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Abstract

‘We suggest a construction that, given an orbital diffeomorphism be-
tween two Hamiltonian systems, produces integrals of them. We treat
geodesic equivalence of metrics as the main example of it. In this case,
the integrals commute; they are functionally independent if the eigenval-
ues of the tensor ¢*®§a; are all different; if the eigenvalues are all different
at least at one point then they are all different at almost each point and
the geodesic flows of the metrics are Liouville integrable. This gives us
topological obstacles to geodesic equivalence.

1 Introduction

Let g = (gi;) and § = (gs;) be smooth Riemannian metrics on the same manifold
M7 of dimension 1 > 2.

Definition 1. The metrics g and § are geodesically equivalent, if they have the
same geodesics (considered as unparameterized curves).

This is rather classical material. The problem of describing of geodesically
equivalent metrics was stated by Beltrami [3]. Since the time of Beltrami, the
main tool for investigation of geodesically equivalent metrics was the following
system of PDE

2(n + L)ije = 2:;0 k + §ix©,; + G, © ;. (1)

which is the criterion for the metrics g, § to be geodesically equivalent. Here ©

denotes the function In (%%) and T); is the covariant derivative of the tensor

T with respect to the metric g.
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Although the system is non-linear and over-determined, it is possible to
solve it near the points where the eigenvalues of the tensor g**g,; do not bifur-
cate. This was done by Dini [7] for surfaces and Levi-Civita [10] for manifolds
of arbitrary dimension. All attempts to solve this system near the points of
bifurcation or globally were unsuccessful. Moreover, there were almost no ex-
amples of geodesically equivalent metrics on closed manifolds: the only known
examples were the Beltrami’s examples of metrics geodesically equivalent to the
round metric on the sphere [3], some examples on the torus which immediately
follow from Levi-Civita [10], and a series of examples on the sphere with both
metrics being certain metrics of revolution obtained by Mikes [19].

All known global results on geodesically equivalent metrics require additional
strong geometrical assumptions. For example, for Einstein or (hyper)Kahlerian
metrics beautiful results were obtained by Lichnerowicz [11], Venzi [28], Mikes
[20], Couty [5] and Hasegawa and Fujimura [8].

2 Results

In our paper we present a construction which, given a diffeomorphism between
two Hamiltonian systems that takes the orbits and the isoenergy surfaces of the
first Hamiltonian system to the orbits and the isoenergy surfaces of the second
one, produces n integrals of the first system, where n is the number of the
degrees of freedom of the system.

The construction is applied to geodesically equivalent metrics: for such, an
orbital diffeomorphism & is given by ®(z,¢) = (z, J"'%H;-f) Here (z,£) € TM™,
x is a point of M™ and £ € T,M™.

We identify the tangent and the cotangent bundles of M™ by the metric g.
This gives us the Poisson bracket { , } on TM™. Recall that two functions
Fy,F; : TM™ — R commute, if the Poisson bracket {Fi, F3} vanishes. By
the geodesic flow of the metric ¢ we mean the Hamiltonian system with the
Hamiltonian H % 29(¢,€). It is known that, for any geodesic v : R — M",
the curve (v,%) : R - TM™ is an orbit of the geodesic flow of g and vice versa.
Recall that a function F' : TM™ — R is an integral for the geodesic flow of g,
if it is constant on any orbit of the geodesic flow. It is known that a function
is an integral for a Hamiltonian system, if and only if it commutes with the
Hamiltonian.

The main result of the paper is the following theorem.

Theorem 1. Let g and § on M™ be geodesically equivalent. Denote by G :
TM™ — TM™ the fiberwise linear mapping given by the tensor G = g*°g,;.
Consider the characteristic polynomial

det(G — pld) = cou™ + 1™t + ... + cp.

The coefficients c1, ..,¢, are smooth functions on the manifold M™, and ¢y =



(=1)". Then the functions I def 9(Sk€,€), k=0,1,..,n — 1, where

k+2

def ((det(g)\ ™+ : (k—it1
5 (Z5) 2,6,

are integrals for the geodesic flow of the meiric g and commute pairwise.

Remark 1. According to [10], in local coordinates, the integral

I = (det(*")> e

det(3)

was known to Painlevé. The integral In_1 is the energy integral (multiplied by
minus two). The integrals I, I, ..., I,_» are new.

