GLOBAL THEOREMS ON VERTICES
AND FLATTENINGS OF CLOSED CURVES

Ricardo URIBE—VARGAS

Université Paris 7, Equipe Géométrie et Dynamique.
UFR de Math. Case 7012. 2, P1l. Jussieu, 75005 Paris.
uribe@math.jussieu.fr

A wvertex of a curve in the Euclidean plane is a point where the curvature is
extremal. Equivalently a wvertex is a point where the order of contact of the oscu-
lating circle with the curve is higher than usual (this will be precised later). The
classical four—vertex theorem [14] states that: Any convex curve in the Euclidean
plane has at least four vertices. For example, the points of intersection of an ellipse
with its principal axes are the vertices of this curve.

Various higher dimensional generalizations of the four-vertex theorem are given
and some properties of closed curves related to its vertices and its flattenings are
studied. In particular we introduce a class of curves, which we call spherically
convez, in the Euclidean space R, the sphere S C R"*!, and the Lobachevskian
space L". We prove the following theorems: Any spherically convex curve in R?*
(respectively in S** C R**1 RP?* and IL** ) has at least 2k + 2 vertices. We also
prove that these three theorems are equivalent for our class of curves.

In [8], Barner introduced a class of curves (called below Barner curves) in the
projective space RP™ and proved that these curves have at least n + 1 points in
which the osculating hyperplane is stationary. We introduce a class of curves in
the odd dimensional Lobatchevskian spaces (the class analogue to Barner curves)
and prove that Barner’s theorem also holds in odd dimensional Lobatchevskian
spaces.

We prove that the vertices are extrema of the radius of the osculating hyper-
sphere and that the converse is not true. We give a formula to calculate the vertices
of a curve in R” as the zeros of a determinant. Our formula does not depend on a
spetial parametrization. With our formula we calculate the number of vertices of
the generalized ellipses introduced in [6].

A convex curve has no flattening and its osculating hyperplane intersects it
only at the point of osculation. A curve in RP? (R?) is convex if and only if it has
these two properties. To answer a question of V. Arnol’d ([6]), we show that this
two properties don’t imply convexity for curves in RP", for n > 2.

We prove that any small enough generic perturbation in R**! (taking the
derivatives into account) of a spherically convex curve in S** C R***1 has at least
2k + 2 extrema of the radius of the (2k — 1)-osculating sphere. We also show that
any small enough generic perturbation of a closed curve embedded in S® C R® has
at least 4 points with extremal curvature.



The conditions defining classes of closed curves in R” that guarantee a minimum
number of flattenings (or vertices) on each curve of that class has been a classical
object of study. The interest on this subject was revived by the recent progres in
symplectic and contact geometries and the relations of this problems with Sturm
theory (see [6], [4], [5], [7], [13], [1], [20], [24]). We study three classes of curves
in R* all whose elements have at least four flattenings ([6], [21], [19]) and give a
four-flattening conjecture for a closed curve v in R? in terms of the 1-dimensional
Legendrian knot in ST*S? associated to the tangent indicatrix T, C S? of the
curve v in R3.
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§1. Higher Dimensional Four-Vertex Theorems
for Curves in the Euclidean Space R"”,
in the Sphere S" c R**!,
in the Projective Space RP" and
in the Lobachevskian Space L."

A curve embedded in the Euclidean space R" is called spherically convez if for any n—tuple
of points of the curve there exists a hypersphere through these points that does not intersect the
curve elsewhere. We also introduce the class of spherically convex curves in the following spaces:
the sphere S” C R**!, the projective space RP" and the Lobachevskian space . We prove:
Any spherically convex curve in R?* (respectively in S2¢ C R2¥+1 RP2¢ and 1.2 ) has at least
2k + 2 vertices.

1. Introduction and Results

Below, a curve in the Euclidean space R" always means a smooth immersion
v : S — R". We will always assume that the derivatives of v of order 1,...,n — 1,
are linearly independent at any point (this is true for generic curves). We will
often identify the immersion with its image and use the abbreviation v to denote
¥(S'). In this chapter we will consider curves in the Euclidean space R", in the
n—dimensional sphere S C R**! and in the Lobachevskian space L. modeled on
a ball in the Euclidean space R”.

We state the following conventions:

a) A curve v C S™ C R™™! is refered as a spatial curve when it is considered as
a curve in R"™! otherwise it is regarded as a curve in S™.

b) Let L™ be the open unit ball in R”, (the interior of the sphere S" ! C R")
considered as the Poincaré’s model of the n-dimensional Lobatchevskian space.
A hyperbolic hyperplane in L™ is the intersection of I.” with a hypersphere of R”
orthogonal to S 1. The spheres, horospheres and equidistant spheres will be called
generalized spheres.

We will systematically use the notion of order of contact:

DEFINITION — Let M be a d-dimensional submanifold of R", considered as a

complet intersection: M = {x € R" : ¢g1(z) = --- = g, a(xz) = 0}. We say that
k is the order of contact of a curve 7 : t — ~(t) € R* with the submanifold M,
at a point of intersection 7(#q), if each function g, 0,..., g, 40 7y has a zero of

multiplicity at least k at t = ¢y, and at least one of them has a zero of multiplicity
k at t = t,.

Roughly spiking, this definition means, in the former language of geometers,
that the curve v and the submanifold M “meet at £ consecutive points”, or that
v and M “meet at k infinitely close points”.

Remark — In the most part of cases considered here M will be a d-dimensional
affine subspace or a d—dimensional sphere.

Example — The order of contact of a smooth curve in R* with its tangent line
(at the point of tangency) is two for the generic points of the curve. The order of



contact of the curve y = x* with the line y = 0 is 3: the equation z® = 0 has a
root of multiplicity 3.

By convention, the set of k—dimensional spheres of the Euclidean space R" con-
tains the k—dimensional affine subspaces, considered as spheres of infinite radius.

DEFINITION — For k = 1,...,n—1, the k-osculating sphere at a point of a curve
in the Euclidean space R” (in S™ or in L") is the k—dimensional sphere (generalized
sphere in "), whose order of contact with the curve at that point is at least k + 2.
For k = n — 1 we will simply write osculating hypersphere.

Example — The order of contact of a plane curve and its osculating circle at a
generic point of the curve is 3.

We observe that the k-osculating spheres of a spatial curve v C S"® ¢ R**!
also lie in S™ They are the intersection of the k& + 1—osculating subspaces of the
curve with S™

DEFINITION — A wvertex of a curve in R” (in S™ or in L") is a point where the
order of contact with the osculating hypersphere is no less than n + 2.

Example — An ellipse in the plane R? has 4 vertices. They are the points at
which the ellipse intersects its principal axes.

The following definition, classical for curves in R" and RP", is extended to
curves in S™ and L".

DEFINITION — An embedded curve in R* (or RP™, or S" or ") is called convezif
it intersects any hyperplane (or projective hyperplane, or maximal hypersphere or
hyperbolic hyperplane, respectively) at no more than n points, taking multiplicities
into account.

Example — A plane curve is convex if it intersects any straight line in at most
two points, taking multiplicities into account.

Example — For n = 2k, the generalized ellipse, given by
(cost,sint, cos2t,sin 2t . .., cos kt,sin kt), is convex.

The following theorem was proved in [8] and [22]. In the next chapter we give
a new proof based on Sturm theory:

THEOREM — Any convex curve in R?* has at least 2k + 2 vertices.

In [22] and [23] we proved that this theorem holds for the convex curves in the
sphere S?* C R?**! in the projective space RP?* and in the Lobachevskian space
L?* . These theorems are a direct consequence of our theorems R, S and L stated
and proved below.

We introduce a class of curves generalizing the convex ones:

DEFINITION — A curve embedded in R" (S™ or L") is called spherically con-
vex if for each k—tuple of points of the curve, k < n, with positive multiplicities
satisfying m; +- - - +my, = n, there exists at least one hypersphere of R" (or hyper-
sphere of S™ or hyperbolic hypersphere of " respectively) intersecting the curve
at these points, with corresponding multiplicities, that does not intersect the curve
elsewhere. The hyperspheres of infinite radius are not excluded.



Remark — For any point of a spherically convex curve there exists a hypersphere
containing the codimension 2 osculating sphere through this point which does not
intersect the curve elsewhere.

