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Abstract

Singularities connected with Coxeter groups I2(k), Hs and G» are stud-
ied. At first, such singularities were found by O. Lyashko in the classifica-
tion of critical points of non-singular functions on a singular hypersurface.
We establish a link between these critical points and boundary singularities.
We describe a class of deformations of boundary singularities which provides
miniversal deformations of critical points of non-singular functions on a sin-
gular hypersurface. In particular, Coxeter groups Iz(k) and Hjz turn out to be
connected with unimodal boundary singularities Bf_, and F}, respectively,
and group (33 is connected with simple boundary singularity 4.

Introduction

Since 1972 it has been known that singularities of holomorphic functions are closely
related to the geometry of Coxeter groups. To describe this relation, we recall briefly
some data about singularities and about Coxeter groups.

BIFURCATION DIAGRAMS OF SINGULARITIES

Let f be a holomorphic function germ at a critical point. Its deformation is a
holomorphic family germ F(-, A) such that F(-,0) = f, A € C*. For an equivalence
relation on the set of the holomorphic germs, deformation F' is called versal with
respect to the relation, if F' contains (for some values of parameter A close to O)

*A part of this paper was written at the Isaac Newton Institute for Mathematical Sciences,
Cambridge. I should like to thank the Institute and the organizers of the Programme on Singularity
Theory for their hospitality and support



representatives of any equivalence class close enough to f. A versal deformation with
the minimal dimension of the parameter space C¥, is called miniversal. The values
of A’s such that the corresponding germ in a miniversal deformation has zero as its
critical value form a hypersurface in the parameter space C* called a bifurcation
diagram. A classical example is an ordinary singularity, which is a class of stable
equivalency. It is well known, that if it has a finite multiplicity, then miniversal
deformations exist, the bifurcation diagram is unique up to a diffeomorphism, and

its structure contains a lot of information about the singularity.
MANIFOLDS OF NON-REGULAR ORBITS OF COXETER GROUPS

A finite group generated by reflections in y-dimensional euclidean space, i.e. a
Cozeter group, has a basis of invariants, that is, the manifold of the orbits of the
complexified action of the group is furnished with a natural structure of a smooth
algebraic variety C*. The number of points in the orbit of a typical point is equal to
the number of elements in this group. However, some orbits are smaller. These non-
regular orbits form an algebraic hypersurface in the orbit space called a manifold of
non-regular orbits. The list of the crystallographic Coxeter groups (or of the Weyl
groups of the simple Lie groups) contains groups A,, D, (1 > 4), Ee, Ev, Eg having
root systems with only roots of equal length, and groups B, (1 > 2),C, (u > 3), Fy
and G, with inhomogeneous root systems. Besides the Weyl groups, the list of
Coxeter groups contains non-crystallographic groups I3(p), p > 5 (the symmetry
groups of regular p-gons), Hs (the symmetry group of an icosahedron) and Hy (the

symmetry group of a hyper-icosahedron).

In {1] it was established that the bifurcation diagrams of the simple ordinary
singularities Ay, Dy, (u > 4), Eg, E7, Ey are diffeomorphic to the manifolds of the
non-regular orbits of the corresponding reflection groups acting on the complex

space.

The extension of this connection to include other reflection groups has been a

problem stimulating a deep research in the singularity theory.

Deformations which are miniversal with respect to other equivalence relations ap-
pear naturally by considering singularities with additional structures as boundaries,
obstacles, symmetries etc. Among the corresponding bifurcation diagrams one can
recognize the manifolds of the non-regular orbits of other Coxeter groups. After pa-
pers [3], [10], this is a ”standard” way of finding reflection groups in the singularity
theory.



Namely, miniversal deformations of the simple singularities on manifolds with
boundary are to be identified with deformations of the simple singularities Ay, 1,
D, 1, Es which are miniversal in the class of Z,-invariant functions ([3], [5]). The
corresponding bifurcation diagrams are diffeomorphic to the manifolds of the non-

regular orbits of reflection groups B, C};, Fj.

A similar example is given by singularities of the distance function in the problem
of avoiding an obstacle [10]. The manifolds of the non-regular orbits of Coxeter
groups I>(5), Hs, Hy are realized as the bifurcation diagrams of deformations of the
simple singularities A4, Dg, Ejg, respectively, which are miniversal in the class of the

singularities of even multiplicity.

