
GLOBAL THEOREMS ON VERTICESAND FLATTENINGS OF CLOSED CURVESRiardo Uribe{VargasUniversit�e Paris 7, �Equipe G�eom�etrie et Dynamique.UFR de Math. Case 7012. 2, Pl. Jussieu, 75005 Paris.uribe�math.jussieu.frA vertex of a urve in the Eulidean plane is a point where the urvature isextremal. Equivalently a vertex is a point where the order of ontat of the osu-lating irle with the urve is higher than usual (this will be preised later). Thelassial four{vertex theorem [14℄ states that: Any onvex urve in the Eulideanplane has at least four verties. For example, the points of intersetion of an ellipsewith its prinipal axes are the verties of this urve.Various higher dimensional generalizations of the four{vertex theorem are givenand some properties of losed urves related to its verties and its attenings arestudied. In partiular we introdue a lass of urves, whih we all spheriallyonvex, in the Eulidean spae Rn , the sphere Sn � Rn+1 , and the Lobahevskianspae Ln . We prove the following theorems: Any spherially onvex urve in R2k(respetively in S2k � R2k+1 , RP 2k and L2k ) has at least 2k + 2 verties. We alsoprove that these three theorems are equivalent for our lass of urves.In [8℄, Barner introdued a lass of urves (alled below Barner urves) in theprojetive spae RP n and proved that these urves have at least n + 1 points inwhih the osulating hyperplane is stationary. We introdue a lass of urves inthe odd dimensional Lobathevskian spaes (the lass analogue to Barner urves)and prove that Barner's theorem also holds in odd dimensional Lobathevskianspaes.We prove that the verties are extrema of the radius of the osulating hyper-sphere and that the onverse is not true. We give a formula to alulate the vertiesof a urve in Rn as the zeros of a determinant. Our formula does not depend on aspetial parametrization. With our formula we alulate the number of verties ofthe generalized ellipses introdued in [6℄.A onvex urve has no attening and its osulating hyperplane intersets itonly at the point of osulation. A urve in RP 2 (R2) is onvex if and only if it hasthese two properties. To answer a question of V. Arnol'd ([6℄), we show that thistwo properties don't imply onvexity for urves in RP n , for n > 2.We prove that any small enough generi perturbation in R2k+1 (taking thederivatives into aount) of a spherially onvex urve in S2k � R2k+1 has at least2k + 2 extrema of the radius of the (2k � 1)-osulating sphere. We also show thatany small enough generi perturbation of a losed urve embedded in S2 � R3 hasat least 4 points with extremal urvature.1



The onditions de�ning lasses of losed urves in Rn that guarantee a minimumnumber of attenings (or verties) on eah urve of that lass has been a lassialobjet of study. The interest on this subjet was revived by the reent progres insympleti and ontat geometries and the relations of this problems with Sturmtheory (see [6℄, [4℄, [5℄, [7℄, [13℄, [1℄, [20℄, [24℄). We study three lasses of urvesin R3 all whose elements have at least four attenings ([6℄, [21℄, [19℄) and give afour{attening onjeture for a losed urve  in R3 in terms of the 1{dimensionalLegendrian knot in ST �S2 assoiated to the tangent indiatrix T � S2 of theurve  in R3 .x1. Higher Dimensional Four-Vertex Theorems for Curves in the Eulidean SpaeRn , in the Sphere Sn � Rn+1 , in the Projetive Spae RP n and in theLobahevskian Spae Ln .x2. Barner's Theorem in Lobathevskian Spaes.x3. Generating Family of the Normal Map of a Curve in Rn , Some Properties ofVerties and a Formula for Calulate Them.x4. Weakly Convex Curves in Rn and RP n .x5. A Non{standard 4{Vertex Theorem.x6. On Three Classes of Closed Curves in R3 Having at Least 4 Flattenings and a4{Flattening Conjeture.Aknowledgements. The author is gratiful to V.I. Arnol'd for helpful re-marks and for setting up some problems onsidered in this work, to M.E. Kazarianfor helpful disutions and the attention given to this work, and to V.D. Sedykh forhelpful oments.
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x1. Higher Dimensional Four-Vertex Theoremsfor Curves in the Eulidean Spae Rn ,in the Sphere Sn � Rn+1 ,in the Projetive Spae RP n andin the Lobahevskian Spae LnA urve embedded in the Eulidean spae Rn is alled spherially onvex if for any n{tupleof points of the urve there exists a hypersphere through these points that does not interset theurve elsewhere. We also introdue the lass of spherially onvex urves in the following spaes:the sphere Sn � Rn+1 , the projetive spae RP n and the Lobahevskian spae Ln . We prove:Any spherially onvex urve in R2k (respetively in S2k � R2k+1 , RP 2k and L2k ) has at least2k + 2 verties.1. Introdution and ResultsBelow, a urve in the Eulidean spae Rn always means a smooth immersion : S1 ! Rn . We will always assume that the derivatives of  of order 1; : : : ; n� 1;are linearly independent at any point (this is true for generi urves). We willoften identify the immersion with its image and use the abbreviation  to denote(S1). In this hapter we will onsider urves in the Eulidean spae Rn , in then{dimensional sphere Sn � Rn+1 and in the Lobahevskian spae Ln modeled ona ball in the Eulidean spae Rn .We state the following onventions:a) A urve  � Sn � Rn+1 is refered as a spatial urve when it is onsidered asa urve in Rn+1 , otherwise it is regarded as a urve in Sn.b) Let Ln be the open unit ball in Rn , (the interior of the sphere Sn�1 � Rn)onsidered as the Poinar�e's model of the n-dimensional Lobathevskian spae.A hyperboli hyperplane in Ln is the intersetion of Ln with a hypersphere of Rnorthogonal to Sn�1. The spheres, horospheres and equidistant spheres will be alledgeneralized spheres.We will systematially use the notion of order of ontat:Definition { Let M be a d{dimensional submanifold of Rn , onsidered as aomplet intersetion: M = fx 2 Rn : g1(x) = � � � = gn�d(x) = 0g. We say thatk is the order of ontat of a urve  : t 7! (t) 2 Rn with the submanifold M ,at a point of intersetion (t0), if eah funtion g1 Æ ; : : : ; gn�d Æ  has a zero ofmultipliity at least k at t = t0, and at least one of them has a zero of multipliityk at t = t0.Roughly spiking, this de�nition means, in the former language of geometers,that the urve  and the submanifold M \meet at k onseutive points", or that and M \meet at k in�nitely lose points".Remark { In the most part of ases onsidered here M will be a d{dimensionalaÆne subspae or a d{dimensional sphere.Example { The order of ontat of a smooth urve in Rn with its tangent line(at the point of tangeny) is two for the generi points of the urve. The order of3



ontat of the urve y = x3 with the line y = 0 is 3: the equation x3 = 0 has aroot of multipliity 3.By onvention, the set of k{dimensional spheres of the Eulidean spae Rn on-tains the k{dimensional aÆne subspaes, onsidered as spheres of in�nite radius.Definition { For k = 1; : : : ; n�1; the k-osulating sphere at a point of a urvein the Eulidean spae Rn (in Sn or in Ln) is the k{dimensional sphere (generalizedsphere in Ln), whose order of ontat with the urve at that point is at least k+2.For k = n� 1 we will simply write osulating hypersphere.Example { The order of ontat of a plane urve and its osulating irle at ageneri point of the urve is 3.We observe that the k{osulating spheres of a spatial urve  � Sn � Rn+1also lie in Sn: They are the intersetion of the k + 1{osulating subspaes of theurve with Sn.Definition { A vertex of a urve in Rn (in Sn or in Ln) is a point where theorder of ontat with the osulating hypersphere is no less than n+ 2.Example { An ellipse in the plane R2 has 4 verties. They are the points atwhih the ellipse intersets its prinipal axes.The following de�nition, lassial for urves in Rn and RP n , is extended tourves in Sn and Ln.Definition { An embedded urve in Rn (or RP n , or Sn or Ln) is alled onvex ifit intersets any hyperplane (or projetive hyperplane, or maximal hypersphere orhyperboli hyperplane, respetively) at no more than n points, taking multipliitiesinto aount.Example { A plane urve is onvex if it intersets any straight line in at mosttwo points, taking multipliities into aount.Example { For n = 2k, the generalized ellipse, given by(os t; sin t; os 2t; sin 2t; : : : ; os kt; sin kt), is onvex.The following theorem was proved in [8℄ and [22℄. In the next hapter we givea new proof based on Sturm theory:Theorem { Any onvex urve in R2k has at least 2k + 2 verties.In [22℄ and [23℄ we proved that this theorem holds for the onvex urves in thesphere S2k � R2k+1 , in the projetive spae RP 2k and in the Lobahevskian spaeL2k . These theorems are a diret onsequene of our theorems R, S and L statedand proved below.We introdue a lass of urves generalizing the onvex ones:Definition { A urve embedded in Rn (Sn or Ln) is alled spherially on-vex if for eah k{tuple of points of the urve, k � n, with positive multipliitiessatisfying m1+ � � �+mk = n, there exists at least one hypersphere of Rn (or hyper-sphere of Sn or hyperboli hypersphere of Ln , respetively) interseting the urveat these points, with orresponding multipliities, that does not interset the urveelsewhere. The hyperspheres of in�nite radius are not exluded.4



