On the classification and topology of complex map-germs of corank one and A_e -codimension one

Kevin Houston
School of Mathematics
University of Leeds
Leeds, LS2 9JT, U.K.
e-mail: khouston@amsta.leeds.ac.uk

September 4, 2000

Abstract

Corank one map-germs $f:(\mathbb{C}^n,0)\to(\mathbb{C}^p,0),\ n< p,$ of \mathcal{A}_e -codimension one are classified and their vanishing topology is shown to be homotopically equivalent to a sphere.

AMS Mathematics Subject Classification 2000: 58K40, 58K65

1 Introduction

In his classic paper [10] Mather classified the \mathcal{A} -stable map-germs. The next target for classification, the \mathcal{A}_e -codimension one germs, appears to be considerably more difficult, as one does not have an equivalent of Mather's result that \mathcal{K} -equivalent \mathcal{A} -stable maps are \mathcal{A} -equivalent. For example, the two real maps, $(x,y) \to (x,y^2,y^3 \pm x^2y)$, have \mathcal{A}_e -codimension one, are \mathcal{K} -equivalent but not \mathcal{A} -equivalent, see [11]. However, this problem does not occur in the complex situation for this example.

In his Ph.D. thesis, [1], Cooper classified corank 1 \mathcal{A}_e -codimension 1 map-germs \mathbb{C}^n to \mathbb{C}^{n+1} by using explicit changes in source and target to reduce the map to a normal form. A more elementary proof of the classification is given in [2]. Surprisingly, just as in the stable case the situation comes down to dealing with the \mathcal{K} -equivalence class of the germ mainly because if the map is not an augmentation then the \mathcal{A} -orbit is open in the \mathcal{K} -orbit.

In this paper we generalise to the case of corank 1 \mathcal{A}_e -codimension 1 map-germs \mathbb{C}^n to \mathbb{C}^p , n < p, i.e. the dimension of the target space is increased.

This paper was written while the author was a guest of the Isaac Newton Institute of Mathematical Sciences, Cambridge. He is grateful for the hospitality and financial support received. Thanks are also due to Maria Ruas for helpful conversations.

2 The results

The main theorem is the following.

Theorem 2.1 Suppose that $f:(\mathbb{C}^n,0)\to(\mathbb{C}^p,0)$, n< p, is a corank 1 \mathcal{A}_e -codimension 1 map-germ, then the following are true.

1. f is A-equivalent to a map of the form,

$$(u_{1}, \dots, u_{l-1}, v_{1}, \dots, v_{l-1}, w_{11}, w_{12}, \dots, w_{rl}, x_{1}, \dots, x_{n-l(r+2)+1}, y)$$

$$\mapsto (u_{1}, \dots, u_{l-1}, v_{1}, \dots, v_{l-1}, w_{11}, w_{12}, \dots, w_{rl}, x_{1}, \dots, x_{n-l(r+2)+1},$$

$$y^{l+1} + \sum_{i=1}^{l-1} u_{i}y^{i}, y^{l+2} + \sum_{i=1}^{l-1} v_{i}y^{i} + y^{l} \sum_{i=1}^{n-l(r+2)+1} x_{i}^{2}, \sum_{i=1}^{l} w_{1i}y^{i}, \dots, \sum_{i=1}^{l} w_{ri}y^{i}),$$

where r = p - n - 1 and l + 1 is the multiplicity of the germ. Conversely, any such germ has A_e -codimension 1.

- 2. The germ is precisely l + 2-determined.
- 3. An A_e -versal unfolding is given by unfolding with the addition of the term λy^l to the (p-rl-1)th component function.

One immediately deduces the following.

Corollary 2.2 Corank 1 A_e -codimension 1 map-germs from \mathbb{C}^n to \mathbb{C}^p which are K-equivalent are A-equivalent.

To every finitely A-determined corank 1 map-germ there exists a unique stabilisation, see [7]. The image of this stabilisation is called the disentanglement of f. One can also investigate the multiple points in this image.

Definition 2.3 Let $h: X \to Y$ be a continuous map. The kth image multiple point space of h, denoted $M_k(h)$, is defined to be,

$$M_k(h) := closure\{y \in Y | \#h^{-1}(y) \ge k\}.$$

Definition 2.4 We define the kth disentanglement of f, denoted $Dis_k(f)$ to be the kth multiple point space of the stabilisation of f.

