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ON AUTOMORPHISMS OF ARITHMETIC SUBGROUPS OF
UNIPOTENT GROUPS IN POSITIVE CHARACTERISTIC

LUCY LIFSCHITZ AND DAVE WITTE

ABSTRACT. Let F be alocal field of positive characteristic, and let G be either a Heisenberg
group over F', or a certain (nonabelian) two-dimensional unipotent group over F. If I" is an
arithmetic subgroup of G, we provide an explicit description of every automorphism of T'.
From this description, it follows that every automorphism of T' virtually extends to a virtual
automorphism of G.

1. INTRODUCTION

Roughly speaking, a discrete subgroup I of a topological group G is automorphism rigid if
every automorphism of I' extends to a continuous automorphism of G. However, the formal
definition below is slightly more complicated, because it allows for passage to finite-index
subgroups.

1.1. Definition. It is traditional to say that a group I' virtually has a property if some
finite-index subgroup of I' has the property. It is convenient to extend this terminology to
group isomorphisms.
o A virtual isomorphism from Gy to G, is an isomorphism A: G} — G, where G is a
finite-index, open subgroup of G;.
o A virtual automorphism of G is a virtual isomorphism from G to G.
e A virtual isomorphism A from G; to G virtually extends an isomorphism A from I';
to I'y if there is a finite-index, open subgroup I'{ of I'y, such that I} C Gy, and
Alry = M.

1.2. Definition. A discrete subgroup I' of a topological group G is automorphism rigid
in G if every virtual automorphism of I' virtually extends to a virtual automorphism of G.

A classical example is provided by the work of Malcev.

1.3. Definition ([Rag, Rem. 1.11, p. 21]). A discrete subgroup I of a topological group G
is a (cocompact) lattice if G/T is compact.

1.4. Theorem (Malcev [Mal], [Rag, Cor. 2.11.1, p. 34]). If [ is a lattice in a 1-connected,
nilpotent real Lie group G, then I' is automorphism rigid in G.
In fact, every virtual automorphism of I' extends to a unique automorphism of G.

Malcev’s Theorem can be restated in the terminology of algebraic groups (cf. [Rag, after
Thm. 2.12, p. 34]). Recall that a matrix group G is unipotent if, for every ¢ € G, there is
some n € N, such that (¢ — Id)* = 0. (In other words, 1 is the only eigenvalue of g.)
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1.5. Corollary. Let ' be an arithmetic subgroup of a unipotent algebraic Q-group G. Then
I' is an automorphism rigid lattice in G(R).

In this paper, we discuss the analogue of Malcev’s Theorem for unipotent groups over
nonarchimedean local fields, instead of R. It is well known that if G is a unipotent algebraic
group over a nonarchimedean local field L of characteristic zero, then the group G(L) of
L-points of G has no nontrivial discrete subgroups. (For example, Z is not discrete in the
p-adic field Q,.) Thus the case of characteristic zero is not of interest in this setting; we will
consider only local fields of positive characteristic.

For abelian groups, it is easy to prove automorphism rigidity.

1.6. Proposition. Let I'y and T'; be lattices in a totally disconnected, locally compact,
abelian group G. Then every isomorphism X: I'y — T'y virtually extends to a virtual au-

tomorphism X of G.

Proof. Since I'y and I'; are discrete, and G is totally disconnected, there exists a compact,
open subgroup KofG,suchthat ' N K =Ty N K =e. Let G1 = FIK and G’g I'K, so
G, and G, are finite-index, open subgroups of G, and define A: G; = G, by /\(")(C) Ay)e
forye€l'; and c€ K. O

For nonabelian groups, automorphism rigidity seems to be surprisingly more difficult to
prove, but we provide examples of automorphism rigid lattices. Although we do not have
a general theory, and we do not have enough evidence to support a specific conjecture,
the examples suggest that there may be mild conditions that imply arithmetic lattices are
automorphism rigid.

1.7. Notation. e Fix a prime p, and a power ¢ of p.
o [, denotes the finite field of ¢ elements.
¢ F denotes the field F,((t)) of formal power series over F,.
o F~ denotes F,[t7!], the F,-subalgebra of F' generated by ¢~!.
Note that I is a local field of characteristic p. (Conversely, any local field of characteristic p
is isomorphic to F,((t)), for some g [Wei, Thm. 1.4.8, p. 20].) The subgroup F'~ is a lattice
in the additive group (F,+).

1.8. Definition. Let G be a closed subgroup of GL(m, F), for some m € N.
e Two discrete subgroups I'; and [y of G are commensurable if I'; N I’y is a finite-index
subgroup of both I'; and I'; [Mar, p. 8].
o A subgroup T of G is arithmetic if it is commensurable with GL(m, F~)N G (cf. [Mar,
§1.3.1, pp. 60-62]).
By definition, if I'; and I'; are arithmetic subgroups of G, then Iy is commensurable with I';.
Thus, I'; is a lattice in G if and only if I'; is a lattice in G.

1.9. Definition (cf. [BS, Ex. 9.2]). Fix a power r of p, and let

1 y" =z
Gz = 01 y||yz€eF
0 0 1

So G, is a two-dimensional, unipotent F-group, and has arithmetic lattices. Note that if
r > 1, then GG; is nonabelian.
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The following theorem describes the virtual automorphisms of any arithmeticlattice in G,.

1.10. Definition. For any continuous field automorphism 7 of ' and any a € F'\ {0}, there
is a continuous automorphism ¢, , of G, defined by

1 y =z 1 a"7(y)" a"t'7(2)
¢, |0 1 y] =10 1 at(y)
0 01 0 0 1

Let us say that ¢, , is standard if
1) there exist o € Gal(F,/F,), a € F, \ {0}, and 8 € F,, such that
T(f(t™) = o(fat™ + 8)),
for all f(t7!) € F, and
2) there exists some nonzero b € F~, such that ab€ F~.

Note that if ¢, , is standard, and I' is an arithmetic lattice in Gy, then ¢, 4(I') is commen-
surable with I'.

1.11. Theorem. Let
o [' be an arithmetic lattice in Gy; and
o A be a virtual automorphism of I.
Ifr > 2, then there exist
e a standard automorphism ¢, , of G,
¢ ¢ finite-index subgroup IV of T, and
e a homomorphism (: I' — Z(T'),

such that A(7) = ¢r,a(7) ((7), for all y € T".