Remark { For any point of a spherially onvex urve there exists a hypersphereontaining the odimension 2 osulating sphere through this point whih does notinterset the urve elsewhere.Remark { Spherially onvex urves exist in Eulidean spaes, spheres andLobahevskian spaes of even dimension only.Remarks { Any onvex urve is spherially onvex. The aÆne transfomationsof Rn preserve onvex urves but don't preserve verties. Moreover, the onformaltransformations of Rn (respetively of Sn or of Ln) preserve verties and preservespherially onvex urves but don't preserve onvex urves. So to study globalproblems about verties it seems to be more natural to onsider spherially onvexurves instead of onvex ones.Example { Let  be a losed onvex urve in the Eulidean spae R2 (or R2k ).Let p 2  be a point whih is not a vertex of . Consider an inversion � enteredat a point not belonging to  and belonging to the osulating irle (hypersphere,respetively) of  at p. Then the image of  by the inversion � is a non{onvex urvewhih is spherially onvex. In partiular, the order of ontat of �() with itstangent line (hyperplane, respetively) at the point �(p) is 3 (2k+1, respetively).Our main results in this paragraph are theorems R, S and L below ([24℄).Theorem R { Any spherially onvex urve in the Eulidean spae R2k has atleast 2k + 2 verties.Theorem S { Any spherially onvex urve in the sphere S2k � R2k+1 has atleast 2k + 2 verties.Theorem L { Any spherially onvex urve in L2k has at least 2k+2 verties.Theorems R, S and L are diret orollaries of the following theorem:Theorem 1 { If a spherially onvex urve in R2k (respetively in S2k or inL2k) transversally intersets a hypersphere at l points then it has at least l distintverties.Convex urves in Rn (in Sn or Ln) exist only for even dimensions. However,onvex urves exist in projetive spaes of any dimension.Example 1 { The projetive line RP 1 is a onvex urve in RP 1 itself. The urve� 7! (os �; sin �; os 3�; sin 3�) is a onvex urve in RP 3 : the antipodal points areidenti�ed, i.e. � is identi�ed with � + �.To onsider verties of urves in the projetive spae, �x the spherial metriin RP n by the double overing, � : Sn ! RP n , identifying antipodal points. Avertex of a urve in  in RP n is a point where the lifted urve ��1() has a vertexas a spherial urve.Definition { An embedded urve in RP n is alled spherially onvex if its lift��1() is spherially onvex in Sn. Antipodal points are ounted as one point.As a onsequene of theorem S we have5



Theorem P2k { Any spherially onvex urve in the projetive spae RP 2k hasat least 2k + 2 verties.Barner's Theorem on attenings holds for Barner urves in RP n for any n � 1.However, for odd{dimensional projetive spaes we have the following result [23℄on verties:Theorem P2k+1 { There exist onvex urves in RP 2k+1 (and thus spheriallyonvex urves) having no vertex.2. ProofsFirst, we prove that the three versions of theorem 1 (for R2k , for S2k, and forL2k) are equivalent (In ontrast to the orresponding theorems for onvex urves).Next, we prove Theorem 1 for urves in S2k.Let Hn be a hyperplane of Rn+1 . Consider any inversion � with respet to apoint exterior to Hn. The image of a onvex urve in Hn may be non{onvex in�(Hn) = Sn. Conversely, the image of a onvex urve in Sn may be non{onvex inHn. However, we have theProposition 1 { A urve in Sn = �(Hn) not ontaining the enter of theinversion is spherially onvex in Sn if and only if its image is spherially onvexin Hn = �(Sn).Proof { The hyperspheres of Rn (inluding those of in�nite radius) are sentonto the hyperspheres of Sn, and vie versa. �Definition { For k = 1; : : : ; n � 1, the k-osulating subspae at a point of aurve in Rn is the k-dimensional aÆne subspae spanned by the �rst k derivativesof the urve at that point.Remark { The order of ontat of the k-osulating subspae with the urve isat least k + 1. For k = 1; : : : ; n � 2; the (k + 1)-osulating subspae ontains thek-osulating sphere.Definition { A attening of a urve  in Rn (RP n) is a point where thederivatives of  of order 1; : : : ; n; are linearly dependent.Remark { The order of ontat of a urve with its osulating hyperplane, at aattening is at least n + 1, whereas at an ordinary point it is n.Example { The attenings of a plane urve are their inetions. The atteningsof a urve in R3 are those at whih the torsion vanishes.In [17℄ and [18℄ there is a proposition equivalent to the following lemma, provedin [22℄:Lemma 1 { Any inversion whose entre does not belong to a hyperplane H ofRn+1 sends the verties of any urve  of H onto the attenings of its image.To prove lemma 1 we need the following two lemmas:Lemma{ The image of a sphere Sn�1 lying in a hyperplane H of Rn+1 underan inversion belongs to a hyperplane of Rn+1 and it still is a (n� 1){dimensionalsphere. 6



Proof. { The n-dimensional spheres ontaining Sn�1 over all the spae. Hene,one of them goes through the entre of the inversion. The inversion sends thissphere to a hyperplane and the hyperplane H to a hypersphere. So the image ofSn�1 is the intersetion of a hyperplane and a hypersphere. �Lemma{ The image of the osulating hypersphere of a urve  lying in a hyper-plane of Rn+1 under an inversion � whose entre does not belongs to the hyperplaneis the (n � 1)-osulating sphere of the image urve �() and is ontained in theosulating hyperplane of �().Proof. { By the preeding lemma, the image of the osulating hypersphere of belongs is a sphere of dimension n�1. It is osulating sine the inversion preservesorder of ontat. So the hyperplane ontaining it is the osulating hyperplane. �Proof of lemma 1 { By the preeding lemma, the inversion � sends the os-ulating hyperspheres of a urve in a hyperplane H onto the (n � 1)-osulatingspheres of the image urve in Rn+1 . Sine the order of ontat is preserved by theinversion, the verties of the hyperplane urve  are sent onto the points at whihthe order of ontat of the image urve with its (n � 1)-osulating sphere (andwith the osulating hyperplane) is at least n+2. So the verties of the hyperplaneurve  are sent onto the attenings of the spatial urve �(). �Lemma 2 ( see [22℄) { The verties of a spherial urve  � Sn � Rn+1 arethe attenings of  regarded as a spatial urve.Proof { The osulating hyperplane at a point of the spatial urve  � Sn � Rn+1ontains the (n�1)-osulating sphere at that point. So at any point of  the orderof ontat with its (n� 1)-osulating sphere and with its osulating hyperplane isthe same. �Lemma 2, proposition 1 and lemma 1 imply that theorem 1 for R2k is equivalentto theorem 1 for S2k.Consider the Lobathevskian spae Ln � Rn . A onvex urve in Ln maybe non{onvex onsidered as a urve of Rn . Reiproally, a urve ontained inLn � Rn whih is onvex in Rn may be non{onvex in Ln . However we have theProposition 2 { A urve in Ln � Rn is spherially onvex in Ln if and onlyif it is spherially onvex in Rn .Proof { The generalized hyperspheres of Ln are intersetions of Ln with hyper-spheres of Rn (may be of in�nite radius). �Proposition 2 implies that theorem 1 for R2k and theorem 1 for L2k are equiv-alent.To prove theorem 1, for S2k, we need introdue a de�nition and state a resultof [8℄.Definition { A urve in Rn (in RP n) is alled a Barner urve if for every(n� 1){tuple of points of the urve there exists a hyperplane through these pointsthat does not interset the urve elsewhere.7