Remark — Spherically convex curves exist in Euclidean spaces, spheres and
Lobachevskian spaces of even dimension only.

Remarks — Any convex curve is spherically convex. The affine transfomations
of R™ preserve convex curves but don’t preserve vertices. Moreover, the conformal
transformations of R (respectively of S™ or of ) preserve vertices and preserve
spherically convex curves but don’t preserve convex curves. So to study global
problems about vertices it seems to be more natural to consider spherically convex
curves instead of convex ones.

Example — Let v be a closed convex curve in the Euclidean space R? (or R2*),
Let p € v be a point which is not a vertex of v. Consider an inversion o centered
at a point not belonging to v and belonging to the osculating circle (hypersphere,
respectively) of v at p. Then the image of v by the inversion o is a non—convex curve
which is spherically convex. In particular, the order of contact of o(7y) with its
tangent line (hyperplane, respectively) at the point o(p) is 3 (2k + 1, respectively).

Our main results in this paragraph are theorems R, S and L below ([24]).

THEOREM R — Any spherically convezx curve in the Euclidean space R** has at
least 2k + 2 wvertices.

THEOREM S — Any spherically convex curve in the sphere S?* C R**! has at
least 2k + 2 wvertices.

THEOREM L — Any spherically convexr curve in L?* has at least 2k + 2 vertices.

Theorems R, S and L are direct corollaries of the following theorem:

THEOREM 1 - If a spherically conver curve in R?** (respectively in S** or in
IL?* ) transversally intersects a hypersphere at | points then it has at least | distinct
vertices.

Convex curves in R” (in S™ or L") exist only for even dimensions. However,
convex curves exist in projective spaces of any dimension.

Example 1 — The projective line RP! is a convex curve in RP?! itself. The curve
6 — (cosf,sin 6, cos 36, sin 30) is a convex curve in RP?: the antipodal points are
identified, i.e. 6 is identified with 6 + 7.

To consider vertices of curves in the projective space, fix the spherical metric
in RP™ by the double covering, 7 : S™ — RP", identifying antipodal points. A
vertez of a curve in v in RP™ is a point where the lifted curve 7 !(7) has a vertex
as a spherical curve.

DEFINITION — An embedded curve in RP" is called spherically convez if its lift
7~ 1(y) is spherically convex in S”. Antipodal points are counted as one point.

As a consequence of theorem S we have



THEOREM P?* — Any spherically convex curve in the projective space RP?** has
at least 2k + 2 wvertices.

Barner’s Theorem on flattenings holds for Barner curves in RP™ for any n > 1.
However, for odd-dimensional projective spaces we have the following result [23]
on vertices:

THEOREM P%**! — There exist convex curves in RP?***! (and thus spherically
convex curves) having no vertes.

2. Proofs

First, we prove that the three versions of theorem 1 (for R?*| for S, and for
L**) are equivalent (In contrast to the corresponding theorems for convex curves).
Next, we prove Theorem 1 for curves in S2*.

Let H™ be a hyperplane of R**!. Consider any inversion o with respect to a
point exterior to H". The image of a convex curve in H" may be non—convex in
o(H"™) = S™ Conversely, the image of a convex curve in S"” may be non—convex in
H™. However, we have the

PROPOSITION 1 — A curve in S™ = o(H") not containing the center of the

inversion is spherically convex in S™ if and only if its image is spherically convex
in H" = o(S").

Proof — The hyperspheres of R" (including those of infinite radius) are sent
onto the hyperspheres of S”, and vice versa. []

DEFINITION — For &k = 1,...,n — 1, the k-osculating subspace at a point of a
curve in R" is the k-dimensional affine subspace spanned by the first £ derivatives
of the curve at that point.

Remark — The order of contact of the k-osculating subspace with the curve is
at least k + 1. For k = 1,...,n — 2, the (k + 1)-osculating subspace contains the
k-osculating sphere.

DEFINITION — A flattening of a curve 7 in R” (RP™) is a point where the
derivatives of v of order 1,...,n, are linearly dependent.

Remark — The order of contact of a curve with its osculating hyperplane, at a
flattening is at least n + 1, whereas at an ordinary point it is n.

Example — The flattenings of a plane curve are their inflections. The flattenings
of a curve in R® are those at which the torsion vanishes.

In [17] and [18] there is a proposition equivalent to the following lemma, proved
in [22]:

LEMMA 1 - Any inversion whose centre does not belong to a hyperplane H of
R sends the vertices of any curve v of H onto the flattenings of its image.

To prove lemma 1 we need the following two lemmas:

LEMMA - The image of a sphere S™ ! lying in a hyperplane H of R**! under
an inversion belongs to a hyperplane of R and it still is a (n — 1)-dimensional
sphere.



Proof. — The n-dimensional spheres containing S™ ! cover all the space. Hence,
one of them goes through the centre of the inversion. The inversion sends this
sphere to a hyperplane and the hyperplane H to a hypersphere. So the image of
Sn-1is the intersection of a hyperplane and a hypersphere. []

LEMMA - The image of the osculating hypersphere of a curve v lying in a hyper-
plane of R** under an inversion o whose centre does not belongs to the hyperplane
is the (n — 1)-osculating sphere of the image curve o(vy) and is contained in the
osculating hyperplane of o (7).

Proof. — By the preceding lemma, the image of the osculating hypersphere of ~y
belongs is a sphere of dimension n— 1. It is osculating since the inversion preserves
order of contact. So the hyperplane containing it is the osculating hyperplane. [l

Proof of lemma 1 — By the preceding lemma, the inversion o sends the os-
culating hyperspheres of a curve in a hyperplane H onto the (n — 1)-osculating
spheres of the image curve in R"*!. Since the order of contact is preserved by the
inversion, the vertices of the hyperplane curve « are sent onto the points at which
the order of contact of the image curve with its (n — 1)-osculating sphere (and
with the osculating hyperplane) is at least n+ 2. So the vertices of the hyperplane
curve 7y are sent onto the flattenings of the spatial curve o(v). O

LEMMA 2 ( see [22]) — The vertices of a spherical curve v C S™ C R"™! are
the flattenings of v regarded as a spatial curve.

Proof - The osculating hyperplane at a point of the spatial curve y C S™ ¢ R**!
contains the (n — 1)-osculating sphere at that point. So at any point of 7 the order
of contact with its (n — 1)-osculating sphere and with its osculating hyperplane is
the same. []

Lemma 2, proposition 1 and lemma 1 imply that theorem 1 for R?* is equivalent
to theorem 1 for S2*.

Consider the Lobatchevskian space L C R". A convex curve in L.” may
be non—convex considered as a curve of R". Reciprocally, a curve contained in
L® C R™ which is convex in R" may be non—convex in L.". However we have the

PROPOSITION 2 —- A curve in ™ C R™ s spherically convez in L™ if and only
if it is spherically convex in R".

Proof — The generalized hyperspheres of " are intersections of " with hyper-
spheres of R" (may be of infinite radius). [J

Proposition 2 implies that theorem 1 for R** and theorem 1 for IL?* are equiv-
alent.

To prove theorem 1, for S?*, we need introduce a definition and state a result
of [8].

DEFINITION — A curve in R” (in RP") is called a Barner curve if for every
(n — 1)—tuple of points of the curve there exists a hyperplane through these points
that does not intersect the curve elsewhere.



In [8], is proved that Any Barner curve in RP™ transversally intersected by a
hyperplane at | points has at least | distinct flattenings.

We will use the following version of the preceding statement:

BARNER'S THEOREM — Any Barner curve in R**1 transversally intersected
by a hyperplane at | points has at least | distinct flattenings.

Proof of theorem 1 — We will prove that any spherically convex curve 7 of
S?* ¢ R*+! is a Barner curve considered as a spatial curve. Let qq,. .., g be 2k
points of 7. By hypothesis there is a hypersphere S2*~! C S2* through these points
not intersecting v elsewhere. The hyperplane of R?**! containing S?*~! meets 7
at the points ¢y, . . ., g2, and does not intersect it elsewhere. So 7 is a Barner curve
of R2¥*1 If v is transversally intersected by a hypersphere I' of S?* at [ points
then the hyperplane of R***! containing I' intersects v transversally at the same
[ points. By Barner’s theorem + has at least [ distinct flattenings. By lemma 2,
the spherical curve v C S2! ¢ R2**! has at least [ distinct vertices. This proves
theorem 1.