Corollary 1. Let the geodesic flow of g be ergodic. Then the following two
statements are eguivalent:

1. The metrics g,§ are geodesically equivalent.

2. The metrics g,g are homothetic: § = C g, where C is a positive constant.

It is known (see, for example, [2]) that, for closed manifolds, the geodesic flow
of any metric of negative sectional curvature is ergodic. Therefore each metric
of negative sectional curvature on a closed manifold does not admit non-trivial
example of geodesically equivalent metric.

Definition 2. Metrics g,§ on M™ are strictly non-proportional at a point z €
M™, if all eigenvalues of the restriction of the mapping G to T, M™ are different.

Let us denote by N(z) the number of different eigenvalues of the restriction of
G to T,M™.

Corollary 2 Suppose M™ is connected. Let metrics g, § on M™ be geodesically
equivalent. Then at almost each point y € M™ the number N(y) is equal to

By Corollary 2, if two geodesically equivalent metrics on a connected mani-
fold are strictly non-proportional at a point then they are strictly non-proportional
at almost each point of the manifold. Then, as we will show in Section 9, the
integrals I are functionally independent almost everywhere so that the geodesic
flow is completely integrable. This gives us a topological condition that prevents
a closed real-analytic manifold from possessing a pair of real-analytic geodesi-
cally equivalent metrics that are strictly non-proportional at least at one point.
This obstacle immediately follows from the following theorem of Taimanov [25)].

Theorem 2 ([25]). If a real-analytic closed manifold M™ with a real-analytic
metric satisfies at least one of the conditions:



a) m(M™) does not contain a commutative subgroup of finite index and
b) dimH,(M™; Q) > dimM™,
then the geodesic flow on M™ is not analytically integrable.

Corollary 3. Let M™ be a closed connected real-analytic manifold supplied with
two real-enalytic metrics g, § such that the metrics g,g are geodesically equiva-
lent and strictly non-proportional at least at one point. Then the fundamental
group T (M™) of the manifold M™ contains a commutative subgroup of finite
indez, and the dimension of the homology group H;(M™; Q) is no greater than
n.

For the two-dimensional case, in view of the results of Kolokoltsov [14] and
Kiyohara [12], we do not need the condition for metrics to be real-analytic:

Corollary 4. Let M2 be a closed surface of genus greater than one equipped
with metrics g, §. Then the following two statements are equivalent:

1. The metrics g,§ are geodesically equivalent.

2. The metrics g,g are homothetic: § = C’: g, where C is a positive constant.

This corollary is a partial answer to the following question: for closed sur-
faces, which local structures constructed by a given metric, determine the met-
ric. Corollary 4 shows that, for surfaces of negative Euler characteristic, the
projective class of a metric (= the set of all metrics geodesically equivalent to
the metric) uniquely defines the metric modulo multiplication by a constant.
The projective class of a metric is a differential-geometrical object (see for ex-
ample Chapter 4 of Kobayashi [13]), and, generally speaking, it defines the
metric neither locally nor on closed surfaces of genus one or zero.

For metrics on surfaces, the existence of a geodesically equivalent metric is
equivalent to the existence of an integral quadratic in velocities. The metrics
are homothetic if and only if the integral is proportional to the Hamiltonian of
the geodesic flow, see [15]. Quadratically integrable geodesic flows on surfaces
were described in Kolokoltsov [14], Kiyohara [12], Igarashi et al [9], Bolsinov et
al [4] and Babenko and Nekhoroshev [1]. These results allow one to describe
completely all pairs of geodesically equivalent metrics on closed surfaces, and
also obtain a slightly weaker description for pairs of geodesically equivalent
metrics on geodesically complete (with respect to one of the metrics) surfaces.

Below we reformulate some beautiful results from the theory of quadratically
integrable geodesic flows on surfaces in terms of geodesically equivalent metrics:

Corollary 5. Let metrics g, on the torus T? be geodesically equivalent. If they
are proportional at a point x € T2, then g = Cg, where C is a positive constant.

Recall that a vector field on M™ is Killing (with respect to a metric), if the
flow of the field preserves the metric.



Corollary 6. Let metrics g, § on the sphere S be geodesically equivalent. Then
there are three possibilities.