Suppose that $f_{\mathbb{R}}: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ is a finitely \mathcal{A} -determined map-germ, with a real stabilisation $f_{\mathbb{R},t}$ and that the complexification of $f_{\mathbb{R}}$, denoted $f_{\mathbb{C}}$ has stabilisation arising from complexifying $f_{\mathbb{R},t}$. We can denote the kth image multiple point spaces of these maps by $\mathrm{Dis}(f_{\mathbb{R}})$ and $\mathrm{Dis}(f_{\mathbb{C}})$.

Definition 2.5 The map $f_{\mathbb{R},t}$ is a good real perturbation if $\dim H_i(\mathrm{Dis}_1(f_{\mathbb{R}}); \mathbb{Z}) = \dim H_i(\mathrm{Dis}_1(f_{\mathbb{C}}); \mathbb{Z})$ for all i = p - (p - n - 1)k - 1, with $2 \le k \le p/(p - n)$.

This is a generalisation of the notion given in [12] and [9]. The idea is that the complex topology is visible over the reals.

Theorem 2.6 Suppose that $f:(\mathbb{C}^n,0)\to(\mathbb{C}^p,0)$, n< p, is a corank 1 \mathcal{A}_{e} -codimension 1 map-germ.

- 1. The disentanglement $\operatorname{Dis}_1(f)$ is homotopically equivalent to a (n-l(p-n-1))sphere. The higher disentanglements are empty or contractible.
- 2. It is obvious that f is the complexification of a real map-germ. This map has a good real perturbation and in fact the natural inclusion for this perturbation $\operatorname{Dis}_k(f_{\mathbb{R}}) \hookrightarrow \operatorname{Dis}_k(f_{\mathbb{C}})$ is a homotopy equivalence for all k > 1.

These results are analogous to the case of a quadratic isolated complete intersection singularity. For then the Milnor fibre is homotopically equivalent to a single sphere and it is possible to define a real Milnor fibre with the same topology. (In fact the above theorem is a consequence of these results).

When an isolated complete intersection singularity has Milnor number equal to one then it is \mathcal{K} -equivalent to a quadratic singularity. One may ask for corank 1 maps in the range n < p, if the disentanglement is homotopically a sphere, then is the map \mathcal{A}_e -codimension 1?

3 Classification

3.1 Proof of Theorem 2.1 part 1

Firstly we define the augmentation of a map-germ.

Definition 3.1 Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}^p, 0)$ be a map with a 1-parameter stable unfolding $F: (\mathbb{C}^n \times \mathbb{C}, 0) \to (\mathbb{C}^p \times \mathbb{C}, 0)$, where $F(x, \lambda) = (f_{\lambda}(x), \lambda)$. Then the augmentation of f by F is the map $A_F(f) := (f_{\lambda^2}(x), \lambda)$.

If f has A_e -codimension 1 then $A_F(f)$ has A_e -codimension 1 and the equivalence class of $A_F(f)$ is independent of the choice of miniversal unfolding of f. See Proposition 2.1 and Theorem 2.4 of [2]. Thus we can produce new codimension 1 maps from old codimension 1 maps. If f is not the augmentation of another germ then f is called primitive.

One can also generalise this definition so that the unfolding parameter is replaced by a function, see [4].

To prove part 1 of Theorem 2.1 we use results from the classification in the p = n + 1 case given in [2]. Let us follow them and begin by defining a map $f^l: (\mathbb{C}^{2l-1}, 0) \to (\mathbb{C}^{2l}, 0)$ by

$$f^{l}(u, v, y) = (u, v, y^{l+1} + \sum_{i=1}^{l-1} u_{i}y^{i}, y^{l+2} + \sum_{i=1}^{l-1} v_{i}y^{i}).$$

By Lemma 4.1 of [2] the A_e -codimension is 1. If we label the last two coordinates of \mathbb{C}^{2l} Y_1 and Y_2 then the A_e -tangent space is

$$T\mathcal{A}_{e}f^{l} = \theta(f^{l}) \setminus \left\{ y^{l} \partial/\partial Y_{2}, y^{l-1} \partial/\partial v_{1}, \dots, y \partial/\partial v_{l-1} \right\} + \left\{ y^{l-1} \partial/\partial v_{1} + y^{l} \partial/\partial Y_{2}, \dots, y \partial/\partial v_{l-1} + y^{l} \partial/\partial Y_{2} \right\}.$$

