
GLOBAL THEOREMS ON VERTICESAND FLATTENINGS OF CLOSED CURVESRi
ardo Uribe{VargasUniversit�e Paris 7, �Equipe G�eom�etrie et Dynamique.UFR de Math. Case 7012. 2, Pl. Jussieu, 75005 Paris.uribe�math.jussieu.frA vertex of a 
urve in the Eu
lidean plane is a point where the 
urvature isextremal. Equivalently a vertex is a point where the order of 
onta
t of the os
u-lating 
ir
le with the 
urve is higher than usual (this will be pre
ised later). The
lassi
al four{vertex theorem [14℄ states that: Any 
onvex 
urve in the Eu
lideanplane has at least four verti
es. For example, the points of interse
tion of an ellipsewith its prin
ipal axes are the verti
es of this 
urve.Various higher dimensional generalizations of the four{vertex theorem are givenand some properties of 
losed 
urves related to its verti
es and its 
attenings arestudied. In parti
ular we introdu
e a 
lass of 
urves, whi
h we 
all spheri
ally
onvex, in the Eu
lidean spa
e Rn , the sphere Sn � Rn+1 , and the Loba
hevskianspa
e Ln . We prove the following theorems: Any spheri
ally 
onvex 
urve in R2k(respe
tively in S2k � R2k+1 , RP 2k and L2k ) has at least 2k + 2 verti
es. We alsoprove that these three theorems are equivalent for our 
lass of 
urves.In [8℄, Barner introdu
ed a 
lass of 
urves (
alled below Barner 
urves) in theproje
tive spa
e RP n and proved that these 
urves have at least n + 1 points inwhi
h the os
ulating hyperplane is stationary. We introdu
e a 
lass of 
urves inthe odd dimensional Lobat
hevskian spa
es (the 
lass analogue to Barner 
urves)and prove that Barner's theorem also holds in odd dimensional Lobat
hevskianspa
es.We prove that the verti
es are extrema of the radius of the os
ulating hyper-sphere and that the 
onverse is not true. We give a formula to 
al
ulate the verti
esof a 
urve in Rn as the zeros of a determinant. Our formula does not depend on aspetial parametrization. With our formula we 
al
ulate the number of verti
es ofthe generalized ellipses introdu
ed in [6℄.A 
onvex 
urve has no 
attening and its os
ulating hyperplane interse
ts itonly at the point of os
ulation. A 
urve in RP 2 (R2) is 
onvex if and only if it hasthese two properties. To answer a question of V. Arnol'd ([6℄), we show that thistwo properties don't imply 
onvexity for 
urves in RP n , for n > 2.We prove that any small enough generi
 perturbation in R2k+1 (taking thederivatives into a

ount) of a spheri
ally 
onvex 
urve in S2k � R2k+1 has at least2k + 2 extrema of the radius of the (2k � 1)-os
ulating sphere. We also show thatany small enough generi
 perturbation of a 
losed 
urve embedded in S2 � R3 hasat least 4 points with extremal 
urvature.1



The 
onditions de�ning 
lasses of 
losed 
urves in Rn that guarantee a minimumnumber of 
attenings (or verti
es) on ea
h 
urve of that 
lass has been a 
lassi
alobje
t of study. The interest on this subje
t was revived by the re
ent progres insymple
ti
 and 
onta
t geometries and the relations of this problems with Sturmtheory (see [6℄, [4℄, [5℄, [7℄, [13℄, [1℄, [20℄, [24℄). We study three 
lasses of 
urvesin R3 all whose elements have at least four 
attenings ([6℄, [21℄, [19℄) and give afour{
attening 
onje
ture for a 
losed 
urve 
 in R3 in terms of the 1{dimensionalLegendrian knot in ST �S2 asso
iated to the tangent indi
atrix T
 � S2 of the
urve 
 in R3 .x1. Higher Dimensional Four-Vertex Theorems for Curves in the Eu
lidean Spa
eRn , in the Sphere Sn � Rn+1 , in the Proje
tive Spa
e RP n and in theLoba
hevskian Spa
e Ln .x2. Barner's Theorem in Lobat
hevskian Spa
es.x3. Generating Family of the Normal Map of a Curve in Rn , Some Properties ofVerti
es and a Formula for Cal
ulate Them.x4. Weakly Convex Curves in Rn and RP n .x5. A Non{standard 4{Vertex Theorem.x6. On Three Classes of Closed Curves in R3 Having at Least 4 Flattenings and a4{Flattening Conje
ture.A
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x1. Higher Dimensional Four-Vertex Theoremsfor Curves in the Eu
lidean Spa
e Rn ,in the Sphere Sn � Rn+1 ,in the Proje
tive Spa
e RP n andin the Loba
hevskian Spa
e LnA 
urve embedded in the Eu
lidean spa
e Rn is 
alled spheri
ally 
onvex if for any n{tupleof points of the 
urve there exists a hypersphere through these points that does not interse
t the
urve elsewhere. We also introdu
e the 
lass of spheri
ally 
onvex 
urves in the following spa
es:the sphere Sn � Rn+1 , the proje
tive spa
e RP n and the Loba
hevskian spa
e Ln . We prove:Any spheri
ally 
onvex 
urve in R2k (respe
tively in S2k � R2k+1 , RP 2k and L2k ) has at least2k + 2 verti
es.1. Introdu
tion and ResultsBelow, a 
urve in the Eu
lidean spa
e Rn always means a smooth immersion
 : S1 ! Rn . We will always assume that the derivatives of 
 of order 1; : : : ; n� 1;are linearly independent at any point (this is true for generi
 
urves). We willoften identify the immersion with its image and use the abbreviation 
 to denote
(S1). In this 
hapter we will 
onsider 
urves in the Eu
lidean spa
e Rn , in then{dimensional sphere Sn � Rn+1 and in the Loba
hevskian spa
e Ln modeled ona ball in the Eu
lidean spa
e Rn .We state the following 
onventions:a) A 
urve 
 � Sn � Rn+1 is refered as a spatial 
urve when it is 
onsidered asa 
urve in Rn+1 , otherwise it is regarded as a 
urve in Sn.b) Let Ln be the open unit ball in Rn , (the interior of the sphere Sn�1 � Rn)
onsidered as the Poin
ar�e's model of the n-dimensional Lobat
hevskian spa
e.A hyperboli
 hyperplane in Ln is the interse
tion of Ln with a hypersphere of Rnorthogonal to Sn�1. The spheres, horospheres and equidistant spheres will be 
alledgeneralized spheres.We will systemati
ally use the notion of order of 
onta
t:Definition { Let M be a d{dimensional submanifold of Rn , 
onsidered as a
omplet interse
tion: M = fx 2 Rn : g1(x) = � � � = gn�d(x) = 0g. We say thatk is the order of 
onta
t of a 
urve 
 : t 7! 
(t) 2 Rn with the submanifold M ,at a point of interse
tion 
(t0), if ea
h fun
tion g1 Æ 
; : : : ; gn�d Æ 
 has a zero ofmultipli
ity at least k at t = t0, and at least one of them has a zero of multipli
ityk at t = t0.Roughly spiking, this de�nition means, in the former language of geometers,that the 
urve 
 and the submanifold M \meet at k 
onse
utive points", or that
 and M \meet at k in�nitely 
lose points".Remark { In the most part of 
ases 
onsidered here M will be a d{dimensionalaÆne subspa
e or a d{dimensional sphere.Example { The order of 
onta
t of a smooth 
urve in Rn with its tangent line(at the point of tangen
y) is two for the generi
 points of the 
urve. The order of3




onta
t of the 
urve y = x3 with the line y = 0 is 3: the equation x3 = 0 has aroot of multipli
ity 3.By 
onvention, the set of k{dimensional spheres of the Eu
lidean spa
e Rn 
on-tains the k{dimensional aÆne subspa
es, 
onsidered as spheres of in�nite radius.Definition { For k = 1; : : : ; n�1; the k-os
ulating sphere at a point of a 
urvein the Eu
lidean spa
e Rn (in Sn or in Ln) is the k{dimensional sphere (generalizedsphere in Ln), whose order of 
onta
t with the 
urve at that point is at least k+2.For k = n� 1 we will simply write os
ulating hypersphere.Example { The order of 
onta
t of a plane 
urve and its os
ulating 
ir
le at ageneri
 point of the 
urve is 3.We observe that the k{os
ulating spheres of a spatial 
urve 
 � Sn � Rn+1also lie in Sn: They are the interse
tion of the k + 1{os
ulating subspa
es of the
urve with Sn.Definition { A vertex of a 
urve in Rn (in Sn or in Ln) is a point where theorder of 
onta
t with the os
ulating hypersphere is no less than n+ 2.Example { An ellipse in the plane R2 has 4 verti
es. They are the points atwhi
h the ellipse interse
ts its prin
ipal axes.The following de�nition, 
lassi
al for 
urves in Rn and RP n , is extended to
urves in Sn and Ln.Definition { An embedded 
urve in Rn (or RP n , or Sn or Ln) is 
alled 
onvex ifit interse
ts any hyperplane (or proje
tive hyperplane, or maximal hypersphere orhyperboli
 hyperplane, respe
tively) at no more than n points, taking multipli
itiesinto a

ount.Example { A plane 
urve is 
onvex if it interse
ts any straight line in at mosttwo points, taking multipli
ities into a

ount.Example { For n = 2k, the generalized ellipse, given by(
os t; sin t; 
os 2t; sin 2t; : : : ; 
os kt; sin kt), is 
onvex.The following theorem was proved in [8℄ and [22℄. In the next 
hapter we givea new proof based on Sturm theory:Theorem { Any 
onvex 
urve in R2k has at least 2k + 2 verti
es.In [22℄ and [23℄ we proved that this theorem holds for the 
onvex 
urves in thesphere S2k � R2k+1 , in the proje
tive spa
e RP 2k and in the Loba
hevskian spa
eL2k . These theorems are a dire
t 
onsequen
e of our theorems R, S and L statedand proved below.We introdu
e a 
lass of 
urves generalizing the 
onvex ones:Definition { A 
urve embedded in Rn (Sn or Ln) is 
alled spheri
ally 
on-vex if for ea
h k{tuple of points of the 
urve, k � n, with positive multipli
itiessatisfying m1+ � � �+mk = n, there exists at least one hypersphere of Rn (or hyper-sphere of Sn or hyperboli
 hypersphere of Ln , respe
tively) interse
ting the 
urveat these points, with 
orresponding multipli
ities, that does not interse
t the 
urveelsewhere. The hyperspheres of in�nite radius are not ex
luded.4