Unlike the previous cases, singularities connected with Coxeter groups I»(p) (p >
5), H3, G2, have appeared in [7] in a different way. These are singularities of critical
points of functions on a singular hypersurface, and the corresponding critical points

are not simple but unimodal.

In the present paper we propose a construction that allows us to include groups
I,(p), H; and G, into the generic framework of the singularity theory described

above.

We establish a link between critical points of non-singular functions on a singu-
lar hypersurface and boundary singularities. It turns out that there is one-to-one
correspondence between simple boundary singularities and simple critical points on
a singular surface. We prove that the bifurcation diagram of a critical point on a
singular surface is the bifurcation diagram of a certain deformation of the restriction
to the surface which is miniversal with respect to the stable equivalence of functions
on a singular surface. This deformation is related to the corresponding boundary

singularity.

In particular, unimodal singularities I(p), p > 5, and Hj are stable equivalence
classes of critical points of non-singular functions on a hypersurface of types A,
and Aj, respectively. These critical points correspond to the unimodal boundary
singularities Bg_l and F, respectively. The bifurcation diagrams of these critical
points are the bifurcation diagrams of certain deformations of simple singularities As
and Ay related to the boundary singularities B} ; and F, respectively. The simple
critical point G4 on a hypersurface of type A, corresponds to the simple boundary
singularity Fy = F2, and the manifold of the non-regular orbits G, appears as the

bifurcation diagram of a deformation of A, related to Fj.



The structure of the paper is as follows. In Sec. 1 we recall the theory of critical
points of functions on a singular hypersurface ([7], [4]). Sec. 2 is devoted to the
case of non-singular functions on a singular hypersurface. In Sec. 3 we recall some
facts from the boundary singularity theory ([5], [11]). In Sec. 4 a connection be-
tween non-singular functions on a singular hypersurface and boundary singularities
is described. In Sec. 5, the case when the hypersurface has a singularity of type
Ay is considered. We prove that the origin is a non-critical point for a germ on a
singular hypersurface if and only if the corresponding boundary germ is of type Bj.
In Sec. 6, for a wide class of critical points on a singular hypersurface, we prove
that the local ring is isomorphic to the local ring of the ordinary singularity given
by the restriction of the corresponding boundary germ to the boundary. In Sec. 7
we describe miniversal deformations of a critical point on a singular hypersurface
in terms of certain deformations of the restriction of the corresponding boundary
germ to the boundary. As a corollary, we get (Sec. 8) that the manifolds of the
non-regular orbits of reflection groups I>(p) and Hj are diffeomorphic to the generic
hyperplane sections of the corresponding bifurcation diagrams. In the last Sec. 9 we

consider the critical point of type G,.

1 Critical points of functions
on a singular hypersurface

In this section we recall the theory of critical points of functions on a manifold
with singular boundary of [7]. We use slightly different terminology and call these
critical points ”critical points of functions on a singular hypersurface” in order not
to mess them up with critical points on a manifold with boundary participating in

our considerations.

A function germ f on a singular hypersurface V is a triple (f, V,C") where

e f:(C",0)— (C,0) is a germ of a holomorphic function;

oV ={2¢eC"|h(z) =0} is a germ of a hypersurface with an isolated singular
point at O.

Germs of diffeomorphisms (C*,0) — (C*,0) act on the set of the triples, and
two triples are equivalent if they lie in the same orbit of this action.

For m > n, denote by 7 the natural projection = : C™ = C"* x C™" — C",

(21 Zny Zntly -« o r Zm) = (21, -+, Z0)-
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In C™, we define the hypersurface V = {h(z1,...,2n) +22,, + -+ 22 = 0} and the
function germ f = #*f. The triple (f, V,C™) is called the stabilization of (f,V,C").

Functions on singular hypersurfaces are stable equivalent if they have equivalent

stabilizations. Stable equivalent triples have the same singularity of hypersurfaces.
We say that O is a non-critical point of (f,V,C") if V; = f7}(O) is a germ of
a smooth hypersurface (i.e. f is non-singular at O) transversal to V at O. In the

opposite case we say that O is a critical point of the triple (f,V,C").