Let us now define an extension of this map, $f^{l,r}:(\mathbb{C}^{2l-1+rl},0)\to(\mathbb{C}^{2l+r(l+1)},0)$:

$$f^{l,r}(u,v,y,w) = (u,v,y^{l+1} + \sum_{i=1}^{l-1} u_i y^i, y^{l+2} + \sum_{i=1}^{l-1} v_i y^i, w, \sum_{i=1}^{l} w_{1i} y^i, \dots, \sum_{i=1}^{l} w_{\tau i} y^i).$$

Through augmentation we get a map of the form in Theorem 2.1. By the proof of Proposition 3.7 of [6] it is known that $f^{l,r}$ is finitely determined. However we can do better than this as the following shows.

Theorem 3.2 The map $f^{l,r}$ has A_e -tangent space equal to

$$T\mathcal{A}_{e}f^{l,r} = \theta(f^{l,r}) \setminus \{ y^{l} \partial/\partial Y_{2}, y^{l-1} \partial/\partial v_{1}, \dots, y \partial/\partial v_{l-1} \} + \langle y^{l-1} \partial/\partial v_{1} + y^{l} \partial/\partial Y_{2}, \dots, y \partial/\partial v_{l-1} + y^{l} \partial/\partial Y_{2} \rangle.$$

Hence $f^{l,r}$ has \mathcal{A}_e -codimension equal to 1. To prove the above theorem let us investigate what the effect of extension is.

Suppose we have a finitely determined map $h:(\mathbb{C}^n,0)\to(\mathbb{C}^p,0)$ such that

$$h(w_1, \dots, w_l, y, u_1, \dots, u_{l-1}, x) = (w_1, \dots, w_l, \\ \sum_{i=1}^l w_i y^i, y^{l+1} + \sum_{i=1}^{l-1} u_i y^i, u_1, \dots, u_{l-1}, x, f_1(u, x, y), \dots, f_t(u, x, y)).$$

Let \mathcal{O}_X denote the ring of function germs at 0 for the germ (X,0). The tangent space $T\mathcal{A}_e$ is a $h^*(\mathcal{O}_{\mathbb{C}^n})$ submodule of $(\mathcal{O}_{\mathbb{C}^n})^p$. Let e_i denote the standard basis vector for the *i*th copy of $\mathcal{O}_{\mathbb{C}^n}$.

Lemma 3.3 $\mathcal{O}_{\mathbb{C}^n} e_i \in TA_e h$ for all $1 \leq i \leq l+1$.

Proof. It is evident that we can reduce the requirement to $y^k e_i \in TA_e$ for all $i = 1, \ldots, l+1$.

Note that

$$y^k e_{l+1} \in TA_e \iff y^{k-1} e_i \in TA_e, \ k-i > 0.(*)$$

This follows from the fact that $y^{j}(e_{i} + y^{i}e_{l+1}) \in T\mathcal{R}_{e}$ and it implies that it suffices to show that $y^{k}e_{l+1} \in T\mathcal{A}_{e}$ for all k.

For $1 \leq s \leq l$ $e_i + y^s e_{l+1} \in T\mathcal{R}_e$ and $e_s \in T\mathcal{L}_e$ so $y^s e_{l+1} \in T\mathcal{A}_e$. We will now use induction: Suppose $y^s e_{l+1} \in T\mathcal{A}_e$ for all s < k then $y^k e_{l+1} \in T\mathcal{A}_e$

The number k will be of the form k = r(l+1) + i with $r \ge 1$ (assuming k < l+1 already dealt with as above) and $0 \le i \le l$.

Case i=0: Clearly $(y^{l+1}+\sum_{j=1}^{l-1}u_jy^j)^re_{l+1}\in T\mathcal{L}_e$ so $y^{r(l+1)}e_{l+1}\in T\mathcal{A}_e$ as the other terms in y in the expansion have order less than r(l+1).