Remark { For any point of a spheri
ally 
onvex 
urve there exists a hypersphere
ontaining the 
odimension 2 os
ulating sphere through this point whi
h does notinterse
t the 
urve elsewhere.Remark { Spheri
ally 
onvex 
urves exist in Eu
lidean spa
es, spheres andLoba
hevskian spa
es of even dimension only.Remarks { Any 
onvex 
urve is spheri
ally 
onvex. The aÆne transfomationsof Rn preserve 
onvex 
urves but don't preserve verti
es. Moreover, the 
onformaltransformations of Rn (respe
tively of Sn or of Ln) preserve verti
es and preservespheri
ally 
onvex 
urves but don't preserve 
onvex 
urves. So to study globalproblems about verti
es it seems to be more natural to 
onsider spheri
ally 
onvex
urves instead of 
onvex ones.Example { Let 
 be a 
losed 
onvex 
urve in the Eu
lidean spa
e R2 (or R2k ).Let p 2 
 be a point whi
h is not a vertex of 
. Consider an inversion � 
enteredat a point not belonging to 
 and belonging to the os
ulating 
ir
le (hypersphere,respe
tively) of 
 at p. Then the image of 
 by the inversion � is a non{
onvex 
urvewhi
h is spheri
ally 
onvex. In parti
ular, the order of 
onta
t of �(
) with itstangent line (hyperplane, respe
tively) at the point �(p) is 3 (2k+1, respe
tively).Our main results in this paragraph are theorems R, S and L below ([24℄).Theorem R { Any spheri
ally 
onvex 
urve in the Eu
lidean spa
e R2k has atleast 2k + 2 verti
es.Theorem S { Any spheri
ally 
onvex 
urve in the sphere S2k � R2k+1 has atleast 2k + 2 verti
es.Theorem L { Any spheri
ally 
onvex 
urve in L2k has at least 2k+2 verti
es.Theorems R, S and L are dire
t 
orollaries of the following theorem:Theorem 1 { If a spheri
ally 
onvex 
urve in R2k (respe
tively in S2k or inL2k) transversally interse
ts a hypersphere at l points then it has at least l distin
tverti
es.Convex 
urves in Rn (in Sn or Ln) exist only for even dimensions. However,
onvex 
urves exist in proje
tive spa
es of any dimension.Example 1 { The proje
tive line RP 1 is a 
onvex 
urve in RP 1 itself. The 
urve� 7! (
os �; sin �; 
os 3�; sin 3�) is a 
onvex 
urve in RP 3 : the antipodal points areidenti�ed, i.e. � is identi�ed with � + �.To 
onsider verti
es of 
urves in the proje
tive spa
e, �x the spheri
al metri
in RP n by the double 
overing, � : Sn ! RP n , identifying antipodal points. Avertex of a 
urve in 
 in RP n is a point where the lifted 
urve ��1(
) has a vertexas a spheri
al 
urve.Definition { An embedded 
urve in RP n is 
alled spheri
ally 
onvex if its lift��1(
) is spheri
ally 
onvex in Sn. Antipodal points are 
ounted as one point.As a 
onsequen
e of theorem S we have5



Theorem P2k { Any spheri
ally 
onvex 
urve in the proje
tive spa
e RP 2k hasat least 2k + 2 verti
es.Barner's Theorem on 
attenings holds for Barner 
urves in RP n for any n � 1.However, for odd{dimensional proje
tive spa
es we have the following result [23℄on verti
es:Theorem P2k+1 { There exist 
onvex 
urves in RP 2k+1 (and thus spheri
ally
onvex 
urves) having no vertex.2. ProofsFirst, we prove that the three versions of theorem 1 (for R2k , for S2k, and forL2k) are equivalent (In 
ontrast to the 
orresponding theorems for 
onvex 
urves).Next, we prove Theorem 1 for 
urves in S2k.Let Hn be a hyperplane of Rn+1 . Consider any inversion � with respe
t to apoint exterior to Hn. The image of a 
onvex 
urve in Hn may be non{
onvex in�(Hn) = Sn. Conversely, the image of a 
onvex 
urve in Sn may be non{
onvex inHn. However, we have theProposition 1 { A 
urve in Sn = �(Hn) not 
ontaining the 
enter of theinversion is spheri
ally 
onvex in Sn if and only if its image is spheri
ally 
onvexin Hn = �(Sn).Proof { The hyperspheres of Rn (in
luding those of in�nite radius) are sentonto the hyperspheres of Sn, and vi
e versa. �Definition { For k = 1; : : : ; n � 1, the k-os
ulating subspa
e at a point of a
urve in Rn is the k-dimensional aÆne subspa
e spanned by the �rst k derivativesof the 
urve at that point.Remark { The order of 
onta
t of the k-os
ulating subspa
e with the 
urve isat least k + 1. For k = 1; : : : ; n � 2; the (k + 1)-os
ulating subspa
e 
ontains thek-os
ulating sphere.Definition { A 
attening of a 
urve 
 in Rn (RP n) is a point where thederivatives of 
 of order 1; : : : ; n; are linearly dependent.Remark { The order of 
onta
t of a 
urve with its os
ulating hyperplane, at a
attening is at least n + 1, whereas at an ordinary point it is n.Example { The 
attenings of a plane 
urve are their in
e
tions. The 
atteningsof a 
urve in R3 are those at whi
h the torsion vanishes.In [17℄ and [18℄ there is a proposition equivalent to the following lemma, provedin [22℄:Lemma 1 { Any inversion whose 
entre does not belong to a hyperplane H ofRn+1 sends the verti
es of any 
urve 
 of H onto the 
attenings of its image.To prove lemma 1 we need the following two lemmas:Lemma{ The image of a sphere Sn�1 lying in a hyperplane H of Rn+1 underan inversion belongs to a hyperplane of Rn+1 and it still is a (n� 1){dimensionalsphere. 6



Proof. { The n-dimensional spheres 
ontaining Sn�1 
over all the spa
e. Hen
e,one of them goes through the 
entre of the inversion. The inversion sends thissphere to a hyperplane and the hyperplane H to a hypersphere. So the image ofSn�1 is the interse
tion of a hyperplane and a hypersphere. �Lemma{ The image of the os
ulating hypersphere of a 
urve 
 lying in a hyper-plane of Rn+1 under an inversion � whose 
entre does not belongs to the hyperplaneis the (n � 1)-os
ulating sphere of the image 
urve �(
) and is 
ontained in theos
ulating hyperplane of �(
).Proof. { By the pre
eding lemma, the image of the os
ulating hypersphere of 
belongs is a sphere of dimension n�1. It is os
ulating sin
e the inversion preservesorder of 
onta
t. So the hyperplane 
ontaining it is the os
ulating hyperplane. �Proof of lemma 1 { By the pre
eding lemma, the inversion � sends the os-
ulating hyperspheres of a 
urve in a hyperplane H onto the (n � 1)-os
ulatingspheres of the image 
urve in Rn+1 . Sin
e the order of 
onta
t is preserved by theinversion, the verti
es of the hyperplane 
urve 
 are sent onto the points at whi
hthe order of 
onta
t of the image 
urve with its (n � 1)-os
ulating sphere (andwith the os
ulating hyperplane) is at least n+2. So the verti
es of the hyperplane
urve 
 are sent onto the 
attenings of the spatial 
urve �(
). �Lemma 2 ( see [22℄) { The verti
es of a spheri
al 
urve 
 � Sn � Rn+1 arethe 
attenings of 
 regarded as a spatial 
urve.Proof { The os
ulating hyperplane at a point of the spatial 
urve 
 � Sn � Rn+1
ontains the (n�1)-os
ulating sphere at that point. So at any point of 
 the orderof 
onta
t with its (n� 1)-os
ulating sphere and with its os
ulating hyperplane isthe same. �Lemma 2, proposition 1 and lemma 1 imply that theorem 1 for R2k is equivalentto theorem 1 for S2k.Consider the Lobat
hevskian spa
e Ln � Rn . A 
onvex 
urve in Ln maybe non{
onvex 
onsidered as a 
urve of Rn . Re
ipro
ally, a 
urve 
ontained inLn � Rn whi
h is 
onvex in Rn may be non{
onvex in Ln . However we have theProposition 2 { A 
urve in Ln � Rn is spheri
ally 
onvex in Ln if and onlyif it is spheri
ally 
onvex in Rn .Proof { The generalized hyperspheres of Ln are interse
tions of Ln with hyper-spheres of Rn (may be of in�nite radius). �Proposition 2 implies that theorem 1 for R2k and theorem 1 for L2k are equiv-alent.To prove theorem 1, for S2k, we need introdu
e a de�nition and state a resultof [8℄.Definition { A 
urve in Rn (in RP n) is 
alled a Barner 
urve if for every(n� 1){tuple of points of the 
urve there exists a hyperplane through these pointsthat does not interse
t the 
urve elsewhere.7