1.12. Corollary. If r # 2, then any arithmetic lattice in Gy is automorphism rigid.

Theorem 1.11 and Corollary 1.12 are proved in Section 2. The authors do not know
whether they remain true in the exceptional case r = p = 2.

1.13. Definition. Assume p > 2, let [-,-]: F?™ x F*™ — F be a symplectic form, and,
for notational convenience, let Z = F. The corresponding Heisenberg group is the group
H = (F? x Z,0), where

(v1,21) 0 (ve, 22) = (v1 + vz, 21 + 22 + [v, 02]])-
We remark that, up to a change of basis, the symplectic form [, -] on F?™ is unique, so, up
to isomorphism, the Heisenberg group H is uniquely determined by m. Note that Z is the

center of H.
Because H is isomorphic to a subgroup of GL(m + 2, F'), namely,

( (1 21 29 +++ Ty 2 )
( 1 2 yl\
1 O Yo T1y... Ty € F,
HE< . . yla-"aymeFa >7
: : z€F
O I Ym
1\ 1 )
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we may speak of arithmetic subgroups of H.
We assume that [-,] is defined over F'~, by which we mean that [F~, F~] C F~. Then
we may assume that the above isomorphism has been chosen so that

a subgroup T of H is arithmetic if and only if it is commensurable with (F~)*™ x F~.

Thus, H has arithmetic lattices.

We remark that one may define Heisenberg groups even if p = 2, but, in this case, they
are abelian, so they are not of particular interest.

1.14. Definition. We say T' € GL(2m, F') is conformally symplectic if there exists some
nonzero cr € F', such that, for all v,w € V, we have

[T(v), T(w)] = er [v,w]-

For every conformally symplectic T € GL(2m, F'), and every continuous field automor-
phism 7 of F', there is a continuous automorphism ¢7 . of H defined by

¢1.-(v,2) = (T(T(‘U)),T(CTZ)).
Let us say that ¢r . is standard if
1) there exist o € Gal(F, /F,), a € F, \ {0}, and 8 € F,, such that

r(f(t™) = o(f(at™ + )

for all f(¢7') € F; and
2) there exists some nonzero b € F~, such that bT € Mat(2m, F~).

Note that if ¢, is standard, then ¢r,(I') is commensurable with T' for any arithmetic
lattice I' of H.

1.15. Theorem. Assume p > 2. Let
o I' be an arithmetic lattice in a Heisenberg group H; and
e A be a virtual automorphism of I'.
Then there exist
o a standard automorphism ¢7, of H;
o a finite index subgroup I of T'; and
e a homomorphism (: I'" — Z(I),
such that A(y) = é1.(y){(y), for all y € T".

1.16. Corollary. Ifp > 2, then any arithmetic lattice in a Heisenberg group H is automor-
phism rigid.

Theorem 1.15 and Corollary 1.16 are proved in Section 3.

1.17. Remark. Malcev’s Theorem 1.4 does not extend to all lattices in solvable Lie groups.
(See the work of A. Starkov [Sta] for a thorough discussion.) On the other hand, the
Mostow Rigidity Theorem [Mos] implies that lattices in most semisimple Lie groups are
automorphism rigid.

Superrigidity deals with extending homomorphisms, instead of only isomorphisms. The
Margulis Superrigidity Theorem [Mar, Thm. VIIL.5.9, p. 230] implies that lattices in most
semisimple Lie groups are superrigid. (Lattices in many non-semisimple Lie groups are
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also superrigid [Wit].) The Superrigidity Theorem also applies to arithmetic subgroups
of many. semisimple groups defined over nonarchimedean local fields, whether they are of
characteristic zero or not [Mar, Ven).

1.18. Acknowledgments. The authors would like to thank the University of Bielefeld
(Germany), the Isaac Newton Institute for Mathematical Sciences (Cambridge, U.K.), the
University of Virginia, and Oklahoma State University for their hospitality. Most of this
research was carried out during productive visits to these institutions. Financial support
was provided by the German-Israeli Foundation for Research and Development and the
National Science Foundation (DMS-9801136).

2. ARITHMETIC SUBGROUPS OF THE TWO-DIMENSIONAL UNIPOTENT GROUP G;

Recall that » and G, are defined in Definition 1.9. (Also recall the definitions of p, g, F',
and F~ in Notation 1.7.)

Proof of Theorem 1.11. Let I'; and I'; be finite-index subgroups of I', such that A is an
isomorphism from I'; to I';. Then A induces isomorphisms

A*: Fl/Z(Fl) — Fg/Z(Fg) and A,: [Fl,Fl] — [Fz,Fz].

By identifying each of G3/Z(G;) and Z(G,) with F' in the natural way (and noting that
IiNZ(G,) = Z(T;)), we may think of T';/Z(T;) and [I';, I';] as F,-subspaces of F'. By replacing
I'; and T'; with finite-index subgroups, we may assume that these subspaces are contained
in F~. Then, because A is an isomorphism, we see that the conditions of Notation 2.3 are
satisfied, so Theorem 2.4 below implies that there exist

¢ a standard automorphism ¢, , of G, and

¢ a finite-index subgroup I'j of ['y,
such that A(y) € ¢,,.(7) Z(G), for all v € T.

Because ¢,4(I'1) is an arithmetic lattice, it is commensurable with T';. Thus, replacing
I} with a finite-index subgroup, we may assume that ¢,4(I'}) C I';. Then we may define

¢: Ty = Z(T'2) by ((7) = A(7) éra(v) 7 O

2.1. Lemma. Let

o I be a lattice in a totally disconnected, locally compact group G,
o A be a locally compact, abelian group, and
o (: ' = A be a homomorphism.

Assume

1) there is a finite-index subgroup IV of T', such that I'N [G,G] C [[',T], and

2) TN [G,G] is a lattice in [G, G].
Then there is aﬁﬁnfte-indea:, open subgroup G of G, such that { eztends to a continuous
homomorphism (: G — A that is trivial on [G,G].

Proof. By assumption, there exists a lattice I¥ C I such that I N [G,G] C [T, T]. Since
¢(: T — A, and A is abelian, we see that [[',I"] C ker(. Therefore [[',I'] C ker(, so, by the
choice of I, we have IV N [G, G] C ker(.

