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Abstract
Corank one map-germs f : (C*,0) - (C7,0), n < p, of A.-codimension
one are classified and their vanishing topology is shown to be homotopically

equivalent to a sphere.
AMS Mathematics Subject Classification 2000 : 58K40, 58K65

1 Introduction

In his classic paper [10] Mather classified the .A-stable map-germs. The next target
for classification, the A.-codimension one germs, appears to be considerably more
difficult, as one does not have an equivalent of Mather’s result that X-equivalent .4~
stable maps are .A-equivalent. For example, the two real maps, (z,y) = (z,y%,y3+
z?y), have A.-codimension one, are K-equivalent but not .A-equivalent, see [11].
However, this problem does not occur in the complex situation for this example.

In his Ph.D. thesis, [1], Cooper classified corank 1 .A.-codimension 1 map-germs
C" to C*t! by using explicit changes in source and target to reduce the map to
a normal form. A more elementary proof of the classification is given in [2]. Sur-
prisingly, just as in the stable case the situation comes down to dealing with the
K-equivalence class of the germ mainly because if the map is not an augmentation
then the A-orbit is open in the K-orbit.

In this paper we generalise to the case of corank 1 4,.-codimension 1 map-germs
C" to C?, n < p, i.e. the dimension of the target space is increased.

This paper was written while the author was a guest of the Isaac Newton Insti-
tute of Mathematical Sciences, Cambridge. He is grateful for the hospitality and
financial support received. Thanks are also due to Maria Ruas for helpful conver-
sations.

2 The results

The main theorem is the following.

Theorem 2.1 Suppose that f : (C*,0) = (CP,0), n < p, is @ corank 1 A.-
codimension 1 map-germ, then the following are irue.



1. f is A-equivalent to a map of the form,
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wherer = p—n—1 and 1+ 1 is the multiplicity of the germ. Conversely, any
such germ has A.-codimension 1.

2. The germ is precisely | + 2-determined.

3. An A.-versal unfolding is given by unfolding with the addition of the term Ay
to the (p — rl — 1)th component function.

One immediately deduces the following.

Corollary 2.2 Corank 1 A.-codimension 1 map-germs from C* to C° which are
K-equivalent are A-equivalent.

To every finitely .A-determined corank 1 map-germ there exists a unique stabil-
isation, see [7]. The image of this stabilisation is called the disentanglement of f.
One can also investigate the multiple points in this image.

Definition 2.3 Let h: X — Y be a continuous map The kth image multiple point
space of h, denoted My(h), is defined to be,

My(h) := closure{y € Y|#h ™ (y) > k}.

Definition 2.4 We define the kth disentanglement of f, denoted Disg(f) to be the
kth multiple point space of the stabilisation of f.

Suppose that fg : (R*,0) — (R?,0) is a finitely .A-determined map-germ, with
a real stabilisation fr : and that the complexification of fg, denoted f¢ has stabili-
sation arising from complexifying fr :. We can denote the kth image multiple point
spaces of these maps by Dis(fg) and Dis(fc)-

Definition 2.5 The map fr: is a good real perturbation if dim H;(Dis;(fr); Z) =
dim H;(Dis; (fc); Z) for alli=p—(p—n—1)k -1, with2< k < p/(p—n).

This is a generalisation of the notion given in [12]} and [9]. The idea is that the
complex topology is visible over the reals.

Theorem 2.6 Suppose that f : (C*,0) = (C°,0), n < p, is & corank 1 A,-
codimension 1 map-germ.

1. The disentanglement Dis;(f) is homotopically equivalent to a (n-l(p-n-1))-
sphere. The higher disentanglements are empty or contractible.

2. It is obuvious that f is the complezification of a real map-germ. This map has
a good real perturbation and in fact the natural inclusion for this perturbation
Disy(fr) < Disg(fc) is a homotopy equivalence for all k > 1.

These results are analogous to the case of a quadratic isolated complete intersection
singularity. For then the Milnor fibre is homotopically equivalent to a single sphere
and it is possible to define a real Milnor fibre with the same topology. (In fact the
above theorem is a consequence of these results).

