) + O(65)

1 1
= —g|¢m|2)’m = §|¢m|2}'m +O0(4%) <y,

as desired.

(7) For 2z € 3, we have p(z) < z. For u € h\ 3 with y, # 0, we have
p(exp(tu)) < t& < ||exp(tu)||*/?. All that remains is to show p(h) = O(||h|1*%)
for every h € H.

Note that ¢n X yu, and |za| + |mal + Iyal = O(én). I & = O(1),
then it is obvious that p(h) < h. Thus, we may assume |¢p] — oco. Then,
because Rehl'n+2 < |onl?lynl? < 1, but hi; = O(¢nlyn|?) = O(¢}) whenever
(3,7) # (1,n +2), and h;; = O(¢?) whenever i # 1 and j # n + 2, we have

( ) [|¢hl4|¢hi2+ (|¢h ) 0(|¢h ) O(|h1,n+2|3/2) — O(l|h”3/2). -

Proposition 4.4.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of N .

1. There is a sequence hp, — 00 in H with p(hy) X ||hnm|* if and only if H is
one of the subgroups described in Proposition 4.1.

2. There is not a sequence h,, — oo in H with p(hw) X ||hm|?® if and only if
H is one of the subgroups described in Proposition 4.3.
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Proof. It suffices to show that H is described in either Proposition 4.1 or
Proposition 4.3.

We may assume
|2

|n:]° = x.y. for every z € 3 (4.1)

(otherwise, 4.1(2) holds). Because |n|> —xy is a quadratic form of signature (3,1)
on Ugg + Uat2s + Uza425, then we must have dimj < 1. Thus, we may assume
h # 3 (otherwise 4.3(1) holds).

Case 1. Assume ¢, = 0 and y, = 0 for every h € H (and § # 3). We may
assume y, = 0 for every z € 3, for, otherwise, 4.1(3) holds. Then, from Eq. (4.1),
we have n, = 0 for every z € 3. Thus, 3 C Uzat2s. We may assume y, = 0
for every h € H, for otherwise Conclusion 4.3(2) holds. We conclude that 4.3(4)
holds.

Case 2. Assume ¢, = 0 for every h € H, and there is some u € h) with y, # 0.
We may assume that z, and y, are linearly dependent over C for every h € H
(otherwise 4.1(1) holds). In particular, there exists A € C, such that z, = Ay..

Subcase 2.1. Assume 3 =10.

Subsubcase 2.1.1. Assume there exists v € b, such that either z, ¢ Cy, or
Yo ¢ Cy,. We may assume there exists w € §, such that z, # Ay, (otherwise
4.3(3) holds). Furthermore, by adding a small linear combination of 4 and v to w,
we may assume that y, # 0 and that either z,, ¢ Cy, or y, ¢ Cy,. Because z,
and v, are linearly dependent, there exists A; (# A) such that z,, = A\yw. (Then
note that we must have y,, ¢ Cy,.) Then

Tytw = Ty + Ty = /\y'u. + )‘lyw ¢ C(yu + y'w) = (Cyu+‘w

(because A # A; and {yu,Yw} is linearly independent over C). This contradicts
the fact that z,4, and y,4. are linearly dependent over C.

Subsubcase 2.1.2. Assume zp,yn € Cy,, for every h € h. For each h € h, there
exist Az, Ay € C, such that z, = A;y, and yp = Ayy.. Because 3 = 0, we must
have y[ = 0, so Im(ysy}) = 0, which means that ), is real. We must also have

Mhy] = 0, so
0= —zayl + zuy) = (“Az + A)Iwul’ = (=2 + A I,

Thus Az = A}y, so
Th = Azlu = AAyYu = AYp.

Therefore 4.3(3) holds.

Subcase 2.2. Assume 3 # 0. We show that either 4.1(2), 4.1(3) or 4.3(3) holds.
Straightforward calculations show that conditions 4.1(2), 4.1(3) and 4.3(3) are
invariant under conjugation by U,, so we may assume that A = 0; that is, z, = 0.
Thus, we may assume x, = 0 for every z € 3, for, otherwise, 4.1(3) holds. Then
we may assume 7, = 0 for every z € 3, for, otherwise, 4.1(2) holds; therefore
3 = Uzp. We may now assume z = 0 for every h € b, for, otherwise, 4.1(3) holds.
Thus, 4.3(3) holds (with A =0).
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Case 3. Assume there exists u € b with ¢, # 0. We claim that 3 C usqqos. If
not, then there is some z € 3, such that either 5, # 0 or y, # 0. If y, = 0,
then [n,]2 # 0 = x,y,, so 4.1(2) holds. On the other hand, if y, # 0, then, letting
z' = [u, 2], we have y,» = 0 and 5, # 0, so 4.1(2) holds once again.

Subcase 3.1. Assume yp = 0 for every h € . We may assume that there is some
v € b, such that y, # 0 (otherwise, either 4.1(4) or 4.3(4) holds). Then we may
assume 3 = 0 (otherwise, 4.1(5) holds).

We claim that 4.3(5) holds. If not, then there is some w € b, such that
¢w # 0 and y, = 0. Then 7. # 0, which contradicts the assumption that
3=0.

Subcase 3.2. Assume there is some v € §j, such that y, # 0.

Subsubcase 3.2.1. Assume 3 = Upe428. Suppose, for the moment, that there exists
w € h\ 3 with ¢, = 0. We may assume that y,, = 0 (otherwise, 4.1(3) holds).
Therefore z,, # 0, so 4.1(7*) holds.

We may now assume that ¢, # 0 for every w € h\ 3. This implies that z,
v, 1, and y are functions of ¢; in particular, dimbh < 3. Also, because 3 # 0 and
u,v ¢ 3, we must have dimb > 2.

We claim dimf = 2 (so 4.3(7) holds). If not, then dimh = 3, so there
exist u,w € B, such that ¢, = 1 and ¢, = i. Because ¢y, = 0, we must have
[, w] € Uza42p. Therefore 0 = {44 = Yuw — tYu, 80 Yu = 1Yy . Furthermore,

0 = Y[uu) = —21 Im(yuyfu) = —2 Im(—i[yuiz) = —2i|y.)?,
so y, = 0. Then y, = iy, is also 0. This implies y, = 0 for every h € H. This
contradicts the fact that y, # 0.

Subsubcase 3.2.2. Assume 3 = 0. Lemma 4.5 below implies that either 4.3(6)
or 4.1(6*) holds. u

Lemma 4.5. Let H be a closed, connected subgroup of N, such that 3 = 0,
and assume there exist u,v € ), such that ¢, # 0 and y, # 0. Then either H
is described in 4.3(6) (and in 5.2(4), which is the same), or H is a a Cartan-
decomposition subgroup (and is described in 4.1(6*) and 5.1(2)).

Proof. Let us begin by establishing that ¢, < y, for A € . If not, then we
may assume either that y, = 0 or that ¢, = 0. Then, because [[u,v],v] €3=0,
we see from Eq. (2.4) that

0 = —(futs — buu)¥s + 2idy Im(yuy) = —Gulys|* = 0+0 #0.
This contradiction establishes the claim.

Case 1. Assume there is a nonzero w € b, such that ¢, =0 and y,, = 0. Note,
from the preceding paragraph, that y, = 0. Then, because 3 = 0, we must have
z,, # 0. Therefore, 4.1(6*) and 5.1(2) hold, so u(H) = [|A|,||k][?], so H is a
Cartan-decomposition subgroup.

Case 2. Assume there does not exist such an element w € §j. Then H is described
in 4.3(6) and in 5.2(4). m
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5 When is the size of p(h) linear?

In this section, Proposition 5.1 is a list of subgroups that contain a sequence
{hmn} with p(hm) < hm, and Proposition 5.2 is a list of subgroups that do not
contain such a sequence. Then Proposition 5.3 shows that both lists are complete.

Proposition 5.1.  Assume that G = SU(2,n). Let H be a closed, connected
subgroup of N. There is a sequence hy,, — 0o in H with p(hy) X by, if either

1. there is a nonzero element z of § with |n,|? = x.y.; or
2. there is an element u of by, such that ¢, =0, dim¢(z,y) =1, and
Xulyal® + yulzu|* + 2 Im(z.ylm) = 0;
or

3. there is an element h of H with y, =0, y, =0 and |z5|* + 2 Re(¢nTn) # 0;
or

4. there are elements u of h and z of 3, such that ¢, # 0, yu. =0, y, #0,
n: 70, and y, =0; or

5. there are nonzero elements u of b and z of 3, such that ¢, # 0, y, # 0,
V. =0, @7, is real, and

Xz |Yul® — Gu¥uTlz + 2Im(Trzuyl) = 0.

Proof.  We separately consider each of the five cases in the statement of the
proposition.

(1) From 4.3(1), we have p(h) < h for all A € exp(Rz).

(2) Replacing H by a conjugate under (U,,U_,), we may assume that
Y« =0 (and z, # 0). Then, from the assumption of this case, we know that y, is
also 0. Therefore, 4.3(4) implies that p(h) < h for all h € exp(Ru).

(3) From 4.3(4), we have p(h) < h for all h € exp(Ru).

(4). For any large t, choose h € exp(tu + 3), such that xays + ||y —
|17h|2 = 0. Note that n, < id’hyhl = tz, so h x Rehl,n+2 = t3, but h,',j =
O(t*) whenever (4,j) # (1,n + 2), and h;; = O(t) whenever ¢ ¢ {1,2} or
j ¢ {n+1,n +2}. From the choice of h, we have

A(R) = 0+ (XlaaPys) = O(F%) = O(h),

so it is not difficult to see that p(h) < h.