In [8℄, is proved that Any Barner urve in RP n transversally interseted by ahyperplane at l points has at least l distint attenings.We will use the following version of the preeding statement:Barner's Theorem { Any Barner urve in R2k+1 transversally intersetedby a hyperplane at l points has at least l distint attenings.Proof of theorem 1 { We will prove that any spherially onvex urve  ofS2k � R2k+1 is a Barner urve onsidered as a spatial urve. Let q1; : : : ; q2k be 2kpoints of . By hypothesis there is a hypersphere S2k�1 � S2k through these pointsnot interseting  elsewhere. The hyperplane of R2k+1 ontaining S2k�1 meets at the points q1; : : : ; q2k and does not interset it elsewhere. So  is a Barner urveof R2k+1 . If  is transversally interseted by a hypersphere � of S2k at l pointsthen the hyperplane of R2k+1 ontaining � intersets  transversally at the samel points. By Barner's theorem  has at least l distint attenings. By lemma 2,the spherial urve  � S2k � R2k+1 has at least l distint verties. This provestheorem 1.Proof of theorem P 2k+1 { We will prove that the onvex urve in RP 2k+1 givenby  : � 7! (os �; sin �; os 3�; sin 3�; : : : ; os(2k + 1)�; sin(2k + 1)�);(identifying antipodal points) has no vertex. The urve  lies in a hypersphere ofR2k+2 . The verties of the spherial urve  are its attenings, onsidering  as aspatial urve. So we must show that  has no attenings. All urvatures of  areonstant; thus it suÆes to hek that (�)j�=0 is not a attening. So it suÆes(and it is easy) to hek that the Wronskian of  at � = 0 does not vanish. (TheWronskian of  is the determinant of the matrix whose olums are the �rst 2k+2derivatives of ). �
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x2. Barner's Theorem in Lobathevskian SpaesWe onsider the natural generalization of Barner urves in Lobathevskian spaes and provea generalization of the Barner's theorem: Any Barner urve in the Lobathevskian spae L2k+1has at least 2k + 2 hyperboli attenings.1. Introdution and ResultsLet Ln denote the open unit ball in Rn , (the interior of the sphere Sn�1 � Rn)onsidered as Poinar�e's model of the n-dimensional Lobathevskian spae. Ahyperboli hyperplane in Ln is the intersetion of Ln with a hypersphere of Rnorthogonal to Sn�1.Definition { The osulating hyperboli hyperplane at a point of a urve in Lnis the hyperboli hyperplane whose order of ontat with the urve at that pointis at least n.We reall the de�nition of attening given in x1 and generalize it to urves inLobathevskian spaes:Definition { A attening (hyperboli attening) of a urve in the Eulideanor aÆne spae Rn (Ln , respetively) is a point where the order of ontat of theurve with its osulating hyperplane (hyperboli hyperplane, respetively) is atleast n+ 1, whereas at an ordinary point it is n.We generalize the de�nition of Barner urves to urves in Lobathevskianspaes:Definition { A urve embedded in Ln is alled a Barner urve if for eahk{tuple of points of the urve, k � n � 1, with positive multipliities satisfyingm1 + � � � + mk = n � 1, there exists at least one hyperboli hyperplane of Lninterseting the urve at these points, with orresponding multipliities, that doesnot interset the urve elsewhere.Barner urves exist only in odd-dimensional Lobathevskian spaes.The main results of this paragraph are theorems 1 and 2 below ([24℄):Theorem 1{ If a Barner urve in L2k+1 transversally intersets a hyperbolihyperplane in l points then it has at least l distint hyperboli attenings.Corollary { Any Barner urve in L2k+1 has at least 2k+2 distint hyperboliattenings.Definition { Let p be a point of Rn . A urve in Rn is alled a p{Barner urveif for eah k{tuple of points of the urve (k � n � 1) with positive multipliitiessatisfying m1+ � � �+mk = n� 1, there exists a hypersphere interseting the urveat these points, with orresponding multipliities, that does not interset the urveelsewhere and that ontains p.Definition { Let p be a point of Rn . A point q of a urve in Rn is alleda p�attening of the urve if there exists a hypersphere ontaining p and whoseorder of ontat with the urve at q is at least n + 1.Theorem 2 { Let p 2 R2k+1 . If a p{Barner urve transversally intersets inl points a hypersphere ontaining p then it has at least l p�attenings.9



Corollary { Any Barner urve with respet to a point p 2 R2k+1 has at least2k + 2 p�attenings.2. ProofsWe will prove that theorem 1, theorem 2 and Barner's theorem (for urves inR2k+1) are equivalent.First, we prove that theorem 2 implies Barner's theorem for urves in R2k+1 :Barner's theorem for urves in R2k+1 is obtained as a partiular ase of theorem 2when the point p is at in�nity.Lemma 1 { Let � be an inversion with respet to a hypersphere in Rn+1 , andlet Hn be a hyperplane not ontaining its entre. Let Sn�1 be a hypersphere of Hn.Then all the hyperplanes ontaining the image under � of some hypersphere of Hnorthogonal to Sn�1 have a ommon point O.Remark 1 { The inversion sends the hyperplane Hn onto a hypersphere. If theimage of Sn�1 under � is an equator of this hypersphere then the point O of lemma1 is at in�nity.Proof of lemma 1. { Let C be the entre of the hypersphere Sn�1 � Hn.Consider a point R in Sn�1. Consider a hypersphere Ŝn in Rn+1 ontaining boththe entre Q of the inversion and a hypersphere of Hn orthogonal to Sn�1. Thepower of C with respet to the hypersphere Ŝn is CR �CR. Hene the line throughthe points C and Q intersets the hypersphere Ŝn at Q and at a point P suh thatCQ � CP = CR � CR. So all hyperspheres ontaining both the entre Q of theinversion and some hypersphere of Hn orthogonal to Sn�1 must also ontain thepoint P . The point O of lemma 1 is �(P ). �Corollary { Let �, Hn � Rn+1 and O be like in lemma 1. Let Ln � Hnbe the n-dimensional Lobathevskian spae and let H 0 be any hyperplane not goingthrough O, parallel to the hyperplane ontaining �(Sn�1) = �(�Ln). Consider theprojetion � : �(Hn)! H 0, from O. Then the image of eah hyperboli hyperplaneof Ln under �Æ� is the intersetion of a Eulidean hyperplane of H 0 with �Æ�(Ln).We prove that Barner's theorem for urves in R2k+1 implies theorem 1:Proof of theorem 1. { The restrition to Ln of the map �Æ� used in the orollary,sends Poinar�e's model of Lobathevkian spae to Klein's model. The hyperboliattenings of a urve in Ln are sent onto the attenings of its image in H 0. Inpartiular, for n = 2k + 1 Barner's urves in L2k+1 are sent onto Barner's urvesin H 0 = R2k+1 . Applying Barner's theorem we prove Theorem 1. �Finally, we will prove that theorem 1 implies theorem 2:Proof of theorem 2. { Consider the exterior of a hypersphere S2k as a model ofthe Lobathevskian spae L2k+1 . Theorem 1 works also here, in partiular whenthe hypersphere S2k has in�nitely small radius (that is, when S2k beomes a pointof R2k+1). �
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x3. Generating Family of the Normal Map of a Curve in RnSome Properties of Verties and a Formula for Calulate ThemWe prove that the verties of a urve  � Rn are extrema of the radius of the osulatinghypersphere. Using Sturm Theory, we give a proof of the 2k+2{Vertex Theorem for onvex urvesin the Eulidean spae R2k . As a by{produt of this proof we obtain a formula to alulate theverties of a urve in Rn . Applying Sturm theory and our formula to alulate verties we obtainthe number of verties of the generalized ellipses introdued by Arnol'd in [6℄.1. Statement of Results on VertiesVerties and Flattenings of urves in Rn are related to Sturm Theory. In point3 of this x, we give a proof of the 2k + 2{Vertex Theorem for onvex urves inthe Eulidean spae R2k based on Sturm Theory. This proof allows us to give aformula to alulate the verties of a urve in Rn as the zeroes of a determinant:Theorem 1 { The verties of any urve  : S1 ! Rn (or  : R ! Rn), : s 7! ('1(s); : : : ; 'n(s)) are given by the zeroes ofdet(R1; : : : ; Rn; G)where Ri (G) is the olumn vetor de�ned by the �rst n + 1 derivatives of 'i (ofg = 22 , respetively).Remark { Theorem 1 says that the verties of any urve  : S1 ! Rn (or : R ! Rn),  : s 7! ('1(s); : : : ; 'n(s)) are given by the attenings of the urve� : S1 ! Rn+1 (or � : R ! Rn+1),� : s 7! �'1(s); : : : ; 'n(s); 2(s)2 � :This means that the vertial projetion of a urve  � Rn on a paraboloid `ofrevolution' z = 12(x21+ � � �+x2n) sent the verties of the urve  onto the atteningsof its image. We will disuss the properties of this and other projetions relatedto Lagrangian and Legendrian singularities in another paper.Notiing that the formula of Theorem 1 an be `simpli�ed', we obtain thefollowingTheorem 1bis { The verties of any urve  : S1 ! Rn (or  : R ! Rn), : s 7! ('1(s); : : : ; 'n(s)) are given by the zeros of the following determinant1:��������� '01 � � � '0n 0'001 � � � '00n h1... ... ...'1(n+1) � � � 'n(n+1) hn
��������� = 0;where h1 = 0 � 0 and hk = h0k�1 + 0 � k.1I disovered the formula of Theorem 1 in May 1995 and alulated verties of many urveswith it. In July 1999 J.J. Nu~no Ballesteros told me that he knew the formula of theorem 1bis.I don't know when he disovered it. In August 2000 he told me that he will publish it in somepreprint. 11