When an isolated complete intersection singularity has Milnor number equal to
one then it is K-equivalent to a quadratic singularity. One may ask for corank 1
maps in the range n < p, if the disentanglement is homotopically a sphere, then is
the map A.-codimension 17



3 Classification

3.1 Proof of Theorem 2.1 part 1
Firstly we define the augmentation of a map-germ.

Definition 3.1 Let f : (C*,0) — (C?,0) be a map with a I-parameter stable un-
folding F-: (C* x C,0) = (C? x C,0), where F(z,A) = (fa(z),)). Then the
augmentation of f by F is the map Ap(f) := (frz(z), ).

If f has A.-codimension 1 then Apr(f) has A.-codimension 1 and the equivalence
class of Ap(f) is independent of the choice of miniversal unfolding of f. See Propo-
sition 2.1 and Theorem 2.4 of [2]. Thus we can produce new codimension 1 maps
from old codimension 1 maps. If f is not the augmentation of another germ then f
is called primitive.

One can also generalise this definition so that the unfolding parameter is replaced
by a function, see [4].

To prove part 1 of Theorem 2.1 we use results from the classification in the
p = n+ 1 case given in [2]. Let us follow them and begin by defining a map
f£:(C¥71,0) = (C*,0) by

-1 -1
Fllu,,y) = @0,y + ) ugh yt P + Y uyd).
=1 i=1

By Lemma 4.1 of [2] the A.-codimension is 1. If we label the last two coordinates
of C# Y; and Y; then the A.-tangent space is

TASf = 0(f)\{/8/0Ys,y~8/0u,...,y8/dui1} +
(*18/0v, +4'8/8Ya, ..., yB/dui1 +1'0/0Ya) .

Let us now define an extension of this map, f&" : (C#—1+7,0) — (C2+r(+1) ).

-1 -1 L 1
vy w) = @,y D ug y D v w, Y wiar, Y wey).
i=1

i=1 i=1 i=1

Through augmentation we get a map of the form in Theorem 2.1. By the proof of
Proposition 3.7 of [6] it is known that f'" is finitely determined. However we can
do better than this as the following shows.

Theorem 3.2 The map f"" has A.-tangent space equal to
TAS™ = 0(f*")\{4'0/0Y2,4'"20/0vy,...,y8/0u_1} +
(y*10/0v, + 4'0/8Ys,...,y0/0u_1 +y'0/0Yz) .

Hence f“" has A.-codimension equal to 1. To prove the above theorem let us
investigate what the effect of extension is.
Suppose we have a finitely determined map & : (C*,0) — (C?,0) such that

h('wl,...,w;,y,ul,...,ul._l,m) = (wl,...,wz,

1 -1
Zwiyi:yl+1 + Z‘Uiy‘,u:[, ceey U1, T, fl(u'1 z, y)’ re 7ft(u’zvy))'
i=1 i=1

Let Ox denote the ring of function germs at 0 for the germ (X, 0). The tangent
space T A, is a h*(Oc ) submodule of (Oc-)P. Let e; denote the standard basis
vector for the ith copy of Ocn .



Lemma 3.3 Ogne; € TAh forall1 <i<1+1.

Proof. It is evident that we can reduce the requirement to y*e; € T'A. for all
i=1,...,l+1.
Note that

e €TA, <= yFle; €T A, k—i2>0.(x)

This follows from the fact that y7(e; + y’e;11) € TR, and it implies that it suffices
to show that y*e;.; € T A, for all .

For1<s<le;+y’eiy1 € TR, and e, € TL, s0 y?e;41 € T A.. We will now
use induction: Suppose y®e;1 € T A, for all s < k then y¥e;y; € T A,

The number & will be of the form &k = (I + 1)+ with r > 1 (assuming k < [ +1
already dealt with as above) and 0 <i <.

Case i = 0: Clearly (y"** + 22;11 ujyd) erp1 € TLe so y™He ) € T A, as the
other terms in y in the expansion have order less than (I + 1).