The transversality at a singular point of ¥V means the following. Consider PT*C",

the projectivization of the cotangent bundle of C*, and the canonical projection
p: PT*C* - C*, p(z1,--12n,01: " :Dn) = (21, 2n)

For any subvariety M = {¢(z) = 0} in C", denote by PM the image of M under
the embedding in PT*C":

(z € M) — (z,tangent plane to M at z).

In other words, PM is the following subvariety of PT*C":

0¢ 99 .
PM = {¢(z) =0, pier —pjmr=0, 1<i,j <n}.
In particular, if V' has an isolated critical point at O, then PV is reducible and
consists of PT*{0} and V; = PV \ PT*{0}, the closure of PV \ PT*{0O}. We say
that Vp = f~1(0) is transversal to V at O, if V; is smooth and ViNPVyNp~1(U) = 0,

where U is a small neighborhood of the origin in C*. This means that the tangent

plane to V; at the origin, considered as a point in PT*C", does not belong to V;.

In the case when hypersurface V has an isolated simple singularity, the classifi-
cation of critical points on V reduces to the description of the orbits of the group
of diffeomorphisms preserving V. The Lie algebra of this group, Ty, consists of the
vector fields preserving V. Vector field o preserves hypersurface V., v € Ty, if the
directional derivative Lyh belongs to the principal ideal (h), i.e. (7, gradh) = gh for
some smooth germ g. We define the ideal

Iy ={Lsf | D€ Ty}

and the local algebra
Qv = On/Igy,
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where O, is the ring of the holomorphic germs (C*,0) — (C,0). The multiplicity
p(f, V) of the critical point O of (f,V,C") is defined as

/,L(f, V) = dim(c Qf|V - 1.

For any stabilization (f,V,C™*) of (f, V, C), the local algebras Q fiv and Qj; are
isomorphic, and thus u(f,V,C*)) = u(f,V,C***) = u(f,V) does not depend on

dimension.

By the usual way, the notions of modality, versal deformation, bifurcation dia-
gram can be defined for this situation. In particular, the modality of (f,V,C") is
the minimal number m such that a small neighborhood of the orbit of this germ
(under the action of diffeomorphisms preserving V) is covered by a finite number of
m-parameter families of orbits. When m is equal to 0 or 1, a critical point is called

simple or unimodal respectively.

In the case u < oo, one can take a versal deformation of (f,V,C*) in the form
(F,V,C"), where F' is the family of functions

F(Z,/\) = f(z) + Ao€o + -+ )\#e#,

€o, - - -, €, are representatives of a basis of the local algebra Q) over C, and A =

(Ao, ..., Au) € CHM is a parameter of versal deformation.

The bifurcation diagram 3(f, V') of the critical point (f, V,C") is a hypersurface
in the base of versal deformation, C#*!, formed by the parameter values A € C#*1
such that 0 is a critical value of (F(-,A),V,C").

It turns out that simple and unimodal critical points appear only on a hypersur-
face with a simple singularity of type A;. In [7], it was proven that for a critical
point of modality 1, the bifurcation diagram is analytically trivial along the strata
p = const, and the classification of the simple and unimodal critical points on a

hypersurface of type A; was obtained.

A part of the classification is connected with reflection groups Hs and Ir(p).
Namely, a critical point of type I>(p), p > 4, is given by the germ = +ey + 2%, € # 0,
on the hypersurface zy = 2° of type A,_;, and a critical point of type Hj is given by
the germ z + y + €z® on the hypersurface zy = 25 of type A4. These critical points
are unimodal and € is a parameter along the strata p = const. The main result of

[7] is the following theorem.



Theorem 1 The intersection of the bifurcation diagram of a critical point of type
L(p), p > 4, or H,, with a hyperplane in the base of versal deformation which is
transversal to the stratum p = const, is biholomorphic equivalent to the manifold of
the non-regular orbits of the corresponding group generated by reflections, acting on

the complexification of the Euclidean space CH.

2 Non-singular functions
on a singular hypersurface

As it was pointed out in [7], if the number of variables is greater then two, then
simple and unimodal critical points on a singular hypersurface can appear only for
function germs with non-zero 1-jet. Moreover, simple critical points appear only on
a hypersurface of type A;. On a boundary of type Dy, or E, there are only unimodal

non-critical points.