Proof of theorem P**! — We will prove that the convex curve in RP2**! given
by
v : 6+ (cosf,sinf, cos36,sin 36, ..., cos(2k + 1)8,sin(2k + 1)0),

(identifying antipodal points) has no vertex. The curve + lies in a hypersphere of
R2%+2_ The vertices of the spherical curve v are its flattenings, considering v as a
spatial curve. So we must show that v has no flattenings. All curvatures of v are
constant; thus it suffices to check that v(#)|¢—o is not a flattening. So it suffices
(and it is easy) to check that the Wronskian of v at # = 0 does not vanish. (The
Wronskian of v is the determinant of the matrix whose colums are the first 2k + 2
derivatives of 7). O



§2. Barner’s Theorem in Lobatchevskian Spaces

We consider the natural generalization of Barner curves in Lobatchevskian spaces and prove
a generalization of the Barner’s theorem: Any Barner curve in the Lobatchevskian space 12*+1
has at least 2k + 2 hyperbolic flattenings.

1. Introduction and Results

Let L denote the open unit ball in R", (the interior of the sphere S" ! C R")
considered as Poincaré’s model of the n-dimensional Lobatchevskian space. A
hyperbolic hyperplane in 1" is the intersection of I.” with a hypersphere of R"
orthogonal to S™ 1.

DEFINITION — The osculating hyperbolic hyperplane at a point of a curve in L.”
is the hyperbolic hyperplane whose order of contact with the curve at that point
is at least n.

We recall the definition of flattening given in §1 and generalize it to curves in
Lobatchevskian spaces:

DEFINITION — A flattening (hyperbolic flattening) of a curve in the Euclidean
or affine space R" (", respectively) is a point where the order of contact of the
curve with its osculating hyperplane (hyperbolic hyperplane, respectively) is at
least n + 1, whereas at an ordinary point it is n.

We generalize the definition of Barner curves to curves in Lobatchevskian
spaces:

DEFINITION — A curve embedded in " is called a Barner curve if for each
k—tuple of points of the curve, k& < n — 1, with positive multiplicities satisfying
my + ---+myp = n — 1, there exists at least one hyperbolic hyperplane of L"
intersecting the curve at these points, with corresponding multiplicities, that does
not intersect the curve elsewhere.

Barner curves exist only in odd-dimensional Lobatchevskian spaces.
The main results of this paragraph are theorems 1 and 2 below ([24]):

THEOREM 1- If a Barner curve in L***1 transversally intersects a hyperbolic
hyperplane in | points then it has at least | distinct hyperbolic flattenings.

COROLLARY — Any Barner curve in L?**! has at least 2k +2 distinct hyperbolic
flattenings.

DEFINITION — Let p be a point of R”. A curve in R" is called a p—Barner curve
if for each k—tuple of points of the curve (k < n — 1) with positive multiplicities
satisfying my + - - - +my = n — 1, there exists a hypersphere intersecting the curve
at these points, with corresponding multiplicities, that does not intersect the curve
elsewhere and that contains p.

DEFINITION — Let p be a point of R”. A point ¢ of a curve in R" is called
a p—flattening of the curve if there exists a hypersphere containing p and whose
order of contact with the curve at ¢ is at least n + 1.

THEOREM 2 — Let p € R**1_ If a p-Barner curve transversally intersects in
[ points a hypersphere containing p then it has at least | p— flattenings.



COROLLARY — Any Barner curve with respect to a point p € R**1 has at least
2k + 2 p—flattenings.

2. Proofs

We will prove that theorem 1, theorem 2 and Barner’s theorem (for curves in
R2*+1) are equivalent.

First, we prove that theorem 2 implies Barner’s theorem for curves in R2¥+1;
Barner’s theorem for curves in R?**! is obtained as a particular case of theorem 2
when the point p is at infinity.

LEMMA 1 — Let o be an inversion with respect to a hypersphere in R**!, and
let H™ be a hyperplane not containing its centre. Let S ' be a hypersphere of H™.
Then all the hyperplanes containing the image under o of some hypersphere of H"
orthogonal to S™' have a common point O.

Remark 1 — The inversion sends the hyperplane H" onto a hypersphere. If the
image of S™ ! under o is an equator of this hypersphere then the point O of lemma
1 is at infinity.

Proof of lemma 1. — Let C be the centre of the hypersphere S* ' Cc H".
Consider a point R in S*'. Consider a hypersphere S™ in R"+! containing both
the centre @ of the inversion and a hypersphere of H" orthogonal to S"!. The
power of C' with respect to the hypersphere Sm is CR-CR. Hence the line through
the points C' and @ intersects the hypersphere S at Q@ and at a point P such that
CQ-CP = CR-CR. So all hyperspheres containing both the centre ) of the
inversion and some hypersphere of H" orthogonal to S™ ! must also contain the
point P. The point O of lemma 1 is o(P). O

COROLLARY - Let o, H" C R"! and O be like in lemma 1. Let L C H"
be the n-dimensional Lobatchevskian space and let H' be any hyperplane not going
through O, parallel to the hyperplane containing o(S™ ') = o(0L"). Consider the
projection w : o(H™) — H', from O. Then the image of each hyperbolic hyperplane
of L™ under moo is the intersection of a Euclidean hyperplane of H' with woo (IL").

We prove that Barner’s theorem for curves in R?**! implies theorem 1:

Proof of theorem 1. — The restriction to . of the map moo used in the corollary,
sends Poincaré’s model of Lobatchevkian space to Klein’s model. The hyperbolic
flattenings of a curve in " are sent onto the flattenings of its image in H'. In
particular, for n = 2k + 1 Barner’s curves in L?**! are sent onto Barner’s curves
in H' = R%*+*!  Applying Barner’s theorem we prove Theorem 1. [J

Finally, we will prove that theorem 1 implies theorem 2:

Proof of theorem 2. — Consider the exterior of a hypersphere S%* as a model of
the Lobatchevskian space L?**!. Theorem 1 works also here, in particular when
the hypersphere S?* has infinitely small radius (that is, when S** becomes a point
of R*+1). O
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§3. Generating Family of the Normal Map of a Curve in R”
Some Properties of Vertices and a Formula for Calculate Them

We prove that the vertices of a curve v C R"™ are extrema of the radius of the osculating
hypersphere. Using Sturm Theory, we give a proof of the 2k+2-Vertex Theorem for convex curves
in the Euclidean space R?*. As a by—product of this proof we obtain a formula to calculate the
vertices of a curve in R”. Applying Sturm theory and our formula to calculate vertices we obtain

the number of vertices of the generalized ellipses introduced by Arnol’d in [6].

1. Statement of Results on Vertices

Vertices and Flattenings of curves in R" are related to Sturm Theory. In point
3 of this §, we give a proof of the 2k + 2-Vertex Theorem for convex curves in
the Euclidean space R?* based on Sturm Theory. This proof allows us to give a
formula to calculate the vertices of a curve in R" as the zeroes of a determinant:

THEOREM 1 — The vertices of any curve v : S* — R" (or v : R — R"),
v:s (01(8), ..., 0n(s)) are given by the zeroes of
det(Ri, ..., Rn,G)

where R; (G) is the column vector defined by the first n + 1 derivatives of ¢; (of
g= 7;, respectively).
Remark — Theorem 1 says that the vertices of any curve vy : S1 — R" (or

Y:R =R, v:s5+ (¢1(8),...,9n(s)) are given by the flattenings of the curve
[:S!'—R"™ (or T': R — R**1),

s <<p1(s),...,<pn(s), 722(3)> .

This means that the vertical projection of a curve v C R" on a paraboloid ‘of
revolution’ z = %(m% +---+x2) sent the vertices of the curve 7y onto the flattenings
of its image. We will discuss the properties of this and other projections related
to Lagrangian and Legendrian singularities in another paper.