(5) Replacing § by a conjugate, we may assume u € u, + ug. (First,
conjugate by an element of Us to make y, = 0. Then conjugate by an element
of U, to make z, orthogonal to y,. Then conjugate by an element of Us that
centralizes y,, to make z, = 0. Then conjugate by an element of U,;s to make
n. = 0. Then conjugate by an element of U,423 to make x, = 0.) Then, by
assumption, we must have x, = 0, because y,, =0 and z, = 0.

Furthermore, replacing h by a conjugate under a diagonal matrix (that
belongs to G'), we may assume that ¢, and y, are real. Then 5, must also be
real (because ¢,7; is real). Thus, we see that u,z € s0(2,n). So [14, Thm. 5.3(1)]
implies that H is a Cartan-decomposition subgroup. ]
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Proposition 5.2.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of N such that

|7:[% # %.yz, for every nonzero z € }. (5.1)
1. If h =3 (so dim H < 3), then p(h) < ||h||® for every h € H.

2. If ¢p = 0 and dimg(z,, y.) # 1 for every h € b, then p(h) < ||h||? for every
heH.

3. If ¢, = 0 for every h € b, there exist nonzero u and v in b, such that
dimc(zy, yu) # 1 and dime(zo, yu) = 1, and Xo|Yo 2 +Yo |22 42 Im(xuylﬁ) #
0 for every such v € by, then u(H) = [||A|*/%, ||R]%] .

4. If dimh < 3, 3 = 0, we have ¢, X y, and v = O(|¢y| + |ys|) for every
v € by, and there ezists u € W, such that ¢, # 0, then p(h) < ||A|>/? for
every h € H.

5. If iimh <2 and ¢ #0, yp =0, y, = 0, and |zn|? + 2Re(PnTr) = 0 for
every nonzero h € by, then p(h) < ||h|® for every h € H.

6. If dimbh = 2 and there exist nonzero u € h and z € 3, such that ¢, # 0,
Yo #0, vy, =0, ¢,7 is real, and x;|y.|? — duyuT: + 2Im(mxuy:£) # 0, then
p(H) =~ [[IR[P4, 1R]*].-

7. If dimh = 1, and we have ¢, =0, dime{zn,yn) =1, and
xulynl” + yaleal® + 2 Im(zhylim) # 0
for every nonzero h € by, then p(h) < ||k|\*/? for every h € H.

8. If dimbh =1, and ¢ # 0, yp =0, and y, # 0, for every nonzero h € b,
then p(h) < ||h||*/® for every h € H.

Proof.  We separately consider each of the eight cases in the statement of the
proposition.

(1) From Eq. (5.1), we know that the quadratic form |n|> —xy is anisotropic
on 3=, so

A(h) = |mal* = xayn < |nal* + x5 + yi < [|A]I*.
(2) Because dimg(zy,ys) # 1, we have

|24’ lynl* = leayh® < leal* + lual*,

so Lemma 5.4 implies p(h) X ||A]|?.

(7) From either Proposition 4.3(2) or 4.3(3a) (depending on whether yj is 0
or not), we have p(h) x ||k]|*/? for every h € H.

(3) From Lemma 5.4, we have ||A|*/? = O(p(h)).

From (2), we see that p(h) < ||k for h € exp(Ru).

From (7), we see that p(h) x ||h||*/? for h € exp(Rv).

(4) See Proposition 4.3(6).

(5) Because Rehyny2 = 0, it is easy to see that p(h) < @2 x< ||A||2.
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(6) Replacing H by a conjugate, we may assume z, = 0 and y, = 0.
Therefore, z;, = 0 and y, = 0 for every h € H. Thus

mzlyu|2 = Xz|yu|2 — PuYullz + 2Im(ﬁz_wuyl) #0,

so x; # 0. From Eq. (5.1), we know n, # 0.

We have p(tz) =< ||tz]|* (see 5.2(1)).

Because ¢, is a real multiple of 7., we may let h be a large element of H,
such that ny = —|ya|>¢n/12 + O(é4). (So ys < ¢n and x, < 7, < ¢3.) Then

i —_— 1 1
(<t = ghons = gbnlonP) + (otnP)

— O(¢) +i (1xh|yh12) < &

A(R)

2

It is clear that all other matrix entries of p(h) are O(¢%). Thus, we have p(h) x
¢ = [IR]P.
Now suppose there is a sequence hn,, — 0o in H with p(hn) = o(||hml/**).

Case 1. Assume 7, = o(¢2,). We have h,, < ¢}, s0
¢ <X ReA(hn) = O(p(hm)) = olllhm|/*) = o(¢7,)-
This is a contradiction.
Case 2. Assume ¢, = o(n),). We have hy, X Rehyipnia X ¢mhm, 50
7% X Re A(hm) = O(p(hm)) = o([|hnl*’*) = o(llkm[*?) = o(|$mnm[*'?) = o{n7,)-

This is a contradiction.

Case 3. Assume 1y, < ¢3,. We have h,, = O(¢%), so
&, X X |ym|? X I A(hm) = O(p(hm)) = o(|hm|*/*) = o(¢7,).

This is a contradiction.
(8) See Proposition 4.3(5). ]

Proposition 5.3.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of N.

1. There is a sequence hy,, — oo in H with p(hy) X hy if and only if H is
one of the subgroups described in Proposition 5.1.

2. There is not a sequence hy, — 0o in H with p(hm) X ||hnl||® if and only if
H is one of the subgroups described in Proposition 5.2.

Proof. It suffices to show that H is described in either Proposition 5.1 or
Proposition 5.2.
We may assume (5.1) holds (otherwise, Conclusion 5.1(1) holds).

Case 1. Assume ¢, = 0 for every h € H. We may assume there exists v € b,
such that dimg(z,,y,) = 1 (otherwise 5.2(2) holds). Furthermore, we may assume
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Xy Yo |2+ Yoizo|? +2 Im(z,yl7,) # 0 for every such v (otherwise 5.1(2) holds). Then
we may assume dimg(z,,y,) = 1 for every nonzero u € § (otherwise 5.2(3) holds).

The argument in Subsubcase 2.1.1 of the proof of Proposition 4.3 implies
there exists A € C, such that, for every h € H, we have z;, = Ay, (or vice-
versa: for every h, we have y, = Azp). Thus, replacing H by a conjugate under
(Ua,U_y), we may assume x5 = 0 for every h € H.

If dim H > 1, then there is some nonzero u € §, such that x, = 0. This
contradicts the fact that x,|y|? + ¥u|Z.i% + 2Im(z,y}7) # 0. Thus, we conclude
that dim H =1, so 5.2(7) holds.

Case 2. Assume the projection of § to u, is one-dimensional. Replacing H by a
conjugate under A, we may assume ¢y, is real for every h € H. Fix some u € ),
such that ¢, # 0.

We may assume that uya425 ¢ B (otherwise Conclusion 5.1(1) holds).
Therefore [h,u] must be zero, so y, = 0 and 7, is a nonzero real, for every
nonzero z € 3. (This implies dimj < 1.)

Subcase 2.1. Assume y, = 0 for every h € H. We may assume Conclusion 5.1(2)
does not hold.

We claim that § = Ru+ 3. Suppose not. Then there is some v € b, such
that ¢, = 0 and z, # 0. Because Conclusion 5.1(2) does not hold, we must have
y» #Z 0. Then [v,u,u] is a nonzero element of Uz,424. (This can be seen easily by
replacing H with a conjugate, so that u € u,.) This contradicts our assumption

that Uza+20 ¢ f]
If y, # 0, then either Conclusion 5.2(8) or 5.1(4) holds (depending on

whether 3 is 0 or not). If y, # 0, then 5.1(3) or 5.2(6) holds.

Subcase 2.2. Assume the projection of §) to ug is nontrivial. Then we may assume
Yy # 0.

Subsubcase 2.2.1. Assume there are nonzero v € b and z € 3, such that ¢, =0,
Yo = 0, and z, # 0. We may assume that Conclusion 5.1(5) does not hold.
Therefore, for every real ¢, we must have

0 # X |yul® = bulyu + tyo)Te + 2 Im(T(zu + tz.)yl)
= t[—¢uyvm + 2 Im('fy—zx,,y:[)] + constant.

Thus, the coefficient of ¢ must vanish, which (using the fact that 7. is real and
nonzero) means

0= —¢uys + 2Im(z.y}). (5.2)
We have [u,v] € 3, 50 7y is real. Thus,
0=Imnpy., = Im(:z:.,,y}: + iqﬁuyv) = Im(wvyl) + duYe-

Comparing this with Eq. (5.2), we conclude that ¢,y, = 0. Therefore y, =0, so
Conclusion 5.1(2) holds (for the element v).

Subsubcase 2.2.2. Assume there do not exist nonzero v € §) and z € 3, such that
¢, =0, y, =0, and z, # 0. We must have

yw = 0 for every w € h, such that ¢, = 0. (5.3)
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(Otherwise, we obtain a contradiction by setting v = [u,w] and 2z = [u,w,w].)
We may assume

¥y, # 0 for every v € b such that ¢, =0, y, =0, and z, # 0. (5.4)

(Otherwise, Conclusion 5.1(2) holds.)

We claim dim h < 2. If not, then there exist linearly independent v,w € b,
such that ¢, = ¢, = 0. From (5.3), we know that y, = y, = 0. By replacing
with a linear combination, we may assume y,, = 0. Then, from (5.4), we know
that z,, = 0, so w € 3. Because 3 is (at most) one-dimensional, but v and w
are linearly independent, we know that v ¢ 3, so z, # 0. This contradicts the
assumption of this subsubcase.

We may now assume dim ) = 2 (otherwise Conclusion 5.2(5) holds). Choose
a nonzero v € §, such that ¢, = 0. If z, # 0, then Conclusion 5.2(5) holds. If
z, = 0, then v € 3, so either Conclusion 5.1(5) or 5.2(6) holds.

