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HOMOGENEOUS LORENTZ MANIFOLDS
WITH SIMPLE ISOMETRY GROUP

DAVE WITTE

ABSTRACT. Let H be a closed, noncompact subgroup of a simple Lie group G, such that
G/H admits an invariant Lorentz metric. We show that if G = SO(2, n), with n > 3, then
the identity component H° of H is conjugate to SO(1,n)°. Also, if G = SO(1,n), with
n > 3, then H® is conjugate to SO(1,n — 1)°.

1. INTRODUCTION

1.1. Definition. o A Minkowski form on a real vector space V is a nondegenerate
quadratic form that is isometric to the form —z? + 22 + --- 4+ 22, on R™, where
dimV=n+12>2.

e A Lorentz metric on a smooth manifold M is a choice of Minkowski metric on the
tangent space T, M, for each p € M, such that the form varies smoothly as p varies.

A. Zeghib [Zel] classified the compact homogeneous spaces that admit an invariant Lorentz
metric. In this note, we remove the assumption of compactness, but add the restriction that
the transitive group G is almost simple. Qur starting point is a special case of a theorem of
N. Kowalsky.

1.2. Theorem (N. Kowalsky, cf. [Ko3, Thm. 5.1]). Let G/H be a nontrivial homogeneous
space of a connected, almost simple Lie group G with finite center. If there is a G-invariant
Lorentz metric on G/H, then either

1) there is also a G-invariant Riemannian metric on G/H; or
2) G is locally isomorphic to either SO(1,n) or SO(2,n), for some n.

As explained in the following elementary proposition, it is easy to characterize the ho-
mogeneous spaces that arise in Conclusion (1) of Theorem 1.2, although it is probably not
reasonable to expect a complete classification.

1.3. Notation. We use g to denote the Lie algebra of a Lie group G, and § C g to denote
the Lie algebra of a Lie subgroup H of G.

1.4. Proposition (cf. [Ko3, Thm. 1.1]). Let G/H be a homogeneous space of a Lie group G,
such that g is simple and dimG/H > 2. The following are equivalent.

1) The homogeneous space G/H admits both a G-invariant Riemannian metric and a
G-invariant Lorentz metric.

2) The closure of Adg H is compact, and leaves invariant a one-dimensional subspace of g
that is not contained in b.
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The two main results of this note examine the cases that arise in Conclusion (2) of
Theorem 1.2. It is well known [Ko2, Egs. 2 and 3] that SO(1,n)°/SO(1,n — 1)° and
SO(2,n)°/SO(1,n)° have invariant Lorentz metrics. Also, for any discrete subgroup T of
SO(1,2), the Killing form provides an invariant Lorentz metric on SO(1,2)°/I'. We show
that these are essentially the only examples.

Note that SO(1,1) and SO(2,2) fail to be almost simple. Thus, in 1.2(2), we may assume

e G is locally isomorphic to SO(1,n), and n > 2; or

e G is locally isomorphic to SO(2,n), and n > 3.

2.3'. Proposition. Let G be a Lie group that is locally isomorphic to SO(1,n), withn > 2.
If H is a closed subgroup of G, such that

o the closure of Adg H is not compact, and
e there is a G-invariant Lorentz metric on G/ H,

then either
1) after any identification of g with so(1,n), the subalgebra Yy is conjugate to a standard
copy of s0(1,n — 1) in so(1,n), or
2) n =2 and H is discrete.

3.5'. Theorem. Let G be a Lie group that is locally isomorphic to SO(2,n), withn > 3. If
H is a closed subgroup of G, such that

o the closure of Adg H is not compact, and

e there is a G-invariant Lorentz metric on G/H,
then, after any identification of g with so0(2,n), the subalgebra by is conjugate to a standard
copy of s0(1,n) in s0(2,n).

N. Kowalsky announced a much more general result than Theorem 3.5’ in [Ko2, Thm. 4],
but it seems that she did not publish a proof before her premature death. She announced
a version of Proposition 2.3’ (with much more general hypotheses and a somewhat weaker
conclusion) in [Ko2, Thm. 3], and a proof appears in her Ph.D. thesis [Kol, Cor. 6.2].

1.5. Remark. It is easy to see that there is a G-invariant Lorentz metric on G/H if and only
if there is an (Adg H)-invariant Minkowski form on g/h. Thus, although Proposition 2.3’
and Theorem 3.5’ are geometric in nature, they can be restated in more algebraic terms. It
is in such a form that they are proved in §2 and §3.