Case i > 0: The assumption $y^s e_{l+1} \in T\mathcal{A}_e$ for all s < r(l+1) + i implies that $y^{s-i}e_i \in T\mathcal{A}_e$ for all $i \le s < r(l+1) + i$ by (*), i.e.

$$y^s e_i \in T \mathcal{A}_e$$
 for all $s < r(l+1).(**)$

Obviously $(y^{l+1} + \sum_{j=1}^{l-1} u_j y^j)^r e_i \in T\mathcal{L}_e$ and this with (**) implies that $y^r (l+1) e_i \in T\mathcal{A}_e$. Thus as $y^{r(l+1)} (e_i + y^i e_{l+1}) \in T\mathcal{R}_e$ we deduce that $y^{r(l+1)+i} e_{l+1} \in T\mathcal{A}_e$. \square

After applying this lemma to the map $f^{l,r}$ all that is required is to check that if g is a function in variables w_1 to w_l then $gy^l\partial/\partial Y_2$ is in the tangent space. This is easy to check.

The maps $f^{l,r}$ have a very interesting property which will be very useful.

Lemma 3.4 The A-orbit of $f^{l,r}$ is open in its K-orbit.

Proof. Let the dimension of the source be n and that of the target be p. and denote the normal space of the \mathcal{G}_e -orbit by $N\mathcal{G}_e$. It is easy to calculate that $\dim N\mathcal{K}_e(f^{l,r}) = p+1$ (It should be noted that this is not true for augmentations of $f^{l,r}$ as then we have $e_i \in T\mathcal{K}_e$ for at least one i.) Thus we find that $\dim N\mathcal{A}_e = \dim N\mathcal{K}_e - p$. But $\dim N\mathcal{A}_e = \dim N\mathcal{A} - n$ (as $f^{l,r}$ is not \mathcal{A} -stable, see [14] p.510) and $\dim N\mathcal{K}_e = \dim N\mathcal{K} + (p-n)$ ([14] p.509). So $\dim N\mathcal{A} = \dim N\mathcal{K}$, implying that the \mathcal{A} -orbit is open in the \mathcal{K} -orbit.

Proof (of Theorem 2.1). We now generalise the proof of Proposition 4.3 of [2]. Suppose that $f:(\mathbb{C}^n,0)\to (\mathbb{C}^p,0)$ is a corank 1 \mathcal{A}_e -codimension 1 map-germ, n< p with multiplicity l+1. The versal unfolding $G:(\mathbb{C}^n\times\mathbb{C},0)\to (\mathbb{C}^p\times\mathbb{C},0)$ is a n-l(p-n+1)+1-fold prism on a minimal stable map-germ of multiplicity l+1. Thus by Theorem 2.7 of [2] f is the n-l(p-n+1)+1-fold augmentation of an \mathcal{A}_e -codimension 1, corank 1, multiplicity l+1 map-germ $f':(\mathbb{C}^{2l+l(p-n+1)-1},0)\to (\mathbb{C}^{2l+(p-n-1)(l+1)},0)$. Such a map is obviously \mathcal{K} -equivalent to the map $f^{l,p-n-1}$. The \mathcal{A} -orbit of $f^{l,p-n-1}$ is open in its \mathcal{K} -orbit by Lemma 3.4 and by Lemma 3.12 of [2] there is at most one open \mathcal{A} -orbit in a given complex contact class, thus we conclude that f' and $f^{l,p-n-1}$ are \mathcal{A} -equivalent.

The n-l(p-n+1)+1-fold augmentation of $f^{l,p-n-1}$ is \mathcal{A} -equivalent to f as the \mathcal{A} -equivalence class of the augmentation of codimension 1 map-germ g depends only on the \mathcal{A} -equivalence class of g.

3.2 Order of determinacy

To find the order of determinacy we use the techniques of [13], in particular his Proposition 3.8, which we summarise as the following. Denote the maximal ideal of $\mathcal{O}_{\mathbb{C}^d}$ by \mathbf{m}_d and use the standard tf and wf notation of Singularity Theory, see[14].

Proposition 3.5 Let $f:(\mathbb{C}^n,0)\to(\mathbb{C}^p,0)$ be a map-germ. Let

$$D \subset tf(\theta_{\mathbb{C}^n}) + wf(\theta_{\mathbb{C}^p}) + \mathbf{m}_n^s \theta_f$$

be an Ocr -module such that

$$\mathbf{m}_n^s \theta_f \subset tf(\mathbf{m}_n \theta_{\mathbb{C}^n}) + f^*(\mathbf{m}_p) \cdot D + \mathbf{m}_n^{s+1} \theta_f.$$

Then f is s-determined.