Case 3. Assume the projection of h to u, is two-dimensional. We may assume
3 = 0 (otherwise, Uzqt+25 C b, so Conclusion 5.1(1) holds). We may assume y, = 0
for every h € H (otherwise Lemma 4.5 implies that either 5.2(5) or 5.1(2) applies.
Therefore [h,h] C 3 =0, so § is abelian.

Let u,v € h with ¢, =1 and ¢, =¢. Then

0= Mu,w] = ZYv + Yu,

s0 Yy =¥y = 0. Then, for every w € f, we have 0 = 1y 4] = iYuw, 50 Yo = 0. We
may assume

|24l + 2 Re($47) = 0 (5.5)

for every h € h (otherwise Conclusion 5.1(3) holds). This implies dimbh = 2
(otherwise, there is some w € § such that ¢, =0 and z,, # 0, and then Eq. (5.5)
does not hold for & = u+tw when ¢ is sufficiently large). Thus, Conclusion 5.2(5

holds. ]

Lemma 5.4. Let H be a closed, connected, nontrivial subgroup of N. Assume
én = 0 for every h € by, that (5.1) holds, and that x,|y,|? +Ys|zs|? +2 Im(z.yl7) #
0 for every v € b such that dimg(z,,y,) = 1. Then ||h|*? = O(A(h)) for every
he H.

Furthermore, A(h) X ||h||> whenever |z4[*|ya|? — |zay)|? X Jzal* + |yalt.

Proof. We have h < |z4|? + |yn|?> + |xu| + lya]| + |7n]. Also, from Eq. (5.1), we
have |n.|2 — x.y. < (jx:| + |y=| + |17~|)2 for every z € 3. Also, X,|yv|? + yul|zs|* +
2Im(z,yi7) =< |v|*> whenever dimg(z,,y.) = 1.

Case 1. Assume |z]?|ys|* — |zay]|* = o(|zal* + |ya|*) . Then there is some v € b
such that v — logh = o(|zx| + |ya|) and |z.[*|y.]? — |z.y}]> = 0. We have
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dimg(z,,y,) = 1. Therefore

Im A(h) xalyal® + yalznl* + 2 Im(zny,75)
xvlyv|2 + yvlmv|2 + 2Im($qut77_v)

+ o(|mnl? + xal® + lyal® + 124 + [yal?)
o+ o(Imal® + Il + iyal® + izal® + lal°)
mal® + 1xa > + Iyal® + 2] + [y °

# oflinl¥?).
Thus, [[4]%2 = O(p(h)).

X

Case 2. Assume |z4|*|yn|* — |zay) |2 < |@a]* + |ynl*. We may assume Re A(h) =
o(lzal* + |yn|*) for otherwise it is clear that ReA(h) x |jh|j2. (So we have
]l =< |mnl + x&] + |ya] < |za|? + |ynl?.) Thus, there is some z € 3, such that
z—logh = o(log k) and

1
n=l* = xay2 = =2 (l2alyal” - leayh?) + o(leal® + |yal*) < 0.

(This implies that x, and y, must have the same sign.) From (5.1), we conclude
that |n.|2 — x,y. < 0 for every z € 3. Thus, there is a constant € < 1, such that
[n:| < ey/Xzy: for every z € 3. Then
€
| Im(znyiTE)| < In|lzallyal < 5 1Xelynl* + yalenl];

SO
_ 1 , 1 1 1
Im(z4y}7z) + Eleyhf + 5yzloch|2 = §xz|yh|2 + §Yz|mh|2-

Therefore

Im A(h)

1 1
Im(zny}7m) + Exhlyhlz + §}/h|-’fch.|2

. 1 1
Im(zxy}7) + §Xz|yh|2 + 5)’z|90h|2 + o((|za|* + |yn|*) log h)

X

1 1
Syl + v’

jzal® + lyal*
1R]I*.

)X

6 Non-Cartan-decomposition subgroups contained in N

Theorem 6.1.  Assume that G = SU(2,n). Here is a complete list of the
closed, connected, nontrivial subgroups H of N, such that H is not a Cartan-
decomposition subgroup.

1. If dimbh = 1, b = 3, and we have |pa|? = xpyn for every h € H, then
p(h) < h for every h € H.
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2. If oo = 0 and y, = 0 for every h € §, there is some u € h, such that
Yo # 0, and 3 C Upatap, then u(H) = [||A], |h|*/?], unless dimH =1, in
which case p(h) < ||h|*>/? for every h € H.

3. Suppose ¢ = 0 for every h € b, and there is some A € C, such that
xn = My for every h € H, and we have n, = idy, and x, = |A|%y, for every
Z€3.

(a) If there is some u € b, such that x, + |A*yy + 2Im(N7,) # 0, then
p(H) =~ [||&]l, |k]["?], unless dim H = 1, in which case p(h) X< ||h||*/*
for every h € H.

(b) Otherwise, p(h) X h for every h € H.

4- Ifyn =0, vy =0, and |z4|*> + 2Re(pnTr) # 0 for every h € h \ Usai2s (s0
3 C Uzay2p), then p(h) < h for every h € H.

5 If 3 = 0, there is some u € b and some nonzero ¢g € C, such that
¢ # 0, and we have ¢p = ¢oyr and y, = 0, for every h € b, then
p(H) =~ [|Ik],||h|*%], unless dimH = 1, in which case, p(h) < ||h||*/3
for every h € H.

6. If ¢ =0 and dimg(zy,yu) # 1 for every h € b, and |n,|* # x,y., for every
nonzero z € 3, then p(h) < ||h||> for every h € H.

7. If ¢p = 0 for every h € b, there exist nonzero u and v in b, such that
dime (@, yu) # 1 end dimg(z,,y,) = 1, and we have x,|y,|* + yolzo|® +
2Im(z,y!7) # 0 for every such v € by, and |n,|?> # x,y., for every nonzero
2 €3 then u(H) ~ [P/, |4]7].

8. If dimh < 3, 3 = 0, we have ¢, X y, and v = O(|¢,| + Iyu|) for every
v € b, and there exists u € b, such that ¢, # 0, then p(k) < ||A|[>? for
every h € H.

9. If dimbh = 2, 3 = Uzayas, ¢n # 0 and y, # 0 for every h € b\ 3, then
p(H) =~ [|[Al}, li&]*] .

10. If dimbh < 2 and ¢, 20, yo =0, y, =0, and |zx|* + 2Re(én7) = 0 for
every nonzero h € by, then p(h) < ||h||? for every h € H.

11. If dimbh = 2 and there exist nonzero u € § and z € 3§, such that ¢, # 0,
Yu 70, y. =0, ¢,7: # 0 is real, and X, |yu|? — PuyuT + 2Im(mmuyl) #0,
then u(H) =~ [||l[>*, [|A]*] .

Proof. The theorem is obtained by merging the statement of Proposition 4.3
with the statement of Proposition 5.2, and eliminating some redundancy (see 3.4).
Specifically:

e 4.3(1) appears here as 6.1(1).
e 4.3(2) appears here as 6.1(2).
e 4.3(3) appears here as 6.1(3).
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4.3(4) appears here as 6.1(4).
4.3(5) appears here as 6.1(5).

4.3(6) appears here as 6.1(8).

4.3(7) appears here as 6.1(9).
5.2(1) is a special case of 6.1(6).

5.2(2) appears here as 6.1(6).

7).

appears here as 6.1

(
5.2(3 (
5.2(4) appears here as 6.1(8).
5.2(5 (10).

)
)
5) appears here as 6.1
5.2(6) appears here as 6.1(11).
) i
)i

e 5.2(7) is a special case of 6.1(3a) (with dim H =1).
e 5.2(8) is a special case of 6.1(5) (with dimH =1).

Corollary 6.2.  Assume that G = SU(2,n). Here is a complete list of the
closed, connected, nontrivial subgroups H of N, such that H is not a Cartan-
decomposition subgroup, and N4(H) is nontrivial.

1. Suppose dimb =1, h =3, and we have |n|? = xpyn for every h € H.

(a) If h =uzg or § = Usay2p, then Na(H) =
(b) Otherwise, N4(H) = ker(a;].
2. Suppose ¢p = 0 and y, = 0 for every h € b, there is some u € b,

such that y, # 0, and 3 C Ugat2p. If b = (f) N (Uats +u2ﬁ)) + 3, then
Ns(H) = ker(a — B).

3. Suppose ¢, = 0 for every h € §), and there is some nonzero A € C, such
that z, = Ay for every h € H, and we have 7, = 1)y, and x, = |\|?y, for
every z €3. If h = (h N (ug + Uats)) +3 # 3, then Ny(H) = ker(a).

4. Suppose ¢p =0 and x, =0 for every h € h, we have 3 C uyg, and h # 3.
(a) If h = (h Nug) + 3, then Nu(H) = A.
(b) Otherwise:

i. Ifh=(hN(ug+Uatep)) +3, then No(H) = ker(a + 3).
ii. If b= (5N (ug~+Uzatap)) +35, then Ny(H) = ker(2a + G).
. If 3=0 and h C ug + uzg, then Nao(H) = ker(f).

5. Suppose yp, =0, y, =0, and |z,|>*+2Re(dnTn) # 0 for every h € h\Uzntap.
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(a) Iff) = (f] ﬂua+ﬁ) +3, then NA(H) =A.
(b) Ifb C Uatp T+ U2a425, but b ?é (bﬂucx+ﬁ)+3: then NA(H) = ker(a+ﬂ).

(c) If b = (h N (Ua + Yot + Yat2)) +3, dut b & Uayg + Usayap, then
Na(H) = ker(B).

6. Suppose 3 = 0, there is some nonzero ¢o € C, such that ¢p = doyr and
yn = 0, for every h € b, and there is some u € §), such that ¢, # 0. If
h=(hN(ua+u)) + (h Nttayp), then Na(H) = ker(a — 20).