Proposition 2.3’ and Theorem 3.5’ are used in work of S. Adams [Ad3] on nontame actions
on Lorentz manifolds. See [Zi, Ko3, AS, Ze2, Adl, Ad2] for some other research concerning
actions of Lie groups on Lorentz manifolds.

1.6. Acknowledgments. The author would like to thank the Isaac Newton Institute for
Mathematical Sciences for providing the stimulating environment where this work was carried
out. It is also a pleasure to thank Scot Adams for suggesting this problem and providing
historical background. The research was partially supported by a grant from the National
Science Foundation (DMS-9801136).

2. HOMOGENEOUS SPACES OF SO(1,n)

The following lemma is elementary.
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2.1. Lemma. Let m be the standard representation of g = s50(1,k) on R*!, and let g =
-+ a+ n be an Iwasawa decomposition of g.

1) The representation m has only one positive weight (with respect to a), and the corre-
sponding weight space is 1-dimensional.
2) There are subspaces V and W of RF*!) such that
(a) dim(R**/V)=1;
(b) dimW =1;
(c) m(n)V C W;
(d) for all nonzero u € n, we have w(u)?R** = W; and
() for all nonzero u € n and v € RF*!, we have w(u)?v =0 if and only if v € V.

2.2. Corollary. Let ) be a subalgebra of a real Lie algebra g, let @ be a Minkowski form on
8/, and define 7: No(b) — GL(a/b) by m(g)(v +b) = (Adg g)v + b,

1) Suppose T is a connected Lie subgroup of G that normalizes H, such that n(T) C SO(Q)
and Adg T is diagonalizable over R. Then, for any ordering of the T'-weights on g, the
subalgebra § contains codimension-one subspaces of both g% and g~, where gt is the
sum of all the positive weight spaces of T, and g~ is the sum of all the negative weight
spaces of T'.

2) IfU is a connected Lie subgroup of G that normalizes H, such that n(U) C SO(Q) and
Adg U is unipotent, then there are subspaces V/h and W/h of g/, such that
(a) dim(g/V) = 1;

(b) dim(W/h) =1;

(c) iyl CcW;

(d) for each u € u, either W = b + (adgu)?g, or [g,u] C h; and
(e) for all u € u, we have (adyu)?V Cb.

2.3. Proposition. Let H be a Lie subgroup of G = SO(1,n), with n > 2, such that

o the closure of H is not compact; and
o there is an (Adg H)-invariant Minkowski form on g/b.

Then either
1) H°® is conjugate to a standard copy of SO(1,n — 1)° in SO(1,n), or
2) n =2 and H® is trivial.

Proof. Let H be the Zariski closure of H, and note that the Minkowski form is also invari-
ant under Adg H. Replacing H by a finite-index subgroup, we may assume H is Zariski
connected.

Let G = KAN be an Iwasawa decomposition of G.

Case 1. Assume n > 3 and A C H. From Corollary 2.2(1), we see that h contains
codimension-one subspaces of both n and n~. (Note that this implies H° is nontrivial.)
This implies that H is reductive. (Because (H N N)°unip H is a unipotent subgroup that
intersects N nontrivially (and R-rank G = 1), it must be contained in NV, so unip H C N.
Similarly, unip # € N~. Therefore unip # ¢ N N N~ = e.) Then, since H contains a
codimension-one subgroup of N, and since A C H, it follows that H is conjugate to either
SO(1,n — 1) or SO(1,7n). Because H° is a nontrivial, connected, normal subgroup of H, we
conclude that H° is conjugate to either SO(1,n — 1)° or SO(1,n)°. Because g/h # 0 (else
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dimg/h = 0 < 2, which contradicts the fact that there is a Minkowski form on g/b), we see
that H° is conjugate to SO(1,n — 1)°.

Case 2. Assume n > 3 and H does not contain any nontrivial hyperbolic elements. The
Levi subgroup of H must be compact, and the radical of H must be unipotent, so choose a
compact M and a nontrivial unipotent subgroup U such that H = M x U. Replacing H by
a conjugate, we may assume, without loss of generality, that U C N.