In [8℄, is proved that Any Barner 
urve in RP n transversally interse
ted by ahyperplane at l points has at least l distin
t 
attenings.We will use the following version of the pre
eding statement:Barner's Theorem { Any Barner 
urve in R2k+1 transversally interse
tedby a hyperplane at l points has at least l distin
t 
attenings.Proof of theorem 1 { We will prove that any spheri
ally 
onvex 
urve 
 ofS2k � R2k+1 is a Barner 
urve 
onsidered as a spatial 
urve. Let q1; : : : ; q2k be 2kpoints of 
. By hypothesis there is a hypersphere S2k�1 � S2k through these pointsnot interse
ting 
 elsewhere. The hyperplane of R2k+1 
ontaining S2k�1 meets 
at the points q1; : : : ; q2k and does not interse
t it elsewhere. So 
 is a Barner 
urveof R2k+1 . If 
 is transversally interse
ted by a hypersphere � of S2k at l pointsthen the hyperplane of R2k+1 
ontaining � interse
ts 
 transversally at the samel points. By Barner's theorem 
 has at least l distin
t 
attenings. By lemma 2,the spheri
al 
urve 
 � S2k � R2k+1 has at least l distin
t verti
es. This provestheorem 1.Proof of theorem P 2k+1 { We will prove that the 
onvex 
urve in RP 2k+1 givenby 
 : � 7! (
os �; sin �; 
os 3�; sin 3�; : : : ; 
os(2k + 1)�; sin(2k + 1)�);(identifying antipodal points) has no vertex. The 
urve 
 lies in a hypersphere ofR2k+2 . The verti
es of the spheri
al 
urve 
 are its 
attenings, 
onsidering 
 as aspatial 
urve. So we must show that 
 has no 
attenings. All 
urvatures of 
 are
onstant; thus it suÆ
es to 
he
k that 
(�)j�=0 is not a 
attening. So it suÆ
es(and it is easy) to 
he
k that the Wronskian of 
 at � = 0 does not vanish. (TheWronskian of 
 is the determinant of the matrix whose 
olums are the �rst 2k+2derivatives of 
). �
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x2. Barner's Theorem in Lobat
hevskian Spa
esWe 
onsider the natural generalization of Barner 
urves in Lobat
hevskian spa
es and provea generalization of the Barner's theorem: Any Barner 
urve in the Lobat
hevskian spa
e L2k+1has at least 2k + 2 hyperboli
 
attenings.1. Introdu
tion and ResultsLet Ln denote the open unit ball in Rn , (the interior of the sphere Sn�1 � Rn)
onsidered as Poin
ar�e's model of the n-dimensional Lobat
hevskian spa
e. Ahyperboli
 hyperplane in Ln is the interse
tion of Ln with a hypersphere of Rnorthogonal to Sn�1.Definition { The os
ulating hyperboli
 hyperplane at a point of a 
urve in Lnis the hyperboli
 hyperplane whose order of 
onta
t with the 
urve at that pointis at least n.We re
all the de�nition of 
attening given in x1 and generalize it to 
urves inLobat
hevskian spa
es:Definition { A 
attening (hyperboli
 
attening) of a 
urve in the Eu
lideanor aÆne spa
e Rn (Ln , respe
tively) is a point where the order of 
onta
t of the
urve with its os
ulating hyperplane (hyperboli
 hyperplane, respe
tively) is atleast n+ 1, whereas at an ordinary point it is n.We generalize the de�nition of Barner 
urves to 
urves in Lobat
hevskianspa
es:Definition { A 
urve embedded in Ln is 
alled a Barner 
urve if for ea
hk{tuple of points of the 
urve, k � n � 1, with positive multipli
ities satisfyingm1 + � � � + mk = n � 1, there exists at least one hyperboli
 hyperplane of Lninterse
ting the 
urve at these points, with 
orresponding multipli
ities, that doesnot interse
t the 
urve elsewhere.Barner 
urves exist only in odd-dimensional Lobat
hevskian spa
es.The main results of this paragraph are theorems 1 and 2 below ([24℄):Theorem 1{ If a Barner 
urve in L2k+1 transversally interse
ts a hyperboli
hyperplane in l points then it has at least l distin
t hyperboli
 
attenings.Corollary { Any Barner 
urve in L2k+1 has at least 2k+2 distin
t hyperboli

attenings.Definition { Let p be a point of Rn . A 
urve in Rn is 
alled a p{Barner 
urveif for ea
h k{tuple of points of the 
urve (k � n � 1) with positive multipli
itiessatisfying m1+ � � �+mk = n� 1, there exists a hypersphere interse
ting the 
urveat these points, with 
orresponding multipli
ities, that does not interse
t the 
urveelsewhere and that 
ontains p.Definition { Let p be a point of Rn . A point q of a 
urve in Rn is 
alleda p�
attening of the 
urve if there exists a hypersphere 
ontaining p and whoseorder of 
onta
t with the 
urve at q is at least n + 1.Theorem 2 { Let p 2 R2k+1 . If a p{Barner 
urve transversally interse
ts inl points a hypersphere 
ontaining p then it has at least l p�
attenings.9



Corollary { Any Barner 
urve with respe
t to a point p 2 R2k+1 has at least2k + 2 p�
attenings.2. ProofsWe will prove that theorem 1, theorem 2 and Barner's theorem (for 
urves inR2k+1) are equivalent.First, we prove that theorem 2 implies Barner's theorem for 
urves in R2k+1 :Barner's theorem for 
urves in R2k+1 is obtained as a parti
ular 
ase of theorem 2when the point p is at in�nity.Lemma 1 { Let � be an inversion with respe
t to a hypersphere in Rn+1 , andlet Hn be a hyperplane not 
ontaining its 
entre. Let Sn�1 be a hypersphere of Hn.Then all the hyperplanes 
ontaining the image under � of some hypersphere of Hnorthogonal to Sn�1 have a 
ommon point O.Remark 1 { The inversion sends the hyperplane Hn onto a hypersphere. If theimage of Sn�1 under � is an equator of this hypersphere then the point O of lemma1 is at in�nity.Proof of lemma 1. { Let C be the 
entre of the hypersphere Sn�1 � Hn.Consider a point R in Sn�1. Consider a hypersphere Ŝn in Rn+1 
ontaining boththe 
entre Q of the inversion and a hypersphere of Hn orthogonal to Sn�1. Thepower of C with respe
t to the hypersphere Ŝn is CR �CR. Hen
e the line throughthe points C and Q interse
ts the hypersphere Ŝn at Q and at a point P su
h thatCQ � CP = CR � CR. So all hyperspheres 
ontaining both the 
entre Q of theinversion and some hypersphere of Hn orthogonal to Sn�1 must also 
ontain thepoint P . The point O of lemma 1 is �(P ). �Corollary { Let �, Hn � Rn+1 and O be like in lemma 1. Let Ln � Hnbe the n-dimensional Lobat
hevskian spa
e and let H 0 be any hyperplane not goingthrough O, parallel to the hyperplane 
ontaining �(Sn�1) = �(�Ln). Consider theproje
tion � : �(Hn)! H 0, from O. Then the image of ea
h hyperboli
 hyperplaneof Ln under �Æ� is the interse
tion of a Eu
lidean hyperplane of H 0 with �Æ�(Ln).We prove that Barner's theorem for 
urves in R2k+1 implies theorem 1:Proof of theorem 1. { The restri
tion to Ln of the map �Æ� used in the 
orollary,sends Poin
ar�e's model of Lobat
hevkian spa
e to Klein's model. The hyperboli

attenings of a 
urve in Ln are sent onto the 
attenings of its image in H 0. Inparti
ular, for n = 2k + 1 Barner's 
urves in L2k+1 are sent onto Barner's 
urvesin H 0 = R2k+1 . Applying Barner's theorem we prove Theorem 1. �Finally, we will prove that theorem 1 implies theorem 2:Proof of theorem 2. { Consider the exterior of a hypersphere S2k as a model ofthe Lobat
hevskian spa
e L2k+1 . Theorem 1 works also here, in parti
ular whenthe hypersphere S2k has in�nitely small radius (that is, when S2k be
omes a pointof R2k+1). �
10



x3. Generating Family of the Normal Map of a Curve in RnSome Properties of Verti
es and a Formula for Cal
ulate ThemWe prove that the verti
es of a 
urve 
 � Rn are extrema of the radius of the os
ulatinghypersphere. Using Sturm Theory, we give a proof of the 2k+2{Vertex Theorem for 
onvex 
urvesin the Eu
lidean spa
e R2k . As a by{produ
t of this proof we obtain a formula to 
al
ulate theverti
es of a 
urve in Rn . Applying Sturm theory and our formula to 
al
ulate verti
es we obtainthe number of verti
es of the generalized ellipses introdu
ed by Arnol'd in [6℄.1. Statement of Results on Verti
esVerti
es and Flattenings of 
urves in Rn are related to Sturm Theory. In point3 of this x, we give a proof of the 2k + 2{Vertex Theorem for 
onvex 
urves inthe Eu
lidean spa
e R2k based on Sturm Theory. This proof allows us to give aformula to 
al
ulate the verti
es of a 
urve in Rn as the zeroes of a determinant:Theorem 1 { The verti
es of any 
urve 
 : S1 ! Rn (or 
 : R ! Rn),
 : s 7! ('1(s); : : : ; 'n(s)) are given by the zeroes ofdet(R1; : : : ; Rn; G)where Ri (G) is the 
olumn ve
tor de�ned by the �rst n + 1 derivatives of 'i (ofg = 
22 , respe
tively).Remark { Theorem 1 says that the verti
es of any 
urve 
 : S1 ! Rn (or
 : R ! Rn), 
 : s 7! ('1(s); : : : ; 'n(s)) are given by the 
attenings of the 
urve� : S1 ! Rn+1 (or � : R ! Rn+1),� : s 7! �'1(s); : : : ; 'n(s); 
2(s)2 � :This means that the verti
al proje
tion of a 
urve 
 � Rn on a paraboloid `ofrevolution' z = 12(x21+ � � �+x2n) sent the verti
es of the 
urve 
 onto the 
atteningsof its image. We will dis
uss the properties of this and other proje
tions relatedto Lagrangian and Legendrian singularities in another paper.Noti
ing that the formula of Theorem 1 
an be `simpli�ed', we obtain thefollowingTheorem 1bis { The verti
es of any 
urve 
 : S1 ! Rn (or 
 : R ! Rn),
 : s 7! ('1(s); : : : ; 'n(s)) are given by the zeros of the following determinant1:��������� '01 � � � '0n 0'001 � � � '00n h1... ... ...'1(n+1) � � � 'n(n+1) hn
��������� = 0;where h1 = 
0 � 
0 and hk = h0k�1 + 
0 � 
k.1I dis
overed the formula of Theorem 1 in May 1995 and 
al
ulated verti
es of many 
urveswith it. In July 1999 J.J. Nu~no Ballesteros told me that he knew the formula of theorem 1bis.I don't know when he dis
overed it. In August 2000 he told me that he will publish it in somepreprint. 11