7. Suppose ¢, =0 and dimg(zy, yu) # 1 for every h € §, and |n;|* # x.¥., for
every nonzero z € 3.

(a) If h C ugyop, then Na(H) = A.
(b) If b ¢ ust2p, and h = (h N (ug + Uarp)) + 3, then Na(H) = ker(a).

8. Suppose ¢p = 0 for every h € b, there exist nonzero u,v € h, such that

dimc(@u, yu) # 1 and dime(z,, ) = 1, %o|gl® + yolzo|? + 2Im(x,,y,177_.,,) #0
for every such v € b, and |n,|* # x.y., for every nonzero z € 3.

(a) If h = (5N (Uaps +t20)) + (hNUstag), then No(H) = ker(a— ) (and
dimH <3).

(b) If b = (b N (up + U2a+2ﬁ)) + (h N ua+2ﬁ), then NA(H) = ker(2a + IB)
(and dim H < 3).

9. Suppose dimb <3, h = (hN(ua+up)) +(HN(Uars+1125)), BN (Ua+11p) # 0,
and we have ¢p X yy and z, <Xy for h € b, then Ny(H) = ker(a — 3).

10. Suppose dimbh =2, 3 = Uzay2p, ¢n # 0 and yn # 0 for every h € h\ 3. If
b= (hN(ua+up)) +35, then Na(H) = ker(a — ).

11. Suppose dimh <2 and ¢, #0, yo =0, y, =0, and |z4|> + 2Re(¢n7n) =0
for every nonzero h € j.

(a) If h Cu,, then Ny(H) = A.
(b) If h Cug + g + Uatag, but § & u,, then Na(H) = ker(f).
(¢) If h C ug + Uzatas, but § &€ uy, then Ny(H) = ker(a + 20).

Proof. It is clear that each of the given subgroups is normalized by the indi-
cated torus. We now show that the list is complete, and that no larger subtorus
of A normalizes H.

Assume N4(H) is nontrivial. We proceed in cases, determined by Theo-
rem 6.1.

Case 1. Assume 6.1(1). We may assume h is neither uys nor uze42s (otherwise
(1a) applies). Then, because |n,|?> = x,y, for every u € b, we see that n, # 0 for
every nonzero u € hj. Thus, the projection of h to uy42s is nontrivial. However,
because [7y|? = XuY., we have hNu, 25 = 0. We know that ) C uaqos+Usptlzasas
(because h = 3), so, because each of 203 and 2a + 28 differs from a + 26 by «,
we conclude that N4(H) = ker(a), so (1b) applies.
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Case 2. Assume 6.1(2). Let V be the projection of h to u,ip + uzg. Because
Y« 7# 0, we know that V projects nontrivially to usg. However, because 3 C U2q423,
we also know that V Nugg = 0. Therefore Ns(H) = ker(a — 3). Then, because
neither a+ 28 nor 2o+ 28 differs from a+ @ by a multiple of a — 3, we conclude

that b = (b N (tatp + uzp)) + 3, so (2) applies.
Case 3. Assume 6.1(3). We may assume § # 3 (otherwise Case 1 applies).

Subcase 3.1. Assume A # 0. Because §) # 3, the projection of § to ug + uy4p is
nontrivial. However, because A # 0, this projection intersects neither ug nor %y445.
Therefore N4(H) C ker(e). Then, because neither 28, a+24, nor 2a+423 differs
from B by a multiple of a, we conclude that § = (h N (us + Uass)) + 3, s0 (3)
applies.

Subcase 3.2. Assume A = 0. This means z, = 0 for every u € h, and 3 C uys.
Because ) # 3, we know that h projects nontrivially to ug. Because
3 C Uzg, we know that h N Uspas = B N Uzat2s = 0. Thus, it is easy to see
that if h projects nontrivially to Uat2s OT Uge42s then either (4(b)i) or (4(b)ii)
applies.
Thus, we may assume § C ug + ugg. If 3 # 0, then h = (h Nug) + uyg, so
(4a) applies. Otherwise, (4(b)iii) applies.

Case 4. Assume 6.1(4).

Subcase {.1. Assume the projection of §) to u, is trivial. Because
|-7"u|2 = |zl + 2Re(¢puTiu) # 0

for every u € b \ Uzat25, we know that z, # 0 for every u € h \ Uzay2s. Thus, if
the projection of § to us4+25 is nontrivial, then N4(H) = ker(3), and we see that
(5¢) applies. If not, then b C Uq4p + Uza+2g, 0 either (5a) or (5b) applies.

Subcase {.2. Assume the projection of § to u, is nontrivial. Let V be the
projection of ) t0 Uy + Unyp + Uares. Because |z,|* + 2Re(@,7) # 0 for every
u € §\ Uza+28, We know that V Nu, = 0. Then, because o, a + 3, and a + 243
all differ by multiples of 3, we conclude that N4(H) = ker(3). Therefore (5¢)

applies.

Case 5. Assume 6.1(5). Let V be the projection of § to u, + uzg. Because ¢ =
Poyr, we see that V Nu, =0 and V Nugg = 0. Therefore Ny(H) = ker(a — 20).

Because no other roots differ by a multiple of ¢ — 28 (and 3 = 0), we
conclude that h = (h N (s + uzg)) + (h Ntatp). Thus, (6) applies.

Case 6. Assume 6.1(6).

Subcase 6.1. Assume b # 3. Let V be the projection of § to ug +us4p. From the
assumption of this subcase, we know V # 0. However, because dimg¢(z,,y,) # 1
for every u € b, we know that VNug = 0 and h Nusyp = 0. Therefore
N4(H) = ker(a), so (7b) applies.

Subcase 6.2. Assume §) = 3. We may assume §) ¢ U425 (otherwise (7a) applies).
Therefore, § projects nontrivially to ugg + Uzas2s. However, because [n,|2 # x.y.,
for every nonzero z € 3, we know that VNuzg = 0 and VNuzat2s = 0. Because 23,
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a+20, and 2a+20 all differ by multiples of a, we conclude that N4(H) = ker(a),
so (7b) applies.

Case 7. Assume 6.1(7).

Subcase 7.1. Assume N4(H) = ker(a). Because a+ 3 is the only root that differs
from B by a multiple of o, we must have § = (h N (ug + Ua45)) + 3. Thus, there
is some w € B, such that z, = z, and y, = y,, but the projection of w to
Ugg + Uas28 + Uzaszp is zero. This contradicts the fact that Xy |yw|® + Yuw|Tw|* +
2 Im(zwyl7w) # 0.
Subcase 7.2. Assume Na(H) # ker(a). Because 28, a+20, and 2a+ 243 all differ
by multiples of a, we must have 3 = (3 N uzg) + (3 N Uat28) + (3 N Uzat2p). Then,
because |n.|? # x,y, for every nonzero z € 3, we conclude that 3 C Ugt2s.

Let V be the projection of § to ug + u,+g. Because 8 and a + 3 differ
by a, we know that V = (V Nug) + (V Nuayg).

Subsubcase 7.2.1. Assume z, # 0. Because V = (V Nug) + (V N Ug4p), there
is some w € V, such that z,, # 0 and y, = 0. For every such w, because
XwlYw|? + Yu|Tw|? + 2Im(z,y! 7w) # 0, we know that y, # 0. Thus, we see that
N4(H) = ker((a + 8) — 28) = ker(a — B).

We know that hNug = 0, that h projects trivially to u,, and that ¢ is the
only root that differs from @ by a multiple of a — 3, so we conclude that y, = 0
for every h € H.

We now see that (8a) applies.

Subsubcase 7.2.2. Assume y, # 0. This is similar to the preceding subsubcase
(indeed, they are conjugate under the Wey! reflection corresponding to the root a);
we see that (8b) applies.

Case 8. Assume 6.1(8). By considering the projection of § to u, +ug, and noting
that ¢ < yn for every h € H, we see that Ns(H) = ker(aw — 3). The only other
pair of roots that differ by a multiple of o — 8 is {a + 3,26}. Thus, we see that
(9) applies.

Case 9. Assume 6.1(9). By considering the projection of § to u, + ug, we see
that Na(H) = ker(a — 3). Because ¢, # 0 for every u € b \ Uzq42, but 8 is the
only root that differs from a by a multiple of a — 3, we conclude that § projects
trivially into every root space except U, Ug, and Ussi2s. Thus (10) applies.

Case 10. Assume 6.1(10). We may assume § ¢ u, (otherwise (1la) applies).
Thus, there is some root o # ¢, such that the projection of § to u, is nontrivial.
However, because ¢, # 0 for every nonzero h € h, we know that h Nu, = 0.
Thus, Na(H) = ker(a — o).

Because y, = 0 and y, = 0 for every nonzero h € b, we know that o # 3
and 0 #28. f o = a+ 3 or 0 = a + 203, we obtain (11b). If ¢ = 2a + 243, we
obtain (11c). :

Case 11. Assume 6.1(11). Because ¢, # 0 and y, # 0, we must have N4(H) =
ker(a — ). Then, because a + S does not differ from a by a multiple of a — 3,
we conclude that z, = 0.

Because 1, # 0, but no root differs from o+ 28 by a multipleof a — 3, we
conclude that hNuy425 # 0. Because 3 is one-dimensional, this implies 2z € uqa42g,
so x, = 0.
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Since x, = 0 and z, = 0, we conclude, from the inequality x,|y.|> —
GuYuTz +2Im(Wzuy]) # 0, that y, # 0. This is a contradiction, because 28 does
not differ from o by a multiple of @ — 8, and h Nuys = 0 (because, as shown
above, 3 C Ugy25)- ]

7 Subgroups that are not contained in N

Let H be a closed, connected subgroup of G that is not contained in N.
In this section, we determine whether H is a Cartan-decomposition subgroup or
not (and, if not, we calculate p(H)).