Let us show, for every nonzero u € u, that [g,u] ¢ §. From the Morosov Lemma [Ja,
Thm. 17(1), p. 100}, we know there exists v € g, such that [v, u] is hyperbolic (and nonzero).
If [v,u] € b, this contradicts the fact that H does not contain nontrivial hyperbolic elements.

Let V/h and W/h. be subspaces of g/h as in Corollary 2.2(2). Because (adyu)?g = n for
every nonzero u € n, we have W = n+ b (see 2.2(2d)), so dimn/(h N n) = 1 (see 2.2(2b))
and

(2.4) wV]cW=n+hCn+h=n+m

(see 2.2(2c)).

Assume, for the moment, that n > 4. Then

dimu+dim(VNn™) > dim(hNn)+dim(VNn~) > (dimn—1) + (dimn™ — 1)
= (n—2)+(n—-2)>n>dimn.

This implies that there exist v € u and v € V N n~, such that {u,v) = sl(2,R), with [u, v]
hyperbolic (and nonzero). This contradicts the fact that m + n has no nontrivial hyperbolic
elements.

We may now assume that n = 3. For any nonzero u € n, we have

dim[u, V] > dim[u,g] — 1 = dimn+1 > dimn,

so [u,V] ¢ n. Then, from (2.4), we conclude that m # 0, so m acts irreducibly on n. This
contradicts the fact that h N n is a codimension-one subspace of n that is normalized by m.

Case 3. Assume n = 2. We may assume H° is nontrivial (otherwise Conclusion (2) holds).
We must have dimg/h > 2, so we conclude that dim H®° = 1 and dimg/h = 2. Because
SO(1,1) consists of hyperbolic elements, this implies that Adg h acts diagonalizably on g/,
for every h € H. Therefore H® is conjugate to A, and, hence, to SO(1,1)°. d

3. HOMOGENEOUS SPACES OF SO(2,n)

3.1. Theorem (Borel-Tits [BT2, Prop. 3.1]). Let H be an F-subgroup of a reductive alge-
braic group G over a field F' of characteristic zero. Then there is a parabolic F-subgroup P
of G, such that unip H C unip P and H C Ng(unip H) C P.

3.2. Notation. Let k¥ = |n/2]|. Identifying C**! with R?*? yields an embedding of
SU(1,k) in SO(2,2k). Then the inclusion R%**2 < R%+3 yields an embedding of SU(1, k)
in SO(2,2k + 1). Thus, we may identify SU(1, |n/2]) with a subgroup of SO(2,n).

We use the following well-known result to shorten one case of the proof of Theorem 3.5.

3.3. Lemma ([OW, Lem. 6.8]). If L is a connected, almost-simple subgroup of SO(2,n),
such that R-rankL =1 and dim L > 3, then L is conjugate under O(2,n) to a subgroup of
either SO(1,n) or SU(1, [n/2]).
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3.4. Corollary. Let L be a connected, reductive subgroup of G = SO(2,n), such that
R-rankl = 1. Then dimU < n — 1, for every connected, unipotent subgroup U of L.
Furthermore, if dimU = n — 1, then either
1) L is conjugate to SO(1,n)°; or
2) n is even, and L is conjugate under O(2,n) to SU(1,n/2).

3.5. Theorem. Let H be a Lie subgroup of G = SO(2,n), with n > 3, such that

e the closure of H is not compact, and
e there is an (Adg H)-invariant Minkowski form on g/b.

Then H° is conjugate to a standard copy of SO(1,n)° in SO(2,n).

Proof. Let H be the Zariski closure of H, and note that the Minkowski form is also invari-
ant under Adg H. Replacing H by a finite-index subgroup, we may assume H is Zariski
connected.

Let G = KAN be an Iwasawa decomposition of G. For each real root ¢ of g (with respect
to the Cartan subalgebra a), let g4 be the corresponding root space, and let proj,: g — g4
and projsg_s: g — gs + g—4 be the natural projections. Fix a choice of simple real roots o
and B of g, such that dimg, = 1 and dimgg = n — 2 (so the positive real roots are a, g,
a+ (3, and o + 23). Replacing N by a conjugate under the Weyl group, we may assume
n = go + 08 + Ga+8 + Go+28- From the classification of parabolic subgroups [BT1, Prop. 5.14,
p. 99], we know that the only proper parabolic subalgebras of g that contain ny(n) are

(3.6) ng(n), Po =ny(n) +9g-o, and pg=ny(n) +g_p.