Case ¢ > 0: The assumption y®e;1 € T' A, for all s < r(I + 1) + ¢ implies that
y*le; € TA, for alli < s <r(l+ 1)+ by (%), i.e.

ye; € T A, for all s < r(I + 1).(x)

Obviously (y*+! +Z;-;11 u;49)"e; € TL, and this with (++) implies that " (I+1)e; €
T A.. Thus as ") (e; + ye;y1) € TR, we deduce that y"(++ie, , e TA,. O

After applying this lemma to the map f%" all that is required is to check that if g
is a function in variables w; to w; then gy*@/8Y> is in the tangent space. This is
easy to check. :

The maps f'" have a very interesting property which will be very useful.

Lemma 3.4 The A-orbit of f" is open in its K-orbit.

Proof. Let the dimension of the source be n and that of the target be p. and
denote the normal space of the Ge-orbit by NG.. It is easy to calculate that
dim NX.(f*") = p + 1 (It should be noted that this is not true for augmenta-
tions of f4" as then we have e; € TK, for at least one i.) Thus we find that
dim N A, = dim NK, — p. But dim N A, = dim NA—n (as f*" is not .A-stable, see
[14] p.510) and dim NX, = dim NX + (p — n) ([14] p.509). So dim NA = dim NX,
implying that the A-orbit is open in the K-orbit. ]

Proof (of Theorem 2.1). We now generalise the proof of Proposition 4.3 of [2].
Suppose that f : (C*,0) — (C?,0) is a corank 1 A.-codimension 1 map-germ, n < p
with multiplicity { + 1. The versal unfolding G : (C* x C,0) — (C? x C,0) is a
n —Il(p — n+ 1) + 1-fold prism on a minimal stable map-germ of multiplicity { + 1.
Thus by Theorem 2.7 of [2] f is the n — I(p — n + 1) + 1-fold augmentation of an
Ac-codimension 1, corank 1, multiplicity ! + 1 map-germ f' : (C2+(p—n+1)-1 () _,
(C2+(p—n=1)(+1) (). Such a map is obviously K-equivalent to the map fHP—"1,
The A-orbit of f*P~"=1 is open in its K-orbit by Lemma 3.4 and by Lemma 3.12
of [2] there is at most one open .A-orbit in a given complex contact class, thus we
conclude that f' and f?~"~! are A-equivalent.

The n — I(p — n + 1) + 1-fold augmentation of f>P~"~! is A-equivalent to f as
the A-equivalence class of the augmentation of codimension 1 map-germ g depends
only on the A-equivalence class of g. O



3.2 Order of determinacy

To find the order of determinacy we use the techniques of [13], in particular his
Proposition 3.8, which we summarise as the following. Denote the maximal ideal of
Oc« by my and use the standard ¢f and wf notation of Singularity Theory, see[14].

Proposition 3.5 Let f: (C*,0) = (C?,0) be a map-germ. Let
Dcitf(c)+wf(bc)+m;0;
be an Ocn -module such that
mi0; C tf(mnfce) + f*(mp) - D + mito;.
Then f is s-determined.

Let f be as in Theorem 2.1. Then by calculation one can see that T' A, f has the
same type of structure as T A.(f*"): Let m = p—rl — 1 then v’e,,, and ¥ eryi_1,
i=1,...,1 — 1 are missing from T A, f, but y'en + ¥**e;4;1 is included. Thus if
we let m,,_; denote the ideal generated by the variables other than y and

D = (Orn vers Onymy10p + <yl> Ony...ymy 10, + <y2> Oh,
Onymyp 10, + (yH-l) On,On,-.-,05)

where the m,,_10, + (y7) O, terms begin at position [/, then D is an O,-module
contained in T' A, f.

The non-trivial problem is to show that, for all 4, y*+2¢; is in the right hand
side of the second inclusion in the proposition. For the positions corresponding
to the functions wj,...,u;—1, v1,...,V—1 and ws1,..., W, we can use elements of
tf(mu0cr ) modulo m!}3. For the r extension terms and position 2/ — 1 we use
y'+2 + 3171 viyt, elements of tf and f*(m,)- D. For the remaining position we use
y0f /8y and terms in ¢f and f*(m;) - D.

So f is at least (I + 2)-determined. This is in fact exact. The (I + 1)-jet is
not finitely A-determined as can be seen by showing (using the method of [8])
that (I + 1)th multiple point space has dimension greater than that of a finitely
determined map-germ.