Noticing that the formula of Theorem 1 can be ‘simplified’, we obtain the
following

THEOREM 1 — The vertices of any curve v : S* — R (or v : R — R"),

v s> (1(8), ..., 0n(s)) are given by the zeros of the following determinant' :
o1 2 0
" "
(.)01 RN (pn {11 _ 0,
0y () (.pn(n+1) hn

where hy =~'-v" and hy =h},_; +7" - ’Yk-

T discovered the formula of Theorem 1 in May 1995 and calculated vertices of many curves
with it. In July 1999 J.J. Nuifio Ballesteros told me that he knew the formula of theorem 1%,
I don’t know when he discovered it. In August 2000 he told me that he will publish it in some
preprint.
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Proof — The column vector G in the determinant of theorem 1 is the sum of
various column vectors, n of which can be eliminated by substracting the column
vectors p; R;, 1 =1,...,n. U

For a curve in the Euclidean plane, to have a vertex is equivalent to to have an
extremum of the radius of the osculating circle. In higher dimensional spaces this
is not the case. However we have the following theorem proved in point 2 of this

§.
THEOREM 2 ([22]) — The vertices of a curve v C R" are extrema of the radius
of the osculating hypersphere.

Remark — The converse is not true for n > 2. For example, all the points of
the circular helix ¢ + (cost,sint,t) are extrema of the radius of the osculating
hypersphere. However it has no vertex. A more generic example is given by the
curve t — (acost,bsint,t) which has no vertex for any a,b € R\ {0} such that
la® — b?] < 1/3.

Proof of remark — It suffices to use our formula from theorem 1. Writing out
the equation, we obtain

1/2(b* — a®)sin 2t + ¢
(b? — a?®)cos2t + 1
—2(b* — a?)sin 2t
—4(b* — a?) cos 2t

—asint  bcost
—acost —bsint
asint —bcost
acost bsint

OO O =

which gives ab(1 — 3(b* — a®)cos2t) = 0. This equation has no real solution for
la® — % < 1/3. O

The ellipse is the simplest closed convex curve in the plane having the minimum
number of vertices: 4.

A generalized ellipsein R?* is a convex curve given by the following parametriza-
tion ([6]): 6 — (aicosB, bysinf, ascos26,bysin26, ..., ay cos kb, by sin kf). We can
expect that generalized ellipses are convex curves in R?* having the minimum
number of vertices, i.e. 2k + 2. However, the following example shows that the
generalized ellipses in R?** can have more than 2k + 2 vertices.

Example 1 — The generalized ellipse in R*, v(6) = (a1 cos@, by sin b, ay cos 26,
by sin 26), with a3 # b3 and aibiasby # 0 has 8 vertices. If a3 = b3 then v is a
spherical curve and all its points are thus vertices.

Denote C, = cos kf and S; = sin k6.

THEOREM 3- Consider the generalized ellipse in R?* given by
Y(0) = (a1C1, 0151, 4205, 025, . . ., arCy, by Si),

with aybyashs - - -agb, # 0. Then, for even k, v can have 2k + 4, 2k + 8,. .. 4k
or an infinity of vertices depending on the values of the parameters a; and bj;, for
j > g + 1. For odd k, v can have 2k + 2, 2k + 6,. .. 4k or an infinity of vertices
depending on the values of the parameters a; and b;, for j > %

We will construct a convex curve in R?* having the minimum number of vertices,
i.e. 2k + 2. Consider the generalized ellipse of Theorem 3 with coefficients a; =
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by = --- = a; = by = 1 and denote it by 9. Obviously 7, is a spherical curve
and all its points are vertices. In order to obtain the desired convex curve, we will
perturb 7 in the “radial direction”. Let 7. = (1 + & cos(k + 1)8)7o.

THEOREM 4 — For ¢ # 0 small enough the curve 7. has exactly 2k + 2 vertices.

Example 1 and Theorems 3 and 4 are proved in point 4 of this §.

2. Proof of Theorem 2 and Description of the Focal Set of a Curve

Proof of theorem 2 — The generating family F' : R® x S — R associated to the
focal set of the curve v is given by

Flg,9) =75 lla=0s) |

We shall write (i) = {(q,s)/0,F(q,s) = 0,...,0'F(q,s) = 0}. Thus (1) is the
set of pairs (g, s) such that ¢ is the center of some hypersphere of R” whose order of
contact with -y at s is at least 2 (this means that ¢ is in the normal hyperplane to
at s). So X(2) is the set of pairs (g, s) such that g is the center of some hypersphere
of R® whose order of contact with v at s is at least 3. From the equations can be
seen that these points generate a plane of dimension n — 2 contained in the normal
hyperplane to v at s. So X(n) is the set of pairs (¢(s), s) such that g(s) is the centre
of the osculating hypersphere at v(s). Hence the value of F' at the point (¢(s), s) in
Y(n) is one half of the square of the radius of the osculating hypersphere at ~y(s).
The condition for a point p = y(s) to be a vertex is equivalent to the fact that the
first n + 1 derivatives of F' with respect to s vanish at s. Hence ¥(n + 1) is the
set of vertices of the curve. It is a well-known fact of singularity theory [2] that a
point belonging to X(n + 1) is a critical point of the restriction of F' to X(n). So
a vertex is a critical point of the radius of the osculating hypersphere. [

Remark — The centers of the osculating hyperspheres at the vertices of v are
given by the ¢ € R" for which there exists a solution s of the n + 1-system of
equations

Fi(s) = 0
"
F'(s) = 0

FM(s) = o

For a fixed s, the first equation gives the normal hyperplane to the curve at
the point v(s). The first two equations give a codimension 1 subspace of the nor-
mal hyperplane to the curve at the point v(s). Following this process we obtain
a complete flag at each point of the curve. The focal curve q(s), formed by the
centers of the osculating hyperspheres, is determined by the n first equations. The
complete flag is the osculating flag of the focal curve. In particular, the osculating
hyperplane of the focal curve at the point ¢(s) is the normal hyperplane to the
curve 7 at the point y(s). As the point moves along the curve 7, the corresponding
flag (starting with the codimension 2 subspace) generates a hypersurface which is
stratified in a natural way by the components of the flag. This stratified hyper-
surface is a component of the focal set of the curve . The other component of
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the focal set is the curve itself. The stratum of dimension 1 (generated by the
0-dimensional subspace of the flag, i.e. generated by center of the osculating hy-
persphere at the moving point) is the focal curve of v. The equation Fq("H)(s) =0
gives a finite number of isolated points on the focal curve. These points correspond
to the vertices.

The focal set is also a component of the caustic of the Lagrangian map (normal
map) defined by the generating family F(q,s) (For the notions of caustic, La-
grangian map, Lagrangian singularity and generating family, we refere the reader
to chapter 1). Thus the vertices of a curve in R" correspond to a Lagrangian
singularity A, of the normal map.

3. A Proof of the 2k + 2-Vertex Theorem in R* by Sturm Theory

We begin this paragraph with some definitions and results of Sturm theory,
taken from [6] and [11].

A set of functions {p1, ..., por 11} With ¢; : S — R is a Chebishev system if
any linear combination a;p; + - - - + askr1p2k11, @i € R, with a% + ...+ a%kﬂ =0
has at most 2k zeros on S™.

Example 1 — The system of functions {1, cosf,sinf} is a Chebishev system.

Remark — Any convex curve 6 — (¢1(6), ..., p2(0)) in R defines a Chebishev
system: {1,¢1,...,Qax}

DEFINITION — A linear differential operator L : C*(S') — C*(S?) is called
disconjugate if it has a fundamental system of solutions for the equation Lg = 0
which are defined on the circle and form a Chebishev system.

Example 2 — The operator L = 9(9?+1) is disconjugate. The Chebishev system
{1,cos6,sinf} is a fundamental system of solutions for it.

Example 3 — Any convex curve v : 6 — (01(0),...,2x(9)) in R* defines a
2k + 1-order disconjugate operator L. defined by

L,g =det(Ry,..., Ry, G),

where R; (G) is the column vector defined by the first 2k + 1 derivatives of ¢; (of
g, respectively). Evidently the Chebishev system {1, ¢1, ..., @2} is a fundamental
system of solutions of the equation L,g = 0.

Example 4 — The generalized ellipse ([6])
v : 60+ (a3 cosf,bysinb, ascos26,bysin 26, . .., ay cos kb, by sin kf),
defines, up to a constant factor, the 2k + 1-order disconjugate operator
L,=0(0*+1)---(8* + n?).