Case 1. Assume § contains nontrivial hyperbolic elements. Let t = h N a. Replacing H by
a conjugate, we may assume t # 0.

Subcase 1.1. Assume t € {ker(a + 3), ker5}.

Subsubcase 1.1.1. Assume H is reductive. We may assume t = ker(a + 3) (if necessary,
replace H with its conjugate under the Weyl reflection corresponding to the root ¢). Then,
from Corollary 2.2(1), we see that § contains a codimension-one subspace of go4+25+ 85+ 9-a-
(Note that this implies H® is nontrivial.)

Let ' = got g+ Got28 + 95+ 9-a, so 1 is the Lie algebra of a maximal unipotent subgroup
of G. (In fact, n’ is the image of n under the Weyl reflection corresponding to the root «.)
From the preceding paragraph, we know that

dim(h N n') > dim(gay2s + 95 + 9-o) — 1 =n— 1.

Therefore, Corollary 3.4 implies that H is conjugate (under O(2,n)) to either SO(1,7n) or
SU(1,n/2). It is easy to see that H is not conjugate to SU(1,n/2). (See [OW, proof of
Thm. 1.5] for an explicit description of su(l,n/2) Nn. If n is even, then n > 3, so su(l,n/2)
does not contain a codimension-one subspace of any (n — 2)-dimensional root space, but §
does contain a codimension-one subspace of gg.) Therefore, we conclude that H is conjugate
to SO(1,n). Then, because H® is a nontrivial, connected, normal subgroup of H, we conclude

that H° = (H)° is conjugate to SO(1,n)°.

Subsubcase 1.1.2. Assume H is not reductive. Let P be a maximal parabolic subgroup
of G that contains H (see Theorem 3.1). By replacing P and H with conjugate subgroups,
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we may assume that P contains the minimal parabolic subgroup Ng(N). Therefore, the
classification of parabolic subalgebras (3.6) implies that P is either P, or Pj.

Subsubsubcase 1.1.2.1. Assume t = ker(a + 3). From Corollary 2.2(1), we see that
(and hence also p) contains codimension-one subspaces of got25 + 95 + G- and g_a—2s +
9_5 + go. Because p, does not contain such a subspace of g_o_25 + g—g + ga, we conclude
that P = Ps. Furthermore, because the intersection of ps with each of these subspaces
does have codimension one, we conclude that b has precisely the same intersection; therefore

(Gat28 + 8) + (8-5 + 9o) C h. Hence § D [ga, 5] = Gatps- We now have
(adg Go+6)’8 = Bo + Gotp + Gatas =0 (mod b),
so Corollary 2.2(2d) implies

b D [9,80+8] D [8-a-8, Fats] D ker B.
This contradicts the fact that h Na = t = ker(a + B).

Subsubsubcase 1.1.2.2. Assume t = ker3. From Corollary 2.2(1), we see that § (and
hence also p) contains a codimension-one subspace of g_n + g—a—p + g—a—25. Because neither
po nor pg contains such a subspace, this is a contradiction.

Subcase 1.2. Assume t € {kero,ker(a + 20)}. We may assume ¢ = kera (if necessary,
replace H with its conjugate under the Weyl reflection corresponding to the root 3). From
Corollary 2.2(1), we see that h contains a codimension-one subspace of gg + gat+s + Ga+28-
Because any codimension-one subalgebra of a nilpotent Lie algebra must contain the com-
mutator subalgebra, we conclude that § contains ga425. Then we have

(adg Ga426)’0 = Gat2s =0 (mod b),
so Corollary 2.2(2d) implies

b D [8,90428] D 85 + Foip + Bat2s-

Similarly, we also have ) D g_g + g-o—g + g-a—28- It is now easy to show that § O g4 for
every real root ¢, so h = g. This contradicts the fact that g/ # 0.

Subcase 1.3. Assume t contains a regular element of a. Replacing H by a conjugate under
the Weyl group, we may assume that n is the sum of the positive root spaces, with respect
to t. Then, from Corollary 2.2(1), we see that h contains codimension-one subspaces of
both n and n~. Therefore, h contains codimension-one subspaces of gg + ga+s + Gat2s and
g-8 + 9-a—p + 9-a—28, o the argument of Subcase 1.2 applies.