For that reason, in the paper, we study triples (f,V,C") where f : (C*,0) —

(C,0) is a non-singular germ, i.e. Vo = f~1(0) is a germ of smooth hypersurface.

Let z,..., 2z, be coordinates in C* such that 8f/02; does not vanishes at the
origin. The change of variables x = f, y1 = 22, ..., Yn—1 = 2Zn, gives an equivalent
triple

(z,V ={g(z,91,...,yn-1) = 0},C").

We denote ¥ = (y1, .-, Un-1), 90(¥) = 9(0,%1,...,¥n—1). In this case Vj = {z = 0}
and thus

PVo={z=0, pr = =ps1 =0}
The tangent plane to Vj at the origin is point (0,...,0;1:0: ---:0) in PT*C" with
coordinates (z,¥1,...,Yn—1;P0 : P1: -+ - : Pn—1). Further, PV is given by
.8 o d o) .
PV = {g(z,y) =0, Do = pie I piey, 1<4,j <}

5@/_1: = g pja_yi = Zay,-’
Therefore the intersection PV, N PV is

8
PVeNPV = {g(z, 41, .., Yn1) =0, 2=0, ppoz =0, p; =0, i=1,...,n — 1}
)

9y
and thus
dg .
P%nviZ{Q(xaylr'-:yn—l)zoa 1":01 @:0: pi:O) 7':17"')”—1}‘
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Example 1 Let V = {z* = 3?} C €2, k > 2. Then for the triple (z, V, C?),
the origin is a non-critical point, whereas for the triple (y, V, C2), the origin is a

critical point. Indeed,

ki1
2

PV = {xk+1 =92, (k+ l)xkpl =2ypot={y=1=z 1, (k + l)mkpl = 2:ck2ﬂp0}.

If z £ 0, we get
k+1 k=1

2 nz z .
For f = z, we have PV, = {z = p; = 0} and the corresponding point in PT*C? is
(0,0;1:0) ¢ Vi = PV \ PT*{O}, whereas for f =y, PV, = {y = po = 0} and the
corresponding point in PT*C? is (0,0;0: 1) € ;.

Do

3 Boundary singularities

Here we recall some basic facts of boundary singularities theory [11].

A boundary germ is a triple (g,Y,C"), where Y is a germ at O of a smooth
hypersurface, called a boundary, and ¢ : (C*,0) — (C,0) is a holomorphic germ
such that both g and gy = gly : (¥,0) — (C,0) have isolated critical points. In
appropriate local coordinates (z, 1, ..., ¥n—1) of C*, the boundary is Y = {z = 0},
and go{y) = 9(0,y1, .. ., Yn—1)-

A stabilization of (g,Y,C") is a boundary germ (§,Y,C™), m > n, where
i@y, Yno1) = 9(8 YY) F 82+ 2, YV = {2 =0}

A boundary singularity is a boundary germ considered up to germs of diffeomor-

phisms preserving the boundary and up to stabilizations.

The multiplicity u(g,Y’) of the critical point of the boundary germ (g,Y,C") is
the dimension over C of the local ring Q(g,Y) = O,/I(g,Y), where I(g,Y) is the
ideal generated by x8g/0z,8g/0y1,...,09/0Yp-1.

The multiplicity of a boundary germ and of any its stabilization is the same.

In some natural sense, boundary singularity (g,Y,C") is an extension of two
ordinary singularities given by germs g and go. These two ordinary singularities are
called the decomposition of (g,Y,C").

Recall that for an ordinary singularity given by a holomorphic germ f(z1, ..., z,)
at the critical point O, the multiplicity is the dimension over C of the local
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ring Q(f) = O,/I(f), where ideal I(f) is generated by the partial derivatives
8f/0z1,...,0f [0z,
pu(f) = dime Q(f).

For boundary singularity (g, Y, C*) with decomposition (g, go), we have u(g,Y) =
1(g) + 1(go)-

A versal deformation of boundary singularity (g, Y, C*) one can take in the form

G(z,y,\) = g(z,y) + TXie; + zXXjej,

where {e}, 1 < i < p(go)} represent a basis of Q(go), and {ej, 1 < j < u(g)}
represent a basis of @Q(g). The bifurcation diagram of the boundary singularity
(9,Y,C") has two irreducible components, which are bifurcation diagrams of g and
go respectively multiplying by complex spaces of appropriate dimensions.