Proof { The 
olumn ve
tor G in the determinant of theorem 1 is the sum ofvarious 
olumn ve
tors, n of whi
h 
an be eliminated by substra
ting the 
olumnve
tors 'iRi; i = 1; : : : ; n. �For a 
urve in the Eu
lidean plane, to have a vertex is equivalent to to have anextremum of the radius of the os
ulating 
ir
le. In higher dimensional spa
es thisis not the 
ase. However we have the following theorem proved in point 2 of thisx. Theorem 2 ([22℄) { The verti
es of a 
urve 
 � Rn are extrema of the radiusof the os
ulating hypersphere.Remark { The 
onverse is not true for n > 2. For example, all the points ofthe 
ir
ular helix t 7! (
os t; sin t; t) are extrema of the radius of the os
ulatinghypersphere. However it has no vertex. A more generi
 example is given by the
urve t 7! (a 
os t; b sin t; t) whi
h has no vertex for any a; b 2 R n f0g su
h thatja3 � b2j < 1=3.Proof of remark { It suÆ
es to use our formula from theorem 1. Writing outthe equation, we obtain�������� �a sin t b 
os t 1 1=2(b2 � a2) sin 2t+ t�a 
os t �b sin t 0 (b2 � a2) 
os 2t+ 1a sin t �b 
os t 0 �2(b2 � a2) sin 2ta 
os t b sin t 0 �4(b2 � a2) 
os 2t �������� = 0;whi
h gives ab(1 � 3(b2 � a2) 
os 2t) = 0. This equation has no real solution forja3 � b2j < 1=3. �The ellipse is the simplest 
losed 
onvex 
urve in the plane having the minimumnumber of verti
es: 4.A generalized ellipse in R2k is a 
onvex 
urve given by the following parametriza-tion ([6℄): � 7! (a1 
os �; b1 sin �; a2 
os 2�; b2 sin 2�; : : : ; ak 
os k�; bk sin k�). We 
anexpe
t that generalized ellipses are 
onvex 
urves in R2k having the minimumnumber of verti
es, i.e. 2k + 2. However, the following example shows that thegeneralized ellipses in R2k 
an have more than 2k + 2 verti
es.Example 1 { The generalized ellipse in R4 , 
(�) = (a1 
os �; b1 sin �; a2 
os 2�;b2 sin 2�), with a22 6= b22 and a1b1a2b2 6= 0 has 8 verti
es. If a22 = b22 then 
 is aspheri
al 
urve and all its points are thus verti
es.Denote Ck = 
os k� and Sk = sin k�.Theorem 3{ Consider the generalized ellipse in R2k given by
(�) = (a1C1; b1S1; a2C2; b2S2; : : : ; akCk; bkSk);with a1b1a2b2 � � �akbk 6= 0. Then, for even k, 
 
an have 2k + 4, 2k + 8,. . . ,4kor an in�nity of verti
es depending on the values of the parameters aj and bj, forj � k2 + 1. For odd k, 
 
an have 2k + 2, 2k + 6,. . . ,4k or an in�nity of verti
esdepending on the values of the parameters aj and bj, for j � k+12 .We will 
onstru
t a 
onvex 
urve in R2k having the minimum number of verti
es,i.e. 2k + 2. Consider the generalized ellipse of Theorem 3 with 
oeÆ
ients a1 =12



b1 = � � � = ak = bk = 1 and denote it by 
0. Obviously 
0 is a spheri
al 
urveand all its points are verti
es. In order to obtain the desired 
onvex 
urve, we willperturb 
0 in the \radial dire
tion". Let 
" = (1 + " 
os(k + 1)�)
0:Theorem 4 { For " 6= 0 small enough the 
urve 
" has exa
tly 2k+2 verti
es.Example 1 and Theorems 3 and 4 are proved in point 4 of this x.2. Proof of Theorem 2 and Des
ription of the Fo
al Set of a CurveProof of theorem 2 { The generating family F : Rn �S1 ! R asso
iated to thefo
al set of the 
urve 
 is given byF (q; s) = 12 k q � 
(s) k2 :We shall write �(i) = f(q; s)=�sF (q; s) = 0; :::; �isF (q; s) = 0g. Thus �(1) is theset of pairs (q; s) su
h that q is the 
enter of some hypersphere of Rn whose order of
onta
t with 
 at s is at least 2 (this means that q is in the normal hyperplane to 
at s). So �(2) is the set of pairs (q; s) su
h that q is the 
enter of some hypersphereof Rn whose order of 
onta
t with 
 at s is at least 3. From the equations 
an beseen that these points generate a plane of dimension n�2 
ontained in the normalhyperplane to 
 at s. So �(n) is the set of pairs (q(s); s) su
h that q(s) is the 
entreof the os
ulating hypersphere at 
(s). Hen
e the value of F at the point (q(s); s) in�(n) is one half of the square of the radius of the os
ulating hypersphere at 
(s).The 
ondition for a point p = 
(s) to be a vertex is equivalent to the fa
t that the�rst n + 1 derivatives of F with respe
t to s vanish at s. Hen
e �(n + 1) is theset of verti
es of the 
urve. It is a well-known fa
t of singularity theory [2℄ that apoint belonging to �(n + 1) is a 
riti
al point of the restri
tion of F to �(n). Soa vertex is a 
riti
al point of the radius of the os
ulating hypersphere. �Remark { The 
enters of the os
ulating hyperspheres at the verti
es of 
 aregiven by the q 2 Rn for whi
h there exists a solution s of the n + 1{system ofequations F 0q(s) = 0F 00q (s) = 0...F (n+1)q (s) = 0:For a �xed s, the �rst equation gives the normal hyperplane to the 
urve atthe point 
(s). The �rst two equations give a 
odimension 1 subspa
e of the nor-mal hyperplane to the 
urve at the point 
(s). Following this pro
ess we obtaina 
omplete 
ag at ea
h point of the 
urve. The fo
al 
urve q(s), formed by the
enters of the os
ulating hyperspheres, is determined by the n �rst equations. The
omplete 
ag is the os
ulating 
ag of the fo
al 
urve. In parti
ular, the os
ulatinghyperplane of the fo
al 
urve at the point q(s) is the normal hyperplane to the
urve 
 at the point 
(s). As the point moves along the 
urve 
, the 
orresponding
ag (starting with the 
odimension 2 subspa
e) generates a hypersurfa
e whi
h isstrati�ed in a natural way by the 
omponents of the 
ag. This strati�ed hyper-surfa
e is a 
omponent of the fo
al set of the 
urve 
. The other 
omponent of13



the fo
al set is the 
urve itself. The stratum of dimension 1 (generated by the0{dimensional subspa
e of the 
ag, i.e. generated by 
enter of the os
ulating hy-persphere at the moving point) is the fo
al 
urve of 
. The equation F (n+1)q (s) = 0gives a �nite number of isolated points on the fo
al 
urve. These points 
orrespondto the verti
es.The fo
al set is also a 
omponent of the 
austi
 of the Lagrangian map (normalmap) de�ned by the generating family F (q; s) (For the notions of 
austi
, La-grangian map, Lagrangian singularity and generating family, we refere the readerto 
hapter 1). Thus the verti
es of a 
urve in Rn 
orrespond to a Lagrangiansingularity An+1 of the normal map.3. A Proof of the 2k + 2{Vertex Theorem in R2k by Sturm TheoryWe begin this paragraph with some de�nitions and results of Sturm theory,taken from [6℄ and [11℄.A set of fun
tions f'1; : : : ; '2k+1g with 'i : S1 ! R is a Chebishev system ifany linear 
ombination a1'1 + � � �+ a2k+1'2k+1; ai 2 R; with a21 + : : :+ a22k+1 6= 0has at most 2k zeros on S1.Example 1 { The system of fun
tions f1; 
os �; sin �g is a Chebishev system.Remark { Any 
onvex 
urve � 7! ('1(�); : : : ; '2k(�)) in R2k de�nes a Chebishevsystem: f1; '1; : : : ; '2kg.Definition { A linear di�erential operator L : C1(S1) ! C1(S1) is 
alleddis
onjugate if it has a fundamental system of solutions for the equation Lg = 0whi
h are de�ned on the 
ir
le and form a Chebishev system.Example 2 { The operator L = �(�2+1) is dis
onjugate. The Chebishev systemf1; 
os �; sin �g is a fundamental system of solutions for it.Example 3 { Any 
onvex 
urve 
 : � 7! ('1(�); : : : ; '2k(�)) in R2k de�nes a2k + 1{order dis
onjugate operator L
 de�ned byL
g = det(R1; : : : ; R2k; G);where Ri (G) is the 
olumn ve
tor de�ned by the �rst 2k + 1 derivatives of 'i (ofg, respe
tively). Evidently the Chebishev system f1; '1; : : : ; '2kg is a fundamentalsystem of solutions of the equation L
g = 0.Example 4 { The generalized ellipse ([6℄)
 : � 7! (a1 
os �; b1 sin �; a2 
os 2�; b2 sin 2�; : : : ; ak 
os k�; bk sin k�);de�nes, up to a 
onstant fa
tor, the 2k + 1{order dis
onjugate operatorL
 = �(�2 + 1) � � � (�2 + n2):Some proofs of 4{vertex type theorems are based on the following theorem dueto Hurwitz ([12℄):Hurwitz's Theorem { Any fun
tion f 2 C1(S1) whose Fourier series beginswith the harmoni
s of order N , f = Pk�N ak 
os k� + bk sin k�, has at least 2Nzeroes. 14