Lemma 7.1 shows that we may assume H C AN, and then Lemma 7.3
shows that we may assume H satisfies the technical condition of being compatible
with A. (Both of these lemmas are well known.) Furthermore, we may assume
that HNN is not a Cartan-decomposition subgroup, and that A ¢ H (otherwise,
it is obvious that H is a Cartan-decomposition subgroup).

Theorem 7.4 describes u(H) for every such subgroup that is a semidirect
product (H N A) x (H N N); and Proposition 7.6 describes u(H) for the other
subgroups (except that the one-dimensional case appears in Lemma 7.8).

Lemma 7.1. [14, Lem. 2.9] Let H be a closed, connected subgroup of a con-
nected, almost simple, linear, real Lie group G. There is a closed, connected
subgroup H' of G and a compact subgroup C of G, such that CH = CH', and
H' is conjugate to a subgroup of AN.

Definition 7.2. Let us say that a subgroup H of AN is compatible with A
if HC TUCN(T), where T = AN(HN), U = HN N, and Cn(T) denotes the
centralizer of 7' in N.

Lemma 7.3. [14, Lem. 2.3] If H is a closed, connected subgroup of AN, then
H is conjugate, via an element of N, to a subgroup that is compatible with A.

Theorem 7.4.  Assume that G = SU(2,n). Here is a list of every closed,
connected, nontrivial subgroup H of AN, such that H is of the form H =T x U,
where T is a one-dimensional subgroup of A, and U is a nontrivial subgroup of N
that is not a Cartan-decomposition subgroup.

1. Suppose dimu =1, u =3, and we have |94|? = xpyn for every h € U.

(a) If u=uss or U= 1Ugay2g, then u(H) is described in [14, Prop. 3.17 or
Cor. 3.18].

(b) Otherwise, T = ker(a), and H is a Cartan-decomposition subgroup.

2. Suppose u = (U N (Mats + U2p)) + 3, 3 C Uosateg, there is some v € u,
such that y, # 0, and T = ker(a — 8). Then p(H) = [||&]},||~][*/?], unless
dim H = 2, in which case p(h) < ||h|]*/? for every h € H.

3. Suppose u= (uN (U + Uasp)) +3, T = ker(a), and there is some nonzero
A € C, such that we have z, = Ay, for every u € U, and we have n, = i)y,
and x. = |\%y, for every z € 3. Then H is a Cartan-decomposition
subgroup.



26 Iozz1 AND WITTE

4. Suppose ¢, =0 and z, =0 for every u € u, we have § C Uzg, and u # 3.

(a) If u = (unNug) + 3, then u(H) is described in [14, Prop. 3.17 or
Cor. 3.18].
(b) Otherwise:
i. If u= (un(ug + Uas2p)) +3, then T = ker(a + B), and p(h) < h
for every h € H.
ii. If u= (WN(ug+usaq2s)) +3, then T = ker(2a+ B), and u(H) ~
[II2]l, [|A]|3/2], unless dim H = 2, in which case p(h) < ||h||3/? for
every h € H.

. If 3 =0 and u C ug + Uz, then T = ker(B), and H is a Cartan-
decomposition subgroup.

5. Suppose y, =0, y, =0, and |z, +2Re(du7a) # 0 for every u € U\Uzat25.

(a) If u = (WNugyp) + 3, then p(H) is described in (14, Prop. 3.17 or
Cor. 3.18].

(b) If u C Upyp+ Upat2p, but U # (UNUatpg) +3, then T = ker(a+ 8), and
H is a Cartan-decomposition subgroup.

(C) If u = (U N (ua + Uo48 + ua+2ﬁ)) - 3, but u ¢ Uptp + Uz 428, then
T = ker(f3), and p(h) < h for every h € H.

6. Suppose u = (uN (Ug +uzg)) + (UNUasp), T = ker(a—208), u & Usyp, and
there is some nonzero ¢ € C, such that ¢, = Poy, for every u € U. Then
p(H) = [||R]], |B]|*?], unless dim H = 2, in which case, p(h) < ||hj|*/® for
every h € H.

7. Suppose ¢, = 0 and dimg{z,,y.) # 1 for every u € U, and |n:|* # x.y.,
for every nonzero z € 3.

(a) If u C Unyap, then pu(H) is described in [14, Prop. 8.17 or Cor. 3.18].

(4) If u ¢ Uayap, and u = (uN (ug + Uatp)) + 3, then T = ker(a), and
p(h) < ||h||* for every h € H.

8. Suppose ¢, = 0 for every u € U, there exist nonzero vi,vz € u, such
that dimc(@y,,Y) # 1 and dime(Te,,y0,) = 1, and we have X, |y, |* +
Yoo [Zos |2 + 2Im(20, 4] Tioy) # O for every such vy € 4, and |n.[* # X.y., for
every nonzero z € 3.

(@) If u = (WN (Uayp + Uzs)) + (U N Uspag), then T = ker(a — B) and
p(H) ~ (I[P, ][R]?]

() If u = (un (up + Uzatap)) + (U N Uaqag), then T = ker(20. + B) and
w(H) = [[|6IP72 |IR)17]

9. Suppose dimu < 3, u = (uN(ua+ug))+ (uN(Uats+u2p)), uN(us+ug) #0,
and we have ¢, <X y, and z, Xy, for u € U. Then T = ker(a — ), and
p(h) < ||h||*/? for every h € H.
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10. Suppose dimu =2, 3 = Uzsi25, ¢u #0 and y, #0 foreveryu e U\ Z. If
= (40 (o +4g)) + 3, then T = ker(a = 6), and w(H) = [l [51F].

11. Suppose dimu <2 and ¢, #0, y. =0, y, =0, and |z,]* + 2Re(¢,77.) =0
for every nontriviel wu e U.

(a) If u C u,, then u(H) is described in [14, Prop. 3.17 or Cor. 3.18].

(6) If W C Uy + Uapp + Uatop, but u & Uy, then T = ker(B), and H is a
Cartan-decomposition subgroup.

(c) If u C ua+usayzp, but u ¢ Uy, then T = ker(a+20), and p(h) < ||hl?
for every h € H.

Proof. For h € H, we wish to approximately calculate |jp(h)||. We write
h = au with a € T and u € U. Writing a = diag(ai,as,... ,0n+2), we always
assume either that a; > 1 or that a; = 1 and a; > 1 (perhaps replacing &
with h='—because ||p(2)|| = ||p(A~1)||, this causes no harm).

Because T normalizes U, we know that U is a subgroup that is listed in
Corollary 6.2, and we have T' C Ng(U). This leads to the various cases listed in
the statement of the theorem.

(1b) We have p(u) < u for u € U and p(a) X ||a}|? for a € T, so H is a
Cartan-decomposition subgroup.

(2) We have |fu|+ |y + 7]+ |Xu| = 0 and y, = O(z), 80 uij = 0(1+|mu|)
whenever (4,7) # (1,n + 2). Then, because a; = a3, we see that

Uiy = O[az(l + |$u|)] = 0(|h1,1I1/2 + Ehl,n+2!1/2) = 0(”h||1/2)

whenever i > 1. Therefore p(h) = O(||k|*?). This completes the proof if
dim H > 2 (that is, if dimU > 1).
If dimU = 1, then y, X z,, and x, = 0. We have ||&]| = a;(1 + |z.[?),

A(h) = a1a, [z (%|wu|2yu>] = (allmu|2)3/2

hig hi2) _ _ 3/2
det (h2,1 h2,2) =aja3 =a; .

Thus, [|2]|*? = O(p(h)). We conclude that p(h) =< ||A|[*>/2.

(3) Replacing H by a conjugate under U, , we may replace H with a similar
subgroup H' with A = 0. Thus, H' = T x U’ with U’ C UglUss. Then [14,
Prop. 3.17] implies H is a Cartan-decomposition subgroup.

(4(b)i) The Weyl reflection corresponding to the root o conjugates H to a
subgroup of type (5c).

(4(b)ii) The Weyl reflection corresponding to the root o conjugates H to
a subgroup of type (2).

(4(b)iii) [14, Prop. 3.17] implies H is a Cartan-decomposition subgroup.

(5b) [14, Prop. 3.17] implies H is a Cartan-decomposition subgroup.
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(5¢c) We have

O(1) ifi#landj#n+2
hij={0(a1z) ifi=1andj#n+2
O(z) ifi#landj=n+2

and hipniz < a1(|z|? + [x|). We conclude that p(h) < h.

(6) From the proof of 4.3(5), we know that u X ujn42, that u;; =
O(Hu”a/z) whenever (i,7) # (1,n + 2), and that u;; = O(]|u||*/*) whenever
i# 1 and j # n+2. (In particular, b X< a1(1 + ul,n+2) .) Furthermore, we have
a; = a3. Therefore

p(h) < arazp(u) < ay'*p(u).

The desired conclusion follows.

(7b) From Lemma 5.4, we know |[u||> = O(1 + |A{u)[). Then, because

hl,l h1,2 _ A2
det (h2,1 h2’2) =102 = a3

and A(au) = a?A(u), we have
12]1* = O(atllull?) = O(ai + |A(R)]) = O(p(R))-

(8) Assume (8a). (The other case, (8b), is conjugate to this one by the
Weyl reflection corresponding to the root a.) From Lemma 5.4, we have ||u||*/? =
O(1+ |A(u)|). Then, because a; = a2, we have

1Al = araa||ul*’? = O(ara2 + |A(R)]) = O(o(h)).