4 'Topology

Theorem 2.6 part 1 on the topology of the kth disentanglement has been proved
for the p = n + 1 in Corollary 5.3 of [5], though note that this was first proved in
this case for k = 1 in [1], see [2]. For more general p that Dis;(f) is homotopically
equivalent to a sphere can be deduced from the proof of Proposition 3.7 of [6] and
Theorem 4.24 of [3] but the following, which investigates higher disentanglements,
also shows it.

We begin with noting from Theorem 3.2 of [5] that for an augmentation Dis,,, (Ar f)
is homotopically equivalent to the suspension of Dis,,(f). Thus we can assume our
map is primitive.

Define f, : C%#—1 x C™ — C% x C0+D) by

-1 -1 1 1
felu,,9,0) = (u,v, 3+ wy v 24 vyt w, Y wayt, L D ey
3 i=1

i=1 i=1 i=1

Then, for ¢ # 0 we can produce the disentanglement map for fo.



Define g; : C?*~1 — C% by g; := fi|fi *(C* x {0}), then g; for ¢ # 0 gives the
disentanglement map for gy, a corank 1 map-germ of 4.-codimension 1. The space
Dis,,(g) is homotopically equivalent to a 2I — 1 sphere if m = 1, and contractible
or empty for m > 1 by Corollary 5.3 of [5]. We shall show that Dis,,(fo) is ho-
motopically equivalent to this space. In the following we assume ¢ # 0 defines the
disentanglement maps.

For a continuous map h : X — Y of topological spaces let D*(h) denote the kth
multiple point space as defined in [8].

From the natural inclusion of C# into C#*+"+1) we induce a natural map ¢F :
D*(g:) = D ().

It is shown in the proof of Proposition 3.7 of [6] that D*(g;) and D*(f,) are
non-singular for £k < [ + 1, and from the description there we can deduce that
D*(f;) contracts equivariantly onto D*(g;). The only other non-trivial spaces are
D*(f,) and D**(g;) and from the description in [6] it follows that these are Si-
equivariantly homeomorphic Milnor fibres of what is effectively the same isolated
complete intersection singularity.

To conclude that the natural map Dis,,(go) — Dis,,(fo) induces an isomorphism
on integer homology for all m we use Theorem 3.2 of [6]:

Lemma 4.1 Suppose that h; : X; — Y;, i = 1,2, are finite and proper continuous
maps for which the image computing spectral sequence exists (this is o technical
condition which is true for the maps under consideration here) and that there exist
continuous maps ¢ and Y such that the diagram

hh: X3 —=» 1
¢4 1y
ha: X5 — Y,

commutes. Then if the map ¢* : D¥(hy) — D*(hs) is an Sy-homotopy equivalence
for all k > 1, then ¥|p,.(hy) ¢ Mm(h1) = Mpy(h2) induces an isomorphism on
integer homology groups for all m > 1.

We turn our attention to the fundamental groups of the image multiple point
spaces and to this end we prove the following.

Lemma 4.2 Suppose that f : X — Y is a finite and proper continuous map,
D™(f) is path connected and that there exists a point (z1,...,%m) € D™(f) such
that . = z4 for ¢ # d.

1. If D™Y(f) is path connected then the natural map of fundamental groups
11 (D™Y(f)) = m(Mpn-1(f))
s surjective.
2. If D™*X(f) is empty then
71 (D™(f)) = w1 (Mm(f))
18 surjective.

Proof. (i) For a continuous map h we can define £ : D¥(h) — D*~1(h) by pro-
jecting through omission of the last copy of the source of h. Let D;-“ {(h) be the image
of D¥(h) in DI(h) (through composition of maps &*). Then M, (%) is the image of
hy := h|D{. We have

i Di(h), forj<r,
¥ = 7
Di(fr) = { Di(h), forj>r.



As D™ 1(f) is path connected, D?(fm—1) is path connected for j <m —1 as it is
the image of D™~1(f) in D’(f). As D™(f) has a point with z, = z4, ¢ # d, then
so does DY(fp,—1) for all 2 < 5 < m. These two facts imply that every point in
Di(f) is connected by a path to a point with z. = z4, ¢ # d.

