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ABsTrACT. In this work we give a formula for the local topological zeta function
of a superisolated singularity of hypersurface in terms of the local topological zeta
function of the singularities of its tangent cone. We apply it to prove the Monodromy
Conjecture for some surfaces singularities.

Introduction. Troughout this paper we work over the complex numbers. The
local topological zeta function Zip, o(f,s) € Q(s) is an analytic subtle invariant
associated with any germ of an analytic function f : (C**1,0) — (C,0). This
rational function was first introduced by J. Denef and F. Loeser as a kind of limit
of the p-adic Igusa zeta function, see [DL1,DL3|. Its former definition was in terms
of any embedded resolution of its zero locus germ (V,0) = (f~1(0),0) c (C**1,0)
(although it does not depend on any particular resolution). In [DL3], J. Denef and
F. Loeser gave an intrinsic definition of Z,, o(f, s) using arc spaces and the motivic
zeta function, see also [DL4] and the Séminaire Bourbaki talk of E. Looijerga [Loo).

Each exceptional divisor of an embedded resolution 7: (Y, D) — (C**1,0) of the
germ (V, 0) gives a pole candidate of the rational function Z;op 0(f, s). Nevertheless
only a few of them truly give a pole of Z;op o(f, s). There are several conjectures
related to topological zeta functions. In this paper we are interested in the Mon-
odromy Congjecture, see [D],[DL1].

Given z € f~1(0) it is known that the Milnor fibration of the holomorphic
function f at z is the C* locally trivial fibration f| : Be(z) N f~*(D}) — D},
where B.(z) is the open ball of radius € centred at z, D, = {# € C : |2| < 5}
and Dj is the open punctured disk (0 < 7 << € and ¢ small enough). Any fibre
Fy 5 of this fibration is the Milnor fibre of f at x. The monodromy transformation
h: Ffz — Fs 5 is the well defined (up to isotopy) diffeomorphism of Fy . induced
by a small loop around 0 € D,. The complex algebraic monodromy of f at z is
the corresponding linear transformation h, : H,.(Ff;,C) — H,(Ffg,C) on the
homology groups.
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The local Monodromy Conjecture states that if so is a pole of the topological
zeta function Zyopo(f,s) of the local singularity defined by f, then exp(2imsg) is
an eigenvalue of the complex algebraic monodromy around f~'(0). Note that if f
defines an isolated hypersurface singularity then exp(2imsg) has to be an eigenvalue
of the complex algebraic monodromy of the germ (f~1(0),0).

There are three general problems to consider when one tries to prove (or disprove)
the conjecture using resolution of singularities:

(i) Explicit computation of an embedded resolution of the hypersurface (V,0) C
(C**1,0).

(ii) Elimination of the pole candidates which are not really poles of Z;op o(f, 5).

(iii) Explicit computation of the eigenvalues of the complex algebraic monodromy
(or computing the characteristic polynomials of the corresponding action of the
complex algebraic monodromy).

The Monodromy Conjecture has been proved for curve singularities by F. Loeser
[Lol], see also [V2,V3]. F. Loeser proved that any pole of the topological zeta func-
tion give a root of the Berstein polynomial of the singularity which is a stronger
version of the Monodromy Conjecture. The behaviour of the topological zeta func-
tion for germs of curves is rather well understood after the knowledge of an explicit
embedded resolution 7: (Y,D) — (C?,0) of curve singularities, e.g. the minimal
one. W. Veys proved essentially that any irreducible component E of the excep-
tional divisor D = 7~1(0) which intersects the total transform x#~!(V) in at most
two points verifies that its contribution to the residue of Ziop o(f,s) at the pole
candidate is zero. Then one eliminates the pole candidates where it is well known
that the eigenvalue candidates of the complex algebraic monodromy are not actual
eigenvalues.

There are other classes of singularities where the embedded resolution is known.
For example, for any singularity of hypersurface defined by an analytic function
which is non-degenerated with respect to its Newton polytope, problems (i) and
(3¢) above are solved. Nevertheless problem (i7) seems to be a hard combinatorial
problem. This problem was partially solved by F. Loeser whenever f has non-
degenerated Newton polytope and verifies some technical extra conditions, [Lo2].

Embedded resolution is also known for superisolated surface singularities, SIS
for short, see [Ar]. This kind of singularities, named. by I. Luengo in [L], was used
to prove that the u-constant stratum of an isolated hypersurface singularity is not
smooth, see also [S]. E. Artal used them for disproving a conjecture of S.S.T. Yau.

Even in one of the simplest case of f with non-isolated singularities, namely
homogeneous surfaces case, problems (i) and (i) are solved but problem (i7) is
still open. For any degree d and any homogeneous polynomial f; € Clz1,z2, z3]
the first pole candidate is s = —3/d. It appears when one blows-up once at the
origin. A sufficient condition for the pole candidate s = —3/d of Ziop o(/f, s)
verifies the Monodromy Conjecture is the following topological condition about its
Euler-Poincaré characteristic: x(P? \ {f4 =0}) # 0.

B. Rodrigues and W. Veys in [RV] have proved the Monodromy Conjecture for
any homogeneous polynomial f; € Clz;,z2,z3] with x(P? \ {fz = 0}) # 0. They
exclude the case x(P2\ {fs = 0}) = 0 because they couldn’t solved problem (ii) for
the pole candidate sy = —3/d in this case.
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Essentially in this paper we prove the Monodromy Conjecture for SIS singular-
ities and also complete the proof of the Monodromy Conjecture for homogeneous
polynomials in three variables. The results of this paper are the following.

Let f be a germ of a superisolated hypersurface singularity defined by f =
fat+far1+... € C{zo,z1,...,2za}. Let us denote by Cp, C P™ the divisor associated
with the homogeneous polynomial f,,. By definition, the hypersurface singularity
(V,0) = (£71(0),0) C (C"*1,0) is superisolated, SIH for short, if and only if the
projective set Cyy1 NSing(Cy) is empty. For each P € Sing(Cy) we choose analytic
coordinates centered at the origin and we denote by gF the equation of Cy in these
coordinates.

The point is to get a formula for the topological zeta function of a SIH singularity
in terms of similar invariants of its tangent cone. In Section 1 such a formula is
given.

Corollary 1.12. Let f := fyg+far1+ - € C{zo, 21, ..., 2Zn} define a SIH singular-
ity (V,0) C (C**1,0). Then its local topological zeta function satisfies the following
equality

_ x{F"\ Cy) x(Ca)
Zsopo(V,8) = t—s t—s)(s+1)
2 1t ,
+P€S§(0d) (t Hery ((t —s)(s+1) t) Ztop,0(9 7t)> :

where t :=n + 14 (d+1)s, Cy = Cy \ Sing(Cy) and Ziop0(g9%, s) stands for the
local topological zeta function for the germ gF at the singular point P € Sing(Cy).

Using the formula above, the Alexander polynomial formula of the complex
algebraic monodromy of a SIS singularity (e.g. see [Ar]), and the Monodromy
Conjecture for curves, see [Lol], we prove the following for a SIS singularity of
multiplicity d:

— If x(P? \ Cy) > 0 then the Monodromy Conjecture holds for (V,0) C (C?,0).

— If x(P?\ C4) < 0, then any pole of the local topological zeta function of (V,0) C
(C3,0), but sp = —3/d, verifies the Monodromy Conjecture. Furthermore, if
so = —3/d is a pole of the local topological zeta function of the germ of plane
curve Cj; at some singular point then the Monodromy Conjecture for (V,0) C
(C3,0) also holds. This fact motivates the following definition.

We say that a degree d effective divisor D on P? (d > 3) is a bad divisor if
x(P?2\ D) < 0 and so = —3/d is not a pole of Z:op p(g9h,s) for any singular point
P in its support D,..q4, where gg is the local equation of the divisor D at P.

In order to prove the Monodromy Conjecture for SIS singularities it only remains
to deal with the pole sy = —3/d whenever the tangent cone Cy is a bad divisor. In
such a case, sy = —3/d can only be (at most) a simple pole of Zp o(f, s) and its
residue is equal to

d
d—-3

p(Ca) = x(P* \ Ca) + x(Ca \ Sing(Ca)) + D) Zipp(9",-3/d) €Q

PeSing(Ca)

It turns out that the residue p(Cy) agrees with the value of z2(Cy, s) at so = —3/d,
where z(D, s) stands for the topological zeta function associated with a divisor D
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on P?; this invariant was recently introduced by W. Veys, see [V5]. This residue
has also another meaning, p(Cy4) coincides with an invariant (x associated with
the Q-canonical divisor K := (—3/d)C; on the rational surface P2. In this paper
we use these meanings to extend the notion of the residue p(D) to bad divisors D
on P? (not only for reduced curves C;) and to some canonical divisors on rational
surfaces.

The main part of Section 2 is devoted to determine bad divisors D on P? such
that p(D) # 0. Note that the Euler-Poincaré characteristic condition on a bad
divisor D implies that D has at least two irreducible components, all of them being
rational curves, see [JS], [GP], [Ko] and [ALM].

Our second main result is the following theorem.

Theorem 2.21. Let D be a bad divisor on P2. If p(D) # 0, then the irreducible
components of D are in a pencil of rational curves having only one base point and
such that any fibre minus the base point is isomorphic to C; at least one generic
fibre (resp. two) is contained in Cyq if the pencil has two exceptional fibres (resp.
one).

The proof of this result is quite elaborate. We use the following result of W.
Veys [V4].

Veys’ Theorem. Let D be a curve in P? such that x(P?\ D) < 0. Then D can be
extended to a configuration D' D D with still x(P?2\ D) < 0 for which there ezists
a diagram

> x Lyp2

where f is a composition of blowing-ups with center in D’ and g is a composition of
blowing-downs whose exceptional curve is contained in f~1(D') and such that T is
a ruled surface. Moreover, one can require the configuration g(f~(D’)) to be one
of the following two types:

(A) One section C; and at least two fibres, or

(B) Two disjoints sections Cy and Cy and at least one fibre.

The proof of the theorem consists of studying the behaviour of the invariant (g
when one applies blow-up and blow-down processes. This step has been partially
studied in [V1] in a slightly different context.