For boundary singularity (g, Y, C*) with decomposition (g, go), we have u(g,Y) =
#(9) + 1(g0)-

In generic case, the decomposition does not define a boundary singularity (see
example 4). But as it was proved in [9], boundary singularities with decomposition
of type (A, A;) are well-defined by their decomposition. In particular, if go is a
Morse function (i.e. of type A;) and g is of type A, then the boundary singularity
is of type Bgy1. It can be given by the function germ z*+! + Q(y), where Q(y) =
Q(y1, - - -, Yn-1) is a Morse function, the boundary is z = 0.

4 Link between non-singular functions
on singular hypersurfaces
and boundary singularities

If (f(z),V = {g(z) = 0},C") is a germ of non-singular function f on a singular
hypersurface V, such that u(f,V) < oo, then triple (g(z), Vo = {f(2) =0},C") is a
boundary germ.

Conversely, any boundary germ (g(z,y),Y = {z = 0},C") defines a germ (z,V =
{g9(z,y) = 0},C") of a non-singular function on a singular hypersurface.

Proposition 1 FEquivalent germs of non-singular functions on a singular hypersur-

face define the same boundary singularity



Proof. If (f;,V;,C"), i = 1,2, are equivalent triples and f,, f, are germs of non-
singular functions, then there exist germs of diffeomorphisms ¢, ¢, ¢, : (C*,0) —
(C*,0), such that ¢ sends (f1,V;,C*) to (f2, V2,C*) and ¢; sends (f;, Vi, C*) to
(1:, {g'i(m:y) = 0}7@)7 1=1,2.

The corresponding boundary germs are (g;(z,y), Y, C*), with the boundary ¥ =
{z =0}, ¢ =1, 2, and one goes to another by the diffcomorphism ¢ 0 ¢ 0 ¢7* which

obviously preserves the boundary. a

Comparing the lists of the simple critical points on singular surfaces [7] and of

the simple boundary singularities {3], we get the following.

Proposition 2 The simple critical points on a singular hypersurface are exactly
the ones that correspond to the simple boundary singularities Cy, k > 2, Fy. Non-
critical points on a singular hypersurface correspond to the simple boundary singu-
larities of type By, k > 2.

Example 2

e I>(p)-singularities.
In the Lyashko classification [7], critical points of type I;(p),p > 4, appear on
a hypersurface of type A,_;. These critical points are unimodal. The normal
form of the function germ is f = = + ey + 2%, where ¢ # 0 is a parameter along
the strata u = const. The hypersurface V' is given by V = {zy = 27 + Q},
where () is a Morse function in additional variables.

The corresponding boundary singularity has decomposition (A,_1, A3). In-
deed, A,_; is the type of the hypersurface. Consider f71(0) = V, =
{z + ey + 2> = 0}. The intersection with the boundary, V NV, is given
by

VNV = {2 + (ey + 2%)y = 0}.

We have: 22+ (ey+2%)y = 2# —az?+ (v/az? ++/ey)?, where a = 1/4¢, therefore
this is a singularity of type A;.

Thus the boundary singularity corresponding to the critical point of type I>(p)
is the unimodal boundary singularity of type B3_, (in notations of [9]).

e Hj-singularity.
In the Lyashko list, a critical point of type Hj is given by germ z+y+€2% on a
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hypersurface zy = z° of type A4 (e is a parameter along the strata y = const).

After the change of variables
(r, v, 2) > X =z+y+ed, y, 2),

we get germ 2° — (X — y — €2)y on the boundary X = 0. It is easy to see
that this boundary singularity has decomposition (A4, A4). This is unimodal
boundary singularity F; (in notations of [9]).

5 Singular hypersurface of type A

Here we consider triples (f, V,C*) such that f is a non-singular germ, and hypersur-
face V has a simple singularity of type Ay at the origin. We call such triples L-germs.
Note that the critical points on a singular hypersurface, which are connected with

reflection groups Ir(p),p > 4, and Hj, are L-germs.

For a L-germ, we can choose coordinates such that the triple is of the form
(f(z,y), {z*' =Q(y)}, C*), where Q(y) = Q(v1, ..., Yn—1) is a Morse function.