1. The metrics are proportional at exactly two points.
2. The metrics are proportional at exactly four points.

3. The metrics are completely proportional, i.e. g = Cg, where C is a positive
constant.

In the first case the metrics admit a non-trivial Killing vector field.

In particular, if a metric on the 2-sphere admits a Killing vector field then
any geodesically equivalent metric also admits a Killing vector field, and any
two geodesically equivalent metric on the sphere must have points where they
are not strictly non-proportional. These facts appear to be multidimensional:

Corollary 7. If metrics g,g on a manifold M™ are geodesically equivalent, and
if the metric g admits a non-trivial Killing vector field, then the metric § also
admits o non-trivial Killing vector field.

Corollary 8. Let M™ be closed connected. Let g, § on M™ be geodesically
equivalent. Suppose they are strictly non-proportional at each point of the man-
ifold. Then the manifold car be covered by the torus.

For the two-dimensional case, Corollary 8 is evident and even does not re-
quire the assumption for metrics to be geodesically equivalent. For dimensions
more than two it is not trivial.

Theorem 1 suggests that we look for examples of geodesically equivalent
metrics in the class of integrable geodesic flows. Probably the most famous
integrable geodesic flow is that of the restriction of the Euclidean metric to the
standard ellipsoid

{(x , 22, .. ,.’.l:")ER"'Z:(l)2 }

i=1

Here a; > 0, i = 1,...,m. It appears that this metric admits a geodesically
equivalent one. This is the first example of a metric on the sphere such that
it admits a geodesically equivalent one but does not admit a non-trivial Killing
vector field.

Theorem 3 (Independently obtained in [27] and [23, 24]). The restric-
tion of the metric 3 ;. _,(dz*)? to the ellipsoid

{(m LI ER‘"-Z(:LJ)2 }



is geodesically equivalent to the restriction of the metric

1 z(z": (da:‘)z)
SRERCEE

=1 \ a;

to the same ellipsoid.

The paper is organized as follows. Section 3 is technical. In Section 4, we
present the main construction. There, Theorem 4 produces an explicit formula
for a one-parameter family of integrals from a given orbital diffeomorphism
between two Hamiltonian systems.

In Section 5, we apply Theorem 4 to the orbital diffeomorphism for the
geodesic flows of geodesically equivalent metrics, and prove that the functions
Iy, ..., In—1 from Theorem 1 are integrals of the geodesic flow of the metric g.

In Section 6, we formulate Levi-Civita Theorem about a local form of geodesi-
cally equivalent metrics near the stable points and Painlevé results about com-
mutativity of some special class of integrals.

In Section 7, we prove Corollary 2 and therefore show that almost each point
of the manifold is stable; then it is sufficient to show the commutativity of the
integrals I; near the stable points only which is done in Section 8.

In Section 9 we show that, under the assumptions of Corollary 8, we can
find a Liouville torus which covers the manifcld.

In Section 10, we observe that the integral Jo allows one to transform any
linear (in velocities) integral for the geodesic flow of g into a linear (in velocities)
integral for the geodesic flow of §. This proves Corollary 7.

In Section 11, we verify that, in the elliptic coordinates, the metrics from
Theorem 3 have precisely the form from Levi-Civita Theorem and therefore are
geodesically equivalent.

In a slightly different form, Theorem 1 has been announced in [16], see also
[27]. The quantum version of Theorem 1 has been announced in [17] and will be
published in [18]. For two-dimensional manifolds, Theorem 1 has been proven
in [15, 4].
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3 The integrals Ij in the basis of eigenvectors of
G

Let g, § be Riemannian metrics on M"™. We do not assume that the metrics
are geodesically equivalent. Let us fix z € M™. Consider the linear mapping



G : TuM™ — T, M™ given by the tensor g**g,;. Denote by py > p2 > ... > pn
the eigenvalues of G. Since the quadratic form g, § are positive definite, the
eigenvalues of G are real. Therefore, there exists a basis in the space T, M™
such that in this basis the metric g is given by the matrix dieg(1,1,...,1) and
the mapping G is given by the matrix diag(p1, p2, .., Pn)-