Proof { The olumn vetor G in the determinant of theorem 1 is the sum ofvarious olumn vetors, n of whih an be eliminated by substrating the olumnvetors 'iRi; i = 1; : : : ; n. �For a urve in the Eulidean plane, to have a vertex is equivalent to to have anextremum of the radius of the osulating irle. In higher dimensional spaes thisis not the ase. However we have the following theorem proved in point 2 of thisx. Theorem 2 ([22℄) { The verties of a urve  � Rn are extrema of the radiusof the osulating hypersphere.Remark { The onverse is not true for n > 2. For example, all the points ofthe irular helix t 7! (os t; sin t; t) are extrema of the radius of the osulatinghypersphere. However it has no vertex. A more generi example is given by theurve t 7! (a os t; b sin t; t) whih has no vertex for any a; b 2 R n f0g suh thatja3 � b2j < 1=3.Proof of remark { It suÆes to use our formula from theorem 1. Writing outthe equation, we obtain�������� �a sin t b os t 1 1=2(b2 � a2) sin 2t+ t�a os t �b sin t 0 (b2 � a2) os 2t+ 1a sin t �b os t 0 �2(b2 � a2) sin 2ta os t b sin t 0 �4(b2 � a2) os 2t �������� = 0;whih gives ab(1 � 3(b2 � a2) os 2t) = 0. This equation has no real solution forja3 � b2j < 1=3. �The ellipse is the simplest losed onvex urve in the plane having the minimumnumber of verties: 4.A generalized ellipse in R2k is a onvex urve given by the following parametriza-tion ([6℄): � 7! (a1 os �; b1 sin �; a2 os 2�; b2 sin 2�; : : : ; ak os k�; bk sin k�). We anexpet that generalized ellipses are onvex urves in R2k having the minimumnumber of verties, i.e. 2k + 2. However, the following example shows that thegeneralized ellipses in R2k an have more than 2k + 2 verties.Example 1 { The generalized ellipse in R4 , (�) = (a1 os �; b1 sin �; a2 os 2�;b2 sin 2�), with a22 6= b22 and a1b1a2b2 6= 0 has 8 verties. If a22 = b22 then  is aspherial urve and all its points are thus verties.Denote Ck = os k� and Sk = sin k�.Theorem 3{ Consider the generalized ellipse in R2k given by(�) = (a1C1; b1S1; a2C2; b2S2; : : : ; akCk; bkSk);with a1b1a2b2 � � �akbk 6= 0. Then, for even k,  an have 2k + 4, 2k + 8,. . . ,4kor an in�nity of verties depending on the values of the parameters aj and bj, forj � k2 + 1. For odd k,  an have 2k + 2, 2k + 6,. . . ,4k or an in�nity of vertiesdepending on the values of the parameters aj and bj, for j � k+12 .We will onstrut a onvex urve in R2k having the minimum number of verties,i.e. 2k + 2. Consider the generalized ellipse of Theorem 3 with oeÆients a1 =12



b1 = � � � = ak = bk = 1 and denote it by 0. Obviously 0 is a spherial urveand all its points are verties. In order to obtain the desired onvex urve, we willperturb 0 in the \radial diretion". Let " = (1 + " os(k + 1)�)0:Theorem 4 { For " 6= 0 small enough the urve " has exatly 2k+2 verties.Example 1 and Theorems 3 and 4 are proved in point 4 of this x.2. Proof of Theorem 2 and Desription of the Foal Set of a CurveProof of theorem 2 { The generating family F : Rn �S1 ! R assoiated to thefoal set of the urve  is given byF (q; s) = 12 k q � (s) k2 :We shall write �(i) = f(q; s)=�sF (q; s) = 0; :::; �isF (q; s) = 0g. Thus �(1) is theset of pairs (q; s) suh that q is the enter of some hypersphere of Rn whose order ofontat with  at s is at least 2 (this means that q is in the normal hyperplane to at s). So �(2) is the set of pairs (q; s) suh that q is the enter of some hypersphereof Rn whose order of ontat with  at s is at least 3. From the equations an beseen that these points generate a plane of dimension n�2 ontained in the normalhyperplane to  at s. So �(n) is the set of pairs (q(s); s) suh that q(s) is the entreof the osulating hypersphere at (s). Hene the value of F at the point (q(s); s) in�(n) is one half of the square of the radius of the osulating hypersphere at (s).The ondition for a point p = (s) to be a vertex is equivalent to the fat that the�rst n + 1 derivatives of F with respet to s vanish at s. Hene �(n + 1) is theset of verties of the urve. It is a well-known fat of singularity theory [2℄ that apoint belonging to �(n + 1) is a ritial point of the restrition of F to �(n). Soa vertex is a ritial point of the radius of the osulating hypersphere. �Remark { The enters of the osulating hyperspheres at the verties of  aregiven by the q 2 Rn for whih there exists a solution s of the n + 1{system ofequations F 0q(s) = 0F 00q (s) = 0...F (n+1)q (s) = 0:For a �xed s, the �rst equation gives the normal hyperplane to the urve atthe point (s). The �rst two equations give a odimension 1 subspae of the nor-mal hyperplane to the urve at the point (s). Following this proess we obtaina omplete ag at eah point of the urve. The foal urve q(s), formed by theenters of the osulating hyperspheres, is determined by the n �rst equations. Theomplete ag is the osulating ag of the foal urve. In partiular, the osulatinghyperplane of the foal urve at the point q(s) is the normal hyperplane to theurve  at the point (s). As the point moves along the urve , the orrespondingag (starting with the odimension 2 subspae) generates a hypersurfae whih isstrati�ed in a natural way by the omponents of the ag. This strati�ed hyper-surfae is a omponent of the foal set of the urve . The other omponent of13



the foal set is the urve itself. The stratum of dimension 1 (generated by the0{dimensional subspae of the ag, i.e. generated by enter of the osulating hy-persphere at the moving point) is the foal urve of . The equation F (n+1)q (s) = 0gives a �nite number of isolated points on the foal urve. These points orrespondto the verties.The foal set is also a omponent of the austi of the Lagrangian map (normalmap) de�ned by the generating family F (q; s) (For the notions of austi, La-grangian map, Lagrangian singularity and generating family, we refere the readerto hapter 1). Thus the verties of a urve in Rn orrespond to a Lagrangiansingularity An+1 of the normal map.3. A Proof of the 2k + 2{Vertex Theorem in R2k by Sturm TheoryWe begin this paragraph with some de�nitions and results of Sturm theory,taken from [6℄ and [11℄.A set of funtions f'1; : : : ; '2k+1g with 'i : S1 ! R is a Chebishev system ifany linear ombination a1'1 + � � �+ a2k+1'2k+1; ai 2 R; with a21 + : : :+ a22k+1 6= 0has at most 2k zeros on S1.Example 1 { The system of funtions f1; os �; sin �g is a Chebishev system.Remark { Any onvex urve � 7! ('1(�); : : : ; '2k(�)) in R2k de�nes a Chebishevsystem: f1; '1; : : : ; '2kg.Definition { A linear di�erential operator L : C1(S1) ! C1(S1) is alleddisonjugate if it has a fundamental system of solutions for the equation Lg = 0whih are de�ned on the irle and form a Chebishev system.Example 2 { The operator L = �(�2+1) is disonjugate. The Chebishev systemf1; os �; sin �g is a fundamental system of solutions for it.Example 3 { Any onvex urve  : � 7! ('1(�); : : : ; '2k(�)) in R2k de�nes a2k + 1{order disonjugate operator L de�ned byLg = det(R1; : : : ; R2k; G);where Ri (G) is the olumn vetor de�ned by the �rst 2k + 1 derivatives of 'i (ofg, respetively). Evidently the Chebishev system f1; '1; : : : ; '2kg is a fundamentalsystem of solutions of the equation Lg = 0.Example 4 { The generalized ellipse ([6℄) : � 7! (a1 os �; b1 sin �; a2 os 2�; b2 sin 2�; : : : ; ak os k�; bk sin k�);de�nes, up to a onstant fator, the 2k + 1{order disonjugate operatorL = �(�2 + 1) � � � (�2 + n2):Some proofs of 4{vertex type theorems are based on the following theorem dueto Hurwitz ([12℄):Hurwitz's Theorem { Any funtion f 2 C1(S1) whose Fourier series beginswith the harmonis of order N , f = Pk�N ak os k� + bk sin k�, has at least 2Nzeroes. 14