Some proofs of 4-vertex type theorems are based on the following theorem due
to Hurwitz ([12]):

HURWITZ'S THEOREM — Any function f € C*(S') whose Fourier series begins
with the harmonics of order N, f = >, yaicoskl + by sinkf, has at least 2N
zeroes.
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In fact any function f € C*°(S!) without harmonics up to order n is orthogonal
to the solutions of the equation 9(9* + 1)--- (8% + n?)¢ = 0, and such solutions
form a Chebishev system.

The following theorem generalizes Hurwitz’s theorem.

STURM-HURWITZ THEOREM ([6],[11]) — Let f : S' — R be a C* function
such that fgl f(0)pi(0)dd = 0, {@i}iz1, ok+1 being a Chebishev system. Then f
has at least 2k + 2 sign changes.

COROLLARY — ([11]) Any function in the image of a disconjugate operator
(f = Lg, where g € C*™(S') is any function) of order 2k + 1 has at least 2k + 2
sign changes.

PROOF OF THE 2k+2-VERTEX THEOREM IN R?* —TLet v : 6 — (p1(0), ..., par(6))

be a convex curve in R?*. Consider the family of functions on the circle F' :
St x R?* — R defined by

Fi6) = 3 la—(6)

In the proof of theorem 1 we saw that the centers of the osculating hyperspheres
at the vertices of v are given by the ¢ € R® for which there exists a solution 6 of
the 2k + 1-system of equations:

F!I(6) = 0

Fq(2k+1)(9) S

The focal curve q(6) of centers of the osculating hyperspheres is determined by the

first 2k equations. The last equation is the condition on this curve determining
2 2 2

the vertices. Write g = %-. Using the fact that —F =~ -q — 3 — %, the system

of equations can be written as

7-q-9g =0
,YII .q— gll = 0
7(2k+1) g — g(2k+1) : 0

This means that the vector (g, —1) in R?***! is orthogonal to the 2k + 1 vectors
Y, 9", (¥",9"),...,(y*+1) g2k+1)) So the vertices of v are given by the zeros of
the determinant of the matrix whose lines are these 2k + 1 vectors. This deter-
minant is equal to det(Ry,. .., Ro, G) where R; (G) is the column vector defined

by the first 2k + 1 derivatives of ¢; (of g = 7—22, respectively). This is the image
of g = g under the operator L, (see example 3). So corollary 1 implies that this

determinant has at least 2k + 2 sign changes. This proves the theorem.

Proof of Theorem 1
In the above proof of the 2k + 2-vertex theorem for convex curves in R?* | the
convexity of the curve and the parity of the dimension were used only in the last
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step. So the determinant obtained in the proof gives a formula to calculate the
vertices of a curve in R”. This proves theorem 1.
4. On the Number of Vertices of Generalized Ellipses
We will prove example 1 and Theorem 3 given in the begining of this §.
Example 1 — The generalized ellipse in R*,

v(8) = (ay cos B, by sin, ay cos 26, by sin 26), with a3 # b5 and aibyaszby # 0

has 8 wvertices. If a2 = b2 then 7y is a spherical curve and all its points are thus
vertices.

Proof — Denote Cy = coskf, Sy, = sinkf and g = a?C? + b2S? + a3C2 + +b352.
By example 4 of point 2 and the formula of Theorem 1 the vertices of 7 correspond
to the roots of the equation 9(9* + 1)(0? + 2%)g = 0. The trigonometric identity

1
a’ cos® 6 + b sin” f = 5(@2 +b% + (a® — b®) cos 26)
allows us to write
g=(a} —b})Cy + (a3 — b3)Cy + af + b3 + a5 + b3.

The operator 9 kills the constant terms (i.e. the harmonics of order zero), and the
operator (9% + 22) kills the second order harmonics. Thus

9(0% +1)(0* + 2%)g = K (a3 — b3)Sy,

where K is a non zero constant. Thus the vertices of v correspond to the solutions
of the equation K (aZ —b2)S; = 0, i.e. y has 8 vertices for a3 # b2 and all its points
are vertices for a2 = b2. O

We keep the notation Cj = coskf and Sy = sin k6.

Example 2 — The generalized ellipse in R®, v(6) = (ay cos@, by sin b, ay cos 26,
by sin 26, a3 cos 36, by sin 36), with aibjasbsaszbs # 0 can have 8,12 or an infinity of
vertices, depending on the values of the parameters as, by, as,bs. In particular, if
a2 = b2 and a} # b2 then v has 12 vertices, and if a2 # b3 and a2 = b2 then 7 has
8 vertices. If a3 = b3 and a3 = b3 then v is a spherical curve and all its points are
thus vertices.

Proof — As in example 1, the vertices of y are the roots of the equation given
by 8(8% + 1)(8? + 2%)(8* + 3?)g = 0 where

g=(a=b})Cy + (a2 — B2)Cy + (a —5206+Z 2 1 02).

The operator 9(9* + 1)(9? + 2%)(8* + 3?) kills the harmonics of orders zero, one,
two and three. Thus

9(0% +1)(0* + 22)(8* + 3%)g = Ky(a2 — b3)Ss + Ks(al — b3)Ss,
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where Ky and K3 are non zero constants. [

THEOREM 3- Consider the generalized ellipse in R?*
7(9) - (alola blsla 0202, b2S2a sy Clka, kak);

with ajbyashs - - -agby, # 0. Then, for even k, v can have 2k + 4, 2k + 8,... 4k
or an infinity of vertices depending on the values of the parameters a; and b;, for
j > g + 1. For odd k, v can have 2k + 2, 2k + 6,. .. 4k or an infinity of vertices
depending on the values of the parameters a; and b;, for j > %

Proof of Theorem 3. — As in examples 1 and 2, the vertices of v are the roots
of the equation given by

(0> +1)(8* +2%)--- (8" + k*)g =0,
where g = Y% (a2 — b2)Cy + 3% (a? + b?). The operator
9(0” +1)(9° +2%) -+ - (8° + k)
kills the harmonics from the order zero until order k. Thus, for even k,

00 +1)(0° +2%) -+ (0> +k”)g = > Ki(a] — b})Su;,

Ok
where K; is a non zero constant, for i > g + 1. For odd k&

(0 +1)(0*+2%) - (O +k)g= > Ki(a} —b})Sa,

o k41
12> 5=

where K; is a non zero constant, for i > % This proves Theorem 3.

Proof of Theorem 4. — Applying our formula of Theorem 1 we obtain that the
number of vertices of the curve 7. = (1 4 ¢ cos(k + 1)8)7, is given by the number
of solutions # € S! of an equation of the form

0=cKsin(k+1)0 +e*f(,¢),

where K # 0 is a constant and f(6,¢) is a bounded function. Thus for € # 0 small
enough this equation has exactly 2k + 2 solutions. []
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§4. Weakly Convex Curves in R" and RP"

A convex curve has no flattening and his osculating hyperplane intersects it only at the point
of osculation. A curve in RP? (R?) is convex if and only if it has these two properties. To answer
a question of V. Arnol’d ([6]), we show that this two properties don’t imply convexity for curves
in RP™, for n > 2.

1. Statement of Results

We recall that a smooth closed curve in RP"™ (R") is called convez if any
hyperplane intersects it in at most n points, taking multiplicities into account.

A convex curve has no flattening and its osculating hyperplane intersects it
only at the point of osculation. A curve in RP? (R?) is convex if and only if it has
these two properties. In [6], V. Arnol’d put the problem to know whether these
two properties imply convexity (for dimensions greater than 2). In this section we
answer this question.

We say that a curve in RP" (R") is weakly convez if it has no flattening and
its osculating hyperplane intersects it only at the point of osculation.

For n > 2 the answer to Arnol’d’s question is negative. In [1], S. Anisov gave
an example of a weakly convex curve in RP2. For n > 2 we give examples of curves
in RP™ (R™ for n even) which are weakly convex but are no convex.

Remark — Any weakly convex curve in RP" is affine for even n, i.e. there exists
a hyperplane of RP™ not intersecting the curve. For odd n any weakly convex curve
in RP™ is not contractible, i.e. it intersects any hyperplane in an odd number of
points, counting multiplicities.