Denote by ¢1 < ¢3 < ... < ¢, the numbers given by

def 1 1
¢ = ;(Plpz---pn) wH
1

Remark 2. It is easy to see that the numbers ¢; are precisely the eigenvalues
1
of the so-called Sinjukov mapping (det(G))*+1 G~1.
Denote by o, the elementary symmetric polynomial of degree p of n variables
¢1 H ¢2, ey ¢ﬂ'

Denote by Up(d;i) the elementary symmetric polynomial of degree p of n — 1
variables

¢1, ¢27 weey ¢i-—17 ¢i+11 ey ¢n-

Consider the characteristic polynomial
det(G — pld) = cou™ + 1™ 1 + ...+ ¢cn
of the mapping G. Consider the mappings Sp, S1, ..., Sp—1 given by the general

formula sz
def 1 g (k—it1
S = (det(G)) Z;c,c: ‘

Lemma 1. The matrices of the mappings Sy are given by
Sk = (~1)"*diag (0rn—r—1(d1), On—k—1(H2); -+» Fnk—1($n)) -
Proof. Tt is easy to see that the coefficients ¢, are given by

— (_1\n—k On—k
% = (=1) (Pr12...05)F L

In particular, .

= (G1dada) il

Let us verify the lemma for £ = 0. We have

S 1y G
° = (det(G)) @

det(G) =cp

1 1

_1\n 23: 1

(0008 (o o )
(—1)"diag(¢2¢3..,?n, ¢1¢3—--£?5m s D182 P20, P102...On—2Pn—1))
(—1)"diag (an—1(¢1)1aﬂ—1(¢2)1 vy Op—1 (‘ﬁn)) .

)



Suppose that the lemma is true for Si_;. Then for S; we have

S ——1 ﬂ_}ﬁG S -———1 :Jﬁ Id
£ (det(c)) ""1+(det(G)) N

= diag (;51—1, é, e ¢—1n) diag ((—1)"“’“(on_k — 0n-k(é1)),

(1" *(on_k — Onck(2))s s (~1)"*(0n—t — Tn-k(dn))) -
Using that (o; — oy (d;,-)) = qﬁial_l(cﬁ,-), we obtain that S; is equal to
(=1)"*diag (on—k—1(1), On—r—1(F2), .0 Tnt—1(n)) -

Lemma 1 is proved.
Consider the function F : R x TM™ — R given by

.Ft(:l:, f) = tn—lIn_l(E, f) + ...+ Io(:l:, E)

For a fixed point (z,&) € TM, the function F; is a polynomial in ¢.
In the proof of Lemma 2 we will show that all roots of the polynomial are
real. Let us denote the roots of the polynomial by

tl(z7 §) S t2(zi E) S S t"_]_(-’L', £)

Lemma 2 Let z be a point of M™. Then for any i € {1,2,...,n — 1} the
following statements are true.

1. Forany § € T, M,
¢i(z) < ti(z,€) < dita(2)-

In particular, if ¢i(z) = dir1(z) then ti(z, &) = di(z) = it ().

2. If ¢i(z) < pit1(z) then for any constant T the Lebesgue measure of the

set
Ve CTM, V, E{t € T,M" : t:(z,6) = 1},

18 zero.

Proof. In the proof we assume that the point z € M™ is fixed. For simplicity,
we will write ¢;, t;(£) instead of ¢;(z), t;(z,£). There exists a basis in the space
T M™ such that in this basis the metric g is given by the matrix diag(1, 1,...,1)
and the mapping G is given by the matrix diag(p1, p2, ..., Pn)-

Let us denote by P; the polynomial

Pi(t) = (t—¢1)(t—¢2)-.(t — Gi1)(t — Biv1)..(t — ¢n) @)
= Y (-1 U0 aa ().

a=0



Then, for any £ = (&1, &2, - €n) € To M™, the polynomial F; has the following
form:

n—-1 n
Fy(z,8) = Y ) (-1 Con-i-1(a)t’
=0 a=1
= — (P)E + P(t)EE + ... + Pu(1)€2) . (3)

Easy to see that the coefficients of the polynomial F; depend continuously on
the eigenvalues ¢; and on the components §;. Then it is sufficient to prove the
first statement of the lemma assuming that the eigenvalues ¢; are all different
and that &; are non-zero. For any a # i, we evidently have P,(¢;) = 0. Then

Fg, ==Y Pa(i)€2 = —Pi(¢:)&}.
a=1

Hence Fy, and Fy,,, have different signs and therefore the open interval |@;, i1
contains a root of the polynomial F. The degree of the polynomial F; is equal
n — 1; we have n — 1 disjoint intervals; any of these intervals contains at least
one root so that all roots are real and the root number ¢ lies between ¢; and
¢ir1. The first statement of the lemma is proved.