The residue p(D) does not change after the blow-up process except for one
type of blowing-up which will be the key point. Since on the ruled surface ¥
the configuration g(f~1(D’)) has residue zero, then if p(D) is not zero on P? it
is because one makes at least one blow-up which changes the residue. The most
serious obstacle to characterize bad divisor on P? whose residue p(D) # 0 is to prove
that the components of such divisors appear as members of pencils of type (0,1)
on P2, see Appendix. Then we use the classification of T. Kizuka [Ki] of pencils of
rational curves of type (0,2) to show that arrangements of rational curves in which
the residue changes can be put in a rational pencil of type (0, 1).

The last step in the proof of the Monodromy Conjecture for SIS singularities con-
sists of computing the Alexander polynomial of the curves which satisfy the theorem
above. For this purpose we use the classification of H. Kashiwara [K] of pencils of
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rational curves of type (0,1). We prove, case by case, that the exp(2iw(—3/d)) is a
root of the Alexander polynomial of the curve at its only singular point. Again us-
ing the computation in [Ar], exp(2iw(—3/d)) is a root of the Alexander polynomial
of the corresponding SIS singularity.

This work allows also to extend the proof given by B. Rodrigues and W. Veys of
the Monodromy Conjecture for homogeneous polynomials f; € C[z1,z2,x3] with

x(P*\ {fa=0}) =0.

We would like to point out that W. Veys in his work has found that in the case of
curves, if an exceptional divisor E; has x(E;) = 0 (E; = Ei\U;; E;) then E; does
not contribute to the pole candidate 3 of Ziop,0(f, 5). He suggests that this fact
could be due to the Monodromy Conjecture. It is remarkable that if one considers
a SIS singularity or a homogeneous surface whose tangent cone D is a bad divisor
with residue p(D) # 0 then the exceptional component Ey = P2, obtained when
one blows-up once at the origin, verifies x(Eg) = x(P2\ D) = 0 and sq = —3/d is
a pole of the local topological zeta function. In our opinion this fact gives strong
evidence for the Monodromy Conjecture in the following sense. Given a bad divisor
D the condition sg = —3/d is a pole of the topological zeta function is a generic
condition (s is not a root of certain polynomial) and the condition exp(2im(—3/d))
is an eigenvalue of the complex monodromy is non-generic (exp(2in(—3/d)) has to
be a root of another polynomial), see §5 for details.

Acknowledgement. During the elaboration of this article, the second author
was the host of the Dept. of Algebra at the University Complutense of Madrid
supported by a Sabbatical Grant from the MEC. She wishes to thanks the MEC
for its support and the members of the Dept. of Algebra for their warm hospitality.
Last three authors thanks to the Isaac Newton Institute for Mathematical Sciences
for its support while finishing this paper at the Institute.

§1.- General formula for the topological zeta function

We first recall the definition of the topological zeta functions associated to a
polynomial f € Clzo,...,Zs], see [DL1,DL2]. Let m: Y — C**! be an embedded
resolution of the hypersurface V defined by the zero locus of f. Let E;,i € I, be the
irreducible components of the divisor 7~ !(f~1(0)). For each subset J C I we set

EJ = ﬂ EJ‘ and E_] = EJ\ U EJU{j}-
jed i¢Jd
For each j € I, we denote by IV; the multiplicity of E; in the divisor of the function
f o and we denote by v; — 1 the multiplicity of F; in the divisor of 7*(w) where
w is a non-vanishing holomorpic (n + 1)-form in C**t!. Then the local topological
zeta function of f is:

Ztop,O(f; 3) = Z X(EJ nm- 0)) H

JCI

+Ns € Q(s),

and the topological zeta function of f is:

Zuop(f,9) 1= 3" x(En) || ——— € Q(s),

v; + Njs
JcI jEJ it
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where x denotes Euler-Poincaré characteristic.

In fact the definition can be extended to an effective divisor D on a nonsingular
n + 1-dimensional complex variety X instead of just a morphism f : X — C, see
[V5]. If 7: Y — X is an embedded resolution of the support of D and E;,% € I, are
the irreducible components of the divisor 7! (SuppD) with associated multiplicities
N;,i € I and v; — 1, where 7*(D) = > N; E; and the divisor div(m*wjw) = > (v —
1)F; (w is a non-vanishing holomorpic (n + 1)-form in X in a neighbourhood W of
Sing(Dyeq)) then the topological zeta function of D is defined by

2D, s) =Y x(En) || -7 € Qs).

N
JCI jeJ Vi +

We shall compute the topological zeta function of a SIH singularity in C*t!. We
will make use of three general principles which are at least implicitely known. We
begin recalling the generalization of this zeta function by J. Denef et F. Loeser,
[DL2], see also [V5].

Let X be an algebraic (n + 1)-manifold, f: X — C an algebraic function and w
an (n-+1)-holomorphic form (algebraically defined) on X. One can replace algebraic
by analytic if we are in the germ case or if we add some natural hypothesis about
finiteness. Then one can define the topological zeta function Zi,(f,w,s) in the
same way as the original zeta function; in this case the v-invariant is associated
with the form w instead with a non-vanishing form. We state the three main
principles:

PBM Principle 1.1. (See [V5, Theorem 5.6]) Let w:V — X be a proper bira-
tional morphism. Then

Ztop(fa w,s) = ZtOP(-f o, 71'*(0.)), 3)'

Stratum Principle 1.2. Let X =[5 S be a finite prestratification of X such
that for each x € X, the local topological zeta function Ziop o(f,w,s) at =, depends
only on the stratum S containing x. Let us denote Zyop s(f,w, s) the common zeta
function associated with the stratum S. Then,

Ztop f,w 3 ZX(S)Ztop,S(f7w 8)
Ses

The key point in this principle is that one may construct a resolution of both, f
and w, such that one can distribute the terms for the left-hand side of the formula
in several terms of the right-hand side of the formula.

Fubini’s Principle 1.3. Let us consider two germs of functions f;: (C*+1,0) —
(C,0) and two germs of (n; + 1)-holomorphic forms w;, 1 = 1,2. We consider
[ = fifs and w := wy Aws as germs of function and form in (C*1*"212 Q). Then,

2
Ztop,O(fa W, 3) = H Ztop,O(f'i; Wi, 3)'
i=1
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In order to prove this Fubini’s Principle, it is enough to consider a proper bira-
tional mapping obtained by the resolution of f; and w; in the first variables and
the identity in the second variables; the zeta function does not change because of
PBM Principle. Then we have a prestratification such that for any stratum, we
have some power of coordinate functions in the first variables and f; and ws in the
second variables. On each stratum, we now consider the proper birational mapping
associated with the second variables and the result easily follows.

Example 1.4. Let us take a germ f: (C**1,0) — (C,0) and a germ of holomorphic
form w. We can choose a good representative W (where f and w are defined); W
comes with a finite prestratification as in (1.2). All the strata but the origin have
Euler characteristic zero. Then the zeta function of the germ is the same as the
zeta function of the good representative.

Example 1.5. Let us take a germ f: (C**!,0) — (C,0) and a germ of holomorphic
form w. Fix a good representative W where f and w are defined. Let us consider
the blowing-up m: W — W along a smooth subvariety of W containing 0. Consider
D := 771(0) and let Sp be a finite prestratification of D satisfying the property
(1.2). Then,
Ziopo(Frw,8) = D X(8)Zop,s(f o w7 (w), 5)-
SeSp

We apply these facts to a SIH singularity defined by f := fg+ faq1 + - €
C{zo,z1,...,Zn}. Let us denote by Cp,, C P™ the divisor associated with the ho-
mogeneous polynomial f,,. By definition, the projective set Cyy1 N Sing(Cy) is
empty. In particular the set Sing(Cy) of singular points of the projective hyper-
surface Cy is finite. Let us denote by C, the regular part of Cgy C P™. For each
P € Sing(Cy) we choose analytic coordinates centered at the origin and we denote
by gF the equation of Cy in these coordinates. Then from the PBM and Stratum
Principles one gets

_ x(P"\ Cy) x(Ca)
Ziopo(f,8) = =5 G-I
+ Z Ztop,P((z_gP(xlr--,xn)) Zd:wa 3)?
PcSing(Cq) B

where w = 2"dz1 A---Adxn Adz and t :=n+ 1+ (d+ 1)s. Let us fix a singular
point P and set g := g¥. We also assume that in the local coordinates z1,...,Zn, 2
the point P is the origin, and z = 0 is the equation of the exceptional divisor. The
main point is to consider a birational map 7 which is an embedded resolution of

g~ 1(0) in coordinates z, ..., T, and which is the identity in z.
We fix some notation about the embedded resolution of g—!(0). With each
irreducible component Dy, Dy, ..., D, of the total transform of g—*(0), we associate

the numbers Nj,v;, as usual. For each subset J C {0,1,...,7}, we define the
number 7, which is the Euler characteristic of the complement of the singular
part of the intersection of the components parametrized by J. We recall that:

1
Ztop,O(ga 3) = Z XJ H TR
sctomry  icg Vit Nis
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The following formula can be easily deduced from the two first Principles:

Ztop,o((z"g(-’zl,- --;xn)) Zd,w,s) = Z XJZtoP,O((z_x‘])zdvzanvs),
Jc{o,1,...,r}

where if J = {j1,...,J1}, then

! !
mJ:znxiVj", (H ik )dzl/\---/\dxn/\dz.

Notation 1.6. Given n; := a; + b;s, a;,b; € Z>o, j = 1,...,l and my,...,m; €
Z~g, T:=0as+ b, a,b € Z, we denote the local topological zeta function associated
with the germs of function ¢2®h and of form 2 (Hk LERET 1) dry A---Ndz, ANdz
by

Z(N1, ..y MM, ., My T, 8) 1= Zyop 0(q2®h, 2%y, s),

where
I !
ka, h:=z—H:z:km’“, (Hm“” 1)dalcl/\---/\d:c,,,/\dz.
k=1 k=1

We next compute this local topological zeta function blowing-up along the coor-
dinate subspace z = z; = 0 and apply the above mentioned principles.