By assumption, I'N[G, G] is a lattice in [G, G}, so I'|G, G}/|G, G] is closed [Rag, Thm. 1.13,
p. 23], hence discrete. Thus, there is an open compact subgroup K/[G,G] C G/[G, G], such
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that K N(I'[@, G]) = e. Let G = I"K|G, G}, and extend (| to a homomorphism (G —A
by defining it to be trivial on K[G, G]. O

Proof of Corollary 1.12. We may assume r > 2. (Otherwise, we must have r = 1, which
means (G, is abelian, so Proposition 1.6 applies.) From Theorem 1.11, we may assume there
exist

¢ a standard automorphism ¢, , of G, and

¢ a homomorphism {: I'y = Z(T';),
such that A(y) = é-..(7) ((7), for all ¥ € T'y. From Lemma 2.1, we may assume that there
is a finite-index subgroup G, of Gy, such that G contains [G,,G;), and ( extends to a
homomorphism i Gy — Z(@G,) that is trivial on [Gy, Gy). Let G = ¢,.4(GY)-

Define \: G, — G, by /\(g) &r,a(9) ¢ (9), for g € G, s0 } is a continuous homomorphism
that extends A. Because  is trivial on [Gy, Gs], we know that /\[Gz'gz] = ¢raliGs,c5]- Also,
because C(G’) C Z{G>) = [G2, G2], we know that )\(g) € ¢.4(9) [G2, G} for all g € Gf. Thus,
X induces an automorphism of [G;, G,], and an isomorphism G4/[G3, Ga] = G4/[G2, Gz), so
} is an isomorphism. O

2A. Using linear algebra to prove Theorem 1.11. The remainder of this section is
devoted to the statement and proof of Theorem 2.4. This result is a reformulation of The-
orem 1.11 in terms of linear algebra. The reformulation is not of intrinsic interest, but it
clarifies the essential ideas of the proof, and provides more flexibility, by allowing us to focus
on the important aspects of the internal structure of I' that arise from the structure of F'~
as a polynomial algebra, without being constrained by the external structure imposed by
the group-theoretic embedding of I in G;.

2.2. Notation. Define an F,-bilinear form [-,-]: F~ x F~ — F~ by
[a,b] = a"b— ab".

For any V,W C F~, [V, W] denotes the F,-subspace of F~ spanned by { [v,w] |veV,we

2.3. Notation. Throughout the remainder of this section, we assume that

or>2
e V) and V; are F,-subspaces of finite codimension in F'~; and
e \: Vi = Vz and A,: [V, V1] = [V2, V2] are Fy,-linear bijections,

such that
Adla, 8] = [A*(a), A*(B)],
for all a,b € V}.

2.4. Theorem. There exist

o a subspace V] of finite codimension in Vj,
e acblF, for somebec F~,

e 0,8 €T, witha#0, and

e o € Gal(F, /F,),
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such that
X(f@™) =ao(f(at™ 4+ 8)),
for all f(t71) € V.

Let us outline the proof of Theorem 2.4, assuming, for simplicity, that V, = V, = F~.
For any power @) > 1 of r, we may define an equivalence relation on F'~ \ {0} by a =¢ b iff
a/b € F9; let [a] denote the equivalence class of a. For each a € F'~, the subspace [a, F'7]
has infinite codimension in [F'~, F~], but Proposition 2.6 shows that [[a], F~] has finite
codimension. Because Corollary 2.10 shows that A*([a]) = [X*(a)], this codimension is a
useful invariant. Proposition 2.12 shows that it is closely related to the minimum degree of
the elements of [a]. Using this, Corollary 2.22 shows that there is some @ € F'~, a constant k,
and some @), such that deg™ A\*(b) = k+deg™ b for all b=ga. Also, Corollary 2.24 shows that
A* approximately preserves the degrees of greatest common divisors. Then Proposition 2.25
shows that the restriction of A* to the F,-rational elements of some equivalence class is of
the desired form. Finally, we show that A* has the desired form on all of F~.

2.5. Notation. e We use dim W to denote the dimension of a vector space W over F,.
¢ Let s =dimPF,, so ¢ = p°.
o Fora=)" ,ait™ € F~, with each o; € F, we let deg™ a = n if a,, # 0.

The following proposition is used in almost all of the following results. Because (2 =)
requires the assumption that e > 2, it seems that a different approach will be needed for the
exceptional case p = e = 2.

2.6. Proposition. 1) The subspace [V;, Vi] has finite codimension in F~.
2) Let a,b € V; \ {0} and assume a/b ¢ F,. The subspace [a,V;] + [b,Vi] has finite
codimension in [V;, V;] if and only if a/b € F".

Proof. Because [a, V;] and [b, V] have finite codimension in [a, F'~] and [b, 7], respectively,
we see that [a, Vi] + [b, V;] has finite codimension in [a, F~] + [b, #~]. Thus, in proving (2),
we may assume that V; = F~.

(1) This follows from our proof of (2 <) below.

(2 <) There are some nonzero u,v € F~, such that au”™ = b". Let £ = a"u — b"v.

We claim that z # 0. Otherwise, we have

arz—l(aur) — (aru)r — (brv)r — brz—l(bvr) — brz—l(aur),

so a”*~1 = p”’~1. This implies a/b € F,, which is a contradiction. This completes the proof
of the claim.
For any y € F~, we have

la,uy] — [b,vy] = (a"uwy—av'y") — (bvy—bv"y")
= (a'uy —bvy) — (au'y" — bv"y")
= Iy— Oa

so [a, F~] + [b, F~] contains zF~, which is of finite codimension in F'~.
(2 =) We may write b (uniquely) in the form b = z + y"a, with z,y € F, and such that

we may write z = Y 0;t7* with o; = 0 whenever ¢ = deg™(a) (mod r). (Note that we do
not assume z,y € F~.)
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For u,v € F'~, we have
[a,u] —[b,v] = (a"u—au")— (b'v—bv")
= (¢"u—b0v)—(av" — (z+y a)v")
= (d'u—bv)—a(u—yv) —zv.
Whenever either deg™(u) or deg™ (v) is large, it is obvious that deg™(a"u — b"v) is much
smaller than max{deg_ (u—yv)",deg” v"}. Also, we may assume z # 0 (otherwise, we have

b/a = y" € F", as desired), and, from the definition of z, we know that deg™ = # deg™ a
(mod r), so

deg™ (a(u — yv)" — zv") = max{deg~ (a(u — yv)"),deg ™ (zv") }.