Theorem 2 The origin is a non-critical point of the triple (f(z,y), V = {z"! =
Q(y)}, C), if and only if 3f /0z|o # 0.

Proof As it follows from [2], [8], if 8f/0z does not vanish at the origin, then f
can be reduced to x by a diffeomorphism preserving {z"*! = Q(y)}, and we get a
triple which is stable equivalent to the triple (z, V, C?) of the example 1.

If 8f/dz|o = 0, then 8f/dyilo # 0 for some 1 < i < n — 1 (recall that f is

non-singular at the origin). We can assume

3f :ﬁon,i=2,...,n—1.

of
a_y;'|0 # 07 'a—mlo ay,-

Indeed, if f = a1y1 + -+ * + Gn_1Yn—1 + (terms of order > 2), and ay # 0, then the

required change of variables is

(x7y17 sy yﬂ—l) = (.'1:,},1 = a1l + -85 Ap—1Yn—-1,Y2, . .. ’y’n—-l)'

The tangent plane to {f = 0} at the origin corresponds to point (0,...,0;0 : 1 :
0:---:0). This point is obviously in V; (the intersection with plane {y» = --- =
Yn—1 = 0} reduce this case to the case of two variables considered in example 1). O
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Theorem 3 The origin is a non-critical point for a L-germ, if and only if the

corresponding boundary germ is of type Byy1.

Proof. Consider L-germ (f(z,y), {z"*! = Q(y)}, C"), where Q is a Morse func-
tion. The condition that the origin is a non-critical point for the L-germ means that
0f/0zlo # 0, i.e. the equation f = 0 can be solved with respect to z: z = ¢(y),
where ¢(y) is a holomorphic function germ. Then the restriction of the function
z¥*! — Q(y) to the boundary, (¢(y))**! — Q(y), has a non-degenerate quadratic part
and therefore defines an ordinary singularity of type A;. Therefore boundary singu-
larity (z¥*! — Q(y), f = 0,C") has decomposition (A, A;), i.e. this is a boundary
singularity of type Bji41.- a

If the hypersurface, V', has another simple singularity, i.e. a singularity of type
Dy (k > 4) or Ey (k = 6,7,8), then one can prove that a germ (z,V = {g(z,y) =
0},C**1) does not have the origin as a critical point if the germ go(y) = ¢(0,v)
defines a singularity of type A,.

Example 3 The following germs on the boundary z = 0 define unimodal non-
critical points (z,V = {g(z,y) = 0}, C?) on a hypersurface of type Dy, k > 4, and
Ei, k=6,7,8, respectively:

(Dy, A2) 0 g(z,y) =z + 9% +az*", a #0,
(Be, A2) 1 g(z,y) = z* + y° + az’y,

(Br, A2) 1 g(z,y) = 2%y + v° + az®,

(Es, 42) : g(z,y) = 2° + 4 + az*.

Consider hypersurface V = {2°+y® = 0}, a > b. Direct calculations show that O
is a non-critical point for triple (z, V, C?) and O is a critical point for triple (y, V, C?).

More generically, we have the following proposition.

Proposition 3 Let hypersurface V. = {g(z1,...,z,) = 0} be given by a quasi-
homogeneous function g withdegz; = a;, 1 <i<n—1, 0y >0y > -+ > a,. Then
the origin is a critical point of (z1,V,C*).

Proof Note first of all, that if g is a quasi-homogeneous function with degg = d,
then Oh/0z; is a quasi-homogeneous function as well and degdh/0z; = d — a;,1 =
1,...,n. Wehaved —a; <d— a3 <---<d— a,, and therefore for the curve

z; = a;it™, g(ay,...,a,) =0,
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lying on V, the tangent planes correspond to the points
(172 402 gdmen) = (g 1T L g7 ) 5 (051:0---: 0)

ast — 0. Point (O;1:0:---:0) corresponds to the function z;. W]

6 Local rings

It appears that in many cases, the local ring Qv = O, /Iy of the triple (f,V =
{h(z) = 0},C") is isomorphic to the local ring Q(ho) of the ordinary singularity
given by hy = h|s=o. First we establish this result in the quasi-homogeneous case.