Formula 1.7. Assume that | > 1. If my > 1, then using the PBM and Stratum
Principles one gets

l

1 1
(N1, .., My, ..., My_1, M T,8) = — +
(m1 b - T ) jI;[lnj m+7+s+1

+Z(n1""7'n’l—17nl+T+s+1;m17"'7ml—1)ml—1;7)8)7

and using Fubini’s Priciple

Z(n1,...,n5my,...,my_1,1;7,8) =

! 1

1 il
- JI;IIE mtrtstl mtristl

Z(nla ceey M1, M, .-, M1 T, 8)7

Then, by induction on my:
Z(n1,..., 0 M, .., My, My T, 8) =

1 1
= Il— Z Vi v N I yoo ey _; ¥
i+ (T+ s+ 1)my i - +2Z(m, > TH—1; T, My-15T; 5)

And by induction on l, ifu: =7+ s+ 1:

Z(Ny, ..., N3 M, ..o, Y1, My T, ) =

k 4

l 1 i
=3\ o | (s ) I vy s | Zmins)

k=2 g=1""1 j=k
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Formula 1.8. It is easily seen that

1 my 1 1
Z(ny;myms) = ——— [ 2 ~1).
(m13ma; 7 ) n1+m1u(n1+s+1+7+1 )

Formula 1.9. Combining last formule we obtain

Z(n1y...,ng; My, ..., MY; T, 8) =
! !
1 1 1
S N 1
ugnj+(u+ )(( +1)(s+1) u)l;l

Applied to the case of SIH singularities, i.e., T=n+ds, t ;== (n+ 1)+ (d+ 1)s,
m; = N; and n; = v;, one gets

1 1
Z(v1,. ., v;Nma, ..., Nisn+ds, s) = ZH_—'_

1 Ny 1
+ e (e ‘i)j_I_Iluﬁth‘

Remark 1.10. In [DL1], J. Denef and F. Loeser using p-adic integration and the
Grothendieck-Lefschetz trace formula showed that the local topological zeta func-
tion of the non-vanishing function germ g¥ verifies the equality

ZtOP,O(QP, 0)= Z XJ H ”

Jc{o,1,...,7} JjeJ

Theorem 1.11. If P € Sing(Cy) then

1 1
)~ ;)Ztop,O(QP,t)-

Ztop,o((z — gP(zE)) 2% w,8) = % +(t+1) (m

Corollary 1.12. Let f := fqg+ far1 + -+ € C{zg,Z1,...,2n} define a SIH sin-
gularity (V,0) C (C**1,0). Then iis local topological zeta function satisfies the
following equality

_ x(P"\ Cy) x(Ca)
1 1 1
N L (i Nz ahs),
PES%(Cd)(t ((t"s)(s"'l) t) o )

where gF is a local equation of Cy at P andt:=n+1+ (d+ 1)s.
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§2.- The pole so = —3/d for n = 2

Let f := fg+ far1+--- € C{zo, z1,z2} be an analytic function such that its zero
locus (V,0) C (C3,0) defines a SIS singularity. It means that Cyy1 N Sing(Cy) = 0.

The formula in (1.12) for the local topological zeta function can be rewritten in
the form

_ 34+ x(P*\ Cy)s
Zop,o(V,8) = (t—s)(s+ :)

M) (00 1)

t(t—s)(1+ s) PeSeiCa) 1+t¢

where t = 3+ (d+1)s and Z;,, p(Cq, s) means the local topological zeta function of
the germ at the point P € Sing(Cy) of the plane curve singularity Cy C P? defined
by {fs = 0}.

Lemma 2.1. The pole candidates of Ziopo(V,8) are s = —1, s = —3/(d + 1),
s = —3/d, and the poles —(v + 3N)/(d + 1)N whenever —v/N is a pole of the local
topological zeta function of the germ of Cyq at some point P € Sing(Cy).

We know that Z;op p(Cy,0) = 1, see Remark (1.12). Hence t = 0, i.e. s =
—3/{d+ 1), is not a pole of Z;op o(V, s).

The germ (V,0) C (C3,0) is an isolated surface singularity. Hence Hy(F,C) and
H,(F,C) are the only non vanishing homology vector spaces on which the mono-
dromy acts, (we denote the Minor fibre by F'). The only eigenvalue of the action
of the monodromy on Hy(F,C) is equal to 1. The characteristic polynomial of the
action of the complex monodromy on Hs(F,C) is given by the formula

[T a7,

PeSing(Cy)

(t¢ — 1)x(P*\Ca)

AV(t) = (t _ 1)

where AP (t) is the characterisitic polynomial (or Alexander polynomial) of the
action of the complex monodromy of the germ (Cy, P) on Hy(Fyr,C), (F r denotes
de corresponding Milnor fibre), e.g. see [Ar].

The following lemma is an easy consequence of the formulee above and the proved
Monodromy Conjecture for curves [Lo].

Lemma 2.2. Let (V,0) C (C3,0) be a SIS singularity of multiplicity d. Let Cy be
its tangent cone. Then:
- If x(P%2\ Cg) > 0 then the Monodromy Conjecture for (V,0) holds.

- If x(P?\ Cy) < 0 then so = —3/d is the only pole candidate which might not
verify the Monodromy Conjecture for (V,0).

Proposition 2.3. Suppose that x(P?\Cy) < 0. If so = —3/d is a pole of Zsop o(V, 3)
of order greater than one then so = —3/d is a pole of Ziop p(C4,s) at some point
P € Sing(Cy).

Corollary 2.4. In such a case, the Monodromy Conjecture for germs of curves
implies that exp(2in(—3/d)) is a root of AF(t) (and also it is a root of AT (t411)).
Hence the Monodromy Conjecture for (V,0) also holds in this case.
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Example 2.5. Consider two lines L, and L, on P? and (Vp,0) C (C3,0) a SIS
singularity whose tangent cone is D = L, U Ly. Hence the invariants Z;op0(V, )
and Ay(t) are

445 t3—1
ZopoVo9) = igarssy 4 AvO=T

Assume that D has degree 3 and x(P? \ D) < 0. Then:

(A) If D = Ly ULy U L3 is an arrangement of three lines meeting at only one point
then the corresponding SIS singularity has invariants:

11 (t12 - 1)(t* - 1)

Ziopo(V,8) = AT 5) (11 +125)’ and Ay (t) = B -1D(t-1)°

(B) If D = L; U Ly U L3 consits of three lines in general position, i.e. Sing(D) are
three nodes, then the invariants of the SIS singularity are:

352 + 65 + 4 (@t =1)3
ono(V28) = gipgye > And AvE) =TTy

(C) If D is a conic with a tangent line then in such a case the invariants of the SIS
singularity are

F1
Ztop,O(Va 3) = S5+ 15 and Av(t) =

(-1t -1
(1+s)(15+ 165)° ’

(-1t -1)

With these examples the Monodromy Conjecture for any SIS singularity of mul-
tiplicity d = 2 or 3 is proved.

The discussion above suggests the following definition which we need to extend
to divisors on the projective plane.

Definition 2.6. We say that a degree d effective divisor D on P? (d > 3) is a
bad divisor if x(P? \ D) < 0 and sp = —3/d is not a pole of Z;,, p(g95, 5), for any
singular point P in its support D,.q4, where gg is the local equation of the divisor
D at P.

We are concerned with the (at most simple) pole s = —3/d of Z;op o(V, s) when
the tangent cone Cy is a bad divisor on P?.

Lemma 2.7. If the tangent cone Cq of (V,0) is a bad divisor on P? then the residue
of s0 = =3/d in Ziopo(V, s), will be denoted by p(Cy), and it is equal to

d
d—3

x(P*\ Ca) + x(Ca) + Y Zipp(Ca,-3/d) €Q.

PeSing(Cq)

In such a way, the Monodromy Conjecture will be true for SIS singularities if
and only if p(Cy) # 0 implies that exp(2im(—3/d)) is a root of Ay ().

Remark 2.8. The residue p(Cy) is related to the topological zeta function associated
with an effective divisor D = a, Dy +...+4a,D, of degree d on P?, d > 3, introduced
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by W. Veys. We set D; := D; \ Sing(D,cq). From Section 1, the topological zeta
function of the divisor D on P? can be rewritten as follows

D;
Z(D, S) PZ \ D) + Z 1Xj_ a) Z Ztop,P(-D7 S).
¥ PeSing(Drea)
Then p(Cy) is equal to the value z(Cy, 52). The value z(D, =) € Q is defined to be
the residue of a bad divisor D on P?; we are also going to use another interpretation
of this rational number.

Since D is an effective divisor then (—3/d)D is a Q-canonical divisor on P2. Let
7 : X — P? be the minimal embedded resolution for the support of D in P2. The
map 7 is a sequence of blowing-ups centered at infinitely near points of points in
Sing(Dyeq) such that the divisor #*D is a normal crossing divisor. Let Kx be the
Q-canonical divisor on the surface X obtained from the pull-back of (—3/d)D, (see
Remark 2.9). The irreducible components of Kx are the strict transforms of the
irreducible components of D and the exceptional components over each singular
point of D,.4. The corresponding multiplicities in K x are:
— —3a;/d for the strict transform of the irreducible component D; of D.

— —TSNi + v; — 1, for any exceptional component F;, associated with a point P €
Sing(Dyed), where N; and v; are defined as in §1.

Remark 2.9. For instance, if m; : Y — P2 is the blow-up at some point P then
Ky = 7*(=3/dD) + E. In general 7 : X — P2? is a composition of blow-ups.
By canonical pull-back of a Q-divisor K we mean that if Kx is the divisor of a
multivaluated meromorphic 2-form w, then its canonical pull-back is the divisor of
the pull-back n*w of w.

Definition 2.10. Let X be a rational surface and let K be a -~canonical divisor
with normal crossings. We construct a weighted stratification (Sk,wx) of X as
follows:

— There is a unique stratum of dimension 2 which is X 1= X \ Kyreq- The weight
of this stratum is wg = 1.

— The 1-dimensional strata are the connected components of K4 \ Sing(Kyreq). If
K= E:":l k,;E.,;, and

E;:=E\|JE;,
J#e
then Ey, . .. , E, are these strata. We set wg, = ki + 1.

— The strata of dimension 0 are the connected components of Sing(K,eq), i.e,
the ordinary double points of K,.q. If such a stratum S is in E; N Ej, then
wg = (ki + 1)(]6_7‘ +1).