In fat any funtion f 2 C1(S1) without harmonis up to order n is orthogonalto the solutions of the equation �(�2 + 1) � � � (�2 + n2)' = 0, and suh solutionsform a Chebishev system.The following theorem generalizes Hurwitz's theorem.Sturm{Hurwitz Theorem ([6℄,[11℄) { Let f : S1 ! R be a C1 funtionsuh that RS1 f(�)'i(�)d� = 0, f'igi=1;:::;2k+1 being a Chebishev system. Then fhas at least 2k + 2 sign hanges.Corollary { ([11℄) Any funtion in the image of a disonjugate operator(f = Lg, where g 2 C1(S1) is any funtion) of order 2k + 1 has at least 2k + 2sign hanges.Proof of the 2k+2{vertex theorem in R2k { Let  : � 7! ('1(�); : : : ; '2k(�))be a onvex urve in R2k . Consider the family of funtions on the irle F :S1� R2k ! R de�ned by Fq(�) = 12 k q � (�) k2 :In the proof of theorem 1 we saw that the enters of the osulating hyperspheresat the verties of  are given by the q 2 Rn for whih there exists a solution � ofthe 2k + 1{system of equations: F 0q(�) = 0F 00q (�) = 0...F (2k+1)q (�) = 0The foal urve q(�) of enters of the osulating hyperspheres is determined by the�rst 2k equations. The last equation is the ondition on this urve determiningthe verties. Write g = 22 . Using the fat that �F =  � q � 22 � q22 , the systemof equations an be written as 0 � q � g0 = 000 � q � g00 = 0...(2k+1) � q � g(2k+1) = 0This means that the vetor (q;�1) in R2k+1 is orthogonal to the 2k + 1 vetors(0; g0); (00; g00); : : : ; ((2k+1); g(2k+1)): So the verties of  are given by the zeros ofthe determinant of the matrix whose lines are these 2k + 1 vetors. This deter-minant is equal to det(R1; : : : ; R2k; G) where Ri (G) is the olumn vetor de�nedby the �rst 2k + 1 derivatives of 'i (of g = 22 , respetively). This is the imageof g = 22 under the operator L (see example 3). So orollary 1 implies that thisdeterminant has at least 2k + 2 sign hanges. This proves the theorem.Proof of Theorem 1In the above proof of the 2k + 2{vertex theorem for onvex urves in R2k , theonvexity of the urve and the parity of the dimension were used only in the last15



step. So the determinant obtained in the proof gives a formula to alulate theverties of a urve in Rn . This proves theorem 1.4. On the Number of Verties of Generalized EllipsesWe will prove example 1 and Theorem 3 given in the begining of this x.Example 1 { The generalized ellipse in R4 ,(�) = (a1 os �; b1 sin �; a2 os 2�; b2 sin 2�); with a22 6= b22 and a1b1a2b2 6= 0has 8 verties. If a22 = b22 then  is a spherial urve and all its points are thusverties.Proof { Denote Ck = os k�, Sk = sin k� and g = a21C21 + b21S21 + a22C22 ++b22S22 .By example 4 of point 2 and the formula of Theorem 1 the verties of  orrespondto the roots of the equation �(�2 + 1)(�2 + 22)g = 0. The trigonometri identitya2 os2 � + b2 sin2 � = 12(a2 + b2 + (a2 � b2) os 2�)allows us to writeg = (a21 � b21)C2 + (a22 � b22)C4 + a21 + b21 + a22 + b22:The operator � kills the onstant terms (i.e. the harmonis of order zero), and theoperator (�2 + 22) kills the seond order harmonis. Thus�(�2 + 1)(�2 + 22)g = K(a22 � b22)S4;where K is a non zero onstant. Thus the verties of  orrespond to the solutionsof the equation K(a22� b22)S4 = 0, i.e.  has 8 verties for a22 6= b22 and all its pointsare verties for a22 = b22. �We keep the notation Ck = os k� and Sk = sin k�.Example 2 { The generalized ellipse in R6 , (�) = (a1 os �; b1 sin �; a2 os 2�;b2 sin 2�; a3 os 3�; b3 sin 3�), with a1b1a2b2a3b3 6= 0 an have 8; 12 or an in�nity ofverties, depending on the values of the parameters a2; b2; a3; b3. In partiular, ifa22 = b22 and a23 6= b23 then  has 12 verties, and if a22 6= b22 and a23 = b23 then  has8 verties. If a22 = b22 and a23 = b23 then  is a spherial urve and all its points arethus verties.Proof { As in example 1, the verties of  are the roots of the equation givenby �(�2 + 1)(�2 + 22)(�2 + 32)g = 0 whereg = (a21 � b21)C2 + (a22 � b22)C4 + (a23 � b23)C6 + 3Xi=1 (a2i + b2i ):The operator �(�2 + 1)(�2 + 22)(�2 + 32) kills the harmonis of orders zero, one,two and three. Thus�(�2 + 1)(�2 + 22)(�2 + 32)g = K2(a22 � b22)S4 +K3(a23 � b23)S6;16



where K2 and K3 are non zero onstants. �Theorem 3{ Consider the generalized ellipse in R2k(�) = (a1C1; b1S1; a2C2; b2S2; : : : ; akCk; bkSk);with a1b1a2b2 � � �akbk 6= 0. Then, for even k,  an have 2k + 4, 2k + 8,. . . ,4kor an in�nity of verties depending on the values of the parameters aj and bj, forj � k2 + 1. For odd k,  an have 2k + 2, 2k + 6,. . . ,4k or an in�nity of vertiesdepending on the values of the parameters aj and bj, for j � k+12 .Proof of Theorem 3. { As in examples 1 and 2, the verties of  are the rootsof the equation given by�(�2 + 1)(�2 + 22) � � � (�2 + k2)g = 0;where g =Pki=1(a2i � b2i )C2i +Pki=1(a2i + b2i ). The operator�(�2 + 1)(�2 + 22) � � � (�2 + k2)kills the harmonis from the order zero until order k. Thus, for even k,�(�2 + 1)(�2 + 22) � � � (�2 + k2)g = Xi� k2+1Ki(a2i � b2i )S2i;where Ki is a non zero onstant, for i � k2 + 1. For odd k�(�2 + 1)(�2 + 22) � � � (�2 + k2)g = Xi� k+12 Ki(a2i � b2i )S2i;where Ki is a non zero onstant, for i � k+12 . This proves Theorem 3.Proof of Theorem 4. { Applying our formula of Theorem 1 we obtain that thenumber of verties of the urve " = (1 + " os(k + 1)�)0 is given by the numberof solutions � 2 S1 of an equation of the form0 = "K sin(k + 1)� + "2f(�; ");where K 6= 0 is a onstant and f(�; ") is a bounded funtion. Thus for " 6= 0 smallenough this equation has exatly 2k + 2 solutions. �
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x4. Weakly Convex Curves in Rn and RP nA onvex urve has no attening and his osulating hyperplane intersets it only at the pointof osulation. A urve in RP 2 (R2 ) is onvex if and only if it has these two properties. To answera question of V. Arnol'd ([6℄), we show that this two properties don't imply onvexity for urvesin RPn , for n > 2.1. Statement of ResultsWe reall that a smooth losed urve in RP n (Rn) is alled onvex if anyhyperplane intersets it in at most n points, taking multipliities into aount.A onvex urve has no attening and its osulating hyperplane intersets itonly at the point of osulation. A urve in RP 2 (R2) is onvex if and only if it hasthese two properties. In [6℄, V. Arnol'd put the problem to know whether thesetwo properties imply onvexity (for dimensions greater than 2). In this setion weanswer this question.We say that a urve in RP n (Rn) is weakly onvex if it has no attening andits osulating hyperplane intersets it only at the point of osulation.For n > 2 the answer to Arnol'd's question is negative. In [1℄, S. Anisov gavean example of a weakly onvex urve in RP 3 . For n > 2 we give examples of urvesin RP n (Rn for n even) whih are weakly onvex but are no onvex.Remark { Any weakly onvex urve in RP n is aÆne for even n, i.e. there existsa hyperplane of RP n not interseting the urve. For odd n any weakly onvex urvein RP n is not ontratible, i.e. it intersets any hyperplane in an odd number ofpoints, ounting multipliities.Proposition 1{ The urve in RP 2k , with k � 2, given in aÆne oordinatesby� 7! (os �; sin �; os 2�; sin 2�; : : : ; os(k� 1)�; sin(k� 1)�; os(k+1)�; sin(k+1)�);is weakly onvex but not onvex.Proposition 2{ The urve  in RP 2k�1 , k � 2, given in homogeneous oor-dinates by� 7! [os � : sin � : os 3� : : : : : os(2k�3)� : sin(2k�3)� : os(2k+1)� : sin(2k+1)�℄;is weakly onvex but not onvex.Remark { The urve in Proposition 2 an be onsidered as a urve in S2k�1 �R2k , where the points (�) and (� + �) = �(�) are identi�ed.We onstruted many other examples of weakly onvex urves whih are notonvex. In partiular, for the Eulidean spae R2k we alulate the number ofverties for many examples in whih the onvexity is \slightly broken": Weaklyonvex urves in R2k whih interset any hyperplane in at most 2k + 2 points andinterset at least one hyperplane in exatly 2k + 2 points.In all examples of this kind of weakly onvex urves in R2k we obtained thatthe number of verties was always greater or equal to p2k + 2. Moreover we on-struted weakly onvex urves of this kind in R2k for whih the number of verties18