Therefore, we conclude that
deg™ (ﬁa, u] — [, v]) € {deg_ (a(u — yv)’) , deg“(wv’)}

must be congruent to either deg™ (a) or deg™(z), modulo . Thus, because of our assumption
that r > 2, we see that [a, F~] + [b, F~] does not contain elements of all large degrees, so it
does not have finite codimension in F~. Then, from (1), we conclude that it does not have
finite codimension in [F~, F~]. O

2.7. Corollary. Let aj,a; € V; \ {0}. We have a1/az € F" if and only if there is some
nonzero b € Vi, such that the subspace [a;, Vi] + [b, V] has finite codimension in [V, Vi], for
j=1,2.

Proof. (=) Choose b € a; F"NV;\ (Fya1 UF,a2). Then Proposition 2.6(2) implies the desired

conclusion.
(<) From Proposition 2.6(2), we have a1/b € F" and a3/b € F", 50 a1/ay € F". O

2.8. Lemma. Leta;,a; € F~, and let Q > 1 be a power of v, such that X* (al(F_)QﬂVI) =
as(F~)° N V. Define

o subspaces Wy and Wy of finite codimension in F~ by a;(F7)9 NV; = a;WP;

o u*: Wy — Wy by M (aqw®) = asu*(w)@; and

o pu: [Wi, W] — [Wo, W3] by A(a7'u?) = ayt! p(w)?.
Then u* and p. are Fy-linear bijections, and we have

pis[a, 8] = [u*(a), " (0)],
for all a,b € W;.

2.9. Definition. Let Q > 1 be a power of p. An element of F'~ is @-separable if it is not
divisible by a nonconstant Jth power.

2.10. Corollary. Let a € F~, and let Q) > 1 be a power of r, such that a is )-separable.
Then there is some Q-separable b € F~, such that X*(a(F~)? NV1) = b(F7)9 N V4.

Proof. Assume, for the moment, that Q = r. For aj,a; € F~ \ {0}, define ay = a; iff
a1/az € F’. For nonzero a,b € Vi, we see, from Notation 2.3, that [a, i] + [b, V1] has
finite codimension in V; if and only if [A*(a), V2] + [A*(b), V2] has finite codimension in V5.
Therefore, Corollary 2.7 implies that @ = b iff A*(a) = A*(b). The equivalence classes are
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precisely the sets of the form ¢(F~)" N V;, for some r-separable ¢ € F~, so the desired
conclusion is immediate.

We may now assume Q@ > r. Let @' = @Q/r. There is some @'-separable a’ € F~, such
that a € a/(F~)?. By induction on @, we know that there is some Q’-separable b’ € F~,
such that M*(a/(F7)?' N W) = b(F)? NV,

From the definition of a’, we know there is some a; € F~, such that a = o’ a1 . Then,
because a is @)-separable, we know that a; is r-separable.

Define W;, W, u*, and p, as in Lemma 2.8 (with @', &/, and ¥’ in the places of @, a,
and b, respectively). Because a; is r-separable, we know, from the case @ = r in the first
paragraph of this proof, that there is some r-separable b, € F~, such that u*(a;(F~)"nW;) =
bi(F~)" N W,. Therefore

Ma(FPNW) = N[d(a(F) r) "AV]
= X[d(a(F7) )Q]
- el f‘Wl)J
(F)y nwy)?
= ( F)) ¥ v,
= Vo (F7)9ns,
as desired. O

2.11. Lemma. Let a € V;, let Q > 1 be a power of r, and let k be the codimension of V;
in F~. Then there is some nonzero b € F~ with deg™ b < r?(k+1), such that [a(F~)?NV;, V]
contains a codimension-2k subspace of the ideal a"b®/" F~.

Proof. Choose ¢ € F~ \ F,, such that ac? € V; and deg”c < k+1; let b = ¢’ —¢. For
y € F~, we have

aer/ry — ar(cr Q/r)y
= (a"c¥y — ac¥y") — (a"¥"y — ac®y")
= [ac® ,y]] ~ [a,c%"y]
€ [ac®, F]+[a,F],
so [ac®, F'~ ]i—l— [a, F~] contains a"b?/" F~.
Because [ac?,Vi] and [a, Vi] contain codimension-k subspaces of [ac?, F~] and [a, F7],

respectively, thls implies that [ac?,V;] + [a,Vi] contains a codimension-2k subspace of
a"b%/" F~. Because both ac? and a belong to a(F~)?NV;, the desired conclusion follows. O

2.12. Proposition. Let a € V;, let Q@ > 1 be a power of r, and let k be the codimension
of V; in F~. Then
. F- -
dim e(F ViV~ s(r—1)(deg”a) + 5 + X,

where
o S =smax{deg c|c|e,c€ F~}, and
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e 0 < X <sr(k+1)Q + 3k.

Proof. Choose b as in Lemma 2.11, and let ] = a"b9/"F~ and F- = F~/I. 1t suffices to
show

(2.13) dim F~/[a(F-)Q,F-] > s(r — 1)(deg” a) + S
and
(2.14) dimF-/[a, F-] < 8 + sr2(k 4+ 1)Q/r + s(r — 1) deg™ a.
Let u1,ua,... ,uy be the irreducible factors of a"b?/". Then we may write
a=uituy? - uy, BT =yt ... uy, and a b9 =yl .. ~ui®,

where n; = rm; + ¢;.
From the Chinese Remainder Theorem, we know that the natural ring homomorphism

from F- to
N

D =
puef u;” F'=
is an isomorphism. Thus, we may work in each factor F'~/ u;-” F~, and add up the resulting
codimensions.
Define ¢;: F~ — F~/(u; ' F~) by ¢;(z) = az”. Then, letting m}; = m; — [m;/r|, we
have
kerg; = {z € F~ |u;’|z},

s0
dim 1 — dim TS
u; F~+a(F7) u; F~

= sdimmqf,,-:ﬂ

u; F-

s(rmj — m;) deg™ u;
= s(r—1)deg” u;’ + s|m;/r|deg” u;.

rmy -
We have a” € u; 'F~, so

(2.15) [a(F)R, FlCa (F)¥F +a(F)?(F ) Cu;™F~ +a(F)
and
(2.16) [a, F7 ]+ w;™ F~ =w;""F~ +a(F7).
From (2.15), we have
dim [a(F)2, 5_]] TuE > dim [e(F)2, FFL]] U F-
> -

di :
o w," F~ +a(F-)
= s(r—1)deg” u;nj + s|m;/r| deg™ uj,
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SO

dim F-/[a(F-)?, F-] > s(r—1)deg™ uj" P+ s|mj/r| deg” u;)

~ an

—1)deg"a+ S.