(9) From the proof of 4.3(6), we know p(u) < 1 + A(u) x |[u3?. The
proof is completed as in (8).
(10) Because ¢, < y,, it is easy to see that

h< ay (14 [@u®lyul® + xal) < a1 (1 + [fu]* + [xul)
and
A(R) < araz(|yalldul® + [xullyul?) = @32 (16u]® + xullul?) = O(|[RIP2).

Then it is not difficult to see that p(h) = O(||k||*?) for every h € H. So
p(H) = [|IA]], 1A]*/7].

(11b) We have p(a) < a for a € T and p(u) < ||ul|® for u € U, s0 H is a
Cartan-decomposition subgroup.

(11c) H is conjugate (via an element of Us42g) to T x U,. From [14,
Prop. 3.18], we have p(h) x ||h||? for every h € T x U,. Therefore p(h) < ||hl|?
for every h € H. [ ]
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Lemma 7.5. [14, Lem. 2.4] Assume G = SU(2,n), and let H be a closed,
connected subgroup of AN that is compatible with A. Then either

=(HNA)x (HNN); or

2. there is a positive Toot w, a nontrivial group homomorphism : kerw —
U, Uy, and a closed, connected subgroup U of N, such that

(a) H={ay(a)|a €kerw}U;
(b) Unykerw) =e; and
(¢) U is normalized by both kerw and (kerw).

Proposition 7.6.  Assume that G = SU(2,n). Let H be a closed, connected,
nontrivial subgroup of AN, that is compatible with A, such that

e HN N is not a Cartan-decomposition subgroup;
e HA(HNA)HNN); and
e dimH >1.

Then there are positive roots w and o, and a one-dimensional subspace t of
(kerw) + Uy, + Uz, such that h=g+ (hNn), hNn Cu, + Uz, and either:

I w=a, o =a+f, and u(H) = [|[k], |A]*/Qog |k])] ; or
2 w=a o=a+28, and u(H) =~ [||k]*/(og IAl)? |IA][*] ; or

5. w=p, 0 =a+28, and u(H) ~ [|h]|(log||al))", |A][*], where

r— 1 fo C Uzp
" 12 otherwise
or
4 w=8, 0=a+B, and u(H) ~ |, [l Gog IA])"], where r is defined as
above; or

5. un (u, +uy,) #0, in which case H is a Cartan-decomposition subgroup.

Proof.  We use the notation of Lemma 7.5: T =kerw, U=HNN, ¢: T —
U,Usz,, and H = {ayp(a)} x U.

We need only consider the cases in Corollary 6.2 for which H (now called U)
is normalized by the kernel of some (reduced) positive root. Here is a list of them.

1. Na(U) = ker(B): 6.2(4(b)iii), 6.2(5¢c), and 6.2(11b).
= ker(a + 8): 6.2(4(b)i) and 6.2(5Db).

ker(ar): 6.2(1b), 6.2(3), and 6.2(7b).

) =
2. N4(U)
3. NA(U)
)=

4. N4(U) = ker(a + 283): 6.2(11c).
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5. Na(U) = A: 6.2(1a), 6.2(4a), 6.2(5a), 6.2(7a), and 6.2(11a).

Note that in each of the cases with N4(U) = A, there is a (reduced) positive
root o, such that u C u, + uy,.

Case 1. Assume w= (.

Subcase 1.1. Assume 6.2(4(b)iii). From (7.7), we know that H is a Cartan-
decomposition subgroup.

Subcase 1.2. Assume 6.2(5c). There is some u € U, such that ¢, # 0. Then,
because (T') C Uglss normalizes U, we must have U N Uyp9p # €. This is a
contradiction.

Subcase 1.3. Assume 6.2(11b). Let u € u. Because U is normalized by %(T),
there is some nonzero v € ug + Ugg, such that v normalizes u; thus, [u,v] € u.
Then, because ¢, ) = 0, but ¢ # 0 for every nontrivial A € U, we conclude that
[u,v] = 0. However, ¢, # 0, and either y, # 0 or y, # 0, so either zf,, # 0 or
NMuq) 7 0. This is a contradiction.

Subcase 1.4. Assume Na(U) = A. There is a positive root ¢, such that u C
Us + Ugg .

If o = (3, then, from (7.7), we know that H is a Cartan-decomposition
subgroup.

Suppose ¢ = a + 28. Clearly ||A]| =< a1|n.|. Also,

p(h) X a1|nu|? + a1(log a1)",

where r = 1 if ¥(T) C Uzp (ice., if yo» = 0 for every h € H) and r = 2 if
Y(T) ¢ Usp. The smallest value of ||p(h)]|| relative to |[a|| is obtained by taking
7 < (log a;)™/?, resulting in p(h) x< ||A||(log HhH)r/z. Then, since p(u) < ||ul|® for
u € U, we conclude that u(H) = [|[Al| (log ||k]])™"%, Ik]|2] -

Because U is normalized by the nontrivial subgroup #(T") of UglUsg, we

know that ¢ # o. Therefore, we may now assume o = a + 3. We show that
p(H) = [||4]], l|~]|(log ||A]|)7] . For u € U, we have p(u) < u. For a € T, we have

p(at(a)) = llalllog llall)” < llae(e)]| (og lag(a)ll)"

All that remains is to show that p(h) = O[||k||(log ||||)"] for every A € H.
Because p(au) < au for every au € TU (see [14, Cor. 3.18]) and |¢(a)|| =

ll4b(a)~*|| < (log ||A|[)", we have

p(h) = p(¥(a))p(au) = Ofllp(p(a))llllo(aw)]]
= O[(log|lall)" ||¢w||] = O[(log [IR]))"I]].

Case 2. Assume w = a + . The Weyl reflection corresponding to the root o
conjugates each of 6.2(4(b)i) and 6.2(5b) to a subgroup with w = 3.

Thus, we may now assume N4(U) = A. If 0 # o, then the Weyl reflection
corresponding to the root a conjugates H to a subgroup with w = 8. If 0 = a,
then the Weyl reflection corresponding to the root 3 does not change w, but
conjugates H to a subgroup H; with 0 = a+23. Then (as we already observed)
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the Weyl reflection corresponding to the root o conjugates H; to a subgroup with
w=g.

Case 3. Assume w = a. Because I/ must be normalized by the nontrivial subgroup
Y(T) of U,, we see that U cannot be of type 6.2(1b) or 6.2(3).

Subcase 3.1. Assume 6.2(7b). Because U must be normalized by the nontrivial
subgroup ¥(T) of U,, we see that y, = 0 for every u € U, so u = 3. Thus, again
using the fact that U is normalized by ¢ (7T), we see that u C Uai2p + U2at28,
and the projection of u to Uyt is one-dimensional. For every z € u, we see that
n. # 0 (because |n.]? # x.y: ). Thus, we conclude that dimu = 1. Therefore H is
conjugate under U, to a subgroup of type 6.2(7a) (considered in Subsubcase 3.2.2
below).

Subcase 3.2. Assume Nao(U) = A. If 0 = e, then (7.7) implies that H is a Cartan-
decomposition subgroup. Because U is normalized by the nontrivial subgroup

¥(T) of Uy, we know that o # (.
Subsubcase 3.2.1. Assume o = a+ 3. We have

a1 Gy aTs 0 —3a1|z.|’ +iaix,
h = ap(a)u = a; 0 0 0 .

We have ||h|| < ailoga; + ai|z.|® + ailx,| and, for ¢ > 1, we have h;; =
O(a1 + |zu|). The largest value of ||p(h)|| relative to ||A]| is obtained by taking
loga; =< |z,)? (and x, small), which yields p(k) < a?loga; =< |h|?/log]||R|.
Because p(u) < u for u € U, we conclude that u(H) = [||A{, ||k]|?/log ||A]]] -

Subsubcase 3.2.2. Assume o = o+ 2(3. We have
ar a1dye) 0 a1y —a1dye)T
h =ay(a)u = ay 0 o0 —a17a ;

We have h < (1 + ai|l¥o(a)]i)(1 + |nu|) and p(h) < a?(1 + |nuf?) (note that

det (21’2 Zl’”“) = 0). The smallest value of ||p(h)|| relative to ||A|| is obtained
22 P22

by taking 7, = O(1), which results in p(h) < a2 < ||h||?/(log ||h||)2 Because
p(u) < ||uj|? for u € U, we conclude that u(H) = [||A]?/(log ||h||)2, IA112] .-

Case 4. Assume w = o + 2. The Weyl reflection corresponding to the root j3
conjugates 6.2(11c) to a subgroup H' with w = o (of type 6.2(7b) with §' =3’ C
Uat25 + U2a428)-

Thus, we may now assume N4(U) = A. If o # 3, then the Weyl reflection
corresponding to the root 8 conjugates H to a subgroup with w = «. Now assume
o = . The Weyl reflection corresponding to the root a does not change w, but
conjugates H to a subgroup H; with o = o+ 283. Then (as we already observed)
the Weyl reflection corresponding to the root 3 conjugates H; to a subgroup with
w=a. |
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Lemma 7.7. Assume G is a connected, almost simple, linear, real Lie group

of real rank two. Let H be a closed, connected, nontrivial subgroup of AN, such

that H 1is compatible with A, and H # (H N A)(HN N). We use the notation of

[14, Lem. 2.4]: T =kerw, H=Tx U, ¥: T — U,Us,, and H = {ayp(a)} x U.
If un (u, + ug,) # 0, then H is a Cartan-decomposition subgroup.

Proof. By passing to a subgroup of H, there is no harm in assuming u N
(4, + ug,). We use the notation of the proof of [14, Prop. 3.17]. For each
a €T, clearly pva(ap(a)U) D pma(ay(a)) AL, s0 uma(H) O pma({ay(a)}) AL
Beause pra(T) = T is a line perpendicular to A, and ppa(ayy(a)) is logarithmi-
cally close to this line, it is clear that paa(ay(a))A} contains all but a bounded
subset of the region C. Therefore u(H) contains all but a bounded subset of At,
so H is a Cartan-decomposition subgroup. [

Lemma 7.8. (cf. [14, Prop. 3.16(3)]) Assume that G = SU(2,n), and let H be
a nontrivial one-parameter subgroup of AN, such that H is compatible with A,
but H# (HNA)HNN).