Case 2. Assume b does not contain nontrivial hyperbolic elements. The Levi subgroup of
H must be compact, and the radical of H must be unipotent, so choose a compact M and
a nontrivial unipotent subgroup U such that H = M x U. Choose subspaces V/h and W/}
of g/h as in Corollary 2.2(2).

Let P be a proper parabolic subgroup of G, such that U C unip P and H C P (see Theo-
rem 3.1). Replacing H and P by conjugates, we may assume, without loss of generality, that
P contains the minimal parabolic subgroup Ng(NN) (so unip P C N). From the classification
of parabolic subalgebras (3.6), we know that there are only three possibilities for P. We
consider each of these possibilities separately.

First, though, let us show that

(3.7) for every nonzero u € u, we have {g,u] ¢ b.



HOMOGENEOUS LORENTZ MANIFOLDS 7

From the Morosov Lemma [Ja, Thm. 17(1), p. 100], we know there exists v € g, such that
[v,u] is hyperbolic (and nonzero). If [v,u] € B, this contradicts the fact that § does not
contain nontrivial hyperbolic elements.

Subcase 2.1. Assume P = Ng(N) is a minimal parabolic subgroup of G.

Subsubcase 2.1.1. Assume projgu # 0. Choose u € u, such that projsu # 0, and let
Z = (adgu)’g-a-26- (So dimZ = 1, proj_, Z # 0, and proj_,_gZ = 0.) From Corol-
lary 2.2(2d), we know that Z C W. Then, because proj_, § C proj_, p = 0, we conclude,
from Corollary 2.2(2b), that W = § + Z.

Because W = h + Z C p + Z, we have proj_,_g W = 0. Therefore, because projs u # 0,
we conclude, from Corollary 2.2(2c), that proj_,_,3V = 0, so Corollary 2.2(2a) implies
that V = ker(proj_,_s5). In particular, we have g_g C V, so Corollary 2.2(2c) implies
[8-g,u] C W. Therefore, we have

[g—ﬁa pI'Ojﬁ u] - [g—ﬁa u+ (ga + Yot + ga+2ﬁ)] = [g—ﬁ, u’] + [g—ﬁ7 Oo + Ya+p + ga+2ﬁ]
C WH(ga+80+8) =0+ Z+ (8o + Gats) CM+n+ Z.
Because proj_,[g-p, projs u} = 0, we conclude that [g_g, projsu] C m + n. This contradicts
the fact that m + n does not contain nontrivial hyperbolic elements.

Subsubcase 2.1.2. Assume projsu = 0. Replacing H by a conjugate under N, we may

assume m C go, so projgh = 0.

We have 4 C go + Gats + Gat28, 50 (adg u)2g C o + Gats + Gat2p for every u € u. Thus,
Corollary 2.2(2d) implies W C (ga + Gots + Ga+28) + b-

We have

Pr0jsg_g W C Projpe_p(0a + Gats + Ja+28) + Projge_ph =0,
so Corollary 2.2(2c) implies that projge_g ((adgu)V) = 0.
Subsubsubcase 2.1.2.1. Assume proj,u # 0, for some u € u. From the conclusion of
the preceding paragraph, we know that proj_g ((aJdg u)V) = 0. Because projgu = 0 and
proj, # 0, this implies proj_,_sV =0, so V = ker(proj_,_g) (see 2.2(2a)). In particular,
g-o C V, so Corollary 2.2(2¢) implies
[gon.g—a] C [u’ + (ga+ﬁ + ga+2ﬂ)ag—a] - [u7 V] + [ga+ﬂ + ga+2ﬁ,g—a]
C WHgsCh+ncCm+n
This contradicts the fact that m + n does not contain nontrivial hyperbolic elements.

Subsubsubcase 2.1.2.2. Assume proj,,.gu # 0, for some u € u. From Subsubsub-
case 2.1.2.1, we may assume proj,u = 0. Because 0 = projﬂEB_ﬁ((adg ©)V) has codimen-
sion < 1 in projge_g((adgu)g) (see 2.2(2a)), which contains the 2-dimensional subspace
projﬂe,_ﬁ([u,g_a_gﬁ + g_a]), we have a contradiction.