This establishes (2.13).
Because dim(u} "’ F'~ /u;’ F~) = se;deg™ u;, and from (2.16), we have

m - < dim F + sgjdeg” u;

[a, F-] +u;” F- — [a, F-] 4 u;™ F- 5O Ui
F—

= dim —; + se;jdeg™ u;

u;m’ F-+a(F)
= s(r—1)deg”u;’ + s|m;/r|deg™ u; + s¢; deg™ u;,

S0
o N
dim F-[[a, F-] < Z( (r—1)deg™ u)’ 4 s|m;/r]| deg™ u; + s¢; deg™ u;)
7=1
= s(r—1)deg” a+ S + sdeg™ b9/"
< s(r—1)deg”a+ S +sr¥(k+1)Q/r.
This establishes (2.14). O

2.17. Lemma. For any a € F~ and any n > 0, we have
[a, P71+ [L, F T C [, FT+ [1, F]L.
Proof. For any v € F'~, we have

[v,a] = va—wvd"
= va—(v"a —v"a") — (v —va”) —va
[v"a, 1] + [v",a"] + [va", 1]
€ [1,F])+{a,F].

Then the proof is completed by induction on n. O

2.18. Proposition. There is some N € N (depending only on the codimensions of V;
and V3, not on the choice of Vi, Va, A*, or A.), such that deg™ A*(1) < N.

Proof. Let k be the codimension of V;. Choose a power @ > 1 of r so large that A*(1) is
Q-separable. Then Corollary 2.10 implies A*((F~)? N14) = A*(1)(F7)? N V4.
Choose ¢ € F~ \ F,, such that ¢? € V; and deg c<r+1. We have

[(F)2nV, Wl D [1L,Vi]+ [, V]
~ [LF ]+ F]
D [LFj+][c,F7] (see2.17)
o> (¢ —¢)F~ (proof of (2.11)).
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So [(F~)? N W, Vi] has small codimension in [Vi,Vi]. Therefore [A*(1)(F~)? N Vo, Vo] =
MI(F)? NV, V;] must have small codimension in [V5, V2], so deg™ A*(1) must be small, as
desired. O

2.19. Corollary. There is some N € N (depending only on the codimensions of Vi and Vj,
not on the choice of Vi, Va, A*, or A.), such that, for every power @ > 1 of r and every
Q-separable element a of V1, we have deg™ A*(a)—deg™ o’ < QN, where a’ is the QQ-separable
element of \*(a)F€@.

Proof. Apply Proposition 2.18 to the map p* of Lemma 2.8. O

2.20. Proposition. There is a power @ > 1 of r, and some d > 0, such that, for every
v € V; with deg” v > d, there are ()-separable elements vy,... ,v, of Vi, such that v =
v+t vn anddeg” v; <deg” v, forj=1,... ,m.

Proof. Let k be the codimension of V; in F~, and choose @) > k + 4 so large that, for every
m > @, the subspace V; contains elements of degree m whose leading coeflicients span F,.
For any element of V; of degree m, we show that there is a ()-separable element of V; of
degree m with the same leading coefficient.

Let o be the leading coefficient of some element of V; of degree m. Then V; contains
exactly 7™ % elements of degree m with leading coefficient c.

On the other hand, if a is an element of F~ that is of degree m and is not ()-separable,
then a must be of the form a = 29y, where z is an element of F~ of some degree j, and y
is an element of F'~ of degree m — @j. Thus, the number of such elements a of degree m is

no more than

m-2

m+2 Qm
S < QM < I,
- r

o0 oQ
i+l m—Qi+l __ m+2 i1-Q) _ _ 94 q
S =gy gt - L < 8

Therefore, not every element of V; of degree m whose leading coefficient is & can be such an
element a, so V; has a ()-separable element of degree m with leading term a, as desired.

2.21. Corollary. For each b € F~, there exists N € N, such that, for everya € b(F~) NV,
we have |deg™ A*(a) —deg™ a| < N.

Proof. By symmetry, it suffices to show deg™ A*(a) < deg”a + N. We may assume b is
r-separable. By combining Proposition 2.20 with Lemma 2.8, we may choose a power () > 1
of r, such that each element of 5(F~)" is a sum of @-separable elements of b(#~)" of smaller
degree. Thus, we may assume a is ()-separable (and our bound N may depend on Q).
Define S as in the statement of Proposition 2.12, and let k; be the codimension of V;. Be-
cause a € b(F~)" and b is r-separable, we have S = s(deg™ a —deg™ b)/r, so Proposition 2.12
implies
di il ( 14 1) deg™ a! <
im —s(r — 1) de s
[(F) Vi, Vil 2l
is bounded. Similarly, letting a’ be the Q-separable element of A\*(a)F®, and & be the
r-separable element of X*(d)F", we know that
F—
di —s(r—141)deg d
1m [[a’(F‘)QﬂV2,V2]| s(r +r) eg a

deg™ b

+ (ST(k1 +1)Q + 3k1)

deg™ V'

<s + (sr(kz +1)Q + 3k2)
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is bounded. Then, because
[a(F-)2 NV, ] [a'(F-)° N Ve, Vo]’

we conclude that |deg™ ¢’ — deg™ aj is bounded. Corollary 2.19 asserts that |deg™ A*(a) —
deg™ @'| is also bounded. O

dim

2.22. Corollary. For each b € F~, there is a power QQ of r, such that, for every a;,as €
b(F~)2 N Vi, we have deg™ A*(a;) — deg™ A*(a;) = deg™ a; — deg™ as.

Proof. Choose N as in Corollary 2.21. Now choose () > 2N. Because
deg™ A*(a1) = deg™ A*(a2) (mod Q) and deg” a; = deg” a; (mod Q),
we have
deg™ A*(a1) — deg™ a; = deg™ A*(a2) —deg” a; (mod @),

so, from the choice of N and @, we conclude that deg™ A*(a;) — deg™ a1 = deg™ A*(a2) —
deg™ a,. d

2.23. Proposition. There is a constant C > 0, such that, for all a1,a; € V;, and every
power @) of r, we have

[V, Vil
(F)e NV, Vil + [aa(F-)e NV, V]
< Cdeg ged(a,az)+ C.

IA

sdeg” ged(ar,az) — C dim
[ax

Proof. Because
[a:(F7)? N Vi, Vil + [ao(F7)9 NV, Vi) C ged(ar, a2) F,

the left-hand inequality is obvious.