is the smallest even number greater or equal to p2k + 2. From this informationwe formulate the followingConjeture{ Let  be a weakly onvex urve in R2k whih interset any hy-perplane in at most 2k + 2 points and interset at least one hyperplane in exatly2k+2 points. Then  has an even number of verties greater or equal to p2k + 2.Example { The urve  : � 7! (a1 os �; b1 sin �; a2 os 3�; b2 sin 3�) in R4 has 4verties for a2 and b2 small enough. Suppose R4 � R5 . An inversion in R5 enteredat a point exterior to R4 sends the urve  into a spherial urve ̂ � R5 . Theurve ̂ lies on the boundary of its onvex hull and has only 4 attenings. Thisexample shows that Sedykh's theorem (see x3 of this hapter and [19℄) an't beextended to higher dimensions.2. Proof of proposition 1The proof onsists of various simple steps:0 { Consider the standard oordinates (x1; x2; : : : ; x2k) in R2k . The urve ofproposition 1 is not onvex beause it intersets the hyperplane x2k = 0 at the2k + 2 points whih orrespond to the solutions of the equation sin(k + 1)� = 0.1 { Observe that all urvatures of the urve in proposition 1 (regarded asa urve in the Eulidean spae R2k) are onstant. Observe also that for eahpair of points (�0); (�1) of the urve there is an orthogonal transformation ofR2k preserving the urve and sending the point (�0) in the point (�1). Thisorthogonal tranformation is obtained by a rotation of an angle (�1 � �0) � j onthe 2{plane of oordinates x2j�1; x2j for j < k and an angle (�1 � �0) � (k + 1) inthe 2{plane of oordinates x2k�1; x2k. Thus it suÆes to alulate the osulatinghyperplane for � = 0 and to show that this hyperplane does not meet the urveelsewhere.2 { The equation of osulating hyperplane at � = 0 involves only odd indexvariables: It is of the form a1x1 + a3x3 + � � �+ a2k�1x2k�1 + b = 0.3 { Substitute the odd omponents of the urve in the preeding equation to�nd the points at whih the urve intersets the osulating hyperplane. This givesa1 os � + a3 os 3� + � � �+ ak�1 os(k + 1)� + b = 0.4 { Make the hange of variables � = 2' and introdue the following notation:C = os', S = sin' and Ck = os k' and Sk = sin k' for k � 2. The equation ofstep 3 beomes a1C2 + a3C6 + � � �+ ak�1C2(k+1) + b = 0.5 { Use the identitiesC2k = 1�2S2k and S2n = n2S2+ � � �+2n(�4)n�1S2(n�1)+(�4)n�1S2n, for n � 2.Equation of step 4 beomes an equation of degree 2k + 2 in S.6 { The osulating hyperplane at 2' = � = 0 intersets the urve with multi-pliity 2k. Thus the equation is of the form b1S2k(b2 + b3S2), where b1; b2 and b3are onstants. We only need to known the onstants b2 and b3.7 { Observe that the terms S2k and S2k+2 may only ome from the term S2k+1.Thus the equation to solve is 2(k+1)(�4)k�1S2k+(�4)kS2(k+1), whih is equivalent19



to 2(�4)k�1S2k(k + 1 � 2S2) = 0. This equation has a root of multipliity 2k atS = 0, whih orresponds to the intersetion of the osulating hyperplane with theurve at 2' = � = 0. The equation k + 1� 2S2 = 0 has no real solution for k � 2beause S2 = sin2 ' � 1. This proves proposition 1.3. Proof of proposition 2Proof of proposition 2 { Let  be the parametrization of proposition 2. Theproof of proposition 2 is similar to the proof of proposition 1; let us just point outthe di�erenes. The parametrization given in proposition 2 is in R2k n f0g wherethe points belonging to a straight line through the origin of R2k are identi�ed. Inpartiular (�) = �(� + (2m + 1)�); m 2 Z. The osulating hyperplane of theurve is determined by  and its �rst 2k � 2 derivatives.1 { Use the fat the parametrization also gives a urve in the Eulidean spaeR2k having all urvatures onstant. Thus it suÆes to alulate the osulatinghyperplane for � = 0 and to show that this hyperplane does not meet the urveelsewhere.2 { Consider the standard oordinates (x1; x2; : : : ; x2k) in R2k . The equation ofthe osulating hyperplane at � = 0 involves only even variables: It is of the forma2x2 + a4x4 + � � �+ a2kx2k = 0.3 { Introdue the notation: C = os �, S = sin � and Ck = os k� and Sk =sin k� for k � 2. Substitute the even omponents of the urve in the preedingequation to �nd the points at whih the urve intersets the osulating hyperplane.This gives: a2S + a4S3 + � � �+ a2kS2k+1 = 0.4{ Use the identity S2k+1 = (2k+1)S+ � � �+(�4)k�1(2k+1)S2k�1+(�4)kS2k+1to obtain an equation of degree 2k + 1 in S.The arguments of steps 6 and 7 of the proof of proposition 1 an be appliedhere and lead to the equation 2k+1� 4S2 = 0. This equation has no real solutionfor k � 2 beause S2 = sin2 � � 1. This proves proposition 2.Remark { After a generi linear transformation in R2k , the urves in proposi-tions 1 and 2 will not have onstant urvatures. However, the non{onvexity andthe weak onvexity will be preserved.
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x5. A Non{standard 4{Vertex TheoremWe prove that any small enough generi perturbation in R2k+1 (taking the derivatives intoaount) of a spherially onvex urve in S2k � R2k+1 has at least 2k + 2 extrema of the radiusof the (2k� 1)-osulating sphere. We also show that any small enough generi perturbation of alosed urve embedded in S2 � R3 has at least 4 points with extremal urvature.1. Statement of ResultsTheorem 1{ Any small enough generi perturbation in R2k+1 (taking thederivatives into aount) of a generi spherially onvex urve in S2k � R2k+1has at least 2k + 2 extrema of the radius of the (2k � 1)-osulating sphere.In the partiular ase of urves in R3 we have a stronger theorem:Theorem 2{ Any small enough generi perturbation in R3 (taking the deriva-tives into aount) of any embedded urve in S2 � R3 has at least 4 points ofextremal urvature.2. ProofsLemma 1{ The verties of a spherial urve  � Sn � Rn+1 are extrema of theradius of the (n� 1)-osulating sphere.Proof { Let  � Sn � Rn+1 be a spherial urve. Apply an inversion � withrespet to a hypersphere of Rn+1 entered at a point of Sn n . The inversion �sends the urve  � Sn onto a hyperplane urve ̂ � Rn � Rn+1 and the (n� 1)-osulating spheres of  on the osulating hypersheres of ̂ � Rn . The vertiesof the spherial urve  are sent by � onto the verties of ̂. The verties of ̂are extrema of the radius of the osulating hypershere. Thus the verties of  areextrema of the radius of the (n� 1)-osulating sphere. �Proof of theorems 1 and 2 { Let  be a spherially onvex urve in Sn � Rn+1 .By theorem S of x1 and lemma 1,  has at least 2k + 2 extrema of the radiusof the (n � 1)-osulating sphere. These extrema are nondegenerate beause  isa generi spherial urve. Let � be a small enough generi perturbation of  inRn+1 (taking the derivatives into aount). This pertubation does not destroy thenondegenerate extrema of the radius of the (n� 1)-osulating sphere. This provestheorem 1. To prove theorem 2 we use the same arguments and the fat that anyembedded spherial urve  � S2 has at least 4 verties. �3. The Flattenings of a Curve Lying in Sn � Rn+1 Are Not GeneriThe following remarks show that the attenings of a urve lying in a sphereare not generi. We reall that the verties of a spherial urve  � Sn � Rn+1 arethe attenings of  onsidered as a spatial urve.Remark { At a generi point of a urve in Rn+1 , the osulating hypersphereis uniquely determined. If the point is a generi attening then the osulatinghypersphere is also unique and oinides with the osulating hyperplane.Example { The osulating irle of a plane urve at an inetion point oinideswith the tangent line at that point. 21