Definition 2.11. Let X be a rational surface and let K be a Q-canonical divisor

with normal crossings as above. We say that K is admissible if 0 is not a weight in
Wk, i.e., if no k; is equal to —1. For an admissible Q-divisor K we define

=Y LBleg

In principle we assume that all the k; are different from zero. Nevertheless, the
invariant ¢} does not change if we drop this additional hypothesis.
In order to relate this invariant with the residue p(Cj) we need some notation.
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Definition 2.12. We say that sg = —3/d is not a pole candidate of D for any
singular point in D4 if and only if so = —3/d is not a pole candidate of the local
topological zeta function Zi,p p(D, s) for any P € Dyeq, i.e. for any P € Dyegq, a
pair (N;,v;), with —v;/N; = —3/d, does not appear in any exceptional divisor of
the minimal resolution of the germ of D at its singular point P.

Lemma 2.13. Let D be an effective divisor of degree d onP?,d > 3. Let n: X —
P2 be the minimal resolution of Sing(Dyeq). Let us suppose that —3/d is not a pole
candidate of D for any singular point in D,.q, and let K be the canonical pull-back
of (=3/d)D by w. Then, K is admissible and

p(D) = (k.

The following result says that (} is invariant by almost all proper birational
mappings.

Lemma 2.14. Let X be a rational surface and w: Y — X a blow-up at some point.
Let Kx be an admissible Q-canonical divisor such that the canonical pull-back Ky
18 also admissible. Then,

1 1
CKX = CKy'

Proof. Let P be the centre of the blow-up and E the exceptional divisor. If P is not
in the support of Kx, then the multiplicity of ¥ in Ky is 1 and the formula holds
because the contribution of P in (-  is one and it coincides with the contribution
of E in (. .

What we mean by contribution is that there exists n € Q such that C}{X =
7 + (contribution in () and (g, =7+ (contribution in (% ).

If P is a smooth point of supp(Kx), say P € E;, then its contribution to Ck %

1

k; +1
contribution to k., is

is . The multiplicity of £ in Ky is k; + 1; then by hypothesis, k; # —2. Its

1 1+ 1 _ 1
k; +2 k;:+1 _ki-i-]..

If P is a double point of Kx, say P € FE;NE;, then its contribution to the invariant
1

Chy i -
* (ki 1)(k+1)
ki + k; + 1; then by hypothesis, k; 4 k; # —2. Its contribution to (., is

The exceptional divisor E appears in Ky with multiplicity

1 1 1 1
ki+k;+2 (k1;+1+kj+l) N (ki + 1)(k; +1)

This completes the proof. [J

Consider an admissible Q-canonical divisor K = Z;=1 k;FE; on a rational surface
X. Let G be the dual graph of K; we consider G as a weighted graph, such that if
v; is the vertex associated with F;, then its weight is w,, := k; + 1. We denote by
V(G) the set of vertices of G and by E(G) its set of edges. Recall that the valency
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of a vertex v € V(G) is the number of edges from v. Given e € E(G) we also denote
by V(e) the set of extremities of the edge e. Then we can rewrite:

Gh=x()+ 35 Dy I+

e€EE(G) ‘UEV(C)

This graph is also weighted by the self-intersections numbers a; := E? of the irre-
ducible components E; of K on the surface X. A subgraph G, of G is a graph such
that V(G1) € V(G) and any edge in G, with extremities in V(G}), is an edge in
G,.

Definition 2.15. We say that a subgraph G; of G is a set of bamboos if the
following conditions hold

— any connected component of the graph G, is linear;

— the irreducible components of K associated with the vertices of G; are rational
curves;

— if v € V(G) is an extremity of G, then its valency in G is less than 3.

In such a case, each connected component of GG; is called a bamboo. A bamboo
is of type 1 (resp. 2) if it has one (resp. two) neighbour vertex (resp. vertices) in
G.

Let V(B) := {v;,,...,v; .} be the set of vertices of the bamboo B. The intersec-
tion matrix of B is the integer matrix A = (a;;) € M (r,Z) such that:

- If j # k, then ay is the number of edges between v;; and v;,, i.e. the intersection
number between F;; and E;,,

= ajj = aj.
The determinant of the bamboo is det(B) := det(—A) (which does not depend
on the order of the vertices of B, e.g. see [V3]).

Definition 2.16. Choose K and G as above. Let G; # G be a set of bamboos
of G. We define the graph G/G1 which has weighted vertices, weighted edges and
weighted arrows as follows.

— The set of vertices V(G/G1) is nothing but V(G) \ V(G;) and they are weighted
as in G.

— The set of edges E(G/G1) has two types of elements. Edges of G not intersecting
G1 produce edges of G/G1; theses edges are weighted by 1. Each bamboo of
type 2 produces also one edge with the obvious extremities and weighted by the
determinant of the bamboo.

— The set A(G/G1) of arrows of the graph G/G1 is in one-to-one correspondence
with the set of bamboos of G; of type 1. It is weighted by the determinant of the
corresponding bamboo. Note that each arrow a in G/G; has only one neighbour
vertex v,.

The adjunction formula is the key point of the following result which is a gener-
alization of a Veys’ result in [V3, Theorem 3.3].
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Proposition 2.17. Let X be a rational surface and K an admissible Q-canonical
divisor. Let G be the dual graph and let G, be a set of bamboos. Then:

G=xt+ Y ALov oL Ly oy

v e€E(G/G1) veEV(e) aeA(G/Gl)wv“

veEV(G/G1)
Proof. Let us consider a bamboo of length &, weights w1, . . ., wr and self-intersectionsfi
—ay,..., —0k. Assume that the weight of the neighbours vertices are wo and wg41;

if the bamboo is of type 1 everything works if we suppose wg4+1 = 1 whenever the
kth vertex has valency one in G.

We denote by B; the determinant of the matrix of the first j vertices. It is easily
cheked that we have:
Bj == aij_l - -Bj—2-

The adjunction formula implies
ajWj = Wj-1 + Wjt1.

We must prove that the sum in the definition of the topological zeta function of
By,
WoWgk41 '
We prove this fact by induction on k. The case k£ = 0 is trivial. For the general
case, the sum associated with the bamboo is:

the terms involving the bamboo is equal to

Bi_1 1 1 B 1wg+1 | wo
+ +—.
WoWg  WrpWg41 WoWg41

- Wi Wg
Then, it is enough to prove that
Brwy — Br_1We41 = wo.

This is straightforward by induction. [

This proposition suggests how the {L-invariant of an admissible Q-canonical
divisor K on X can be extended to the following more ‘general canonical divisors.

Definition 2.18. Let X be a rational surface and let K = Z:zl k;E; be a Q-
canonical divisor on it with normal crossings; let Ky be the reduced subdivisor of
K consisting of irreducible components E; such that k; = —1. Let G be the dual
graph and let Gg be the dual graph of Ky. We say that K is g-admissible if Gy is
a set of bamboos. In this case, we define

- E 1 Wq
Gomx(+ 3 MBS [T e > e
vEV(G/Go) v e€B(G/Gy) wveV(e) °  a€A(G/Go) '°
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Properties 2.19. We state some properties of this invariant.
(i) Of course, when K is admissible then (x = (-
(ii) The formula in (2.17) is also true for g-admissible divisors.

(iii) If v € V(Q) is a vertex with weight zero then the adjunction formula implies
that the sum of the neighbour weights equals the valency of the vertex minus 2.
It turns out that each connected component of K¢ consists only of one rational
curve . This implies that:

— if the bamboo is of type 2 and gives an edge e € E(G/Gj), then the weights
of the vertices in V'(e) are opposite to each other,

— and if it is of type 1 and gives an arrow a € A(G/G)), then its weight in V(a)
is equal to —1.

Example 2.20. Let D C P? be the union of two smooth conics C; and Cy which
meet at only one point {P} = C; N C2. We consider D as divisor of degree 4 and
K := (—3/4)D as a Qrational divisor on P2. Let 7 : X — P? be the minimal
embedded resolution of the singularity of D at the point P. In the rational surface
X we have the following configuration of curves and the corresponding associated

invariants:

2

E Npvi) |0 Ei

E, | @2 12 2

E, | 43) 0 2

E
C, 2
_ E; | 64 112 2
C E 8,5 1 -1
2 E, 4 | &
c c| @y 1/4 0
E, 12

The dual graph of the resolution G has only one bamboo G and the corresponding
graph G/Gy is given as follows
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14
1) 0 12 I 1/4
O O O O —0O
-1
Go
1/4
172 I -172 T 1/4
& Yo= 1 1
O O O O
-1
Then the (x-invariant is non-zero because
1 1 1 1 1
Ck=7+ED(ED)+ 21+ 27+ = +25 # 0.
2 i 33 31 (=1

Below we compute Z;0p 0(Vp, 8) and Ay (t) for a SIS singularity (Vp,0) C (C?,0)
whose tangent cone is D. In this case x(P? \ D) = 0 and so = —3/4 is not a pole of
Ziop,p(D, s) for the germ of curve D at P. Hence D is a bad divisor on P2. Since
the residue p(D) = (x # 0 then so = —3/4 is a simple pole of Z;op, o(Vp, s) and as
one can easily check that exp(2im(—3/4)) is a root of Ay (t).

3845
(1+5)(5+8s)’

Ztop,P(D7 S) =

130s + 20s2 + 87

Ztop,P(VDa 3) = (1 + S)(3 + 43) (29 -+ 408) ’

t35—t30+t25—t20+t15'—t10+t5—1

Ay(t) = ro—

Compare the following result with (2.13).

Lemma 2.21. Let D be an effective divisor on P2, d > 3. Let m: X — P? be the
minimal resolution of Sing(Dyeq). Let us suppose that —3/d is not a pole for any
singular point in D,oq and let K be the canonical pull-back of (—3/d)D by w. Then
K is g-admissible and

p(D) = (k.

We could expect (x to be invariant for blowing-ups. Nevertheless, this is not
the case.

Proposition 2.22. Let X be a rational surface and let Kx be a g-admissible Q-
canonical divisor. Let m: Y — X be the blowing-up of a point P € X and let Ky
be the canonical pull-back of Kx. Then, Ky is g-admassible and:

(i) If P does not belong to Ko \ Sing(K x red), then Cxyx = Cky -
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(i) If P belongs to Ko\ Sing(Kx red), let By be the bamboo of Kg containing P. Let
us suppose that the self-intersection of By is —a and the neighbours of By in G
have weights w and —w (or w = —1 if it is of type 1). Then, the corresponding
bamboo By in K has self-intersection —a — 1 and

1
CKx+1_E:CKy

Proof. Let E be the exceptional divisor of the blowing-up 7: ¥ — X of X at the
point P € X. It is easily seen that if Kx is g-admissible, it is also the case for Ky.
We restrict ourselves to the cases which are not covered by the proof of (2.14).