Let ¢ = ged(ay,az) and let k& be the codimension of V;. Then Lemma 2.11 implies that
there exist nonzero by,b, € F~ with deg™b; < r?(k + 1), such that [a;(F7)? N V;,Vi]
contains a codimension-2k subspace of agb?/ "F~ for j = 1,2. Then, letting b = b1b,, we
have deg™ b < 2r?(k+1), and [Ja,(F~)? NV;, Vi] + [a2(F )2 NV;, Vi] contains a codimension-
4k subspace of the ideal I = ¢"b9/"F~. Thus, it suffices to show that the codimension of
a1, F~] + [ag, F~] + I in F~ is bounded above by s(r + 2)deg™ ¢ + sdeg™ b.

Let uy,...,un be the irreducible factors of ¢'b?/", so we may write ¢ = u]** - - - ujp™, b =
u$t - uyly, and b9/ = ult - - uRY, where n; = rm; +¢;Q/r. From the Chinese Remainder
Theorem, we have F~ /I = @;V:I F~/u™ F~, so we may calculate the codimension in each
factor, and then add them up.

Fix j. By interchanging a; and a; if necessary, we may assume that u;n’ + 1 ay. It suffices
to show that

dim -
[a1, F~] + un F-
thus (because m; + ¢; > 1), we need only show that u§r+1)mj+1F_ C fa, F-] +u;’ F~. To
show this, let M be minimal, such that uﬁw HF= C [a, F7] + u;’ F~. (Obviously, we have

< s((r+2)m; +¢;) deg™ u;
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M < nj; we wish to show M < (r + 1)m;.) Suppose M > (r + 1)m;. (This will lead to a
contradiction.) We have m; + r(M —rm;) > M, so

u;u F~ = ug’”‘u?l_rm" F-
C a{u?l_rij_ +u™F~
C [ay, u?{_m" F]+ alu;(M—rmj)F' +u™F~
C Lo P14 P i p-
C oy, FTl+u}™ P~ +u™F-
= [ay, FT]+u™F~.
This contradicts the minimality of M. O

2.24. Corollary. There is a constant C > 0, such that, for all a,b € V}, we have
deg™ gcd(a, d)

C — C < deg™ ged(X*(a), A*(b)) < C deg™ ged(a,b) + C.

2.25. Proposition. There exist b € Vi, b € V3, a,08 € F,, and some Q that is a power
of both r and q, such that, for all bf(t™%) € b(]Fp[t_l])Q N Vi, we have M*(bf(t79)) =
b f(at=2 + B).

Proof. Corollary 2.22 shows that, by replacing Vi with some (F~)? N'V; (using Lemma 2.8),
we may assume deg” A*(a) = deg™ a, for every a € V}.

The terms —C and +C in Corollary 2.24 are significant only when deg™ ged(a, b) is small.
On the other hand, deg™ gcd(a,d) can never be small (and nonzero) if a,b € (F'~)? for some
large Q. Thus, by replacing V; with some (F~)? NV (using Lemma 2.8), we may assume

L
o
for every a,b € V4. In particular, ged(a,b) = 1 if and only if gcd(A*(a), A*(b)) = 1.
Let k be the codimension of V; in F'~. Choose some
N > 4(C(C +k)p"™ ! +k+1).

Choose a power @ of r, such that @ > Nk. There is some nonzero b € F,[t™!], with
deg™ b < Nk, such that

b(F, + ¢t OF, + ¢t 2F, +--- +t~"°F,) C ;.

Because deg™ b < 2, we know that b is Q-separable, so, by applying Lemma 2.8 to b(F )N
V1, we may assume

deg™ gcd(a, b)) < deg™ ged(A*(a), A*(b)) < C deg™ ged(a, b),

F, +t'F, + t7°F, + --- + tF, C W.
By composing A* with a map of the form f(¢t7') — vf(at™! + 8), for some a, 8,7 € F,
(with ay # 0), we may assume A*(1) = 1 and A*(t7!) = ¢t71, so M|, 4F,c-1 = Id.
Let Vi* = Vi NF,[t71]. It suffices to show A*(a) = a for every a € Vi,
Suppose /\*lvlnr,, # 1d, and let

m:min{deg_a‘ M(a)# a,a € VF”} > 2.
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Let A = A*(a) — a, for any monic a € V" with deg™ ¢ = m. (Note that the definition of m
implies that A is independent of the choice of a.)

Case 1. Assume m < N. Let u be any irreducible element of F,[t~!] with deg”™ u < m — 1.
We claim that V['® contains a (monic) element a, such that deg™ a = m and ula. To see
this, let b € V'® with deg™ b = m. There is some a € F'~, such that u|a and deg™(a — b) <
deg™ u < deg™ b. Because deg™ b < N, this implies a — b € VIF”, so a € VIF”.
Because ula (and A*(u) = u), we know ged(u, A*(a)) # 1. Because u is irreducible, we

conclude that u|A\*(a). We also have u|a, so this implies u[(A*(a) — a) = A.

Thus, we see that A is divisible by every irreducible polynomial over F, of degree < m—1,
so A is divisible by ¢t*™"" — ¢~1. Therefore deg™ A > p™!. However, we also know
deg™ A < deg” a = m (and all nonzero polynomials in F,[t~!] are monic, so deg™ A < m if
p = 2). This is a contradiction.

Case 2. Assume m > N. Choose some monic a € VI]Fp , with deg™ a = m. By subtracting a
polynomial of degree < k, we may assume t~*+1|q; let u = a /t~*+1) There is some nonzero
z € F,[t7!] with deg™ z < k, such that uz € V/?. (Note that deg™ uz < k + deg™ u < m.)
Let
C={ceR[t7']\{0}[degc<C},

b= H c,

deg™ c<C'+k
so deg™ b < (C + k)p®**+!. Now, for each ¢ € C, let

and

[ U
° 7 ged(ug, b))
For ¢ € C, we have {cz,ct=*} C V;'%, s0 u, € V;'* and a + ¢t~V ¢ Vf». Also, because
a = ut~(+t) we have (u + c)|(a + ct=**Y). Then, since A*(u + ¢) = u + ¢, we have
deg™ ged (A\*(a + ct=*+D), u + ¢) > (deg™(u +¢))/C, so

deg” ged(A,u.) > deg” ged(A,u.) —deg™ b

= deg” ged(M*(a + ct**) — (a + et~ ), u.) — deg™ b
deg” (u+c¢)

u. = (u +¢)z and u

> c —deg™ b

> T (O T
m

>

— 4C

Also, for ¢;,¢, € C, we have
deg™ ged(ue, , te,) < deg™ (ue, — Ug,) = deg_((cl - 02)33) <C+k,

so we see that gcd(ul,,u],) = 1 whenever ¢; # c;. Thus, we conclude that

deg™ A > pc% > m.