Remark{ The attenings of a urve lying on Sn � Rn+1 are not generi fromthe point of view of the geometry of urves in Rn+1 (see remark above).Proof of remark { At a attening p of a urve lying on a sphere Sn, the orderof ontat with its (n � 1)-osulating sphere Ŝn�1(p) is at least n + 2. Thus, atthis point, the multipliity if intersetion of the urve with all the hyperspheresontaining Ŝn�1(p) is at least n + 2. Hene the osulating hypersphere is notuniquely determined. �Remark { In the proof of theorems 1 and 2 we saw that the attenings ofa urve lying in Sn � Rn+1 are extrema of the radius of the (n � 1)-osulatingsphere. The attenings of a generi urve in Rn+1 are no extrema of the radius ofthe (n� 1)-osulating sphere.4. ProblemHow muh an a losed urve embedded in S2 be deformed inside R3 suh thatthe deformed urve keeps at least 4 extrema of the urvature?
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x6. On Three Classes of Closed Curves in R3 Havingat Least 4 Flattenings and a 4{Flattening ConjetureWe disuss three lasses of losed urves in the Eulidean spae R3 whih have non{vanishingurvature and at least 4 attenings (points with torsion zero). Calling these lasses (de�ned be-low) Barner, Segre and Sedykh, we prove that Barner�(Segre\Sedykh). We also prove that(Segre)n(Segre\Sedykh) and (Sedykh)n(Segre\Sedykh) are open sets in the spae of losedsmooth urves with the C1{topology. Finally, we onjeture that the urves of a lass on-taining Segre (de�ned below) have at least 4 attenings.1. Introdution and Main Results.As in the previous setions, by a losed urve in the Eulidean spae Rn (proje-tive spae RP n) we mean a C1 mapping  : S1 ! Rn ( : S1 ! RP n , respetively).We onsider the spae of all losed urves in the Eulidean spae (projetive spae)equipped with the C1{topology.We reall that a attening of a urve  in Rn (RP n) is a point where thederivatives of  of order 1; : : : ; n; are linearly dependent.We also reall that a urve embedded in Rn (in RP n) is alled onvex if itintersets no hyperplane at more than n points, ounting multipliities.If a losed urve  in RP n (Rn) an be projeted, from a point exterior to it,into a onvex urve of RP n�1 (Rn�1) then  has at least n + 1 attenings [6℄.Finally, we reall that a losed urve in Rn (in RP n) is alled Barner urveif for every (n � 1){tuple of (not neesarily geometrially di�erent) points of theurve there exists a hyperplane through these points that does not interset theurve elsewhere.In the Eulidean ase, Barner urves exist only in odd dimensions. Any Barnerurve in Rn (RP n) has at least n+ 1 attenings [8℄.A losed urve  in RP n (Rn) whih an be projeted, from a point exterior toit, into a onvex urve of RP n�1 (Rn�1) is a Barner urve. Answering the questionabout the relation between these two lasses of urves (V.I. Arnol'd 1996) V.D.Sedykh ([20℄) proved: There is an open set of embedded losed urves in RP n whihare Barner urves and have no onvex projetions into any hyperplane.The onditions de�ning lasses of losed urves in Rn that guarantee a minimumnumber of attenings (or verties) on eah urve of that lass has been a lassialobjet of study. The interest on this subjet was revived by the reent progres insimpleti and ontat geometries and the relations of this problems with Sturmtheory (see [6℄, [4℄, [5℄, [7℄, [13℄, [1℄, [20℄, [24℄). We onsider three lasses of losedurves in the three{dimensional Eulidean spae R3 all whose elements have at leastfour attenings. In partiular any Barner urve of R3 has at least 4 attenings.C. Romero{Fuster (for the generi ase [15℄2) and V.D. Sedykh (for the generalase [19℄) proved the following theorem:Sedykh's Theorem{ A losed C3{smooth urve in R3 lying on the boundaryof its onvex hull with non{vanishing urvature has at least four attenings.2In [9℄, Blashke atributes an equivalent result to Charatheodory, but he does not give thereferene. 23



In [21℄, Segre proved theSegre's Theorem{ Any losed urve in R3 with non{vanishing urvature andno parallel tangents with the same orientation has at least four attenings.We all Sedykh urves the losed urves in R3 lying on the boundary of itsonvex hull with never vanishing urvature. We all Segre urves the losed urvesin R3 with non{vanishing urvature and no parallel tangents having the sameorientation.The natural problems arises:a) Are there Sedykh urves whih are no Segre urves? (C. Romero{Fuster[16℄).b) Are there Segre urves whih are no Sedykh urves?) How are the Barner urves in R3 related to the Sedykh and Segre urves?The answer to these questions is given by the following three theorems:Theorem A{ There is an open set of Sedykh urves in R3 whih are not Segre.Theorem B{ There is an open set of Segre urves in R3 whih are not Sedykh.Theorem C{ Any Barner urve in R3 is a Sedykh urve and also a Segreurve.To prove theorems A and B we give methods to onstrut generi examples.A Four{Flattening Conjeture. When the unit tangent vetor t of a urve in the Eulidean Spae R3 is translated to a �xed point O, the end point of thetranslated vetors desribe a urve T on the unit sphere S2, alled the tangentindiatrix of . The points of  at whih the urvature vanishes orresponds tothe usps of the tangent indiatrix. So Segre theorem an be reformulated in thefollowing way: Any losed urve in R3 whose tangent indiatrix is embedded in S2has at least four attenings.We say that urve on S2 has diret self{tangeny if it has self{tangeny andthe tangent branhes have the same orientation at the point of tangeny. Lett : S1 ! R3 , 0 � t � 1, be a one{parameter family of immersed urves. Supposethat 0 is a Segre urve (for instane a plane onvex urve in R3) and that forall t 2 [0; 1℄ the tangent indiatrix Tt of t is an immersed urve of S2 having nodiret self{tangenies.Conjeture 1.{ The urve 1 (and eah urve t) has at least 4 attenings.We stated onjeture 1 in terms of the urves t 2 R3 and its tangent indiatri-es in S2, but it omes from a onjeture about some lass of Legendrian knots inST �S2 and the number of spherial inetions of the fronts in S2 of these Legen-drian knots (see, [5℄ for more information about the Legendrian knots assoiatedto urves in S2). More preisely, to eah smoothly immersed o{oriented urve� : S1 ! S2 is assoiated a Legendrian knot L� � ST �S2 onsisting of the o{oriented ontat elements of S2 tangent to � with orresponding o-orientation.Conversely, to eah losed Legendrian knot in ST �S2 orresponds a o{oriented24