PROPOSITION 1- The curve in RP?* | with k > 2, given in affine coordinates
by

6 — (cosf,sinf, cos26,sin26, ..., cos(k—1)0,sin(k —1)0, cos(k + 1), sin(k+1)6),

18 weakly convexr but not conver.

PROPOSITION 2- The curve v in RP?**~1 k > 2, given in homogeneous coor-
dinates by

0 — [cosf:sinf :cos3f :...:cos(2k—3)0 : sin(2k—3)6 : cos(2k+1)6 : sin(2k+1)0],

18 weakly convexr but not conver.

Remark — The curve in Proposition 2 can be considered as a curve in S%*~1 C
R*  where the points v(#) and (6 + 7) = —(6) are identified.

We constructed many other examples of weakly convex curves which are not
convex. In particular, for the Euclidean space R* we calculate the number of
vertices for many examples in which the convexity is “slightly broken”: Weakly
convex curves in R?* which intersect any hyperplane in at most 2k + 2 points and
intersect at least one hyperplane in exactly 2k + 2 points.

In all examples of this kind of weakly convex curves in R** we obtained that
the number of vertices was always greater or equal to v/2k 4+ 2. Moreover we con-
structed weakly convex curves of this kind in R?* for which the number of vertices
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is the smallest even number greater or equal to v/2k 4+ 2. From this information
we formulate the following

CONJECTURE- Let v be a weakly convex curve in R?* which intersect any hy-
perplane in at most 2k + 2 points and intersect at least one hyperplane in exactly
2k + 2 points. Then v has an even number of vertices greater or equal to \/2k + 2.

Example — The curve 7 : 8 — (a; cos 6, by sin 6, ay cos 30, by sin 36) in R* has 4
vertices for as and by small enough. Suppose R* C R°. An inversion in R® centered
at a point exterior to R* sends the curve 7 into a spherical curve ¥ C R®. The
curve 7 lies on the boundary of its convex hull and has only 4 flattenings. This
example shows that Sedykh’s theorem (see §3 of this chapter and [19]) can’t be
extended to higher dimensions.

2. Proof of proposition 1
The proof consists of various simple steps:

0 — Consider the standard coordinates (1, s, ..., %) in R2*. The curve of
proposition 1 is not convex because it intersects the hyperplane z9, = 0 at the
2k + 2 points which correspond to the solutions of the equation sin(k + 1)8 = 0.

1 — Observe that all curvatures of the curve in proposition 1 (regarded as
a curve in the Euclidean space R?*) are constant. Observe also that for each
pair of points v(6p),7v(6:1) of the curve there is an orthogonal transformation of
R2?* preserving the curve and sending the point () in the point v(#;). This
orthogonal tranformation is obtained by a rotation of an angle (6; — 6p) - j on
the 2-plane of coordinates z2j_1,z2; for j < k and an angle (6; — 6y) - (k+ 1) in
the 2—plane of coordinates xo;_1, x2;. Thus it suffices to calculate the osculating
hyperplane for § = 0 and to show that this hyperplane does not meet the curve
elsewhere.

2 — The equation of osculating hyperplane at § = 0 involves only odd index
variables: It is of the form a;xy + aszs + - - + @op 1221 +b = 0.

3 — Substitute the odd components of the curve in the preceding equation to
find the points at which the curve intersects the osculating hyperplane. This gives
a;cosf +azcos36+ -+ ap_qcos(k+1)8 +b=0.

4 — Make the change of variables § = 2¢ and introduce the following notation:
C =cosp, S =sinp and C} = coskp and Sy = sin kp for £ > 2. The equation of
step 3 becomes a;Cy + a3Cs + - - + ap_1Co(41) + b = 0.

5 — Use the identities

Cor, = 1—-252 and S? = n?52+- - -+ 2n(—4)" 152001 4 (—4)"~182" for p > 2.
Equation of step 4 becomes an equation of degree 2k + 2 in S.

6 — The osculating hyperplane at 2¢ = 8 = 0 intersects the curve with multi-

plicity 2k. Thus the equation is of the form b;S?*(by + b3S?), where by, by and bs
are constants. We only need to known the constants b, and bs.

7 — Observe that the terms S?* and S$**2 may only come from the term S} ;.
Thus the equation to solve is 2(k+1)(—4)F~18% +(—4)kS2(k+1) which is equivalent
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to 2(—4)F"18%%(k +1 — 25%) = 0. This equation has a root of multiplicity 2k at
S = 0, which corresponds to the intersection of the osculating hyperplane with the
curve at 20 = # = 0. The equation k + 1 — 25? = 0 has no real solution for k& > 2
because S? = sin? ¢ < 1. This proves proposition 1.

3. Proof of proposition 2

Proof of proposition 2 — Let v be the parametrization of proposition 2. The
proof of proposition 2 is similar to the proof of proposition 1; let us just point out
the differences. The parametrization given in proposition 2 is in R?** \ {0} where
the points belonging to a straight line through the origin of R?* are identified. In
particular v(#) = —v(60 + (2m + 1)7), m € Z. The osculating hyperplane of the
curve is determined by v and its first 2k — 2 derivatives.

1 — Use the fact the parametrization also gives a curve in the Euclidean space
R?* having all curvatures constant. Thus it suffices to calculate the osculating
hyperplane for § = 0 and to show that this hyperplane does not meet the curve
elsewhere.

2 — Consider the standard coordinates (1, s, . .., Zo;) in R?*. The equation of
the osculating hyperplane at § = 0 involves only even variables: It is of the form
A2T9 + A4Tg + -+ + A2 Top, = 0.

3 — Introduce the notation: C = cos#, S = sinf and C}, = coskf and S;, =
sin k@ for k > 2. Substitute the even components of the curve in the preceding
equation to find the points at which the curve intersects the osculating hyperplane.
This gives: asS + a4S3 + - - - + a9 Sap 11 = 0.

4— Use the identity Sap 1 = (2k+1)S+- - -+ (—4) 1 (2k+1)S% 1+ (—4)~S2++1
to obtain an equation of degree 2k + 1 in S.

The arguments of steps 6 and 7 of the proof of proposition 1 can be applied
here and lead to the equation 2k +1 —4S5% = 0. This equation has no real solution
for k > 2 because S? = sin?f < 1. This proves proposition 2.

Remark — After a generic linear transformation in R?* | the curves in proposi-
tions 1 and 2 will not have constant curvatures. However, the non—convexity and
the weak convexity will be preserved.
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§5. A Non—standard 4—Vertex Theorem

We prove that any small enough generic perturbation in R?***! (taking the derivatives into
account) of a spherically convex curve in S2* C R2*+1 has at least 2k + 2 extrema of the radius
of the (2k — 1)-osculating sphere. We also show that any small enough generic perturbation of a

closed curve embedded in S? C R? has at least 4 points with extremal curvature.

1. Statement of Results

THEOREM 1- Any small enough generic perturbation in R2**1 (taking the
derivatives into account) of a generic spherically conver curve in S* C R2*+!
has at least 2k + 2 extrema of the radius of the (2k — 1)-osculating sphere.

In the particular case of curves in R® we have a stronger theorem:

THEOREM 2- Any small enough generic perturbation in R® (taking the deriva-
tives into account) of any embedded curve in S?* C R® has at least 4 points of
extremal curvature.

2. Proofs

LEMMA 1- The vertices of a spherical curve v C S™ C R**! are extrema of the
radius of the (n — 1)-osculating sphere.