Then there is a ray R in AY, a ray R' in A that is perpendicular to R,
and a positive number k, such that

p(H) m{rs|reR, s€ R, |is|| = (logiir|)*}.

8 Maximum dimensions of the subgroups

For convenience of reference, Tables 1, 2 and 3 list the (approximate) Cartan
projection of each subgroup of AN that is not a Cartan-decomposition subgroup.
The maximum possible dimension for a subgroup of each type is also listed. (These
dimensions are used in applications to the existence of tessellations.)

Remark 8.1.  Here are brief justifications of the dimensions listed in Tables 1,
2 and 3.
6.1(1) By assumption, we have dim H = 1.
6.1(2) Let p: h — uqtp be the natural projection. Then kerp = 3 C Uza+25,
SO
dimb < (dimua4g) + (dimugatos) =2(n —2) +1=2n — 3.

6.1(3) We may assume A = 0. Then b C ug +uz. So
dimb < (dimug) + (dimuys) =2(n —2) + 1 =2n — 3.

It is easy to construct an algebra of this dimension, with or without an element u
as described in (3a).

6.1(4) Let V be the projection of h to Uy + Uaypg + Uay2s. Because ¢7 is a
form of signature (2,2) on u, + Uat23, We know that dim(V N (U + ua+gﬁ)) < 2.
Thus we have

dimh < dimV +dimusess < (dimuass + 2) + dimuzaqap
= (2n-2)+2)+1=2n-1
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reference Cartan projection maximum dimension
6.1(1) p(h) < h 1

6.12)  w(H) ~ [IAll, 4] 2n 3
612)*  p(h) < [IA|*2 1
6.1(3a)  u(H) ~ [l |A*/’] 2n—3
6.132)*  p(h) < ||A]*? 1
6.1(3b) p(h) <X h 2n —3
6.1(4) p(h) <X h 2n —1
6.1(5)  u(H) ~ [[lk], A+ 2n - 3
613)*  p(h) = [h]4" 1

2n —1 n even
6.1(6 h) < ||k
IO P
. n+l n>4
6.1(7)  w(H) =~ [||Al*, |IA]]?] { 3
n=3
3 n>4
6.1(8) p(h) < [A]1** N
2 n=3

6.1(9)  w(H) = [|IAll, 1R[] 2
6.1(10) p(h) < ||A]|? 2
6.1(11)  p(H) = [||Al**, ||Ali*] 2

Table 1: The subgroups of N that are not Cartan-decomposition subgroups.

6.1(5) Consider p: h — u,. Because 3 = 0, we have dimker p < dimug4p =
2n — 4. Because p(h) C Ry, we have dimp(h) < 1. Thus, dimh < 2n — 3.

6.1(6) See Lemma 8.2 below.

6.1(7) See Lemma 8.3 below.

6.1(8) See Lemma 8.4 below.

6.1(9), 6.1(10), 6.1(11) are obvious from the statements.

7.4(1a) Because dimu = 1, we have dimb = dimt + dimu = 2.

7.4(2) The kernel of the projection from u to Uaip is 3, so dimbh =
1+dimU <14 (1 +dimugyg) =2n — 2.

7.4(4) dimbh = 1+ dimu < 1 + (dimug + dim3) = 2n — 2.

7.4(5a) dimb < dimt+ dimug4p +dimg <1+ (2n —4) +1=2n - 2.

7.4(5¢) Add 1 (the dimension of T') to the bound in 6.1(4).

7.4(6) Add 1 (the dimension of T') to the bound in 6.1(5).

7.4(7a) dimh < dimt+ dimuy42p =142 = 3.

7.4(7b) Add 1 (the dimension of T') to the bound in 6.1(6).

7.4(8a) Because y, # 0 for every nonzero u € u N (Uaqp + Uzg), wWe have
dim(u N (Uats + t2p)) < 1. Therefore dimh < dimt+ 14 dimuayss = 4.

7.4(8b) This is conjugate to 7.4(8a), via the Weyl reflection corresponding
to the root «.

7.4(9) Add 1 (the dimension of T') to the bound in 6.1(8). (To achieve this
bound for n > 4, choose u, % € uN (uy + ug) in the proof of Lemma 8.4.

7.4(10) and 7.4(11) are obvious from the statements.
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reference Cartan projection
74(1a)  p(H) = [|A]] |A]°]
74(2)  p(H) ~ [JIA] 1A
7.4(2)* p(h) = ||A|[*/
TA(4a)  u(H) = [|A]], |A]°]
7.4(4(b)i) p(h) <h
7TA(4(b)iE)  w(H) = [|All I1R]*]
7.4(4(b)ii)* p(h) = ||A|[*/
7A(5a)  wu(H) = [{A]]||A]°]
7.4(5c¢) p(h) < h
74(6)  u(H) = [[IA]], |A]*]
7.4(6)* p(h) = [lA]|*®
TA(7a)  p(H) = [|[R]°, 1A]7]
7.4(7b) p(h) < ||A||? {
7.4(8a) ( )z AL, k1)
7.4(8b) ) ~ [IIR]1%2, [[A]I?]
7.4(9) p(h) < [|h]*?
7.4(10)  p(H) = [ik], IA]1°7]
T4(11a)  u(H) = [|iR]°, [1A]°]
7.4(11c) p(h) < i|h|?

Table 2: The subgroups of AN that are not Cartan-decomposition subgroups, and

are a nontrivial semidirect product 7' x U .

7.6(1)
7.6(2)
7.6(3) (r=1)
7.6(3) (r = 2)
7.6(4) (r = 1)
7.6(4) (r = 2)
7.8

Table 3: The subgroups of AN that are not Cartan-decomposition subgroups and

p(H) ~
p(H) ~
p(H) ~

Cartan projection

[I1&ll, 112/ (log |IA)]
[11A1i2/(og |1R]1)2, I1AI?]
[i1%]i (log [111) "2, l1A)1?]

H(H) ~ [|Iall (log |IA11), lIA]|’]

u()

[lI%], ]l (log |1A11) ]
[I1A]1, 1Al (log IIA1])”]

p(h) < |[Ali*(log [|2]])**

2n
2n—2 n odd

maximum dimension

2
2n — 2
2
2n — 2
2n — 2
2n — 2
2
2n — 2
2n
2n — 2
2
3

n even

maximum dimension
2n — 2
2
3
3
2n—2
2n — 3
1

are not a semidirect product of a torus and a unipotent subgroup.
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76(1) dlm[] <1+ dim(ua+ﬁ + u2a+2ﬁ) =2n — 2.

7.6(2) Because ¥(T) normalizes (hence centralizes) U, the subgroup U
cannot be all of Uyqag, so dimU < 1. Therefore dimH =1+ dimU < 2.

76(3) dlmb S 1+ dimua+2ﬁ =3.

7.6(4) Because ¥(T') normalizes (hence centralizes) U, the projection of u
to Uet+p cannot be all of uy4g if Y(T') ¢ Usg, that is, if r = 2. Therefore dimU <
dim(ugsp+Uae+28)—(r—1) = 2n—2—r. Therefore dimh = 1+dimU < 2n—1-r.

Lemma 8.2.  The mazimum dimension of a subalgebra of type 6.1(6) is as
stated in Table 1.

Proof. = We begin by showing that dimh < 2n — 1 (cf. [16, Lem. 5.8]). Let V
be the projection of § to ug + usys. Because dimj < 3, we just need to show
that dimV < 2n — 4. Because V' does not intersect ug (or uq4g, either, for that
matter), and ug has codimension 2n — 4 in ug + Ua44, this is immediate.

When n is even, there is a subgroup of dimension 2n — 1. (For example,
the N subgroup of Sp(1,n/2). More general examples are constructed in [15, §4].)

Let us show that if n is odd, then dim H < 2n—3. (Our proof is topological,
we do not know an algebraic proof.) Suppose that dim H > 2n — 2 (this will lead
to a contradiction). Because dimj < 3, we have dimb/3 > 2n — 5. Thus, there is
a (2n — 5)-dimensional real subspace X of C*~? and a real linear transformation
T: X — C* 2, such that z and Tz are linearly independent over C, for every
nonzero z € X (cf. [16, Cor. 5.9}). Thus, if we define U: X — C*72 by Uz = iz;
then z, Tz, and Uz are linearly independent over R, for every nonzero =z € X.
Thus (writing n = 2k + 3): there is a (4k + 1)-dimensional real subspace X
of R*+2 and real linear transformations T,U: X — R*+2 such that z, T'z, and
Uz are linearly independent over R, for every nonzero £ € X. There is no harm
in assuming X = R**! (under its natural embedding in R*+2).