Theorem 4 Let (g(z,y),Y = {x = 0},C") be a boundary germ given by a quasi-
homogeneous function g, and V = {g(z,y) = 0}. Then the local rings Qv and

Q(go) are isomorphic.

Proof. Consider germ (z, V,C*) on a singular hypersurface corresponding to the
given boundary germ. Let the weights of the variables be degz = a,degy; = 5;,i =
1,...,n — 1. Then, as it is proven in [7], the module of tangent vector fields, Ty, is

generated by the Euler vector field

Up = aw_a_ + i +---+8 ____a__
0= o 1Y1 B n—1Yn—1 ayn_l,
and by the Hamiltonian vector fields
0g 0 dg 0
== - — 1<k<n-1
Uk = Bz Oy, Oyrbz’ ~ — ne b
dg 0 dg 0

Vis = — = 1< ,5<n-1
7 By 0y; Oy, Oy; d

Applying these vector fields to the function x, we get the generators of Iy which
are z,0g/0yk, k= 1,...,n — 1. Therefore

dg dg
v =0n/ <z,—, ...,
@ v / ! oy OYn—1

>2 On_1/1(g0) = Q(g0)- g

Corollary 1 If (g(z,v),Y = {z = 0},C*) is a boundary germ given by a quasi-
homogeneous function g, then u(z,V) = p(go) — 1

The similar statement is hold for L-germs of modality 0 or 1.
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Theorem 5 If (f,V = {h(z) = 0},C") is a L-germ of modality 0 or 1, then:
(i) Qsv = Q(hls=0);
(ii) u(f,V)=p(hlj=0) — 1.

The proof of the theorem can be obtained by direct calculations using the list of
normal forms of simple and unimodal critical poins and their versal deformations
given in [7].

We say that (f,V = {h(z) = 0},C") is a good triple if it satisfies condition (i)
(and, hence, (i)). In particular, triples of types H3 and 7(p) are good.

Using the parametrized Morse lemma, one can prove the similar result for
triples (z,V = {g(z,y) = 0},C*) such that the corresponding boundary germs
(9(z,y),Y = {y = 0}, C*) have decomposition (A, 4;).

Unfortunately we do not know a proof working for all these cases. It would be
interesting to get such a proof and to understand general conditions for triple to be

good.

One can guess that for L-triples, the equivalence class of a critical point (f,V =
{h(z) = 0},C") is defined by the equivalence class of the germ h|s—o, but this is not

the case as the following example shows.

Example 4 Consider two germs on C* with the boundary {z = 0}:

4

hi=xz—2—292 — 9y, hy=1m2—2¥ —yt — 2.

As it follows from [9], they define non-equivalent boundary singularities with the
same decomposition (As, D). This means that the critical points (z,V; = {h; =
0},C%) (¢ = 1,2) on a singular hypersurface of type A3 have the same singularity,
namely Ds, of the restriction h;|y—g, but they are non-equivalent L-germ.

For holomorphic functions, an isolated critical point always has a finite multiplic-
ity. Next example provides a non-singular function having a critical point of infinite

multiplicity at an isolated singular point of a hypersurface.
Example 5 Consider the following critical point on a singular hypersurface:
(z, V = {z* + 222 + 4’2 = 0}, C").

It is clear that hypersurface V has an isolated singularity at O, but the multiplicity

of the critical point pu(z,V) = co. Indeed, V is given by a homogeneous function,
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therefore theorem 3 gives Quv = On_1/I(go), where go = y?z. Function go has a
non-isolated critical point at 0 (in fact, the line y = 0 is the line of critical points),

that means that dimc¢ Qv = co.

7 Versal deformations and bifurcation diagrams
of good triples

Let L = (z,V = {g(z,y) = 0},C"*) be a good triple. A versal deformation of L one

can take in the form
L)\ = (.’L‘ + )\060 +-- 4+ )\,,ey,V,(C“),

where {e; = e;(y), 0 < ¢ < u} represent a basis of the local ring Q(go).