The proof of the remaining cases is based on the study of the contribution of
the point P (and its neighbours) to (k, and the exceptional curve E (and its
neighbours) to Cx, .

Case 1. The point P is smooth in Kx req, P € E‘i and k; = —2.

The contribution of P to (x, is equal to —1. The exceptional divisor F produces
a bamboo of type 1 with determinant 1. The result holds easily.

Case 2. The point P is a double point of Kx req, P € E; N E; and k; + k;j = —2.
Let us consider the weights w;, w;. We have w; = —w;(# 0). In this case the

contribution of P to (x, is equal to ;—; The exceptional divisor E produces a

bamboo of type 2 with determinant 1 and the result holds easily.

Case 3. The point P is a double point of Kx req, P € E;NE;, k; = —1.

Let us consider again weights w;(= 0),w;. The curve E; gives a bamboo in
K, with determinant ¢ and neighbour weights —w; and w;. The contribution

.. —a . . .
of this bamboo to (x, is —. The strict transform of E; in Ky is a bamboo of
w:

J
determinant a + 1 and neighbour weights —w;,w;. The intersection point between
the new exceptional divisor E and E; contributes with 1/w?. Hence its contribution

to Cx, is:
a+1

2
wj

o
j
Case 4. The point P is smooth in Kyeq, P € E; and k; = —1.
Let us assume the notation of (ii). The contribution of the bamboo E; in (k, is

equal to ——Z. The strict transform of F; is also a bamboo in Ky whose contribution
w2
support of Ky and the Euler characteristic of the complement of Ky in Y differs
from 1 from the one of Kx in X.
The formula is proved. [

. But in this case the exceptional divisor £ has k& = 0, then it is not in the

1S

Corollary 2.23. Let X be a rational surface and let K be a g-admissible Q-
canonical divisor. Let m: Y — X be the blowing-up at a point P € X and let
K be the canonical pull-back of K. If P belongs to Ko \ Sing(K,eq) then

X(X\ K) <x(Y \ K).
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In particular the unique blow-up proccess in which the following holds: (x # (i
and x(X \ K) < x(Y \ K) is the blowing-up of X at P € Ko\ Sing(K,.q4) having
valency 2 and whose weights of the neighbour vertices are Tw, w # 1.

The Euler-Poincaré characteristic condition on a bad divisor D implies that D
has at least two irreducible components, all of them being rational curves, e.g. see
[JS]. In the above definition we impose that s will not be a pole (although s might
be a pole candidate) of Zy,p, p(D, s) for a singularity P in Dyeq.

Let us apply the Veys’ Theorem to the curve D. It means that we can extend
the curve D to another curve D' D D, also having x(P? \ D) < 0, such that we
have the following diagram

IVULEY RN
where 7 is a composition of blowing-ups with center in D’ and 73 is a composition
of blowing-downs with exceptional curve contained in 7~(D’) and such that ¥ is
a ruled surface. Moreover the configuration T := w3(n~1(D’)) is either

(A) one section C; and at least two fibres, or
(B) two disjoints sections C; and C; and at least one fibre.

In fact, the Veys’ process is based on a theorem of R.V. Gurjar and A.J. Para-
meswaran which, roughly speaking, states that if x(P? \ D) < 0 then there exists a
map ¢ : P2\ D — B to a smooth curve B, see [GP, Theorem 3].

Considering ¢ as a rational map P? --» B (B being a smooth compactification
of B) and resolving indeterminacies one gets a morphism @ := po7m : Xy — B,
where 7 : X3 — P? is a composition of blow-ups centered at points on D and its
consecutive total transform. W. Veys also proved that B ~ P! and the generic fibre
of g is PL.

It implies that there exists a pencil A on (or a rational function R on) P? whose
generic member is a rational curve. Moreover, looking at the two possible config-
urations (A) and (B) obtained by W. Veys, the generic fibre of the rational map
R : P?\ {base points} :— P! is an open Riemann surface of genus 0 minus at most
two points. These pencils have been studied by H. Kashiwara in [K] and T. Kizuka
[Ki], see Appendix.

More precisely, Veys’ process can be decompose in three stages.

— In the first step we consider the minimal embedded resolution 7y : X; — P? of
the local singularities of Dyeq C P2. At this stage, the residue of Cj is already
computed as (x, where K is the canonical pull-back of —3/dCy4. Since —3/d is
not a pole for {;op,p(Cy, s) for any P € Sing(Cy), then K is g-admissible.

-~ Secondly, we consider the resolution m3: X2 — X, of the indeterminacy locus of
the pencil A* C X; defined by the function n] R; it might happen that w3 is the
identity map.

~ Finally, let 73: X3 — X be the contraction onto a rational ruled surface X, which
can be supposed to be P! x P!, see [V4, Thm 4.1].

X2

3 \/ \:7?2
h X1

1l m
]P:2
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The irreducible components of the strict transform of D in X5 have to be either
irreducible components of members of the total transform of the pencil A or dicrit-
ical divisors of the map @ : Xy — P!, (a curve E is dicritical if the restricted map
?| : E — P! is surjective).

Note that several pencils may match for a given curve D C P? and then several
different constructions can be reached.

We have proved in the previous lemma that the residue p(D) of a bad divisor
D is equal to the {-invariant of any g-admissible Q-canonical divisor on X;. The
following result shows that in the final configurations the (x-invariant is zero.

Proposition 2.24. Let K be a g-admissible Q-canonical divisor on a ruled rational
surface such that its support is of type (A) or (B). Then (x = 0.

Proof. Let us suppose ¥ = P! x P!, see [V4, Theorem 4.1]. Let us denote by S
and by F' the general 0-section and the general fibre. It is known that canonical
divisors are linearly equivalent to —25 — 2F.

If we are in case (A), let us denote by Sy the section and by Fj, ..., F, the fibres,
r > 2. Let K be a g-admissible canonical divisor with support contained in the
curves above. Then K = —2So + > 7, kiF;, with }%_, k; = —2. Applying the
formula in the definition of the invariant (x, we have the result.

If we are in case (B), let us denote by Sp,S; the sections and Fj,...,F, the
fibres; we can suppose r > 2. Let K be a g-admissible canonical divisor with
support contained in the curves above. Since we are in ¥ = P! x P! we can
interchange fibres and sections if necessary.

In order to be g-admissible, we can suppose that K = agSo + a151 + Z;zl k; F;,
with Z;=1 ki = =2, ag + a; = -2, ag,a1 # —1. Applying the definition of the
invariant (x the result is proved. O

We show in the following theorem that for any bad divisor D with p(D) # 0 one
can always start the Veys’ process with a rational pencil A on P? of type (0,1), see
Appendix. We are looking for bad divisors having p(D) non-zero. For this purpose
we must understand the behaviour of the maps 72 and 73 and find out when it is
possible that at least one of the blow-ups in 7wy or m3 matches the hypothesis of
(2.22)(ii), with 1 # w?.

Theorem 2.25. Let D be a bad divisor on P2. If p(D) # 0, then D can be sent by
means of Veys’ process to a curve T of type (A) with at least three fibres.

Moreover the irreducible components of D are in a pencil of rational curves
having only one base point and such that any fibre minus the base point is isomorphic
to C; at least one generic fibre (resp. two) is contained in D if the pencil has two
exceptional fibres (resp. one).

Proof. Since the (-invariant of the surfaces X; and ¥ do not coincide at least one
of the blow-ups in 73 : X3 — X3 or 73 : Xy — ¥ is as in (2.22)(ii).

First of all we deal with the case where no component of D is sent to a section
in Y.

(e) If the changes of the (-invariant happen in 73 : X3 — X then the exceptional
curve which is blown-down to a point will give either an exceptional component for
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T = myom : X2 — P? or an additional projective curve in order to extend the
curve D, see the Veys’ theorem.

(7) In the first case we will have in the exceptional divisor of the map 7 : X5 — P?,
an irreducible component with more than 2 neighbours and multiplicity —1. Since
the map 7 is an embedded resolution of D we get —3/d as a pole of the local
topological zeta function of at least one local singularity of D,¢q which implies that
D is not a bad divisor.

It is not possible for this component to become a component of valency 2 in the
minimal resolution if 75 is not trivial, because in this case the neighbour component
which is not blown-down has weight equal to 1 and in this case (x does not change.

(74) In the second case the Euler characteristic of the complement changes. This
implies that D’ is sent to a curve T' of type (A) with at least three fibres. We
have seen in the above properties that in this case the Euler characteristic of the
complement is increased by one from the Euler characteristic on the curve of type
(A) or (B). Since we must keep this invariant non-positive, in the curve of type (A)
or (B) we must have negative Euler characteristic. This is only possible if the type
is (A) with at least three fibres, (see Corollary 2.17).

(ee) If the changes of the {-invariant occur in a blowing-up in 73 : X3 — X; we
have the following situation. We are blowing-up at a point P which is base point
of the strict transform of the pencil A and belongs to an irreducible exceptional
component E of weight 0, valency 2 in the dual graph and so that its neighbours
have weights +a (@ # 1). Since any curve of this pencil goes through P, the
exceptional curve E is in a non-generic member L, of the pencil (because it is
different from the generic one); we are assuming that this member corresponds to
the value v in P!.

Because of the valency 2 condition for F, the strict transform of D is not going
through the base point P. It turns out that generic members of the pencil A are
not in D. More precisely, none of the irreducible components of the members of
the pencil with strict transform going through P is in D. But the strict transforms
of any member of the pencil, but L,, goes through the base point P. This implies
that the pencil A has reduced members and hence the pencil A is of type (0,2) (see
e.g. [K]: any member of a pencil of type (0,1) is irreducible).

Remember that, in pencils of type (0, 2), all the members but one are irreducible.
Moreover, the reduced member, say L, has only two components, see [Ki, Propo-
sition 4] and Appendix.

We have shown that components of D are either in the reduced member L;
(which must be equal to L) or chosen between a non-generic irreducible member
L, and the irreducible component S of L; which is not going through the base point
P. Since x(P? \ D) < 0 then D has exactly two irreducible components. There are
two possibilities for D.