In fa
t any fun
tion f 2 C1(S1) without harmoni
s up to order n is orthogonalto the solutions of the equation �(�2 + 1) � � � (�2 + n2)' = 0, and su
h solutionsform a Chebishev system.The following theorem generalizes Hurwitz's theorem.Sturm{Hurwitz Theorem ([6℄,[11℄) { Let f : S1 ! R be a C1 fun
tionsu
h that RS1 f(�)'i(�)d� = 0, f'igi=1;:::;2k+1 being a Chebishev system. Then fhas at least 2k + 2 sign 
hanges.Corollary { ([11℄) Any fun
tion in the image of a dis
onjugate operator(f = Lg, where g 2 C1(S1) is any fun
tion) of order 2k + 1 has at least 2k + 2sign 
hanges.Proof of the 2k+2{vertex theorem in R2k { Let 
 : � 7! ('1(�); : : : ; '2k(�))be a 
onvex 
urve in R2k . Consider the family of fun
tions on the 
ir
le F :S1� R2k ! R de�ned by Fq(�) = 12 k q � 
(�) k2 :In the proof of theorem 1 we saw that the 
enters of the os
ulating hyperspheresat the verti
es of 
 are given by the q 2 Rn for whi
h there exists a solution � ofthe 2k + 1{system of equations: F 0q(�) = 0F 00q (�) = 0...F (2k+1)q (�) = 0The fo
al 
urve q(�) of 
enters of the os
ulating hyperspheres is determined by the�rst 2k equations. The last equation is the 
ondition on this 
urve determiningthe verti
es. Write g = 
22 . Using the fa
t that �F = 
 � q � 
22 � q22 , the systemof equations 
an be written as 
0 � q � g0 = 0
00 � q � g00 = 0...
(2k+1) � q � g(2k+1) = 0This means that the ve
tor (q;�1) in R2k+1 is orthogonal to the 2k + 1 ve
tors(
0; g0); (
00; g00); : : : ; (
(2k+1); g(2k+1)): So the verti
es of 
 are given by the zeros ofthe determinant of the matrix whose lines are these 2k + 1 ve
tors. This deter-minant is equal to det(R1; : : : ; R2k; G) where Ri (G) is the 
olumn ve
tor de�nedby the �rst 2k + 1 derivatives of 'i (of g = 
22 , respe
tively). This is the imageof g = 
22 under the operator L
 (see example 3). So 
orollary 1 implies that thisdeterminant has at least 2k + 2 sign 
hanges. This proves the theorem.Proof of Theorem 1In the above proof of the 2k + 2{vertex theorem for 
onvex 
urves in R2k , the
onvexity of the 
urve and the parity of the dimension were used only in the last15



step. So the determinant obtained in the proof gives a formula to 
al
ulate theverti
es of a 
urve in Rn . This proves theorem 1.4. On the Number of Verti
es of Generalized EllipsesWe will prove example 1 and Theorem 3 given in the begining of this x.Example 1 { The generalized ellipse in R4 ,
(�) = (a1 
os �; b1 sin �; a2 
os 2�; b2 sin 2�); with a22 6= b22 and a1b1a2b2 6= 0has 8 verti
es. If a22 = b22 then 
 is a spheri
al 
urve and all its points are thusverti
es.Proof { Denote Ck = 
os k�, Sk = sin k� and g = a21C21 + b21S21 + a22C22 ++b22S22 .By example 4 of point 2 and the formula of Theorem 1 the verti
es of 
 
orrespondto the roots of the equation �(�2 + 1)(�2 + 22)g = 0. The trigonometri
 identitya2 
os2 � + b2 sin2 � = 12(a2 + b2 + (a2 � b2) 
os 2�)allows us to writeg = (a21 � b21)C2 + (a22 � b22)C4 + a21 + b21 + a22 + b22:The operator � kills the 
onstant terms (i.e. the harmoni
s of order zero), and theoperator (�2 + 22) kills the se
ond order harmoni
s. Thus�(�2 + 1)(�2 + 22)g = K(a22 � b22)S4;where K is a non zero 
onstant. Thus the verti
es of 
 
orrespond to the solutionsof the equation K(a22� b22)S4 = 0, i.e. 
 has 8 verti
es for a22 6= b22 and all its pointsare verti
es for a22 = b22. �We keep the notation Ck = 
os k� and Sk = sin k�.Example 2 { The generalized ellipse in R6 , 
(�) = (a1 
os �; b1 sin �; a2 
os 2�;b2 sin 2�; a3 
os 3�; b3 sin 3�), with a1b1a2b2a3b3 6= 0 
an have 8; 12 or an in�nity ofverti
es, depending on the values of the parameters a2; b2; a3; b3. In parti
ular, ifa22 = b22 and a23 6= b23 then 
 has 12 verti
es, and if a22 6= b22 and a23 = b23 then 
 has8 verti
es. If a22 = b22 and a23 = b23 then 
 is a spheri
al 
urve and all its points arethus verti
es.Proof { As in example 1, the verti
es of 
 are the roots of the equation givenby �(�2 + 1)(�2 + 22)(�2 + 32)g = 0 whereg = (a21 � b21)C2 + (a22 � b22)C4 + (a23 � b23)C6 + 3Xi=1 (a2i + b2i ):The operator �(�2 + 1)(�2 + 22)(�2 + 32) kills the harmoni
s of orders zero, one,two and three. Thus�(�2 + 1)(�2 + 22)(�2 + 32)g = K2(a22 � b22)S4 +K3(a23 � b23)S6;16



where K2 and K3 are non zero 
onstants. �Theorem 3{ Consider the generalized ellipse in R2k
(�) = (a1C1; b1S1; a2C2; b2S2; : : : ; akCk; bkSk);with a1b1a2b2 � � �akbk 6= 0. Then, for even k, 
 
an have 2k + 4, 2k + 8,. . . ,4kor an in�nity of verti
es depending on the values of the parameters aj and bj, forj � k2 + 1. For odd k, 
 
an have 2k + 2, 2k + 6,. . . ,4k or an in�nity of verti
esdepending on the values of the parameters aj and bj, for j � k+12 .Proof of Theorem 3. { As in examples 1 and 2, the verti
es of 
 are the rootsof the equation given by�(�2 + 1)(�2 + 22) � � � (�2 + k2)g = 0;where g =Pki=1(a2i � b2i )C2i +Pki=1(a2i + b2i ). The operator�(�2 + 1)(�2 + 22) � � � (�2 + k2)kills the harmoni
s from the order zero until order k. Thus, for even k,�(�2 + 1)(�2 + 22) � � � (�2 + k2)g = Xi� k2+1Ki(a2i � b2i )S2i;where Ki is a non zero 
onstant, for i � k2 + 1. For odd k�(�2 + 1)(�2 + 22) � � � (�2 + k2)g = Xi� k+12 Ki(a2i � b2i )S2i;where Ki is a non zero 
onstant, for i � k+12 . This proves Theorem 3.Proof of Theorem 4. { Applying our formula of Theorem 1 we obtain that thenumber of verti
es of the 
urve 
" = (1 + " 
os(k + 1)�)
0 is given by the numberof solutions � 2 S1 of an equation of the form0 = "K sin(k + 1)� + "2f(�; ");where K 6= 0 is a 
onstant and f(�; ") is a bounded fun
tion. Thus for " 6= 0 smallenough this equation has exa
tly 2k + 2 solutions. �
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x4. Weakly Convex Curves in Rn and RP nA 
onvex 
urve has no 
attening and his os
ulating hyperplane interse
ts it only at the pointof os
ulation. A 
urve in RP 2 (R2 ) is 
onvex if and only if it has these two properties. To answera question of V. Arnol'd ([6℄), we show that this two properties don't imply 
onvexity for 
urvesin RPn , for n > 2.1. Statement of ResultsWe re
all that a smooth 
losed 
urve in RP n (Rn) is 
alled 
onvex if anyhyperplane interse
ts it in at most n points, taking multipli
ities into a