Proof — Let v C S™ C R**! be a spherical curve. Apply an inversion o with
respect to a hypersphere of R"*! centered at a point of S”\ 7. The inversion o
sends the curve v C S™ onto a hyperplane curve ¥ C R* C R**! and the (n — 1)-
osculating spheres of 7 on the osculating hypersheres of 4 C R". The vertices
of the spherical curve v are sent by o onto the vertices of 4. The vertices of ¥
are extrema of the radius of the osculating hypershere. Thus the vertices of v are
extrema of the radius of the (n — 1)-osculating sphere. [J

Proof of theorems 1 and 2 — Let « be a spherically convex curve in S ¢ R**!,
By theorem S of §1 and lemma 1, v has at least 2k + 2 extrema of the radius
of the (n — 1)-osculating sphere. These extrema are nondegenerate because 7 is
a generic spherical curve. Let I' be a small enough generic perturbation of 7 in
R"*1 (taking the derivatives into account). This pertubation does not destroy the
nondegenerate extrema of the radius of the (n — 1)-osculating sphere. This proves
theorem 1. To prove theorem 2 we use the same arguments and the fact that any
embedded spherical curve v C S? has at least 4 vertices. [

3. The Flattenings of a Curve Lying in S” C R""! Are Not Generic

The following remarks show that the flattenings of a curve lying in a sphere
are not generic. We recall that the vertices of a spherical curve v C S® C R**! are
the flattenings of v considered as a spatial curve.

Remark — At a generic point of a curve in R**! the osculating hypersphere
is uniquely determined. If the point is a generic flattening then the osculating
hypersphere is also unique and coincides with the osculating hyperplane.

Example — The osculating circle of a plane curve at an inflection point coincides
with the tangent line at that point.
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Remark— The flattenings of a curve lying on S™ C R"*! are not generic from
the point of view of the geometry of curves in R"™! (see remark above).

Proof of remark — At a flattening p of a curve lying on a sphere S™, the order
of contact with its (n — 1)-osculating sphere $" '(p) is at least n + 2. Thus, at
this point, the multiplicity if intersection of the curve with all the hyperspheres
containing S”’l(p) is at least n + 2. Hence the osculating hypersphere is not
uniquely determined. []

Remark — In the proof of theorems 1 and 2 we saw that the flattenings of
a curve lying in S® C R**! are extrema of the radius of the (n — 1)-osculating
sphere. The flattenings of a generic curve in R**! are no extrema of the radius of
the (n — 1)-osculating sphere.

4. Problem

How much can a closed curve embedded in S? be deformed inside R® such that
the deformed curve keeps at least 4 extrema of the curvature?
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§6. On Three Classes of Closed Curves in R* Having
at Least 4 Flattenings and a 4-Flattening Conjecture

We discuss three classes of closed curves in the Euclidean space R® which have non-vanishing
curvature and at least 4 flattenings (points with torsion zero). Calling these classes (defined be-
low) Barner, Segre and Sedykh, we prove that BarnerC(SegrenSedykh). We also prove that
(Segre)\ (SegrenSedykh) and (Sedykh)\(SegrenSedykh) are open sets in the space of closed
smooth curves with the C'>°-topology. Finally, we conjecture that the curves of a class con-

taining Segre (defined below) have at least 4 flattenings.

1. Introduction and Main Results.

As in the previous sections, by a closed curve in the Euclidean space R™ (projec-
tive space RP™) we mean a C* mapping 7y : S — R" (v : S! — RP", respectively).
We consider the space of all closed curves in the Euclidean space (projective space)
equipped with the C*°—topology.

We recall that a flattening of a curve v in R* (RP") is a point where the
derivatives of v of order 1,...,n, are linearly dependent.

We also recall that a curve embedded in R* (in RP") is called convez if it
intersects no hyperplane at more than n points, counting multiplicities.

If a closed curve y in RP™ (R") can be projected, from a point exterior to it,
into a convex curve of RP"' (R*') then v has at least n + 1 flattenings [6].

Finally, we recall that a closed curve in R” (in RP™) is called Barner curve
if for every (n — 1)—tuple of (not necesarily geometrically different) points of the
curve there exists a hyperplane through these points that does not intersect the
curve elsewhere.

In the Euclidean case, Barner curves exist only in odd dimensions. Any Barner
curve in R" (RP™) has at least n + 1 flattenings [8].

A closed curve 7 in RP™ (R") which can be projected, from a point exterior to
it, into a convex curve of RP" ! (R"!) is a Barner curve. Answering the question
about the relation between these two classes of curves (V.I. Arnol’d 1996) V.D.
Sedykh ([20]) proved: There is an open set of embedded closed curves in RP™ which
are Barner curves and have no convex projections into any hyperplane.

The conditions defining classes of closed curves in R” that guarantee a minimum
number of flattenings (or vertices) on each curve of that class has been a classical
object of study. The interest on this subject was revived by the recent progres in
simplectic and contact geometries and the relations of this problems with Sturm
theory (see [6], [4], [5], [7], [13], [1], [20], [24]). We consider three classes of closed
curves in the three-dimensional Euclidean space R? all whose elements have at least
four flattenings. In particular any Barner curve of R? has at least 4 flattenings.
C. Romero-Fuster (for the generic case [15]?) and V.D. Sedykh (for the general
case [19]) proved the following theorem:

SEDYKH'S THEOREM— A closed C3-smooth curve in R® lying on the boundary
of its convex hull with non—vanishing curvature has at least four flattenings.

2In [9], Blaschke atributes an equivalent result to Charatheodory, but he does not give the
reference.
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In [21], Segre proved the

SEGRE’S THEOREM— Any closed curve in R® with non—vanishing curvature and
no parallel tangents with the same orientation has at least four flattenings.

We call Sedykh curves the closed curves in R® lying on the boundary of its
convex hull with never vanishing curvature. We call Segre curves the closed curves
in R® with non-vanishing curvature and no parallel tangents having the same
orientation.

The natural problems arises:

a) Are there Sedykh curves which are no Segre curves? (C. Romero-Fuster
[16]).

b) Are there Segre curves which are no Sedykh curves?

c¢) How are the Barner curves in R® related to the Sedykh and Segre curves?

The answer to these questions is given by the following three theorems:

THEOREM A - There is an open set of Sedykh curves in R® which are not Segre.
THEOREM B- There is an open set of Segre curves in R® which are not Sedykh.

THEOREM C- Any Barner curve in R® is a Sedykh curve and also a Segre
curve.

To prove theorems A and B we give methods to construct generic examples.

A Four-Flattening Conjecture. When the unit tangent vector t of a curve
7 in the Euclidean Space R? is translated to a fixed point O, the end point of the
translated vectors describe a curve T on the unit sphere S2, called the tangent
indicatriz of v. The points of v at which the curvature vanishes corresponds to
the cusps of the tangent indicatrix. So Segre theorem can be reformulated in the
following way: Any closed curve in R® whose tangent indicatriz is embedded in S*
has at least four flattenings.

We say that curve on S?2 has direct self-tangency if it has self-tangency and
the tangent branches have the same orientation at the point of tangency. Let
v : ST —= R3, 0 <t <1, be a one-parameter family of immersed curves. Suppose
that 7y is a Segre curve (for instance a plane convex curve in R*) and that for
all t € [0, 1] the tangent indicatrix T; of v; is an immersed curve of S? having no
direct self-tangencies.

CONJECTURE 1.- The curve v, (and each curve ;) has at least 4 flattenings.

We stated conjecture 1 in terms of the curves v; € R?® and its tangent indicatri-
ces in S?, but it comes from a conjecture about some class of Legendrian knots in
ST*S? and the number of spherical inflections of the fronts in S? of these Legen-
drian knots (see, [5] for more information about the Legendrian knots associated
to curves in S?). More precisely, to each smoothly immersed co—oriented curve
a : S' — S? is associated a Legendrian knot L, C ST*S? consisting of the co—
oriented contact elements of S? tangent to « with corresponding co-orientation.
Conversely, to each closed Legendrian knot in ST*S? corresponds a co—oriented
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curve in S? which is not necessarily smooth and is called the front of the Legen-
drian knot. We recall (see [10]) that a curve o : S* — S? is the tangent indicatriz
of some smoothly immersed curve vy : S* — R3 if and only if it intersects each great
circle of S%. So we formulate the

CONJECTURE 1’.— Let Ly be the Legendrian knot associated to a co—oriented
great circle of S%. Let L, be any Legendrian knot which can be joined to Ly by a
Legendrian isotopy Ly (i.e. a homotopy of Legendrian knots for which the knot type
does not change) satisfying the following condition: The front ay of each Legendrian
knot L, is a smooth curve of S*> which intersects every great circle of S2. Then the
front 1 (and each front v, 0 <t < 1) has at least four spherical inflections.

The relatrion between both conjectures comes from the fact that the spherical
inflections of the tangent indicatrix of a curve in R?® correspond to the flattenings
of the original curve in R?.