Let E = (S% xR*+2%)/~ where (z,v) ~ (—z,—v), and define a continuous
map (: E — RP* by ((z,v) = [z], so (E,() is a vector bundle over RP*. Then
(E,¢) 2 7@ ¢ @), where T is the tangent bundle of RP*, ¢ is a trivial
line bundle, and «}, is the canonical bundle of RP*. (To see this, note that the
subbundle

{(z,v) € S* x R¥ |p Lz}/~

is the total space of 7 [13, pf. of Lem. 4.4, pp. 43-44], the subbundle
{(z,v) € S* x R¥* |y € Rz }/~

has the obvious section & — (z,z), and the subbundle (5% x (0 x R))/~ is
isomorphic to 7}, via the bundle map (z,(0,t)) — (z,tz).) Therefore, letting a
be a generator of the cohomology ring H*(R P*¥;Z,), we see that the total Stiefel-
Whitney class of (E, () is w = (14 e)**+(1)(14a) = (1+a)*+? [13, Eg. 2, p. 43,
and Thm. 4.5, p. 45], so

4k + 2
W(4k+2)-3+1 = Wik = ( 42_ ) a** = (2k + 1)(4k + 1)a* # 0

(because (2k + 1)(4k + 1) is odd). Therefore, there do not exist three pointwise
linearly independent sections of (E,() [13, Prop. 4, p. 39].
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. Any linear transformation @ : R**! — R*+*2 induces a continuous function
Q: $% — R*+2 such that Q(—z) = —Q(z) for all z € S*; that is, a section of
(E,¢). Thus, Id, T, and U each define a section of (E,(). Furthermore, these
three sections are pointwise linearly independent, because z, T'z, and Uz are
linearly independent over R, for every z € S*. This contradicts the conclusion
of the preceding paragraph. ]

Lemma 8.3.  The mazimum dimension of a subalgebra of type 6.1(7) is as
stated in Table 1.

Proof. Replacing H by a conjugate under (U,,U_,), we may assume z, = 0.
Therefore x, = 0 for every z € 3. (Thus, in particular, we have dimj < 2.)

For the projection p: h — u,45, we have kerp = Rv + 3. (There cannot
exist a linearly independent v'; otherwise, replacing v’ by some linear combination
with v, we could assume x,» = 0, which is impossible.) Thus, dimkerp < 3.

Because x, = 0 for every z € 3, p(h) must be a totally isotropic subspace for
the symplectic form Im(z%%), so dim p(h) < n—2. Therefore dimbh < (n—2)+3 =
n+1.

For n > 4, here is an example that achieves this bound:

00 z¢4 z9 -+ Zp_a n X

. . X, T1,... ,Tp_2 €ER
h= 0 0 ix z; *++ Tp_z iTp_z —T7 yiyrrr o ’

neC

For v € b, we claim that dim¢(z,,y,) = 1 only if either z, = 0 or y, = 0. (In
either case, it is clear from the definition of § that either x,|y.|* # 0 or y,|z4|* # 0,
respectively.) Suppose dimg(z,,y,) =1, with z, # 0 and y, # 0. There is some
nonzero A € C, such that y, = Az,. We must have z; # 0. (Otherwise, let
i € {1,2,...,n — 2} be minimal with z; # 0. Then z;y = y; = Az; # 0,
contradicting the minimality of ¢.) Because y; = ix is pure imaginary, but z; is
real, we see that A is pure imaginary. On the other hand, y, = z; is real (and
nonzero), and z, is also real, so A is real. Because A # 0, this is a contradiction.

Now let n = 3, and suppose dimf = 4. (This will lead to a contradiction.)
Because equality is attained in the proof above, we must have dimp(h) =n—-2=1
and dimj = 2. In particular, there exists w € h with z,, # 0. For ¢ € R, let
w; = w + tv. Then

+x,00 ast— o0

th|ywt|2+ch|$wti2+21m($w:yL,nwc) = tSley’UI?_I_O(tz) - {
—%X,00 as it — —oo.

Thus, this expression changes sign, so it must vanish for some ¢. This is a
contradiction, because dimg(Z,,yw,) = 1 for every t. [ |

Lemma 8.4. The mazimum dimension of a subalgebra of type 6.1(8) is as
stated in Table 1.
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Proof.  For n > 4, here is the construction of 3-dimensional subalgebras of n of
this type. Let ¢ =1 and ¢ = i. Choose y,§,z,% € C* 2, n,7j € C, and x,X € R,
such that

lyl* = 191* = 3iyg" # 0. (8.1)
Now, choose y,¥ € R, such that
Im(jzt — iyat + ot —y3t +4§) =0 (8.2)
and
Im(§&" — iyt + igz’ —iyzt +dy) = 0. (8.3)

Define u, 4 as in Eq. (2.3), and let v = [u,@]. Then y, # 0 and z, # 0, but, from
Eq. (8.1), Eq. (8.2) and Eq. (8.3), we have [v,u] = [v,%] = 0. Thus, we may let
be the subalgebra generated by u and #%. (So {u,%,v} is a basis of h over R.)
Note that, because |yj'| = |y|>/3 # |y|*, we know that y and § must be
linearly independent over C. Thus, these 3-dimensional examples do not exist
when n = 3. ]

References

[1] Benoist, Y., Actions propres sur les espaces homogénes réductifs, Ann.
Math. 144 (1996), 315-347.

2] Borel, A., Compact Clifford-Klein forms of symmetric spaces, Topology 2
(1963), 111-122.

[3] Helgason, S., “Differential Geometry, Lie Groups, and Symmetric Spaces”,
Academic Press, New York, 1978.

[4] Tozzi, A., and D. Witte, Tessellations of homogeneous spaces of classical
groups of real rank two, (in preparation).

5] Kobayashi, T., On discontinuous groups acling on homogeneous spaces
with non-compact isotropy groups, J. Geom. Physics 12 (1993), 133-144.

[6] , Proper action on a homogeneous space of reductive type,
Math. Ann. 285 (1989), 249-263.

(7] , Discontinuous groups and Clifford-Klein forms of pseudo-

Riemannian homogeneous manifolds, in: B. @rsted and H. Schlichtkrull,
eds., “Algebraic and Analytic Methods in Representation Theory”, Aca-
demic Press, New York, 1997, pp. 99-165.

(8] , Criterion of proper actions on homogeneous spaces of re-
ductive groups, J. Lie Th. 6 (1996), 147-163.

[9] Kostant, B., On converity, the Weyl group, and the Iwasawa decomposi-
tion, Ann. Sc. ENS. 6 (1973), 413-455.

[10] Kulkarni, R., Proper actions and pseudo-Riemannian space forms, Adv.
Math. 40 (1981) 10-51.

[11] Labourie, F., Quelques résultats récents sur les espaces localement ho-

mogeénes compacts, in: P. de Bartolomeis, F. Tricerri and E. Vesentini, eds.,
“Manifolds and Geometry”, Symposia Mathematica, v. XXXVI, Cam-
bridge U. Press, 1996.



38 Iozzl AND WITTE

[12] Margulis, G. A., Ezxistence of compact quotients of homogeneous spaces,
measurably proper actions, and decay of matriz coefficients, Bull. Soc.
Math. France 125 (1997) 447-456.

[13] Milnor, J. W., and J. D. Stasheff, “Characteristic Classes”, Princeton U.
Press, Princeton, 1974.

[14] Oh, H., and D. Witte, Cartan-decomposition subgroups of SO(2,n), Trans.
Amer. Math. Soc. (to appear).

[15] , New examples of compact Clifford-Klein forms of homo-
geneous spaces of SO(2,n), Internat. Math. Res. Not. 2000 (8 March
2000), no. 5, 235-251.

[16] , Compact Clifford-Klein forms of homogeneous spaces of
SO(2,n), (preprint).

[17] Raghunathan, M. S., “Discrete Subgroups of Lie Groups”, Springer-Verlag,
New York, 1972.

Department of Mathematics Department of Mathematics

University of Maryland Oklahoma State University

College Park, MD 20910 USA Stillwater, OK 74078 USA

Current address: email: dwitte@math.okstate.edu

FIM

ETH Zentrum
CH-8092 Zurich Switzerland

email: iozzi@math.ethz.ch



NI00001-SMM

NI00002-SCE

NI00003-SCE

NI00004-SCE

NI00005-ERN

NI00006-SMM

NI00007-SCE

NIGO008-ERN

NI00009-SCE

NID0010-SCE

NIOCOil-ERN

NIOO012-ERN

NIO0013-ERN

NI00014-SGT

NI00015-SGT

NI00016-SGT

NIO0017-SGT

NIO0018-SGT

NI00019-GTF

NI00020-SGT

NIO0021-SGT

Recent Newton Institute Preprints

KZ Markov
Justification of an effective field method in elasio-statics of heterogeneous solids

YY Lobanov and VD Rushai
Studying the evolution of open quantum systems vie conditional Wiener integrals

J-G Wang and G-S Tian
Spin and charged gaps in strongly correlated electron systems with negative or positive couplings

FV Kusmartsev
Conducting electron strings in ozides

SG Dani

On ergodic Z2 actions on Lie groups by automorphisms

V Nesi and G Alessandrini

Univalence of 0-harmonic mappings and applications

X Dai, T Xiang, T-K Ng et al

Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal-
superconductor tunnel junctions

B Hasselblatt

Hyperbolic dynamical sysiems

J Lou, S Quin, T-K Ng et al

Topological effects at short antiferromagnetic Heisenberg chains

V Zlatié and J Freericks

Theory of valence transitions in Yiterbium-based compounds

A Jozzi and D Witte

Cartan-decomposition subgroups of SU(2,n)

D Witte and L Lifschitz

On automorophisms of arithmetic subgroups of unipotent groups in positive characteristic

D Witte

Homogeneous Lorentz manifold with simple isometry group
R Uribe-Vargos

Global theorems on vertics and flattenings of closed curves
EA Bartolo, P Cassou-Nogués, I Luengo et al
Monodromy conjecture for some surface singularities

IG Scherbak
Boundary singularities and non-crystallographic Cozeter groups

K Houston
On the classification and topology of complez map-germs of corank one and A.-codimension one

PJ Topalov and VS Matveev

Geodesic equivalence via integrability

S Friedlander

On vortez tube stretching and instabilities in an inviscid fluid

VD Sedykh
Some invarianis of admissible homotopies of space curves

IA Bogaevsky
Singularities of linear waves in plane and space

Information about Newton Institute Preprints is also available at
http://www.newton.cam.ac.uk/preprints.html