ount.A 
onvex 
urve has no 
attening and its os
ulating hyperplane interse
ts itonly at the point of os
ulation. A 
urve in RP 2 (R2) is 
onvex if and only if it hasthese two properties. In [6℄, V. Arnol'd put the problem to know whether thesetwo properties imply 
onvexity (for dimensions greater than 2). In this se
tion weanswer this question.We say that a 
urve in RP n (Rn) is weakly 
onvex if it has no 
attening andits os
ulating hyperplane interse
ts it only at the point of os
ulation.For n > 2 the answer to Arnol'd's question is negative. In [1℄, S. Anisov gavean example of a weakly 
onvex 
urve in RP 3 . For n > 2 we give examples of 
urvesin RP n (Rn for n even) whi
h are weakly 
onvex but are no 
onvex.Remark { Any weakly 
onvex 
urve in RP n is aÆne for even n, i.e. there existsa hyperplane of RP n not interse
ting the 
urve. For odd n any weakly 
onvex 
urvein RP n is not 
ontra
tible, i.e. it interse
ts any hyperplane in an odd number ofpoints, 
ounting multipli
ities.Proposition 1{ The 
urve in RP 2k , with k � 2, given in aÆne 
oordinatesby� 7! (
os �; sin �; 
os 2�; sin 2�; : : : ; 
os(k� 1)�; sin(k� 1)�; 
os(k+1)�; sin(k+1)�);is weakly 
onvex but not 
onvex.Proposition 2{ The 
urve 
 in RP 2k�1 , k � 2, given in homogeneous 
oor-dinates by� 7! [
os � : sin � : 
os 3� : : : : : 
os(2k�3)� : sin(2k�3)� : 
os(2k+1)� : sin(2k+1)�℄;is weakly 
onvex but not 
onvex.Remark { The 
urve in Proposition 2 
an be 
onsidered as a 
urve in S2k�1 �R2k , where the points 
(�) and 
(� + �) = �
(�) are identi�ed.We 
onstru
ted many other examples of weakly 
onvex 
urves whi
h are not
onvex. In parti
ular, for the Eu
lidean spa
e R2k we 
al
ulate the number ofverti
es for many examples in whi
h the 
onvexity is \slightly broken": Weakly
onvex 
urves in R2k whi
h interse
t any hyperplane in at most 2k + 2 points andinterse
t at least one hyperplane in exa
tly 2k + 2 points.In all examples of this kind of weakly 
onvex 
urves in R2k we obtained thatthe number of verti
es was always greater or equal to p2k + 2. Moreover we 
on-stru
ted weakly 
onvex 
urves of this kind in R2k for whi
h the number of verti
es18



is the smallest even number greater or equal to p2k + 2. From this informationwe formulate the followingConje
ture{ Let 
 be a weakly 
onvex 
urve in R2k whi
h interse
t any hy-perplane in at most 2k + 2 points and interse
t at least one hyperplane in exa
tly2k+2 points. Then 
 has an even number of verti
es greater or equal to p2k + 2.Example { The 
urve 
 : � 7! (a1 
os �; b1 sin �; a2 
os 3�; b2 sin 3�) in R4 has 4verti
es for a2 and b2 small enough. Suppose R4 � R5 . An inversion in R5 
enteredat a point exterior to R4 sends the 
urve 
 into a spheri
al 
urve 
̂ � R5 . The
urve 
̂ lies on the boundary of its 
onvex hull and has only 4 
attenings. Thisexample shows that Sedykh's theorem (see x3 of this 
hapter and [19℄) 
an't beextended to higher dimensions.2. Proof of proposition 1The proof 
onsists of various simple steps:0 { Consider the standard 
oordinates (x1; x2; : : : ; x2k) in R2k . The 
urve ofproposition 1 is not 
onvex be
ause it interse
ts the hyperplane x2k = 0 at the2k + 2 points whi
h 
orrespond to the solutions of the equation sin(k + 1)� = 0.1 { Observe that all 
urvatures of the 
urve in proposition 1 (regarded asa 
urve in the Eu
lidean spa
e R2k) are 
onstant. Observe also that for ea
hpair of points 
(�0); 
(�1) of the 
urve there is an orthogonal transformation ofR2k preserving the 
urve and sending the point 
(�0) in the point 
(�1). Thisorthogonal tranformation is obtained by a rotation of an angle (�1 � �0) � j onthe 2{plane of 
oordinates x2j�1; x2j for j < k and an angle (�1 � �0) � (k + 1) inthe 2{plane of 
oordinates x2k�1; x2k. Thus it suÆ
es to 
al
ulate the os
ulatinghyperplane for � = 0 and to show that this hyperplane does not meet the 
urveelsewhere.2 { The equation of os
ulating hyperplane at � = 0 involves only odd indexvariables: It is of the form a1x1 + a3x3 + � � �+ a2k�1x2k�1 + b = 0.3 { Substitute the odd 
omponents of the 
urve in the pre
eding equation to�nd the points at whi
h the 
urve interse
ts the os
ulating hyperplane. This givesa1 
os � + a3 
os 3� + � � �+ ak�1 
os(k + 1)� + b = 0.4 { Make the 
hange of variables � = 2' and introdu
e the following notation:C = 
os', S = sin' and Ck = 
os k' and Sk = sin k' for k � 2. The equation ofstep 3 be
omes a1C2 + a3C6 + � � �+ ak�1C2(k+1) + b = 0.5 { Use the identitiesC2k = 1�2S2k and S2n = n2S2+ � � �+2n(�4)n�1S2(n�1)+(�4)n�1S2n, for n � 2.Equation of step 4 be
omes an equation of degree 2k + 2 in S.6 { The os
ulating hyperplane at 2' = � = 0 interse
ts the 
urve with multi-pli
ity 2k. Thus the equation is of the form b1S2k(b2 + b3S2), where b1; b2 and b3are 
onstants. We only need to known the 
onstants b2 and b3.7 { Observe that the terms S2k and S2k+2 may only 
ome from the term S2k+1.Thus the equation to solve is 2(k+1)(�4)k�1S2k+(�4)kS2(k+1), whi
h is equivalent19



to 2(�4)k�1S2k(k + 1 � 2S2) = 0. This equation has a root of multipli
ity 2k atS = 0, whi
h 
orresponds to the interse
tion of the os
ulating hyperplane with the
urve at 2' = � = 0. The equation k + 1� 2S2 = 0 has no real solution for k � 2be
ause S2 = sin2 ' � 1. This proves proposition 1.3. Proof of proposition 2Proof of proposition 2 { Let 
 be the parametrization of proposition 2. Theproof of proposition 2 is similar to the proof of proposition 1; let us just point outthe di�eren
es. The parametrization given in proposition 2 is in R2k n f0g wherethe points belonging to a straight line through the origin of R2k are identi�ed. Inparti
ular 
(�) = �
(� + (2m + 1)�); m 2 Z. The os
ulating hyperplane of the
urve is determined by 
 and its �rst 2k � 2 derivatives.1 { Use the fa
t the parametrization also gives a 
urve in the Eu
lidean spa
eR2k having all 
urvatures 
onstant. Thus it suÆ
es to 
al
ulate the os
ulatinghyperplane for � = 0 and to show that this hyperplane does not meet the 
urveelsewhere.2 { Consider the standard 
oordinates (x1; x2; : : : ; x2k) in R2k . The equation ofthe os
ulating hyperplane at � = 0 involves only even variables: It is of the forma2x2 + a4x4 + � � �+ a2kx2k = 0.3 { Introdu
e the notation: C = 
os �, S = sin � and Ck = 
os k� and Sk =sin k� for k � 2. Substitute the even 
omponents of the 
urve in the pre
edingequation to �nd the points at whi
h the 
urve interse
ts the os
ulating hyperplane.This gives: a2S + a4S3 + � � �+ a2kS2k+1 = 0.4{ Use the identity S2k+1 = (2k+1)S+ � � �+(�4)k�1(2k+1)S2k�1+(�4)kS2k+1to obtain an equation of degree 2k + 1 in S.The arguments of steps 6 and 7 of the proof of proposition 1 
an be appliedhere and lead to the equation 2k+1� 4S2 = 0. This equation has no real solutionfor k � 2 be
ause S2 = sin2 � � 1. This proves proposition 2.Remark { After a generi
 linear transformation in R2k , the 
urves in proposi-tions 1 and 2 will not have 
onstant 
urvatures. However, the non{
onvexity andthe weak 
onvexity will be preserved.
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x5. A Non{standard 4{Vertex TheoremWe prove that any small enough generi
 perturbation in R2k+1 (taking the derivatives intoa

ount) of a spheri
ally 
onvex 
urve in S2k � R2k+1 has at least 2k + 2 extrema of the radiusof the (2k� 1)-os
ulating sphere. We also show that any small enough generi
 perturbation of a
losed 
urve embedded in S2 � R3 has at least 4 points with extremal 
urvature.1. Statement of ResultsTheorem 1{ Any small enough generi
 perturbation in R2k+1 (taking thederivatives into a

ount) of a generi
 spheri
ally 
onvex 
urve in S2k � R2k+1has at least 2k + 2 extrema of the radius of the (2k � 1)-os
ulating sphere.In the parti
ular 
ase of 
urves in R3 we have a stronger theorem:Theorem 2{ Any small enough generi
 perturbation in R3 (taking the deriva-tives into a

ount) of any embedded 
urve in S2 � R3 has at least 4 points ofextremal 
urvature.2. ProofsLemma 1{ The verti
es of a spheri
al 
urve 
 � Sn � Rn+1 are extrema of theradius of the (n� 1)-os
ulating sphere.Proof { Let 
 � Sn � Rn+1 be a spheri
al 
urve. Apply an inversion � withrespe
t to a hypersphere of Rn+1 
entered at a point of Sn n 
. The inversion �sends the 
urve 
 � Sn onto a hyperplane 
urve 
̂ � Rn � Rn+1 and the (n� 1)-os
ulating spheres of 
 on the os
ulating hypersheres of 
̂ � Rn . The verti
esof the spheri
al 
urve 
 are sent by � onto the verti
es of 
̂. The verti
es of 
̂are extrema of the radius of the os
ulating hypershere. Thus the verti
es of 
 areextrema of the radius of the (n� 1)-os
ulating sphere. �Proof of theorems 1 and 2 { Let 
 be a spheri
ally 
onvex 
urve in Sn � Rn+1 .By theorem S of x1 and lemma 1, 
 has at least 2k + 2 extrema of the radiusof the (n � 1)-os
ulating sphere. These extrema are nondegenerate be
ause 
 isa generi
 spheri
al 
urve. Let � be a small enough generi
 perturbation of 
 inRn+1 (taking the derivatives into a

ount). This pertubation does not destroy thenondegenerate extrema of the radius of the (n� 1)-os
ulating sphere. This provestheorem 1. To prove theorem 2 we use the same arguments and the fa
t that anyembedded spheri
al 
urve 
 � S2 has at least 4 verti
es. �3. The Flattenings of a Curve Lying in Sn � Rn+1 Are Not Generi
The following remarks show that the 
attenings of a 
urve lying in a sphereare not generi
. We re
all that the verti
es of a spheri
al 
urve 
 � Sn � Rn+1 arethe 
attenings of 
 
onsidered as a spatial 
urve.Remark { At a generi
 point of a 
urve in Rn+1 , the os
ulating hypersphereis uniquely determined. If the point is a generi
 
attening then the os
ulatinghypersphere is also unique and 
oin
ides with the os
ulating hyperplane.Example { The os
ulating 
ir
le of a plane 
urve at an in
e
tion point 
oin
ideswith the tangent line at that point. 21