Let us prove the second statement of the lemma. Suppose ¢; < ¢;11. Take
a constant 7 € [@;, diy1]- Suppose the measure of the set V; is not zero. Then,
by definition of ¢;, the function

Fr(,8) € (Fi(2,€))s=r

is zero for any ¢ € V,. The function F,(z,£) (as a function on T M™) is
a polynomial in &; since it is zero on some subset of non-zero measure, it is
identically zero. Therefore, by the first statement of the lemma, for any { €
T.M™, the root £;(§) is equal to the constant 7.

Now let us show that, for any number 7 satisfying

$i <7 < Pita,
there exists £ € T, M™, £ # 0 such that ;(§) = 7.

Indeed, consider n,v € T, M™ such that all components of 7 except for the
component number i are zero; all components of v except for the component
number i + 1 are zero. In view of (3), t;(n) = ¢i+1 and ¢;(v) = ¢;. Let us join
7 and v by a curve that lies in 7, M™ and that does not go through zero. Since
the root t;(£) depends continuously on ¢ € T, M™, for any T € [¢;, pi+1] there
exists ¢ lying on this curve such that ¢;(§) = 7.

Thus, ¢; = ¢;41 and the lemma is proved.

4 Orbital diffeomorphisms and integrals

Let v and § be Hamiltonian systems on symplectic manifolds (M, w) and (M,)
with Hamiltonians H and H respectively. Consider the isoenergy surfaces

Q¥ {zeM:H) =k}, Q¥ {zreM:H=) =h},



where h and h are > regular values of the functions H, H respectively. Let U(Q) C
M and U(Q) C M be neighborhoods of the isoenergy surfaces Q and Q.

Definition 3. A diffeornorphism & : U(Q) — U(Q), ®(Q) = Q, is said to be
orbital on Q, if the restriction ®|¢g takes the orbits of the system v to the orbits
of the system .

Denote the restriction ®|g by ¢. Since ¢ takes the orbits of v to the orbits of
o, it takes the vector field v to the vector field that is proportional to . Denote
by a1 : @ — R the coefficient of proportionality, i.e. ¢.(v) = a;0. Since &
takes @ to Q, it takes the differential dH to a form that is proportional to dH.
Denote by a; : @ — R the coefficient of proportionality, i.e. ¢.dH = apdH.
By a we denote the product a;a;. We denote the Pfaffian of a skew-symmetric
matrix X by P£(X).

Theorem 4. Let a diffeomorphism & : U(Q) = U(Q), ®(Q) = Q, be orbital
on Q. Then for each value of the parameter t the polynomial

def Pf(®*w — tw)

PP = Pf (w) (t - a)

(4)
is an integral of the system v on Q. In particular, all the coefficients of the
polynomial P*~1(t) are integrals.

Proof. Denote by o, & the restrictions of the forms w,® to Q, Q respectively.
Consider the form ¢*& on Q.

Lemma 3 ([26]). The flow v preserves the form ¢*7.

Proof of Lemma 3. The Lie derivative L, of the form ¢*& along the vector field

v satisfies
Ly¢"5 = d[1,¢"7] + 1,d [¢*5] .

On the right side both terms vanish. More precisely, for an arbitrary vector
u € T;@ at an arbitrary point z € ) we have

1v¢*6(u) = 5'(¢* ('U), ¢* (u))
= 6-(0'11_}_7 ¢* (u))
= —a1dH(¢.(u))

Since the form @ is closed, the form & is also closed and d [¢*7] = ¢*(d5) = 0.
Lemma 3 is proved.

It is obvious that the kernels of the forms o and ¢*& coincide (in the space
T:Q at each point z € @) with the linear span of the vector v. Therefore these
forms induce two non-degenerate tensor fields on the quotient bundle TQ/(v).
We shall denote the corresponding forms on T'Q/{v) also by the letters o, ¢* .

0.