urve in S2 whih is not neessarily smooth and is alled the front of the Legen-drian knot. We reall (see [10℄) that a urve � : S1 ! S2 is the tangent indiatrixof some smoothly immersed urve  : S1 ! R3 if and only if it intersets eah greatirle of S2. So we formulate theConjeture 1'.{ Let L0 be the Legendrian knot assoiated to a o{orientedgreat irle of S2. Let L1 be any Legendrian knot whih an be joined to L0 by aLegendrian isotopy Lt (i.e. a homotopy of Legendrian knots for whih the knot typedoes not hange) satisfying the following ondition: The front �t of eah Legendrianknot Lt is a smooth urve of S2 whih intersets every great irle of S2. Then thefront 1 (and eah front t, 0 � t � 1) has at least four spherial inetions.The relatrion between both onjetures omes from the fat that the spherialinetions of the tangent indiatrix of a urve in R3 orrespond to the atteningsof the original urve in R3 .In [7℄, V. Arnol'd gave the �rst step towards a Legendrian Sturm theory of spaeurves. He imposed some onditions to the urves in terms of the 2{dimensionalLegendrian knot, of the spae PT �R3 of ontat elements of R3 , assoiated to eahurve in R3 (or RP 3). This Legendrian 2{dimensional knot onsists of the ontatelements of R3 (or RP 3) tangent to the urve.Even inside the lass of Barner urves, it is easy to go outside the lass ofurves onsidered in [7℄, (in [7℄ there is one example). With our onjeture wetry to follow the Arnol'd{Chekanov's philosophy. But instead of onsider the 2{dimensional Legendrian knot in PT �R3 (or PT �RP 3) assoiated to a urve in R3(or RP 3), we onsider the 1{dimensional Legendrian knot in ST �S2 assoiated tothe tangent indiatrix of a urve in R3 . The lass of urves onsidered in ouronjeture ontains the whole lass of Segre urves whih, by Theorem C, ontainsthe whole lasse of Barner urves.Aknowledgements. The author is grateful to Carmen Romero{Fuster for setting upproblem a).2. Proof of theorem C:A Barner Curve is a Sedykh Curve. The Barner urves have no pointswith vanishing urvature. Let  be a Barner urve. The de�nition of Barner urvesimplies that for any point p 2  there is a plane tangent to the urve at p notinterseting the urve elsewhere. This plane determines a losed half{spae Hpontaining the urve. The onvex hull of  is ontained in Hp and the point p lieson the boundary of the onvex set Hp. So p lies on the boundary of the onvexhull of . Thus  is a Sedykh urve. �A Barner Curve is a Segre Curve. We will prove that any urve whihis not a Segre urve annot be a Barner urve. Let  be a losed urve withnon{vanishing urvature. Suppose that  has two parallel tangents with the sameorientation at the points p1 and p2 of . We will prove that any plane ontaining thepoints p1 and p2 must interset the urve at least at 4 points, taking multipliitiesinto aount. Consider the projetion � : R3 ! R2 parallel to the line p1p2.The projetion � sends the urve  onto a plane urve ̂ = �(). The pointp = �(p1) = �(p2) is a point of self{tangeny with the same orientation as theurve ̂. So the urve ̂ an be deomposed into two losed urves having a25



tangeny at the point p. Any line of R2 ontaining p intersets eah one of theseurves at least at two points, taking multipliities into aount. Eah line of R2ontaining p is the image (by the projetion �) of a plane of R3 ontaining thepoints p1 and p2. So any plane ontaining p1 and p2 intersets  at least at 4points, taking multipliities into aount. �3. Proof of theorem A:Sedykh Curves whih are no Segre Curves. Consider a smooth, losedand stritly onvex smooth surfae S (for instane an ellipsoid) in the Eulideanspae R3 . Consider a bundle of parallel lines of R3 . Let � denote the set of pointsof S at whih a line of the bundle is tangent to S. The set � is a losed urve of S,whih separates S in two parts S1 and S2. Any embedded urve of S is a Sedykhurve.Proposition 1{ Let  : � 7! (�) be a losed embedded urve of S rossingthe urve � transversally at 2k > 2 points �1; : : : ; �2k. If the tangent lines of  attwo rossings �i and �j with the same parity (i = j (mod 2)) are lines of the bundlethen  is not a Segre urve.Proof { The tangents of the urve  at �i and �j are parallel. We must onlyprove that the tangents at these points have the same orientation. Suppose thatat �1 the urve  traverses from S1 to S2. Then at the odd (even) rossings theurve  traverses from S1 to S2 (from S2 to S1). So if both i and j are odd (even)then the rossing from S1 to S2 (from S2 to S1) gives to the tangents at the points�i and �j the same orientation (See Fig. 1). �
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Figure 1: A Sedykh urve whih is not a Segre urve.A losed urve in R3 is a Segre urve if and only if its tangent indiatrix onS2 has no double points (self{intersetions). If the tangent indiatrix of a losedurve  has transversal self{intersetions, then any small enough perturbation of (taking the derivatives into aount) is no Segre urve: transversality is an openondition. The tangent indiatrix T : S1 ! S2 of a losed urve  : S1 ! R3 has atransversal self{intersetion at the point T(�1) = T(�2) if the tangents to  at �1and �2 are parallel with the same orientation, but the osulating planes at thesepoints are not parallel.So the urves in the proposition 1 an be onstruted in suh a way that theosulating planes at the points �i and �j be not parallel. This proves theorem A.26



4. Proof of theorem B:Segre Curves whih are no Sedykh Curves. We give a method of on-struting Segre urves. Let  be an oriented onvex urve, with two axes of sym-metry l1; l2, in the Eulidean plane R2 � R3 (for instane an ellipse). Deform theplane R2 in R3 on a right ylinder C with the following onditions:a) The base of the ylinder C an be any smooth immersed plane urve.b) The lines of R2 parallel to one of the axes of symmetry of , say l1, mustbeome the generatries of C.) The image, under the deformation, of the lines of R2 parallel to the axes ofsymmetry l2 must be orthogonal to the generatries of C.Write ~ for the image of  by this deformation, and ~p 2 ~ for the image ofp 2  by this deformation.Proposition 2{ The deformed urve ~ is a Segre urve.Proof { We will use the fat that two unit tangent vetors are parallel and havethe same orientation if and only if for any orthogonal projetion on a plane (or ona line) their images are parallel with the same orientation and the same length.Let t(~p) be the unit tangent vetor of ~ (given by the orientation of ~) at the point~p 2 ~. Let P2 be the plane orthogonal to the generatries of C and ontaining theimage of the axis of symmetry l2 of . By onstrution, the urve ~ is symmetriwith respet to the plane P2. Let �1 (or �2) be the orthogonal projetion of theunit tangent vetors of ~ on a plane orthogonal to the generatries (respetively ona line parallel to the generatries). The projetions by �1 (respetively by �2) oftwo unit tangent vetors of ~ have the same length if and only if the orrespondingpoints of the plane urve  are symmetri with respet to any one of the axes ofsymmetry l1; l2 of . If two points p and q of  are symmetri with respet to l1 orl2 and lie on one of these axis of symmetry of , then t(~p) and t(~q) have oppositeorientation. Let ~p1; ~p2; ~p3; ~p4 be four points of ~, suh that the orresponding pointsp1; p2; p3; p4 of  are symmetri and don't lie in the axes of symmetry of . We willprove that t( ~p1) 6= t( ~pi), i = 2; 3; 4: Suppose that ~p1 and ~p2 (and onsequently ~p3and ~p4) are symmetri with respet to P2. The projetions �1(t( ~p1)) and �1(t( ~p2))have the same length but di�erent orientation. So t( ~p1) 6= t( ~p2). The projetions�2(t( ~p3)) and �2(t( ~p4)) are oriented in opposite diretion with respet to �2(t( ~p1)),Thus t( ~p3) 6= t( ~p1) 6= t( ~p4). This proves proposition 2.The urves of proposition 2 an be onstruted in suh a way that the urve ~does not lie on the boundary of its onvex hull. This proves theorem B.Realizations of this onstrution are given by the families of urves of thefollowing examples.Example 1 { The urves of the family ~" : S1 ! R3 given by the parametrization~"(�) = ((2 os � + ")3 � (2 os � + "); sin �; (2 os � + ")2)are Segre urves for any value of " but are no Sedykh urves for any small enough". The urve ~0 is not embedded (it has two points of self{intersetion), so it isno Sedykh urve. For any small enough " 6= 0, the urve ~" is embedded and doesnot lie in the boundary of its onvex hull. This family of urves lies in the ylindergiven by the following parametrization: (s; t) 7! (t3 � t; s; t2 � 1). In Figure 2 we27
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Figure 2: A Segre urve whih is not a Sedykh urve.have onsidered the plane urve  as the boundary of a dis, and the spatial urve~ as the image of  by the deformation of the dis.

Figure 3: A Segre urve whih is not a Sedykh urve.Example 2 { The urves of the family ~� : S1 ! R3 given by the parametrization~�(�) = (eos � sin(�� os �); sin �; �eos � os(�� os �))are Segre urves and for any � � 0:7 they are no Sedykh urves. In Fig.3 we havethe urve ~� for � = 10. The urve ~� of this family lies in the ylinder C� givenby the following parametrization: (s; t) 7! (e2t=� sin(2�t); s; �e2t=� os(2�t)).
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