We define a deformation Gpr(z,y,A) of boundary germ (g(z,y),{z = 0},C*)
which corresponds to the versal deformation of the germ L ‘as the family

Gr(z,y,A) = g(z + doeo + -+ - + Auep, y).
The restriction of this family to the boundary,
Gy, A) = Gr(0,9,A) = g(hoeo + -+ + ey, 9),

is a deformation of gy = g(0, y) related to the boundary germ (g(z,y). We call this
deformation boundary deformation of go and the corresponding bifurcation diagram
the boundary diagram. It is easy to see that the boundary diagrams of equivalent
boundary germs are diffeomorphic. It turns out that the bifurcation diagram of this

deformation is the bifurcation diagram of L.
Theorem 6 The bifurcation diagram of L is

B(L) = {A € C**! | 0 is a critical value of GI(-,\)}

Proof Change of variables
(z,y) = (X =2 — doeo— - — Ap€p, ¥)
gives an equivalent family
Ly=(X,Vh={g(X +Xoeo + -+ + Aueu,y) = 0},C*).
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The bifurcation diagram of this family is given by

(L) = {A € C**! | 0 is a critical value of L,}.

Consider PT*C" with coordinates (,41,...,Yn-1;P0 : P1 : - "+ : Pn—1). Variety PV,
of tangent planes to V), is given by
oGy, 0G, 0Gp oG, . .
PV, = X, y,\) = —p L L TR i1 p—1).
V/\ {GL( ' Y, ) 07 Do ayi D X D 8@/_7 Dj 6yz 2,7 n
The intersection with PVp ={X =p, =--- = p,—1 = 0} gives
PVAN PV = {X =p1=-=pn1=0, GL(X’y;)‘) =0, pOBGL/Byi =0}

Thus the intersection Vi N PV, is given by Vi N PV = {Gr(X,y,A) = 0, X =
0, G0y =0, pi=0, i=1,...,n—1} =

={G%(y,\) =0, 8GY/8y; =0, p;=0,i=1,...,n—1}.
L L

It is non-empty if and only if 0 is the critical value of GY(-, A). O

8 Critical points of type H; and I>(p)

Consider function f = z having a critical point of type Hj3 at the origin on a
hypersurface V = {z? +3® = 0}. Its versal deformation is = + A3y® + Aoy + Ay + Ao.
Thus the corresponding deformation of the unimodal boundary singularity F is

Gu(z,y, ) = ¥° + (z + Aay® + Xt + Ay + )

As it is proven in[7], the bifurcation digram of this critical point is analytically trivial
along the stratum p = const and A3 is a parameter along this stratum. The bifur-

cation diagram of this critical point is the bifurcation diagram of the deformation
Gu(y, ) =% + (Asy® + Aoy + Ay + o)?

of simple singularity A4.

A critical point of type I53(p), p > 5, can be given by germ f = z on a hypersurface
V ={(z +y*)*+yP = 0}. Its versal deformation is = + y2 + Aay? + My + Ao. Again,
as it follows from [7], the bifurcation digram is analytically trivial along the stratum
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i = const and A; is a parameter along this stratum. The corresponding deformation

of the unimodal boundary singularity BJ_, is
Gr(z,y,A) =" + (2 + ¥ + May” + My + Wo)®.

The bifurcation diagram of this critical point is the bifurcation diagram of the de-
formation
Gy, A) =P + (&7 + Aat® + My + Ao)®

of simple singularity As.

Triples Hz and I(p) are good, therefore A3 (resp. Az) is a parameter along the
stratum g = const for the deformation Gy (resp. Gip) of the unimodal boundary
singularity Fj (resp. BJ_;) as well. The bifurcation diagram of critical point Hj
(resp. I>(p)) is the component of the bifurcation diagram of Gy (resp. Gy) which
corresponds to the restriction to the boundary. Thus get the following result.

Theorem 7 The bifurcation diagram of the deformation G% (G% resp.) of a simple
singularity As (A4 resp.) is diffeomorphic to the manifold of the non-regular orbits
of the group I»(p) (Hs resp.) multiplying by a complex line.

9 Critical point of type G5

The simple critical point of type G5 appears in the Lyashko classification for non-
singular germ z 4+ y on a singular surface zy = 2%. The corresponding simple
boundary singularity Fy is given by germ z? + y® and boundary {z = 0}. The
boundary deformation is given by G%(y,A) = (A1 + A2y)% + 4%, and it is easy to
check that the boundary diagram is exactly the manifold of the non-regular orbits

of group G,.
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