Subsubsubcase 2.1.2.3. Assume u = go42p. (This argument is similar to Subsubsubcase
2.1.2.1.) Because proj,((ady )V) = 0, we know that proj_,_zV =0,s0 V = ker(proj_,_g)
(see 2.2(2a)). In particular, g_,—25 C V, so Corollary 2.2(2c) implies

[ga+2ﬁyg—a—2ﬁ] C [u, V] cCWcC b +nCm+n

This contradicts the fact that m + n does not contain nontrivial hyperbolic elements.
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Subcase 2.2. Assume P = P,. We may assume there exists € §, such that proj_,z #0
(otherwise, H C Ng(N), so Subcase 2.1 applies). Note that, because U C unip P, we have
proj, u = 0.

Subsubcase 2.2.1. Assume proj,,zu # 0. Choose u € u, such that proj,,su # 0. Then
[z,u} € {h,u] Cu, and [[z,u],u] is a nonzero element of ga 424, SO we see that gayas C [u,u].
Because every unipotent subgroup of SO(1, k) is abelian, we conclude that adyga+2s acts
trivially on g/h, which means § D [g, ga+25]- This contradicts (3.7).

Subsubcase 2.2.2. Assume proj,,su = 0. We may assume, furthermore, that proj, § # 0
(otherwise, by replacing H with its conjugate under the Weyl reflection corresponding to the
root a, we could revert to Subcase 2.1). Then, because [h,u] C u, we must have projzu = 0.
Thus, 4 = ga42s. From Corollary 2.2(2d), we have

W= [gagoz+2ﬂ, ga+2ﬁ] + h = fGat2s t+ [J Cu+ E = 6,
SO

WN (g6 +8a4s) C HN(gs + Gats) = (HN 1) N (g5 + Gartp)
= uN(gp + Ga+s) = Ga+26 N (86 + Ga+s) = 0.
On the other hand, from Corollary 2.2(2c), we know that W contains a codimension-one

subspace of [g, §at25], S0 W contains a codimension-one subspace of gg + go4s. This is a
contradiction.

Subcase 2.3. Assume P = Pj. Note that, because U C unip P, we have proj;u = 0.
From Corollary 2.2(2d), we have

W = b + (a‘dﬂ u)2g - b + (ga + Ba+p + ga+2ﬁ)
= b+ unipps C (m + u) + unip pg = m + unip pg.

Subsubcase 2.3.1. Assume there is some nonzero u € u, such that proj,u = 0. Replacing
H by a conjugate (under G_p), we may assume proj,, s u 7 0.

Let V' = VN(g-a+9-a-g). Because V' contains a codimension-one subspace of g_o+g—a—p
(see Corollary 2.2(2a)), one of the following two subsubsubcases must apply.

Subsubsubcase 2.3.1.1. Assume there exists v € V', such that proj_,_gv = 0. From
Corollary 2.2(2c), we have {u,v] € W. Then, because [u,v] is a nonzero element of gg, we
conclude that

0#WnNgs C(m+unippg)Ngg =0.
This contradicts the fact that M, being compact, has no nontrivial unipotent elements.

Subsubsubcase 2.3.1.2. Assume proj_,_g V' = g_o_p. For v € V', we have projy[u,v] =
[Pr0jayp 4, Proj_,_gv]. Thus, there is some v € V', such that projy[u,v] is hyperbolic (and
nonzero). On the other hand, from Corollary 2.2(2c), we have [u,v] € W = m + unip pg.
This contradicts the fact that m C  does not contain nonzero hyperbolic elements.

Subsubcase 2.3.2. Assume proj,u # 0, for every nonzero u € u. Fix some nonzero
u € u. Because dimu, = 1, we must have dimu = 1 (so u = Ru). Replacing H by a
conjugate (under Gg), we may assume proj,,u = 0. Also, we may assume proj,,,su # 0
(otherwise, we could revert to Subsubcase 2.3.1 by replacing H with its conjugate under the
Weyl reflection corresponding to the root 3).
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Let t = [u,9-o + g-a—28]. Because (ga,g—o) and (go+28,d-a—25) centralize each other,
we see that t = [g.,0-a] + [@a+28,8—a—20] 15 a two-dimensional subspace of g consisting
entirely of hyperbolic elements. Because V' contains a codimension-one subspace of g_, +
g-a-2p (see Corollary 2.2(2a)), and [u,V] C W (see Corollary 2.2(2c)), we see that W
contains a codimension-one subspace of t, so W contains nontrivial hyperbolic elements.
This contradicts the fact that W C m + unipps does not contain nontrivial hyperbolic
elements. O
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