This is a contradiction. O
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Proof of Theorem 2.4. Choose b,¥, a, 3,Q as in Proposition 2.25. By replacing A* with
z — (V)~! X*(bz) and replacing A, with z — (8')~("+) X*(+1z), we may assume b=b' = 1.
Then, by composing A* and A, with 7! = o~ 1(¢7! — 3), we may assume o =1 and 8 = 0.
Thus,

(2.26) M(a) = a for all a € F,[t~9] N V4.

We wish to show that there is some o € Gal(F,/F,), such that, for every a € Vi, we have
X(a) = o(a).

Step 1. For each a € Vi, there is some o € Gal(F, /F,), such that \*(a) = o(a). Fix a € 1.
Choose C as in Corollary 2.24, let k be the codimension of V;, and choose b € I, [t"Q] N Vi,
such that

deg™ b - —
: —C > Q(s(deg™ a + deg X'(a) +k).
Let
c= [ (-0(e)) €eF[tT,
g€Gal(Fy/Fp)

and choose some nonzero z € F,[t!], such that (cz)? € V; and deg™ z < k.
We have

Q@ (deg_ ged(b— A (a),c) + k) > deg™ ged(b— A*(a), (cz)?)
= deg” gecd S/\*(b —a), /\*((cm)Q)> (see 2.26)

deg™ ged (b — a, (cz)9)

> -C (choice of C)

deg™ b
- e g (6 - a)le)
> Q (s (deg™ a + deg™ A*(a)) + k) (choice of b).

Thus, from the definition of ¢, we conclude that there is some o € Gal(F, /F,), such that
deg™ ged(b— A*(a),b—o(a)) > deg™ a+deg” A*(a)

deg™ o(a) + deg™ A*(a)

deg™ (o(a) — A*(a))

deg™ ((b— M(a)) — (b = o(a)))-

Therefore (b— A*(a)) — (b—o(a)) =0, so A*(a) = o(a).

Step 2. There is some o € Gal(F, /F,), such that \*(a) = o(a) for everya € V4. Forv € F~,

let v denote the leading coefficient of v. Choose b € Vi, such that b generates Iy, that is,

F, = F,[5]. From Step 1, we know there is some o € Gal(Fy/F,), such that A\*(b) = o(b).

We show A*(a) = o(a) for every a € V.

Given a € Vi, choose some ¢ € Vj, such that ¢ generates F,, and such that deg™c >
max{deg~ a,deg™ b}. From Step 1, there exist o/,0” € Gal(F,/F,), such that A*(c) = o’'(c)
and A*(a+¢) = 0”(a+c). Because deg™ ¢ > deg™ a, we have ¢ = a + cand A*(a + ¢) = A*(c).
Thus, we have

o"(@©) = d"(@+c) =0"(a+c) = M(a+c)= X(a) + A*(c) = A*(c) = 0'(2).

vl
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Because € generates F,, we conclude that ¢” = ¢’. Therefore
M(a)=X(a+c)= M) =0"(a+c)—0d'(c)=0'(a +¢) —o'(c) = d'(a).

Similarly, we have \*(b) = o’(b). Because we also have A*(b) = o(b), and b generates F,,
we conclude that ¢’ = 0.

Therefore A*(a) = o'(a) = o(a), as desired. a

3. ARITHMETIC SUBGROUPS OF HEISENBERG GROUPS

Proof of Theorem 1.15. Let Ty, I'; be finite-index subgroups of I, such that A: 'y = I'
is an isomorphism. Let T, ¢ = 1,2 be the image of [; in F?™ under the projection H — F*™
with kernel Z. By passing to a finite-index subgroup, we can assume that T'; C (F~)?™. Since
Z(;) =TiN Z, we can identify T; with T;/Z(T;), so A induces an isomorphism X: T, - T,

Step 1. We can assume A(av) = aA(v) foralla € F~ andv € T, such that av € T;. For each
nonzero v € 'y, let A, = {a € F '_| av € T }. Note that A, is a ﬁni_te—index su]igroup _of
F~. For g,h € I';, we have F'g = Fh if and only if Cr,(g) = Cr;(h), so A(A,w) = FA(v) NTa.

Thus, we can define a function 7,: A, = F by 7,(a)A(v) = A(av). Let w € Ty be such that
[v,w] # 0, and let « € A, N A,. Then

7(@)[Av), Aw)] = [Mav), A(w)]

= A([av,w])

= AM[v, aw])

= D), Xaw)]

= 7u(a)[A(v), A(w)].
Thus
(3.1) T, = T, on A, N A, whenever [v,w] # 0.
__For any nonzero v,w € T; and any a € A, N A,, since 1 N a™'T; is of finite index in
1, we can find u € Ty so that a € A, [u,v] # 0, and [u,w] # 0. Then it follows from

Equation (3.1) that 7,(a) = 7u(a) = 7(a). Since a € A, N A, was arbitrary, we conclude
that

(3.2) T, = Tw on A, N Ay, for all nonzero v, w € T';.
For an arbitrary a € F'~ we can always find w € T} so that a € A,, thus we can define a

function 7: F~ — F, by 7(a) = 7y(a). Equation (3.2) implies that 7 is well defined. Note
that 7(1) = 1. Since

7(a)r(B)[Nw), A(v)] = [Mau), A(bv)]

= /\([[au,bv]i)

= /\([[abu,v]l)

= [Aabu), A\(v)]
= 7(ab)[A(w), A(v)],

we have 7(a)7(b) = r(ab). Since 7 is also an additive homomorphism, and X is an iso-
morphism, we conclude that 7 is a ring automorphism of F~. Therefore 7'( f(t“l)) =
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o(f(at™ +B)) for f(t7') € F~, where 0 € Gal(F,/F,), a € F, \ {0}, and 8 € F,. Hence,

by composing with the standard automorphism T4 ,-1, we obtain the claim.