Let f be as in Theorem 2.1. Then by calculation one can see that $TA_e f$ has the same type of structure as $TA_e(f^{l,r})$: Let m = p - rl - 1 then $y^l e_m$, and $y^{l-i} e_{l+i-1}$, $i = 1, \ldots, l-1$ are missing from $TA_e f$, but $y^l e_m + y^{l-i} e_{l+i-1}$ is included. Thus if we let \mathbf{m}_{n-1} denote the ideal generated by the variables other than y and

$$D = \langle \mathcal{O}_n, \dots, \mathcal{O}_n, \mathbf{m}_{n-1} \mathcal{O}_n + \langle y^l \rangle \mathcal{O}_n, \dots, \mathbf{m}_{n-1} \mathcal{O}_n + \langle y^2 \rangle \mathcal{O}_n,$$
$$\mathcal{O}_n, \mathbf{m}_{n-1} \mathcal{O}_n + \langle y^{l+1} \rangle \mathcal{O}_n, \mathcal{O}_n, \dots, \mathcal{O}_n \rangle$$

where the $\mathbf{m}_{n-1}\mathcal{O}_n + \langle y^j \rangle \mathcal{O}_n$ terms begin at position l, then D is an \mathcal{O}_n -module contained in $T\mathcal{A}_e f$.

The non-trivial problem is to show that, for all i, $y^{l+2}e_i$ is in the right hand side of the second inclusion in the proposition. For the positions corresponding to the functions $u_1, \ldots, u_{l-1}, v_1, \ldots, v_{l-1}$ and w_{11}, \ldots, w_{rl} we can use elements of $tf(\mathbf{m}_n\theta_{\mathbb{C}^n})$ modulo \mathbf{m}_n^{l+3} . For the r extension terms and position 2l-1 we use $y^{l+2} + \sum_{i=1}^{l-1} v_i y^i$, elements of tf and $f^*(\mathbf{m}_p) \cdot D$. For the remaining position we use $y \partial f / \partial y$ and terms in tf and $f^*(\mathbf{m}_p) \cdot D$.

So f is at least (l+2)-determined. This is in fact exact. The (l+1)-jet is not finitely \mathcal{A} -determined as can be seen by showing (using the method of [8]) that (l+1)th multiple point space has dimension greater than that of a finitely determined map-germ.

4 Topology

Theorem 2.6 part 1 on the topology of the kth disentanglement has been proved for the p = n + 1 in Corollary 5.3 of [5], though note that this was first proved in this case for k = 1 in [1], see [2]. For more general p that $\mathrm{Dis}_1(f)$ is homotopically equivalent to a sphere can be deduced from the proof of Proposition 3.7 of [6] and Theorem 4.24 of [3] but the following, which investigates higher disentanglements, also shows it.

We begin with noting from Theorem 3.2 of [5] that for an augmentation $\operatorname{Dis}_m(A_F f)$ is homotopically equivalent to the suspension of $\operatorname{Dis}_m(f)$. Thus we can assume our map is primitive.

Define
$$f_t: \mathbb{C}^{2l-1} \times \mathbb{C}^{rl} \to \mathbb{C}^{2l} \times \mathbb{C}^{r(l+1)}$$
 by

$$f_t(u, v, y, w) = (u, v, y^{l+1} + \sum_{i=1}^{l-1} u_i y^i, y^{l+2} + \sum_{i=1}^{l-1} v_i y^i + t y^l, w, \sum_{i=1}^{l} w_{1i} y^i, \dots, \sum_{i=1}^{l} w_{ri} y^i).$$

Then, for $t \neq 0$ we can produce the disentanglement map for f_0 .

Define $g_t:\mathbb{C}^{2l-1}\to\mathbb{C}^{2l}$ by $g_t:=f_t|f_t^{-1}(\mathbb{C}^{2l}\times\{0\})$, then g_t for $t\neq 0$ gives the disentanglement map for g_0 , a corank 1 map-germ of A_e -codimension 1. The space $\operatorname{Dis}_m(g)$ is homotopically equivalent to a 2l-1 sphere if m=1, and contractible or empty for m > 1 by Corollary 5.3 of [5]. We shall show that $Dis_m(f_0)$ is homotopically equivalent to this space. In the following we assume $t \neq 0$ defines the disentanglement maps.

For a continuous map $h: X \to Y$ of topological spaces let $D^k(h)$ denote the kth

multiple point space as defined in [8]. From the natural inclusion of \mathbb{C}^{2l} into $\mathbb{C}^{2l+r(l+1)}$ we induce a natural map ϕ^k : $D^k(g_t) \to D^k(f_t)$.