Case 1: D is formed by the two irreducible components of the fibre L,, = L; or

Case 2: D is the union of S and an non-generic irreducible member L,, S being
one of the irreducible components of the reduced fibre L; of the pencil A.

We have also shown that if the {-invariant changed in the map ms : X — X
then the components of D have to be in a pencil A of type (0,2). Next we will
prove that the components of D are also in a new pencil of type (0,1) for which
the condition (ee) “the (-invariant has changed in the map mp : X5 — X1 ” is not
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possible as we have pointed out above. Then we use this new pencil to conclude
that the components of D can always be transformed as in the above case (o) (7).

T. Kizuka classified pencils of type (0,2) in CLASSES A,B,C,D and E, see [Ki.
According to the above, every CLASS has Cases 1 and 2.

(1) Pencils with two base points {p1,p2}-

CLASS A. All the members are irreducible and of C*-type but L; consisting of
two irreducible curves S; and S both of which of C-type such that they intersect
transversally at one point in P? \ {p1,p2}. Let #; be the irreducible homogeneous
polynomial defining S; and let ¢, be the irreducible homogeneous polynomial defin-
ing L,,.

Al. In case 1, the curve D has components S; and S;. T. Kizuka showed that the
rational functiong = ¢5? /t* defines a pencil of type (0, 1) which has the components
of D as irreducible members (a3 deg(t1) = deg(t2)a;).

A2, In case 2, the components of D are L, and either S; or S;. Then T. Kizuka
showed, p. 170, that for 4 = 1,2 the rational functions g, ; = t,/t* in P? (8; =
deg(t,)) define pencils of type (0, 1) which have the components of D as irreducible
members.

CLASS B. All the members are irreducible and of C*-type but L consisting of two
irreducible curves S; and S, disjoint in P2 \ {p;, p2} and one of them, say S, is of
C-type and the other is of C*-type.

B1. As before, D has components S; and Sy the rational function g = 32 /t{*
defines a pencil of type (0, 1) which has the components of D as irreducible members
(a2 deg(t1) = deg(t2)a1).

B2. D has components L, and S;. The rational function g, = t, /t? ! on P? defines
a pencil of type (0,1) which has the components of D as members.

(ii) Pencils with one base point {p1}.
CLASS C. All the members are irreducible and of C*-type but two members L,
and Ly. The level curve L, consists of two irreducible curves S; and S, disjoint in
P2\ {p1} and one of them, say Si, is of C-type and the other one is of C*-type.
The level curve L, is irreducible and of C-type.
C1. The Euler-Poincaré characteristic x(P? \ D) = 1 so D is not a bad divisor.
C2. The irreducible components of D are S; and Lo (i.e. Lz must be L,). T.
Kizuka showed (p. 167) that the rational function R = tf /t‘f1 on P2 is of type
(0,1).
CLASS D. All the members but L; and L. are irreducible and of C*-type. The
level curve L; consists of two irreducible curves S; and S; both of which of C-type
such that they intersect transversally at one point in P2 \ {p;}. The level curve L,
is irreducible and of C-type.
D1. As above, the Euler-Poincaré characteristic x(P? \ D) = 1 and D is not a bad
divisor.
D2. We have two possible configurations for D. The components of D are L, and
either S7 or S5. T. Kizuka showed, see p. 167 and the proof of his Proposition
3, that the rational functions R; = tf i/thv on P? (B;deg(t;) = B, deg(t,)) define
pencils of type (0,1) which have the components of D as irreducible fibres.
CLASS E. All the level curves are irreducible and of C*-type but one level curve L4
consisting of two irreducible curves S; and S» disjoint in P2 \ {p;} both of which
of C-type.
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E1l. The components of D are S; and S; and then the rational functions R =
71 /t82 in P? (B, deg(t2) = Bz deg(t1)) defines a pencil of type (0,1) which has the
components of D as irreducible fibres.

E2. The Euler-Poincaré characteristic x(P? \ D) = 1 and D is not a bad divisor.

It turns out that in all the previous cases, the components of D can be put in a
pencil of type (0,1) for which the condition (ee) is not possible.

The remaining case, i.e. when a component of the curve D is sent to a section
in ¥, results in case (B) and the pencil A is of type (0,2) because each base point
of the pencil gives at least one section in ¥. Since the (-invariant of X; and X do
not coincide then at least one of the blow-ups in 73 : Xog =+ Xy or m3: X9 = F,, is
as in (2.22)(ii) and we are as in (o) (¢) or (i¢). Note that case (i%) is not possible
because the pencil is of type (0,2). Hence D either is not a bad divisor or does not
-verify p(D) # 0. This proves the claims of the Theorem. O

Example 2.26. As we have seen in the previous example there are curves matching
the hypothesis of the theorem: two smooth conics with only one intersection point.

§3.- Monodromy conjecture for SIS

Theorem 3.1. Let D be a bad divisor of degree d on P? associated with a (0,1)-
pencil of rational curves. Let us suppose that at least one generic fibre (resp. two)
is contained in D if the pencil has two exceptional fibres (resp. one). If p(D) # 0
then D wverifies that exp(2in(—3/d)) is an eigenvalue of the complex monodromy of
its only singular point.

In particular, no counter-example exists for the Monodromy Conjecture for SIS
singularities.

As we have already shown if p(D) # 0 then its components are in a pencil of type
(0,1). This pencil is defined by a rational function R; on P2. Pencils of type (0,1)
have at most two special members, we denote them by {P, = 0} and {Q; = 0}, see
Appendix.

Then the above theorem is equivalent to the following one.

Theorem 3.2. Let D be a bad divisor whose support is the curve Cy U Cy, where
(1) Cy 1is the union of any number of different generic members {R; = u;} of the
pencil defined by R; and (2) Cy is one of the curves { P, = 0},{Q,; = 0}, {R,Q; =0}
or {R; = p},u # pi. Let d be the degree of D. If p(D) # 0 then exp(2in(—3/d)) is
a root of the Alexander polynomial of the germ of D at its singular point.

The Alexander polynomial of the complex monodromy of a germ of a plane curve
singularity is equal to the Alexander polynomial of its splice diagram D. Let [, be
the multiplicity of the vertex v and 4, its valence, then by [EN, p.96], one knows
that the Alexander polynomial of a diagram D is

Ap(t) = (t—1) [ - 1)%~2

v

the product being taken over all the vertices of the diagram.
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Remark 3.3. Let v be a vertex of valence 1 connected to a vertex v’ of valence
greater than or equal to 3, then
th —1
th —1
is a polynomial, because [, divides ..
Proof of the Theorem. We have four different cases to consider depending on
the irreducible components of the curve Cs.
(1) The irreducible component of Cy is {P, = 0}.
(2) The irreducible component of C> is {Q; = 0}.
(3) The irreducible component of Cs is {R; = u}.
(4) The irreducible components of Cy are {P; = 0} and {Q; = 0}.
We use the classification of Kashiwara of pencils of type (0, 1) and divide the proof
of the theorem in several steps.

Rational pencils of type (0,1) belonging to Fj;

We begin studying the set F; of pencils of type (0,1). From the Appendix, in
the case Frr one has the splice diagram 1

2
m m

A R Qlj

where m € {my41,m;_1} and the splice diagram 2

A
2 4 1
4A Irl
P R
0

For each one of the above types of splice diagrams we have four different cases
to consider, depending on the irreducible components of the curve Cj.
Case 1: The irreducible component of Cy is {P; = 0}. The splice diagram 1 is

TN
|
Py R 'l'

(9] k) (k)c5 6
1 n

Because of the preceding remark there exists a polynomial H(t) € C[t] such that

(&~ 1)

A(t) = H(t)ﬁ,
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where L is the multiplicity of the vertex at which the generic fibres {R; = u;}
separate, L’ is the multiplicity at the right end of the diagram and n is the number
of irreducible curves {R; = p;} in Ci.

We have the equalities d = (k1 + - - - + ky,) deg(R;) + k deg(Py) = deg(P)((k1 +
-+ kp)my; + k). To compute L we use the fact that the intersection multiplicity
of two generic curves of the pencil is m? deg(P;)? and the intersection multiplicity
of a generic curve of the pencil with {P, = 0} is m;deg(P;)%. Then L = (k; +
c + kp)m?2 deg(P;)? + kmydeg(F)2. It turns out that L = dm;deg(P;). Now
L' =emy((k1+ -+ k,)m; + k) and ¢ can be computed using m; deg(P;) = myme.
Then L' = my((ky + - - + kn)my + k) deg(B}) /m.

Assume that d/3 divides L', then

my((ky + -+ - + kn)my + k) deg(P)/m = h((k1 + - - - + kn)my + k) deg(FP,) /3,
that is, 3m; = hm. But ged(my, m) = 1 and ged(m, 3) = 1. This is impossible and

it proves the theorem in this case.
For the splice diagram 2 one has

(9

A
T i\ T 4A 1
|
I
P R(l
" & ) O
(kl ) (Ln)

The first part of the computation is analogous. We still have L = 2d deg(Fp).
Now if we compute L', we get L' = (4A1+1)c(2k+4(k1+---+k,)), and computing
the intersection number between Qo and Py one has 2(4\; + 1)c = 2deg(F,), then
L' = 2d and we can’t conclude. But we also have

(¢ —1)"
L —1

and L" = A1c(2k + 4(k1 + - - - + kn)) = 2A1d/(4)1 + 1). Finally if we assume that
d/3 divides L” we get an equation h(4A; + 1) = 6A; which is impossible.

A(t) = H(t)

Case 2: The irreducible component of C is {Q; = 0}. The splice diagram 1 is

0
=0
|
|
)
)
O
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where again H(t) € C[t] is a polynomial.

We have the equalities d = (k1 + -- - + k,) deg(P)my + kmy = my((ky + -+ - +
kn)deg(P) + k), L= (k1 +--- + ky) deg(P)?>m? + k deg(P)m?.

If d/3 divides L/m? then

deg(P)((k1+ - -+ kn) deg(P) + k) = hmy((k1 + - - - + k) deg(P) + k) /3,

that is, 3 deg(F;) = hm;. Note again that gcd(deg(FP;), m;) = 1 and ged(my, 3) = 1.
The computation is analogous for the splice diagram 2.