Remark{ The 
attenings of a 
urve lying on Sn � Rn+1 are not generi
 fromthe point of view of the geometry of 
urves in Rn+1 (see remark above).Proof of remark { At a 
attening p of a 
urve lying on a sphere Sn, the orderof 
onta
t with its (n � 1)-os
ulating sphere Ŝn�1(p) is at least n + 2. Thus, atthis point, the multipli
ity if interse
tion of the 
urve with all the hyperspheres
ontaining Ŝn�1(p) is at least n + 2. Hen
e the os
ulating hypersphere is notuniquely determined. �Remark { In the proof of theorems 1 and 2 we saw that the 
attenings ofa 
urve lying in Sn � Rn+1 are extrema of the radius of the (n � 1)-os
ulatingsphere. The 
attenings of a generi
 
urve in Rn+1 are no extrema of the radius ofthe (n� 1)-os
ulating sphere.4. ProblemHow mu
h 
an a 
losed 
urve embedded in S2 be deformed inside R3 su
h thatthe deformed 
urve keeps at least 4 extrema of the 
urvature?
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x6. On Three Classes of Closed Curves in R3 Havingat Least 4 Flattenings and a 4{Flattening Conje
tureWe dis
uss three 
lasses of 
losed 
urves in the Eu
lidean spa
e R3 whi
h have non{vanishing
urvature and at least 4 
attenings (points with torsion zero). Calling these 
lasses (de�ned be-low) Barner, Segre and Sedykh, we prove that Barner�(Segre\Sedykh). We also prove that(Segre)n(Segre\Sedykh) and (Sedykh)n(Segre\Sedykh) are open sets in the spa
e of 
losedsmooth 
urves with the C1{topology. Finally, we 
onje
ture that the 
urves of a 
lass 
on-taining Segre (de�ned below) have at least 4 
attenings.1. Introdu
tion and Main Results.As in the previous se
tions, by a 
losed 
urve in the Eu
lidean spa
e Rn (proje
-tive spa
e RP n) we mean a C1 mapping 
 : S1 ! Rn (
 : S1 ! RP n , respe
tively).We 
onsider the spa
e of all 
losed 
urves in the Eu
lidean spa
e (proje
tive spa
e)equipped with the C1{topology.We re
all that a 
attening of a 
urve 
 in Rn (RP n) is a point where thederivatives of 
 of order 1; : : : ; n; are linearly dependent.We also re
all that a 
urve embedded in Rn (in RP n) is 
alled 
onvex if itinterse
ts no hyperplane at more than n points, 
ounting multipli
ities.If a 
losed 
urve 
 in RP n (Rn) 
an be proje
ted, from a point exterior to it,into a 
onvex 
urve of RP n�1 (Rn�1) then 
 has at least n + 1 
attenings [6℄.Finally, we re
all that a 
losed 
urve in Rn (in RP n) is 
alled Barner 
urveif for every (n � 1){tuple of (not ne
esarily geometri
ally di�erent) points of the
urve there exists a hyperplane through these points that does not interse
t the
urve elsewhere.In the Eu
lidean 
ase, Barner 
urves exist only in odd dimensions. Any Barner
urve in Rn (RP n) has at least n+ 1 
attenings [8℄.A 
losed 
urve 
 in RP n (Rn) whi
h 
an be proje
ted, from a point exterior toit, into a 
onvex 
urve of RP n�1 (Rn�1) is a Barner 
urve. Answering the questionabout the relation between these two 
lasses of 
urves (V.I. Arnol'd 1996) V.D.Sedykh ([20℄) proved: There is an open set of embedded 
losed 
urves in RP n whi
hare Barner 
urves and have no 
onvex proje
tions into any hyperplane.The 
onditions de�ning 
lasses of 
losed 
urves in Rn that guarantee a minimumnumber of 
attenings (or verti
es) on ea
h 
urve of that 
lass has been a 
lassi
alobje
t of study. The interest on this subje
t was revived by the re
ent progres insimple
ti
 and 
onta
t geometries and the relations of this problems with Sturmtheory (see [6℄, [4℄, [5℄, [7℄, [13℄, [1℄, [20℄, [24℄). We 
onsider three 
lasses of 
losed
urves in the three{dimensional Eu
lidean spa
e R3 all whose elements have at leastfour 
attenings. In parti
ular any Barner 
urve of R3 has at least 4 
attenings.C. Romero{Fuster (for the generi
 
ase [15℄2) and V.D. Sedykh (for the general
ase [19℄) proved the following theorem:Sedykh's Theorem{ A 
losed C3{smooth 
urve in R3 lying on the boundaryof its 
onvex hull with non{vanishing 
urvature has at least four 
attenings.2In [9℄, Blas
hke atributes an equivalent result to Charatheodory, but he does not give thereferen
e. 23



In [21℄, Segre proved theSegre's Theorem{ Any 
losed 
urve in R3 with non{vanishing 
urvature andno parallel tangents with the same orientation has at least four 
attenings.We 
all Sedykh 
urves the 
losed 
urves in R3 lying on the boundary of its
onvex hull with never vanishing 
urvature. We 
all Segre 
urves the 
losed 
urvesin R3 with non{vanishing 
urvature and no parallel tangents having the sameorientation.The natural problems arises:a) Are there Sedykh 
urves whi
h are no Segre 
urves? (C. Romero{Fuster[16℄).b) Are there Segre 
urves whi
h are no Sedykh 
urves?
) How are the Barner 
urves in R3 related to the Sedykh and Segre 
urves?The answer to these questions is given by the following three theorems:Theorem A{ There is an open set of Sedykh 
urves in R3 whi
h are not Segre.Theorem B{ There is an open set of Segre 
urves in R3 whi
h are not Sedykh.Theorem C{ Any Barner 
urve in R3 is a Sedykh 
urve and also a Segre
urve.To prove theorems A and B we give methods to 
onstru
t generi
 examples.A Four{Flattening Conje
ture. When the unit tangent ve
tor t of a 
urve
 in the Eu
lidean Spa
e R3 is translated to a �xed point O, the end point of thetranslated ve
tors des
ribe a 
urve T on the unit sphere S2, 
alled the tangentindi
atrix of 
. The points of 
 at whi
h the 
urvature vanishes 
orresponds tothe 
usps of the tangent indi
atrix. So Segre theorem 
an be reformulated in thefollowing way: Any 
losed 
urve in R3 whose tangent indi
atrix is embedded in S2has at least four 
attenings.We say that 
urve on S2 has dire
t self{tangen
y if it has self{tangen
y andthe tangent bran
hes have the same orientation at the point of tangen
y. Let
t : S1 ! R3 , 0 � t � 1, be a one{parameter family of immersed 
urves. Supposethat 
0 is a Segre 
urve (for instan
e a plane 
onvex 
urve in R3) and that forall t 2 [0; 1℄ the tangent indi
atrix Tt of 
t is an immersed 
urve of S2 having nodire
t self{tangen
ies.Conje
ture 1.{ The 
urve 
1 (and ea
h 
urve 
t) has at least 4 
attenings.We stated 
onje
ture 1 in terms of the 
urves 
t 2 R3 and its tangent indi
atri-
es in S2, but it 
omes from a 
onje
ture about some 
lass of Legendrian knots inST �S2 and the number of spheri
al in
e
tions of the fronts in S2 of these Legen-drian knots (see, [5℄ for more information about the Legendrian knots asso
iatedto 
urves in S2). More pre
isely, to ea
h smoothly immersed 
o{oriented 
urve� : S1 ! S2 is asso
iated a Legendrian knot L� � ST �S2 
onsisting of the 
o{oriented 
onta
t elements of S2 tangent to � with 
orresponding 
o-orientation.Conversely, to ea
h 
losed Legendrian knot in ST �S2 
orresponds a 
o{oriented24