It is shown in the proof of Proposition 3.7 of [6] that $D^k(g_t)$ and $D^k(f_t)$ are non-singular for k < l + 1, and from the description there we can deduce that $D^k(f_t)$ contracts equivariantly onto $D^k(g_t)$. The only other non-trivial spaces are $D^{l+1}(f_t)$ and $D^{l+1}(g_t)$ and from the description in [6] it follows that these are S_k equivariantly homeomorphic Milnor fibres of what is effectively the same isolated complete intersection singularity.

To conclude that the natural map $\operatorname{Dis}_m(g_0) \to \operatorname{Dis}_m(f_0)$ induces an isomorphism on integer homology for all m we use Theorem 3.2 of [6]:

Lemma 4.1 Suppose that $h_i: X_i \to Y_i$, i = 1, 2, are finite and proper continuous maps for which the image computing spectral sequence exists (this is a technical condition which is true for the maps under consideration here) and that there exist continuous maps ϕ and ψ such that the diagram

$$\begin{array}{cccc} h_1: & X_1 & \to & Y_1 \\ & \phi \downarrow & & \downarrow \psi \\ h_2: & X_2 & \to & Y_2 \end{array}$$

commutes. Then if the map $\phi^k: D^k(h_1) \to D^k(h_2)$ is an S_k -homotopy equivalence for all $k \geq 1$, then $\psi|_{M_m(h_1)}: M_m(h_1) \rightarrow M_m(h_2)$ induces an isomorphism on integer homology groups for all $m \geq 1$.

We turn our attention to the fundamental groups of the image multiple point spaces and to this end we prove the following.

Lemma 4.2 Suppose that $f: X \to Y$ is a finite and proper continuous map, $D^m(f)$ is path connected and that there exists a point $(x_1,\ldots,x_m)\in D^m(f)$ such that $x_c = x_d$ for $c \neq d$.

1. If $D^{m-1}(f)$ is path connected then the natural map of fundamental groups

$$\pi_1(D^{m-1}(f)) \to \pi_1(M_{m-1}(f))$$

is surjective.

2. If $D^{m+1}(f)$ is empty then

$$\pi_1(D^m(f)) \to \pi_1(M_m(f))$$

is surjective.

Proof. (i) For a continuous map h we can define $\varepsilon^k: D^k(h) \to D^{k-1}(h)$ by projecting through omission of the last copy of the source of h. Let $D_i^k(h)$ be the image of $D^k(h)$ in $D^j(h)$ (through composition of maps ε^i). Then $M_r(h)$ is the image of $h_r := h|D_1^r$. We have

$$D^{j}(f_{r}) = \begin{cases} D_{j}^{r}(h), & \text{for } j < r, \\ D^{j}(h), & \text{for } j \ge r. \end{cases}$$

As $D^{m-1}(f)$ is path connected, $D^j(f_{m-1})$ is path connected for j < m-1 as it is the image of $D^{m-1}(f)$ in $D^j(f)$. As $D^m(f)$ has a point with $x_c = x_d$, $c \neq d$, then so does $D^j(f_{m-1})$ for all $2 \leq j < m$. These two facts imply that every point in $D^j(f_m)$ is connected by a path to a point with $x_c = x_d$, $c \neq d$.

Now, for any continuous map h, $D^{j+1}(h) = D^2(\varepsilon^j : D^j(h) \to D^{j-1}(h))$. From this and Theorem 4.18 of [3] we deduce that for $j \leq m+1$ that

$$\pi_1(D^j(f_{m-1})) \to \pi_1(\varepsilon^j(D^j(f_{m-1}))) = \pi_1(D^{j-1}(f_{m-1}))$$

is surjective and produce a chain of maps to get

$$\pi_1(D^{m-1}(f)) = \pi_1(D^{m-1}(f_{m-1})) \to \pi_1(M_{m-1}(f))$$

surjective.

(ii) One can follow a similar argument to show that $\pi_1(D^{m-1}(f_m)) \to \pi_1(M_m(f))$ is surjective. As $D^{m+1}(f)$ is empty then $\varepsilon^m : (D^m(f)) \to \varepsilon^m(D^m(f)) = D^{m-1}(f_m)$ is a bijective and proper map so is a homeomorphism.