Step 2. We may assume that A|z(r,) is the identity map. Let vy, w1, v2, w3 € T with [u;, w;] #
0. There is a finite-index subgroup A of F'~, such that av; € T, for every a € A and i = 1,2.
Then, for all a € A, Step 1 implies that

A(afvi, wi])) B A([viy wil) .

alvi,wi] i, wi]

Thus, choosing a;,a; € A, such that a;[vi, w:] = azfve, ws], we have

A([vr, wi]) B )\(all[vl,wlﬂ) _ /\(Gz[[’l)g,wz]]) B A([v2, wal)

[[vl,w1]] B all{vl,wl]] B az[[vz,wz]] B l[vz,wz]] '

We conclude that A(z)/z = C is constant, for z € [Ty, 1] \ {0}

By composing with a standard automorphism ¢r14, such that ¢y = 1/C, we may assume
that C = 1, so Alr,,r,) = Id. Then, by replacing I'y with a finite-index subgroup I'{, such
that I'y N Z C [I'y, 4], we may assume Azr,) = Id.

Step 8. A\: Ty — F_1_<:an be extended to a conformally symplectic map A: F?™ — F?™, with
cx = 1. By Step 1, Mav) = aA(v) for all a € F~ and v € I'; such that av € I';. Because I',
is commensurable with (F~)?", this implies that A extends (uniquely) to an F-linear map

A: F¥™ — F*™ Yor any v,w € 'y, we have
[A(v), A(w)] = [A(), Nw)] = M([v,w]) = [v,w],
by Step 2. Because I'; spans F?™, this implies that A is conformally symplectic, with cg = 1.

Step 4. Completion of the proof. Define A: H — H by A(v,z) = (A(v),z). From Step 3,
we see that A is an automorphism. Denote by ¢: 'y — Z(H) the map defined by ((y) =
A(7)7*A(7). Then ¢ is a homomorphism and A(y) = {(y) A(y), for vy € I';. O

Proof of Corollary 1.16. From Theorem 1.15, we may assume there exist

e a standard automorphism ¢r . of H; and

e a homomorphism (: I'; = Z(H),
such that A(y) = é7.(7)((y) for all v € T'y. By Lemma 2.1, there exists a finite-index
open subgroup H of H, containing [H, H], such that { extends to & H o Z(H). Let
H' = ¢T,T(AI:I )- . . )

Define A: H —+ H by A(h) = é1,(h)((h), so that A is a continuous homomorphism
virtually extending A. Because ( is trivial on [H, H], we have A|[H,H] = ¢7,+|11,H], 50 A|[H,H]
is an automorphism. Because ((H) C Z(H) = [H, H], we see that A induces an isomorphism
H/[H,H] — H'/[H,H)]. So A: H — H’ is an isomorphism. O
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3.3. Definition. Let

\
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p
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1
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yh

p :L'l,...,a:mEF,
Y2

. yla'-'vymEFa

ze F

Y

1

3.4. Remark. H, could also be described as the F-points of the group obtained from H by
applying the isogeny of factoring by the Lie algebra of Z(H) [Bor, Prop. V.17.4, p. 215].

3.5. Corollary. Any arithmetic lattice in H, is automorphism rigid.

Proof. Let A,: 'y = T'y be an isomorphism, where I'; and I'; are arithmetic lattices in H,.

Define
( (1 Ty b z?, z”\ )
1 0 i
P Tyyeon Ty € F)
HzIJZJ ! \ y.2 yis---aym€F7>
: z€F
\ O 1 yfn}
| 1
and ) J \
/1 (1) 0 0 g\ . Z ™,
0<2<n
A=J 1 O 0 1 Z0 (mod p)
0 1 0 n €N,
\ 1) a; €F, )

\
Then H, = H} x A. By passing to a finite-index subgroup we may assume that I'; = I'; XI'1 4,
where Iy =Ty NHyand I'; 4 =T N A. Let Q = M(T1,4) C Z(T'3) and Ty = Ap(T). Then,
by passing to a finite-index subgroup, we may assume QN H, =eand [N A=e.
Step 1. Let ms : Z(H,) — A denote the projection with kernel H,. Then mgo0M, : 14 —
74(Q) virtually extends to a virtual automorphism ¥ of A. It is easy to see that m4(Z(I'2))
is closed in A and hence is a lattice. Because Z(I'}) x I'y,4 has finite index in Z(I'1), we
know A,(Z(T%)) x Ap(T'1,4) has finite index in Z(I';). Then, since [T}, '] has finite index in
Z(I') and

Ap([T3, T4]) € [T, T5] € Hy = kermy

we conclude that m4(2) = ma(A,(T'1,4)) has finite index in 74(Z(I';)). Hence m4(f2) is a
lattice in A. By Proposition 1.6 m4 0 A, : 14 — 74(R) virtually extends to a virtual
automorphism ¥ of A.
Step 2. Let n': H, — H), be the projection with kernel A, and let p, = m'oXy|ry : Ty — 7'(T3).
Then p, virtual extends to a virtual automorphism of H,.
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We claim that 7'(I}) is an arithmetic lattice in H,. Because 'y = T'} X I'; 4 and I'14 C

Z(T'y), we have
[, =T% x QT Z(H,).

Then, because I, C I'z, we conclude that Ty, Z(H,) = Ty, Z(H,) is a lattice in H,/Z(H,)
H}/Z(H}). So the image of n'(I'y) in H)/Z(H,) is a lattice. Also,

W’(F;) N Z(H;,) > [FI2, ,2] = [F2,F2]1
so 7'(Ty) N Z(H,) is a lattice in [Hy, Hy] = Z(H,). Thus, we conclude that ='(I';) is a lattice
in H). Because n'(I';) is contained in the arithmetic lattice 7'(I'z), this implies that ='(T3)
is arithmetic.

From the preceding paragraph, we know that y, is an isomorphism of arithmetic lattices in
H]. Let Fr: H — H, denote the group isomorphism induced by the Frobenius automorphism
z — 2P of the ground field F'. Then there exist arithmetic lattices fl, fg in H, such that
Fr(fl) = I'] and Fr(fz) = 7'(I"}), and an isomorphism A = Fr! opp o Fr: I, — [, By
Corollary 1.16, we can virtually extend A to a virtual automorphism A of H. Then A} =
FroA o Fr! is a virtual automorphism of H, virtually extending pp.

Let ]\p =A, x ¥, s0 1~\,, is a virtual automorphism of H,. We can define a map ¢ on some
finite index subgroup of Ty by ¢(7) = A,(7)A,(y)"!. By Lemma 2.1, { virtually extends to
{: H, — Z(H,). Then A, = A,( is a virtual endomorphism of H,. Since ker(¢) D [Hp, Hy)
we conclude (much as in the proof of Corollary 1.12) that A, is a virtual automorphism. It
is easy to see that it virtually extends A,. O
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