Now, for any continuous map h, DI*1(k) = D? (&7 : D7(h) — D*~'(h)). From
this and Theorem 4.18 of [3] we deduce that for j < m + 1 that

T1(D? (frme1)) = (W (D (fm-1))) = 1 (DT (fm-1))
is surjective and produce a chain of maps to get
m (D™ f)) = m (D™ (fm—1)) = T (Mm-1(f))

surjective.

(ii) One can follow a similar argument to show that 71 (D™ (f)) = 71 (Mm(f))
is surjective. As D™*1(f) is empty then €™ : (D™(f)) = e™(D™(f)) = D™ (fm)
is a bijective and proper map so is a homeomorphism. O

Proposition 4.3 The inclusion Dis,,(go) — Dis(fo) is a homotopy egquivalence
for all m > 1 and hence Theorem 2.6 part 1 is proved.

Proof. Note that M,,(f;) and M,,(g:) are Stein spaces and so are homotopy equiv-
alent to CW-complexes of dimension equal to their complex dimension.

If dimg M, (f;) < 1 then the statement is elementary to prove. If dim¢ My, (f;) >
1 then it is enough to show that M,,(g:) and M,,(f;) are simply connected because
a map between simply connected CW-complexes that induces an isomorphism on
integer homology is a homotopy equivalence by Whitehead’s theorem, [15], p220.
In our given range we know that M,(g;) is simply connected.

Note that D?(f,) is contractible for j < [ + 1 and D'*1(;) is the Milnor fibre
of an isolated complete intersection singularity and so is homotopically equivalent
to a wedge of spheres. Higher multiple point spaces are empty.

Case dim D*+1(f;) > 0: Here D'*!( ;) is connected and since the restriction to a
reflecting hyperplane in the ambient space is the Milnor fibre of an isolated complete
intersection singularity, see [8] Theorem 2.14, there exists a point (21,...,%141)
such that z. = z4 for some ¢ # d. From Lemma 4.2 we deduce that m (D™(f:)) =
m (Mp(f:)) is surjective for all m <1+ 1. For m < I+ 1 the result is then true.
For the [ + 1 case we note that we have are only concerned with dim¢ Mi+1(f:) > 2,
i.e. D'*1(f;) is simply connected.

Case dim D**1(f;) = 0: As dim D**'(f;) = I — 1 the only situations to check are
for M;(f:), which is simple, it is homotopically a circle, and for My(f;) which has
dimension 0. ]

Proof (of Theorem 2.6 part 2). From Proposition 3.7 of [6] we see that a good
real perturbation exists, (use £ < 0 in f;) and that the natural map Dis,,(fr) =
Dis,,(fc) induces an isomorphism of integer homology groups.

If dim M, (fc) < 1 then the statement is trivial. For the other situations we
must show that Dis,, (fr) is simply connected. Calculations show that D*(fgr ) and
D¥*(fc:) are connected, non-singular and contract onto the diagonal for k£ < 1 + 1.
The space D't1(fc;) is simply connected when its dimension is greater than 1, and
D'"1(fn 4) is Siy1-homotopically equivalent to it. Thus by Lemma 4.2 the image
multiple point sets for fg; are simply connected.

Again using Whitehead’s theorem we conclude that the spaces are homotopically
equivalent. O

‘We finish with a theorem on augmentations.



Theorem 4.4 Suppose that f : (C",0) — (CP,0) is the augmentation by the iso-
lated hypersurface singularity g : (C?,0) = (C,0) of the corank I A.-codimension
1, multiplicity I + 1 map-germ. Let g have Milnor number u(g).

Then Dis1 (Ar,g(f)) s homotopically equivalent to a wedge of u(g) n—~1Il(p—n—
1) + g-spheres. Higher disentanglements are contractible or empty. Furthermore,

p(g) < Ae — cod(Ar,g(f)),
with equality if g is quasihomogenous.

Proof. The result on homotopy follows from Theorem 3.2 of [5].
Note that f is quasihomogeneous and hence so is the unfolding F'. Then, (de-
noting Tyurina number of g by 7(g) and Milnor number by u(g)),

Ae —cod(Arg(f)) = 7(g)Ae — cod(f), by Theorem 3.3 of [4],

= 7(g)
= < u(g), with equality if g quasihomogeneous.
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