Proposition 4.3 The inclusion $\operatorname{Dis}_m(g_0) \to \operatorname{Dis}_m(f_0)$ is a homotopy equivalence for all $m \geq 1$ and hence Theorem 2.6 part 1 is proved.

Proof. Note that $M_m(f_t)$ and $M_m(g_t)$ are Stein spaces and so are homotopy equivalent to CW-complexes of dimension equal to their complex dimension.

If $\dim_{\mathbb{C}} M_m(f_t) \leq 1$ then the statement is elementary to prove. If $\dim_{\mathbb{C}} M_m(f_t) > 1$ then it is enough to show that $M_m(g_t)$ and $M_m(f_t)$ are simply connected because a map between simply connected CW-complexes that induces an isomorphism on integer homology is a homotopy equivalence by Whitehead's theorem, [15], p220. In our given range we know that $M_m(g_t)$ is simply connected.

Note that $D^{j}(f_{t})$ is contractible for j < l + 1 and $D^{l+1}(f_{t})$ is the Milnor fibre of an isolated complete intersection singularity and so is homotopically equivalent to a wedge of spheres. Higher multiple point spaces are empty.

Case dim $D^{l+1}(f_t) > 0$: Here $D^{l+1}(f_t)$ is connected and since the restriction to a reflecting hyperplane in the ambient space is the Milnor fibre of an isolated complete intersection singularity, see [8] Theorem 2.14, there exists a point (x_1, \ldots, x_{l+1}) such that $x_c = x_d$ for some $c \neq d$. From Lemma 4.2 we deduce that $\pi_1(D^m(f_t)) \to \pi_1(M_m(f_t))$ is surjective for all $m \leq l+1$. For m < l+1 the result is then true. For the l+1 case we note that we have are only concerned with $\dim_{\mathbb{C}} M_{l+1}(f_t) \geq 2$, i.e. $D^{l+1}(f_t)$ is simply connected.

Case dim $D^{l+1}(f_t) = 0$: As dim $D^{l+1}(f_t) = l-1$ the only situations to check are for $M_1(f_t)$, which is simple, it is homotopically a circle, and for $M_2(f_t)$ which has dimension 0.

Proof (of Theorem 2.6 part 2). From Proposition 3.7 of [6] we see that a good real perturbation exists, (use t < 0 in f_t) and that the natural map $\operatorname{Dis}_m(f_{\mathbb{R}}) \to \operatorname{Dis}_m(f_{\mathbb{C}})$ induces an isomorphism of integer homology groups.

If dim $M_m(f_{\mathbb{C}}) \leq 1$ then the statement is trivial. For the other situations we must show that $\mathrm{Dis}_m(f_{\mathbb{R}})$ is simply connected. Calculations show that $D^k(f_{\mathbb{R},t})$ and $D^k(f_{\mathbb{C},t})$ are connected, non-singular and contract onto the diagonal for k < l + 1. The space $D^{l+1}(f_{\mathbb{C},t})$ is simply connected when its dimension is greater than 1, and $D^{l+1}(f_{\mathbb{R},t})$ is S_{l+1} -homotopically equivalent to it. Thus by Lemma 4.2 the image multiple point sets for $f_{\mathbb{R},t}$ are simply connected.

Again using Whitehead's theorem we conclude that the spaces are homotopically equivalent. \Box

We finish with a theorem on augmentations.

Theorem 4.4 Suppose that $f:(\mathbb{C}^n,0)\to(\mathbb{C}^p,0)$ is the augmentation by the isolated hypersurface singularity $g:(\mathbb{C}^q,0)\to(\mathbb{C},0)$ of the corank 1 A_e -codimension 1, multiplicity l+1 map-germ. Let g have Milnor number $\mu(g)$.

Then $\operatorname{Dis}_1(A_{F,g}(f))$ is homotopically equivalent to a wedge of $\mu(g)$ n-l(p-n-1)+q-spheres. Higher disentanglements are contractible or empty. Furthermore,

$$\mu(g) \leq A_e - cod(A_{F,g}(f)),$$

with equality if g is quasihomogenous.

Proof. The result on homotopy follows from Theorem 3.2 of [5].

Note that f is quasihomogeneous and hence so is the unfolding F. Then, (denoting Tyurina number of g by $\tau(g)$ and Milnor number by $\mu(g)$),

$$\mathcal{A}_e - cod(A_{F,g}(f)) = \tau(g)\mathcal{A}_e - cod(f)$$
, by Theorem 3.3 of [4],
 $= \tau(g)$
 $= \leq \mu(g)$, with equality if g quasihomogeneous.