In [7], V. Arnol’d gave the first step towards a Legendrian Sturm theory of space
curves. He imposed some conditions to the curves in terms of the 2—-dimensional
Legendrian knot, of the space PT*R? of contact elements of R?, associated to each
curve in R* (or RP?). This Legendrian 2-dimensional knot consists of the contact
elements of R® (or RP?) tangent to the curve.

Even inside the class of Barner curves, it is easy to go outside the class of
curves considered in [7], (in [7] there is one example). With our conjecture we
try to follow the Arnol’d-Chekanov’s philosophy. But instead of consider the 2-
dimensional Legendrian knot in PT*R?® (or PT*RP?) associated to a curve in R?
(or RP?), we consider the 1-dimensional Legendrian knot in ST*S? associated to
the tangent indicatrix of a curve in R®. The class of curves considered in our
conjecture contains the whole class of Segre curves which, by Theorem C, contains
the whole classe of Barner curves.

Acknowledgements. The author is grateful to Carmen Romero—Fuster for setting up

problem a).
2. Proof of theorem C:

A Barner Curve is a Sedykh Curve. The Barner curves have no points
with vanishing curvature. Let v be a Barner curve. The definition of Barner curves
implies that for any point p € 7 there is a plane tangent to the curve at p not
intersecting the curve elsewhere. This plane determines a closed half-space H,
containing the curve. The convex hull of 7 is contained in H, and the point p lies
on the boundary of the convex set H,. So p lies on the boundary of the convex
hull of 4. Thus 7 is a Sedykh curve. [J

A Barner Curve is a Segre Curve. We will prove that any curve which
is not a Segre curve cannot be a Barner curve. Let v be a closed curve with
non—vanishing curvature. Suppose that v has two parallel tangents with the same
orientation at the points p; and py of v. We will prove that any plane containing the
points p; and ps must intersect the curve at least at 4 points, taking multiplicities
into account. Consider the projection = : R® — R2? parallel to the line p;p,.
The projection m sends the curve 7 onto a plane curve 4 = m(v). The point
p = m(p1) = w(p2) is a point of self-tangency with the same orientation as the
curve 4. So the curve 4 can be decomposed into two closed curves having a
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tangency at the point p. Any line of R? containing p intersects each one of these
curves at least at two points, taking multiplicities into account. Each line of R?
containing p is the image (by the projection m) of a plane of R® containing the
points p; and p;. So any plane containing p; and p, intersects v at least at 4
points, taking multiplicities into account. [J

3. Proof of theorem A:

Sedykh Curves which are no Segre Curves. Consider a smooth, closed
and strictly convex smooth surface S (for instance an ellipsoid) in the Euclidean
space R3. Consider a bundle of parallel lines of R®. Let I' denote the set of points
of S at which a line of the bundle is tangent to S. The set I is a closed curve of S,
which separates S in two parts S; and S;. Any embedded curve of S is a Sedykh
curve.

PROPOSITION 1- Let v : 8 +— ~(0) be a closed embedded curve of S crossing
the curve I' transversally at 2k > 2 points 0y, ...,0s. If the tangent lines of v at
two crossings 0; and 0; with the same parity (i = j (mod 2)) are lines of the bundle
then ~y is not a Segre curve.

Proof — The tangents of the curve v at ¢; and 6; are parallel. We must only
prove that the tangents at these points have the same orientation. Suppose that
at 6; the curve v traverses from S; to S;. Then at the odd (even) crossings the
curve vy traverses from S; to Se (from Ss to S1). So if both i and j are odd (even)
then the crossing from S; to Sy (from Sy to Sp) gives to the tangents at the points
6; and 6; the same orientation (See Fig. 1). [

Figure 1: A Sedykh curve which is not a Segre curve.

A closed curve in R? is a Segre curve if and only if its tangent indicatrix on
S? has no double points (self-intersections). If the tangent indicatrix of a closed
curve 7 has transversal self-intersections, then any small enough perturbation of
7v (taking the derivatives into account) is no Segre curve: transversality is an open
condition. The tangent indicatrix T : S' — S? of a closed curve v : S! — R? has a
transversal self-intersection at the point T(6;) = T(6,) if the tangents to y at 6,
and 6y are parallel with the same orientation, but the osculating planes at these
points are not parallel.

So the curves in the proposition 1 can be constructed in such a way that the
osculating planes at the points §; and 6; be not parallel. This proves theorem A.
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4. Proof of theorem B:

Segre Curves which are no Sedykh Curves. We give a method of con-
structing Segre curves. Let v be an oriented convex curve, with two axes of sym-
metry 1, l, in the Euclidean plane R* C R? (for instance an ellipse). Deform the
plane R? in R? on a right cylinder C with the following conditions:

a) The base of the cylinder C' can be any smooth immersed plane curve.

b) The lines of R? parallel to one of the axes of symmetry of v, say l;, must
become the generatrices of C.

c) The image, under the deformation, of the lines of R? parallel to the axes of
symmetry [ must be orthogonal to the generatrices of C'.

Write 4 for the image of v by this deformation, and p € 4 for the image of
p € v by this deformation.

PROPOSITION 2- The deformed curve 4 is a Segre curve.

Proof — We will use the fact that two unit tangent vectors are parallel and have
the same orientation if and only if for any orthogonal projection on a plane (or on
a line) their images are parallel with the same orientation and the same length.
Let t(p) be the unit tangent vector of 4 (given by the orientation of 4) at the point
p € 7. Let P, be the plane orthogonal to the generatrices of C' and containing the
image of the axis of symmetry [y of 4. By construction, the curve 4 is symmetric
with respect to the plane P,. Let m; (or m3) be the orthogonal projection of the
unit tangent vectors of 4 on a plane orthogonal to the generatrices (respectively on
a line parallel to the generatrices). The projections by m; (respectively by m3) of
two unit tangent vectors of 7 have the same length if and only if the corresponding
points of the plane curve vy are symmetric with respect to any one of the axes of
symmetry [y, [ of . If two points p and ¢ of v are symmetric with respect to l; or
Iy and lie on one of these axis of symmetry of -y, then t(p) and t(§) have opposite
orientation. Let p1, po, p3, ps be four points of 7, such that the corresponding points
D1, P2, P3, P4 of 7 are symmetric and don’t lie in the axes of symmetry of v. We will
prove that t(p1) # t(p;), i = 2,3, 4. Suppose that p; and p; (and consequently p;
and p,) are symmetric with respect to P». The projections 7 (t(p1)) and 1 (t(p2))
have the same length but different orientation. So t(p1) # t(p2). The projections
mo(t(p3)) and mo(t(ps)) are oriented in opposite direction with respect to mo(t(p1)),
Thus t(p3) # t(p1) # t(ps). This proves proposition 2.

The curves of proposition 2 can be constructed in such a way that the curve ¥
does not lie on the boundary of its convex hull. This proves theorem B.

Realizations of this construction are given by the families of curves of the
following examples.
Example 1 The curves of the family 7, : S' — R? given by the parametrization

F:(0) = ((2cosf +¢)* — (2cosf +¢), sinb, (2cosh +¢)?)

are Segre curves for any value of € but are no Sedykh curves for any small enough
e. The curve 4, is not embedded (it has two points of self-intersection), so it is
no Sedykh curve. For any small enough € # 0, the curve 4. is embedded and does
not lie in the boundary of its convex hull. This family of curves lies in the cylinder
given by the following parametrization: (s,t) — (t* —t,s,t> — 1). In Figure 2 we
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Figure 2: A Segre curve which is not a Sedykh curve.

have considered the plane curve 7 as the boundary of a disc, and the spatial curve
4 as the image of v by the deformation of the disc.

Figure 3: A Segre curve which is not a Sedykh curve.

Example 2~ The curves of the family 7, : S' — R? given by the parametrization
Fx(0) = (e sin( A7 cos §), sinh, —e°? cos(Am cos f))

are Segre curves and for any A > 0.7 they are no Sedykh curves. In Fig.3 we have
the curve 7, for A = 10. The curve 7, of this family lies in the cylinder C) given
by the following parametrization: (s,t) + (e2/* sin(27t), s, —e?*/* cos(2mt)).
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