urve in S2 whi
h is not ne
essarily smooth and is 
alled the front of the Legen-drian knot. We re
all (see [10℄) that a 
urve � : S1 ! S2 is the tangent indi
atrixof some smoothly immersed 
urve 
 : S1 ! R3 if and only if it interse
ts ea
h great
ir
le of S2. So we formulate theConje
ture 1'.{ Let L0 be the Legendrian knot asso
iated to a 
o{orientedgreat 
ir
le of S2. Let L1 be any Legendrian knot whi
h 
an be joined to L0 by aLegendrian isotopy Lt (i.e. a homotopy of Legendrian knots for whi
h the knot typedoes not 
hange) satisfying the following 
ondition: The front �t of ea
h Legendrianknot Lt is a smooth 
urve of S2 whi
h interse
ts every great 
ir
le of S2. Then thefront 
1 (and ea
h front 
t, 0 � t � 1) has at least four spheri
al in
e
tions.The relatrion between both 
onje
tures 
omes from the fa
t that the spheri
alin
e
tions of the tangent indi
atrix of a 
urve in R3 
orrespond to the 
atteningsof the original 
urve in R3 .In [7℄, V. Arnol'd gave the �rst step towards a Legendrian Sturm theory of spa
e
urves. He imposed some 
onditions to the 
urves in terms of the 2{dimensionalLegendrian knot, of the spa
e PT �R3 of 
onta
t elements of R3 , asso
iated to ea
h
urve in R3 (or RP 3). This Legendrian 2{dimensional knot 
onsists of the 
onta
telements of R3 (or RP 3) tangent to the 
urve.Even inside the 
lass of Barner 
urves, it is easy to go outside the 
lass of
urves 
onsidered in [7℄, (in [7℄ there is one example). With our 
onje
ture wetry to follow the Arnol'd{Chekanov's philosophy. But instead of 
onsider the 2{dimensional Legendrian knot in PT �R3 (or PT �RP 3) asso
iated to a 
urve in R3(or RP 3), we 
onsider the 1{dimensional Legendrian knot in ST �S2 asso
iated tothe tangent indi
atrix of a 
urve in R3 . The 
lass of 
urves 
onsidered in our
onje
ture 
ontains the whole 
lass of Segre 
urves whi
h, by Theorem C, 
ontainsthe whole 
lasse of Barner 
urves.A
knowledgements. The author is grateful to Carmen Romero{Fuster for setting upproblem a).2. Proof of theorem C:A Barner Curve is a Sedykh Curve. The Barner 
urves have no pointswith vanishing 
urvature. Let 
 be a Barner 
urve. The de�nition of Barner 
urvesimplies that for any point p 2 
 there is a plane tangent to the 
urve at p notinterse
ting the 
urve elsewhere. This plane determines a 
losed half{spa
e Hp
ontaining the 
urve. The 
onvex hull of 
 is 
ontained in Hp and the point p lieson the boundary of the 
onvex set Hp. So p lies on the boundary of the 
onvexhull of 
. Thus 
 is a Sedykh 
urve. �A Barner Curve is a Segre Curve. We will prove that any 
urve whi
his not a Segre 
urve 
annot be a Barner 
urve. Let 
 be a 
losed 
urve withnon{vanishing 
urvature. Suppose that 
 has two parallel tangents with the sameorientation at the points p1 and p2 of 
. We will prove that any plane 
ontaining thepoints p1 and p2 must interse
t the 
urve at least at 4 points, taking multipli
itiesinto a

ount. Consider the proje
tion � : R3 ! R2 parallel to the line p1p2.The proje
tion � sends the 
urve 
 onto a plane 
urve 
̂ = �(
). The pointp = �(p1) = �(p2) is a point of self{tangen
y with the same orientation as the
urve 
̂. So the 
urve 
̂ 
an be de
omposed into two 
losed 
urves having a25



tangen
y at the point p. Any line of R2 
ontaining p interse
ts ea
h one of these
urves at least at two points, taking multipli
ities into a

ount. Ea
h line of R2
ontaining p is the image (by the proje
tion �) of a plane of R3 
ontaining thepoints p1 and p2. So any plane 
ontaining p1 and p2 interse
ts 
 at least at 4points, taking multipli
ities into a

ount. �3. Proof of theorem A:Sedykh Curves whi
h are no Segre Curves. Consider a smooth, 
losedand stri
tly 
onvex smooth surfa
e S (for instan
e an ellipsoid) in the Eu
lideanspa
e R3 . Consider a bundle of parallel lines of R3 . Let � denote the set of pointsof S at whi
h a line of the bundle is tangent to S. The set � is a 
losed 
urve of S,whi
h separates S in two parts S1 and S2. Any embedded 
urve of S is a Sedykh
urve.Proposition 1{ Let 
 : � 7! 
(�) be a 
losed embedded 
urve of S 
rossingthe 
urve � transversally at 2k > 2 points �1; : : : ; �2k. If the tangent lines of 
 attwo 
rossings �i and �j with the same parity (i = j (mod 2)) are lines of the bundlethen 
 is not a Segre 
urve.Proof { The tangents of the 
urve 
 at �i and �j are parallel. We must onlyprove that the tangents at these points have the same orientation. Suppose thatat �1 the 
urve 
 traverses from S1 to S2. Then at the odd (even) 
rossings the
urve 
 traverses from S1 to S2 (from S2 to S1). So if both i and j are odd (even)then the 
rossing from S1 to S2 (from S2 to S1) gives to the tangents at the points�i and �j the same orientation (See Fig. 1). �
s
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Figure 1: A Sedykh 
urve whi
h is not a Segre 
urve.A 
losed 
urve in R3 is a Segre 
urve if and only if its tangent indi
atrix onS2 has no double points (self{interse
tions). If the tangent indi
atrix of a 
losed
urve 
 has transversal self{interse
tions, then any small enough perturbation of
 (taking the derivatives into a

ount) is no Segre 
urve: transversality is an open
ondition. The tangent indi
atrix T : S1 ! S2 of a 
losed 
urve 
 : S1 ! R3 has atransversal self{interse
tion at the point T(�1) = T(�2) if the tangents to 
 at �1and �2 are parallel with the same orientation, but the os
ulating planes at thesepoints are not parallel.So the 
urves in the proposition 1 
an be 
onstru
ted in su
h a way that theos
ulating planes at the points �i and �j be not parallel. This proves theorem A.26



4. Proof of theorem B:Segre Curves whi
h are no Sedykh Curves. We give a method of 
on-stru
ting Segre 
urves. Let 
 be an oriented 
onvex 
urve, with two axes of sym-metry l1; l2, in the Eu
lidean plane R2 � R3 (for instan
e an ellipse). Deform theplane R2 in R3 on a right 
ylinder C with the following 
onditions:a) The base of the 
ylinder C 
an be any smooth immersed plane 
urve.b) The lines of R2 parallel to one of the axes of symmetry of 
, say l1, mustbe
ome the generatri
es of C.
) The image, under the deformation, of the lines of R2 parallel to the axes ofsymmetry l2 must be orthogonal to the generatri
es of C.Write ~
 for the image of 
 by this deformation, and ~p 2 ~
 for the image ofp 2 
 by this deformation.Proposition 2{ The deformed 
urve ~
 is a Segre 
urve.Proof { We will use the fa
t that two unit tangent ve
tors are parallel and havethe same orientation if and only if for any orthogonal proje
tion on a plane (or ona line) their images are parallel with the same orientation and the same length.Let t(~p) be the unit tangent ve
tor of ~
 (given by the orientation of ~
) at the point~p 2 ~
. Let P2 be the plane orthogonal to the generatri
es of C and 
ontaining theimage of the axis of symmetry l2 of 
. By 
onstru
tion, the 
urve ~
 is symmetri
with respe
t to the plane P2. Let �1 (or �2) be the orthogonal proje
tion of theunit tangent ve
tors of ~
 on a plane orthogonal to the generatri
es (respe
tively ona line parallel to the generatri
es). The proje
tions by �1 (respe
tively by �2) oftwo unit tangent ve
tors of ~
 have the same length if and only if the 
orrespondingpoints of the plane 
urve 
 are symmetri
 with respe
t to any one of the axes ofsymmetry l1; l2 of 
. If two points p and q of 
 are symmetri
 with respe
t to l1 orl2 and lie on one of these axis of symmetry of 
, then t(~p) and t(~q) have oppositeorientation. Let ~p1; ~p2; ~p3; ~p4 be four points of ~
, su
h that the 
orresponding pointsp1; p2; p3; p4 of 
 are symmetri
 and don't lie in the axes of symmetry of 
. We willprove that t( ~p1) 6= t( ~pi), i = 2; 3; 4: Suppose that ~p1 and ~p2 (and 
onsequently ~p3and ~p4) are symmetri
 with respe
t to P2. The proje
tions �1(t( ~p1)) and �1(t( ~p2))have the same length but di�erent orientation. So t( ~p1) 6= t( ~p2). The proje
tions�2(t( ~p3)) and �2(t( ~p4)) are oriented in opposite dire
tion with respe
t to �2(t( ~p1)),Thus t( ~p3) 6= t( ~p1) 6= t( ~p4). This proves proposition 2.The 
urves of proposition 2 
an be 
onstru
ted in su
h a way that the 
urve ~
does not lie on the boundary of its 
onvex hull. This proves theorem B.Realizations of this 
onstru
tion are given by the families of 
urves of thefollowing examples.Example 1 { The 
urves of the family ~
" : S1 ! R3 given by the parametrization~
"(�) = ((2 
os � + ")3 � (2 
os � + "); sin �; (2 
os � + ")2)are Segre 
urves for any value of " but are no Sedykh 
urves for any small enough". The 
urve ~
0 is not embedded (it has two points of self{interse
tion), so it isno Sedykh 
urve. For any small enough " 6= 0, the 
urve ~
" is embedded and doesnot lie in the boundary of its 
onvex hull. This family of 
urves lies in the 
ylindergiven by the following parametrization: (s; t) 7! (t3 � t; s; t2 � 1). In Figure 2 we27
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Figure 2: A Segre 
urve whi
h is not a Sedykh 
urve.have 
onsidered the plane 
urve 
 as the boundary of a dis
, and the spatial 
urve~
 as the image of 
 by the deformation of the dis
.

Figure 3: A Segre 
urve whi
h is not a Sedykh 
urve.Example 2 { The 
urves of the family ~
� : S1 ! R3 given by the parametrization~
�(�) = (e
os � sin(�� 
os �); sin �; �e
os � 
os(�� 
os �))are Segre 
urves and for any � � 0:7 they are no Sedykh 
urves. In Fig.3 we havethe 
urve ~
� for � = 10. The 
urve ~
� of this family lies in the 
ylinder C� givenby the following parametrization: (s; t) 7! (e2t=� sin(2�t); s; �e2t=� 
os(2�t)).
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