Case 3: The irreducible component of C; is {R; = p}. For the splice diagram 1

(15)
O m;_\ m}-\ O O —_—— O f\m O(L’)
CRITT
R(k)(kl)J) o

the Alexander polynomial is

(tL _ 1)n+1
(tL/m,2 _ 1)(tL’ _ 1) ’

A(t) = H(t)

Again we obtain the equalities d = (k+k1+- - -+k,)mideg(P,), L = (k+k1+- -+
En)m? deg(Py)? and ' = (k-+k1-+---+hn)om? = (k- k1 -+ -+ deg(P)m2 fmy sy,
Assume that d/3 divides L/m?. Then

(k+Fki+-+ky)deg(P)? = h(k + k1 + -+ + kp)m; deg(P)/3,
that is, 3deg(P;) = hmy which is impossible. If d/3 divides L’ then
(k+ k1 + -+ ky) deg(P)m? /myy1 = h(k + k1 + - - + kp)my deg(P}) /3,

which gives 3m; = hmy41 which is impossible. The theorem is proved in this case.
For the splice diagram 2

@®

O 2 A ey I —. = Oy A 1 '®) L)
T \ 4A 1+l
PJ N k)
k)

we can write the Alexander polynomial as

(tL _ 1)n+1

A(t) = H(t) (LA - )" — 1)
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The computation of L is the same as before. The computation of L” gives
L" = 4\c(k + k1 + --- + k). But one has 2(4A; + 1)c = 2deg(Fp). Then L” =
ANy (k+ki+---+ k) /(4\1 + 1). If d/3 divides L”, one has 3A; = h(4X; + 1) with
h € N, which is impossible.

Case 4: The irreducible components of Cy are {P, = 0} and {Q; = 0}. For the
splice diagram 1

the computation is the same. Then we have finished the prove of the theorem if

the corresponding rational function is in Fjj.

O O — — Q O
@ i
!
Q
k")
the Alexander polynomial of the local singularity is
At) = H@E)(E - 1)
where H € Clt] is a polynomial. One has the equalities
L =m?deg(P)%(ky + -+ + kp) + kmy deg(P,)? + k'm} deg P,
d = kdeg(P) + (k1 + - - - + kn)my deg(Pr) + k'my.
Then L = m; deg(P;)d.
For the splice diagram 2
(ky )
R
" )\
2
A
1
o O — — Q(k’)
@) Aq+l



28 E. ARTAL, P. CASSOU-NOGUES, I. LUENGO, A. MELLE

Example 3.4. Using the computation of the local topological Zeta function from
the splice diagrams for curves, as explained in [ACLM], one can compute the value
for sp = —3/d in the examples we give in the Appendix and one sees that in fact
so = —3/d is a pole of the local topological zeta function of the corresponding SIS
singularity.

For example, for

Qo=y—z%, Py = (y—z°)° — 2zy’(y — 2°) + ¢°
with splice diagram

13

)-P-

O
)N

[=]
(=]
o

the local topological zeta function of the degree d = 15 curve D = {Fy = 0}U{Ry =
p} at the origin is

25 2 2 1 1
291 150s | (20 7 1508)(15 + 765) ' 15+ 765 204 1505 15+ 763

Ztop,O (D, 3) =

1 1
T 29+ 1505)(1+5) | (154 765)(1+9)

and Zp o(D, —3/d) +2d/(d—3) = —51/4. The Alexander polynomial of the curve
D at its only singular point is

(t150 _ 1)(t76 _ 1)

Al) =t =) w1y

We will come back to this example in §5.

Rational pencils of type (0,1) belonging to F;

We next compute the Alexander polynomial in case Fr, see Appendix. For this
purpose, families I(0) and I1T(N;Ay,...,An) are considered the same.

(e) In Case 1 and Case 3 the splice digram is

(kp)

=
/
8
N
7
o
B
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Its Alexander polynomial is

th—1
A(t) = H(t)tL—'——l’

where H(t) is a polynomial. We have L = md and L' = d/2. Then exp(—6in/d) is
a root of the Alexander polynomial.

(e) For Case 2 and Case 4 the splice diagram is

& 2

and we have A(t) = H(t)(t* — 1). Then L = md. It implies that the conjecture is
verified in this case.

The remaining family in Fr is I=(NV; Ay,. .., AN).
() For Case 1 and Case 3 the splice diagram is

k)
R
“ )\
2 ,
A @)
L) )\.1+1
@
We can write .
" -1)"
Alt) = H(t)~———"=
() = BB —,
or .
tv —1)"
A(t)=H1(t)(tL,,—_)1.

We still have L = md, but we have L' = d and L" = d(A /(A1 +1)). If Ay =2
and we only have n = 1 component then exp(—6in/d) is not a root of the Alexander
polynomial.
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In order to prove the Monodromy Conjecture in this particular case we have to
prove that the bad divisor D verifies p(D) = 0. The curve D is formed by (at least)
two generic members of a pencil of type I7(N;2,...,An).

Looking at its resolution graph of the Appendix, one checks that in these cases
the only possible contraction to P! x P! is blowing-down {Q = 0}. The curve
{@ = 0} is the only one special fibre of these pencils, it is also a multiple fibre.
In any case, it is cheched that map my is the identity (we resolve the pencil when
we resolve the curve, since there are at least two generic fibres). The blowing-ups
of type (ii) in (2.22) produce special fibres of the pencil. Then, only one such a
blowin-up can take place. It is easily seen that the blowing-up giving {Q = 0} is
produced in a component of valency one, and in this case the {-invariant does not
change and the residue p(D) is zero.

(e) For Case 2 and Case 4 the arguments of the proof are analogous and we
leave the proof to the reader.

§4.- Monodromy conjecture for homogeneous polynomials

B. Rodrigues and W. Veys have proved the Monodromy Conjecture for any
homogeneous polynomial fy € Clzy, 22, x3] with x(P2 \ {f4 = 0}) # 0, see [RV].

In fact in the proof of their Theorem 4.2 they show that for any homogeneous
polynomial f; € Clz1, x2, z3] of degree d and for any pole so # —3/d of Z;p 0(f, 8),
exp(2imsg) is an eigenvalue of the local monodromy of f; at some complex point of
the effective divisor D = f;'(0).

In this homogeneous case, one of the key points in their proof is the following
equality, see [RV, (3.6)],

1
Ztop,O(fd, s) = 3 +dsz(D’ 3)+
_ 1 2 X(D)
"~ 3+4ds X(B\ D) +Zl+aqb Z Ziop,p(D;5) |

PGSing(Dred)

where D =a;D1 + ...+ a,D, and D; := D; \ Sing(Dryed)-

We are interested in the remaining case x(P? \ {fs = 0}) = 0 and the pole
candidate so = —3/d. If it is a pole of order greater than 1 then either so = —3/d
is a pole of Z;,p p(D, s) (and then Monodromy Conjecture for curves implies that
exp(2imsg) is a root of the local monodromy of fy at some complex point of D) or
8o = —3/d is the pole —1/a;, for some a;. In such a case, if P € D; N Sing(D) #
@ then the branches of D at P have multiplicity a; and W. Veys showed that
Ziop,p(D, 8) has —1/a; as a pole. Again, the Monodromy Conjecture for curves
implies that exp(2imsp) is a root of the local monodromy of f; at some complex
point of D.

The discussion above means that so = —3/d is a simple pole of Z;op o(f4,s) if
and only if D is a bad divisor on P? and 2(D, —3/d) = p(D) # 0, co. However, after
Theorem (3.2) exp(2im(—3/d)) is eigenvalue of the monodromy of its only singular
point. Then the Monodromy Conjecture is also proved in this remaining case. Then
the results of B. Rodrigues and W. Veys and these facts show the following theorem.

Theorem 4.1. For any homogeneous polynomial fy € Clz;, z2, x3] the Monodromy
Conjecture holds.
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§5.- Rational arrangements of plane curves

The results of this paper can be applied to prove the non-existence of arrange-
ments of rational curves in P2. Therefore, we restrict ourselves to arrangements
whose complement in the plane has Euler-Poincaré characteristic 0.

Let D = UC; be an arrangement of reduced rational curves. The dual graph of
the minimal embedded resolution of D is determined by the following data:

(1) The degrees d; of the irreducible components of D,

(2) The list of the topological types of the local singularities of D,

(3) The global component of D which contains each branch I' of D at a singular
point.

We call these data the combinatorial type of the curve D in P2. We also call the
data in (2) together with the total degree d of D the local combinatorial data of D
in P2,

For any (Vp,0) C (C3,0) SIS singularity whose tangent cone is D, the local
topological zeta function Ziop 0(Vp, s) and the eigenvalues of the complex algebraic
monodromy of (Vp,0) are determined by the local combinatorial data of D. Hence
the Monodromy Conjecture gives necessary conditions on the local combinatorial
data of D for D to exist.

We have developed a program with Maple (available upon request) such that
calculates the local embedded resolution of the singularities of a curve D, the local
topological zeta function Zy,p, o(Vp, s) and the eigenvalues of the complex algebraic
monodromy of (Vp,0) from the local combinatorial data of D. Thus, given local
combinatorial data of D the above necessary conditions can be easily verified. Let
us present some few examples.

Example 1. Let D consist of two conics which only meet at one point and a line
which is tangent to each conic in different points. Using elementary properties of
pencils of conics it is easy to see that D) does not exist. In this case, the topological
zeta function of (Vp, 0) would be

(68053 + 183952 + 15825 + 435)
(1+ 5)(3+ 58)(29 + 485)(5 + 8s)’

Ztop,O (VDv 3) =

and the characteristic polynomial of the monodromy of (Vp,0) would turn out to
be
(t6 _ 1)3(t48 _ 1)(t24 _ 1)2
C-DE-1°

Thus p(D) = —3/5, s = —3/5 would be a pole whereas exp(2im(—3/5)) would not
be a root of A(t).

A(t) =

Example 2. Consider a rational curve C of degree six with only one singular point
P which is a simple singularity. Then P can be either an Ajg or Ayy singularity
(in Arnold classification). It is known that the A9 case exits, e.g. see [P]. The
double covering of P? ramified along C is a K3-surface. Using K3-surfaces theory
one shows that the Ayg case is not possible.