References

- [1] T. Cooper, Map germs of A_e -codimension one, Ph.D. Thesis, University of Warwick (1993).
- [2] T. Cooper, D. Mond, R. Wik Atique, Vanishing topology of codimension 1 multi-germs over R and C, Preprint 1999, University of Warwick.
- [3] K. Houston, Local topology of images of finite complex analytic maps, Topology 36 (1997), 1077-1121.
- [4] K. Houston, On the singularities of folding maps and augmentations, Mathematica Scandinavica 82 (1998), 191-206.
- [5] K. Houston, Bouquet and join theorems for disentanglements, Preprint 2000, University of Leeds.
- [6] K. Houston, A note on good real perturbations of singularities, Preprint 2000, University of Leeds.
- [7] W.L. Marar, Mapping fibrations, Manuscripta Math. 80 (1993), 273-281.
- [8] W.L. Marar, D. Mond, Multiple point schemes for corank 1 maps, J. London Math. Soc. (2) 39 (1989), 553-567.
- [9] W.L. Marar, D. Mond, Real map germs with good perturbations, Topology 35 (1996), 157-165.
- [10] J.N. Mather, Stability of C^{∞} mappings IV: Classification of stable maps by \mathbb{R} -algebras, Publ. Math. IHES 37 (1969), 223-248.
- [11] D. Mond, On the classification of germs of maps from \mathbb{R}^2 to \mathbb{R}^3 , Proc. Lond. Math. Soc., (3) 50 (1985), 333-369.
- [12] D. Mond, How good are real pictures? in: Algebraic Geometry and Singularities, A.C. López, L.N. Macarro (Eds.), Birkhäuser, 1996, pp. 259-276.

- [13] A. du Plessis, On the determinacy of smooth map-germs, Invent. Math. 58 (1980), 107-160.
- [14] C.T.C. Wall, Finite determinacy of smooth map-germs, Bull. Lond. Math. Soc., 13 (1981), 481-539.
- [15] G.W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, Berlin, 1978.

Recent Newton Institute Preprints

NI00001-SMM	KZ Markov Justification of an effective field method in elasto-statics of heterogeneous solids
NI00002-SCE	YY Lobanov and VD Rushai Studying the evolution of open quantum systems via conditional Wiener integrals
NI00003-SCE	J-G Wang and G-S Tian Spin and charged gaps in strongly correlated electron systems with negative or positive couplings
NI00004-SCE	FV Kusmartsev Conducting electron strings in oxides
NI00005-ERN	SG Dani On ergodic Z^d actions on Lie groups by automorphisms
NI00006-SMM	V Nesi and G Alessandrini Univalence of σ-harmonic mappings and applications
NI00007-SCE	X Dai, T Xiang, T-K Ng et al Probing superconducting phase fluctuations from the current noise spectrum of pseudogaped metal- superconductor tunnel junctions
NI00008-ERN	B Hasselblatt Hyperbolic dynamical systems
NI00009-SCE	J Lou, S Quin, T-K Ng et al Topological effects at short antiferromagnetic Heisenberg chains
NI00010-SCE	V Zlatić and J Freericks Theory of valence transitions in Ytterbium-based compounds
NI00011-ERN	A Iozzi and D Witte Cartan-decomposition subgroups of SU(2,n)
NI00012-ERN	D Witte and L Lifschitz On automorophisms of arithmetic subgroups of unipotent groups in positive characteristic
NI00013-ERN	D Witte Homogeneous Lorentz manifold with simple isometry group
NI00014-SGT	R Uribe-Vargos Global theorems on vertics and flattenings of closed curves
NI00015-SGT	EA Bartolo, P Cassou-Nogués, I Luengo et al Monodromy conjecture for some surface singularities
NI00016-SGT	IG Scherbak Boundary singularities and non-crystallographic Coxeter groups
NI00017-SGT	K Houston On the classification and topology of complex map-germs of corank one and A_e -codimension one
NI00018-SGT	PJ Topalov and VS Matveev Geodesic equivalence via integrability
NI00019-GTF	S Friedlander On vortex tube stretching and instabilities in an inviscid fluid
NI00020-SGT	VD Sedykh Some invariants of admissible homotopies of space curves
NI00021-SGT	IA Bogaevsky Singularities of linear waves in plane and space