Let D = C U C3 be the curve whose components are the sextic C with the Ayg
singularity at P and C the unique conic going through the first five infinitely near
point of C' at P. Using Cremona transformations one can show that this conic in
fact has to go through the sixth infinitely near point of C at P. Hence the conic only
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meets C at its singular point. The topological zeta function and the characteristic
polynomial of the monodromy of (Vp,0) would be

49248s% + 26733252 + 1835545 + 33855
(1+ s)(3 + 8s)(61 + 1625)(185 + 486s)’

Ztop,O (VD, 5) -

(t9 _ 1)(t162 _ 1)(t486 _ 1)
(t _ 1)(t27 - 1)(t243 _ 1) )
Hence D does not exist because the residue at the value sp = —3/8 is different

from zero and exp(2im(—3/8)) is not an eigenvalue of the complex monodromy of
the SIS singularity.

Ay(t) =

Example 3. We present several examples which show the power of the Monodromy
Conjecture. Consider C' a rational curve of degree 10 with only one singular point
P whose multiplicity sequence is [4,4,4,4,4,4,1,1,1,1] = [4¢], (this curve exists
and it appears in the classification of H. Kashiwara, see Appendix).

Let D = C' U C3 be the curve whose components are C' and C3 the unique conic
going through the first five infinitely near point of C at P. In this case the residue
p(D) = —3 and exp(2in(—3/12)) is a root of the characteristic polynomial of the
monodromy of the SIS singularity (Vp,0). The computations are the following:

127140s° + 55995452 + 2580795 + 31509
(14 5)(1 + 45)(81 + 3255)(389 + 1560s)’

(£13 — 1)(#325 — 1)(¢1560 — 1)
(t —1)(¢85 — 1)(¢3%0 —1)

Now we give a list of several possible cuspidal rational curves of degree 10 which

might exist. We give each singularity as sequence of multiplicities.

Ztop,O (VDs 3) =

Ay (t) =

[45, 26), [45,25] + 1A,, [45,24] + 2As, [45,24] + 1Ay,
[45,23] + 3Aq, [45,23] + 3A2, [45,23] + 1Ay + 1Ay, [45, 23] + 1A,
[45,23] + 1Es, [45,22] + 449, [45,22] + 245 + 1Ay, [45, 22] + 2Ay,

[457 22] + 1A2 + 1A6} [457 3] + 3A27 [45: 22] + ].Az + lEﬁa [457 3] + ]-AZ + ]-A41
[4573]+1A67 [45)3]+1E6

If one considers the corresponding curve D as the union of the curve of degree
10 with these singularities and the conic as before, then all of them give counter-
examples to the Monodromy Conjecture. Hence they do not exist.

Appendix

Since we are concerned with rational functions on P? with rational fibres we
review some facts related to this theory. All asertions in this Appendix are explained
in much greater details in [K] and [Ki].

Let A be a pencil on the projective plane P? defined by a rational function R. Let
{p1,.-.,ps} be the set of base points of the pencil. Then R defines a well-defined
map R : P2\ {p1,...,ps} — PL.

We say that A (or R) is of type (g,n) if the irreducible components of a generic
fibre of the map R are open Riemann surfaces of genus g with n points at the
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boundary. A pencil (or a rational function) of type (0,n) is called rational If
moreover it is of type (0,1) or (0,2) then we say that A (or R) is of special type.

H. Kashiwara in [K] (resp. T. Kizuka in [Ki]) classified the pencils of type (0, 1)
(resp. pencils of type (0,2)). Pencils of type (0,1) (resp. (0,2)) are called C-type
pencils (resp. C*-type pencils).

The pencils of special type on P? are classified in two classes: (1) class Fj, all
pencils of special type such that there exists a fibre which is a projective line and
(2) class Fry, the complement of the class Fj.

In this Appendix we collect the graphs for C-type pencils obtained by H. Kashi-
wara. We translate her graphs into splice diagrams of D. Eisenbud and W. Neumann
[EN].

A C-type rational function on P2 has only one indeterminacy point. Any fibre
of the function is irreducible and all fibres but at most two are reduced. Any fibre
with its reduced structure is non-singular away from its indeterminacy point.

If R is a rational function on P? of C*-type then R has at most two indeterminacy
points, only one level curve with two irreducible components and the other level
curves of R are irreducible. All the fibres of R are of either C- or C*-type. The
most important fact for us is that some fibres of any C*-type pencil can be put in a
pencil of type (0,1). T. Kizuka classified the pencils of type (0, 2) in [Ki] and there
is a summary inside the proof of Theorem 2.21.

We next recall the H. Kashiwara’s results that we need. They are expressed in
terms of the resolution graphs, we will give them also in terms of splice diagrams
which are more convenient for us.

Let GG; denote the graph

7 1 2 2 2 2 3 2 jl 2 4
<—o—)4<>——<rf(—o———o—o—o—o—->——(—o—>
5

ifl=2j—1,j>1,

7 j 2 3 2 2 2 2 3 j1 2

if I =24,7>1, and

ow
—4
Ow

ifl=0.
Lemma 6.1. Define m;, l € N by

mg =2, m; =05 m=3m_1—m_s.

Then, ifl =25 —1, j > 1, my is the determinant of the graph
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j-1
—_—(— 00— ) — 00—
7 5

Ifl =25, 7 > 1, my is the determinant of the graph

j
—_———)—0—
7 2

Proof. Denote by n; the determinant of the above graphs. The computation of
these determinants is due to N. Duchon and is explained in [EN p. 153]. For j =1,
it is easy to compute that n; = 5 and ny = 13. Then one has the recurrence formula
ny; = Tny—2 —ny—4. The lemma is proved.

H. Kashiwara decomposes Fjy in different sets that we will study one by one.
For !l € N, let R; € Fj; be a rational function given by

my
_ 5
— degP
l

R,
Let ¥ be the resolution graph of the pencil R, So and S, the strict transforms of

{P, =0} and {Q; = 0}. The graph XU Sy U S, is given in Theorem 6.1, p.536.
1) Case 1: II (1), I > 0. For I > 0, the graph X U Sy U S, is:

> 1 —
G—o0— GC
1+1

Lemma 6.2. The splice diagram of the germ {P, = 0} U{R, = p} U {Q; = 0} at
its singular point is

2
2
o my T my Tmm Tmm o
P R
1 1 Ql

Proof. The strict transform of {R; = p} is transversal to the unique component,
in the resolution graph, with self-intersection —1. Then using the relation between
resolution graphs and splice diagrams as explained in [EN], one sees that the splice
diagram is

o alT az\bz bl
P R
1 1 Ql

By (6.1), we know that a; = m;. We also know that deg(F;) = my;. Since the
curves {P; = 0} and {Q; = 0} only meet at (0,0) then a1by = mym;41. Then by =
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mi41. Moreover as {R; = 0} is a generic member of the pencil a2b1myy1 = aibamy.
As ged(my, my11) = 1 we deduce that as = m? and by = m? t1- Then the lemma is
proved.

Note that, along the lines, we have also proved the following

Lemma 6.3. Ifl =2j — 1,5 > 1, the integer my is the determinant of the graph

2 2 2 3 2 i1 2 4
—O0—O0—0—"0—"0—)—(—0—)

and if | = 27,5 > 1, my is the determinant of the graph o

2 i
—o(o——o—o—o—o>—<—o—>

The simplest example of rational functions in IT () is given by
Qo=y—2% Po=(y—2°)" - 2zp*(y — 2°) + ¢°
with splice diagram

O- 2? 13 4T 25
P R
0 0

2) Case 2: ITH(I,N; )y, .. _/\)N), 1>0.
We denote by G; the graph G; when is read from right to left and by +Gl the

graph Gl whose weight at the left extremity is increased by one. The graph is the
following

|
! ' '
I l
1 1 | | l -

—0--——-——0-=-=-0--—- ——=—0—- G

oF Wok

]

where A1,...,An belong to Zxo if I > 1 and to Zyg if I = 0.
Lemma 6.4. The splice diagram of the germ {P, = 0} U{R; = p} U {Q: = 0} is

2
m m S Y|

1 1

Proof. jFrom (6.1) and (6.3), we know that the splice diagram will be of the form
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my a_ b m 1

P R Q

Since {R; = 0} is a generic fibre of the pencil, we have bm? = am;; deg(F).
Since ged(my, my41 deg(P)) = 1, and ged(a, b) = 1, we have a = m?.

An example of such a rational function is given by the following formulae. Let
p=zy—z*—y®, Pi=y—a* P = (¢°+ Fg)/P-1,

F = ¢P% + aP,, P = (F° 4+ P}3)/P,.
Then P, which is of degree 52, is in a (0, 1)-pencil with Py. Its splice diagram is

5 132 27 169 25 5415 N
4
Py R P
3) Case 3: I1I17(0,N;Ay,...,An). The resolution graph is
' |
I ' |
- 1 ' | ! 2 A
1
Gp—O-——-—- 00— ——=0—— — e () ( O—)

Lemma 6.5. The splice diagram of the germ {P, =0} U{R; = p} U {Q; =0} is

A
2 4 1
4\ 1+1
P R
0

The proof uses the same argument as above.
One example of such a rational function is

Fi = ¢P2%, + azyP3, + axy®P?, + a1y°P_1 + apy’, P = (P71 + F2) Jy

Then P is a polynomial of degree 13 in a pencil (0,1) with P_;. Its splice
diagram is

o 285 4169 3 Q
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4) Case 4: II=(I,N;A1,...,An),l > 1. The resolution graph is

Lemma 6.6. The splice diagram of the germ {P, = 0} U{R; = p} U {Q; =0} is

2
m;\ m;\ I Y o Y r\ml'l
I
Pl'L % é) Q

The proof uses the same argument as above.
One example of such rational function is

Fy = ¢Py + aQg, P = (P§ + F3)/Qo

Then P is a polynomial of degree 38, which is in a pencil (0, 1) with Py. The splice
diagram is

O S B 3 132 o
19

P R Q

We next recall the graphs that H. Kashiwara gives for the case ;. There are 3
cases.

1) Case 1: I (0)

O~
QOw

D
Ow

Then we have the following splice diagram
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Here we find the case of the two conics we mentioned before.
2) Case 2: I*t(N;)\1,...,An). In this case we have the following graph

DI

Ow

which gives the following splice diagram

3) Case 3: I"(N;\y,...,An). In this case we have

R
2 A
P\ m ~ _ _ ﬁ 2 +1
r
Ay
Q
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