Lemma 4. The characteristic polynomial of the operator (o)~ (¢*3) on TQ/{v)
15 preserved by the flow v.

10



Proof of Lemma 4. Since the flow v preserves the Hamiltonian H and the form
w, the flow v preserves the form o. Since the flow v preserves both forms, it
preserves the characteristic polynomial of the operator (¢)~(¢*3). Lemma 4
is proved.

Since both forms are skew-symmetric, each root of the characteristic poly-
nomial of the operator (o)~!(®*#) has an even multiplicity. Then the charac-
teristic polynomial is the square of a polynomial §"~1(t) of degree n — 1. Hence
the polynomial 6" ~1(t) is also preserved by the flow v. It is obvious that

1 Pf (¢* — to)

Pf (o) (5)

5 (0) = (1)

The last step of the proof is to verify that

Pf(®*@w — tw) def

(t—a)p"t = —o o 2 A

Take an arbitrary point z € Q. Consider the form ®*@ — aw on T, M. The form
1,(®*® — aw) equals zero. More precisely, for any vector u € T; M we have

1 (®*0 —aw) = @(P.(v), Bu(u)) — aw(v,u) =
= a(a1v, P.(u)) — aw(v,u) =

—a;dH(®,(u)) + adH =

= —adH +adH =0.

There exists a vector A € T, M such that w(A,v) # 0 and the restriction of the
form 2 4 (®*@—aw) to the space T, M equals zero. More precisely, since the forms
®*@, w are skew-symmetric, then the kernel Kg-g5 4, of the form ®* @ — aw has
an even dimension, and the kernel of the restriction of the form ®*®& — aw to
T, Q has an odd dimension. Thus the intersection Kg«g-aw N(T: M\ T,Q) is not
empty. For each vector A from the intersection we obviously have w(A4,v) # 0
and 14(®*® — aw) = 0. Without loss of generality we can assume w(4,v) = 1.
Consider a basis (v, €1, ..., €2n—2) for the space T, Q. The set (4,v,e1,...,e2n—_2)
is a basis for the space T; M. In this basis we have

0 a—t (%)
det| —(a—t) 0 0---0
—(%) 0 [ (®*@ — tw)ey,....e2n_2) |

det(®*@ — tw)

(e — t)2 det((®*w — tw)(e1 ,...,ezn_z))
(a - t)? det(¢* — to),

where (8@ — tw) (e, ... .esn_z) 15 the matrix of the form ®*& — tw in the basis
(e1,-.-€2n—2). Finally, 6"~ = P71, Theorem 4 is proved.

11



5 Geodesic equivalence and corresponding inte-
grals

Let g and g be Riemannian metrics on a manifold M™. Let them be geodesically
equivalent. Our goal is to prove that the functions I from Theorem 1 are
integrals of the geodesic flow of g.
Define ot
€
U;Mn = {(z,§) eTM": ”6”!1:7‘}:

where z € M", £ € T, M™ and ||¢]|, def V9(&, &) = 1/9:;€°¢7 is the norm of the
vector { in the metric g.
By the geodesic flow of the metric ¢ we mean the Hamiltonian system on

T™M™ (a.s a symplectic form we take wy ef d[g:;¢7dz?]) with the Hamiltonian
def |
Smce the metrics 9,9 are geodesically equivalent, the mapping ® : TM™ —

TM™, &(z,€) = (w ”5“ ), takes the orbits of the geodesic flow of the metric g

151E
to the orbits of the geodesic flow of the metric §. This mapping is a diffeomor-
phism (for r # 0), takes U;M™ to U7 M™ and is orbital on U;M™. Obviously
the surfaces Uy, U} are regular isoenergy surfaces {H, = £}, {H; = £}.
By Theorem 4, in order to obtain a family of first integrals we have to find

the polynomial A™(t) and divide it by (t—a). In our case H, = Hzo®. Therefore
the function a from Theorem 4 equals to H%H:
In coordinates we have

wy = d[gi;;&dz"] and  wy = d[gi;& dxt).

Therefore,
Hilg g
d*w; = d [ T {’da;" =
! llellz ™
— ”6“9 = . ¢&F k i
S o [l oo ot ne
Wellg - ] 76 o ok
- Ji dz® A dE”.
ags |[oo¢] 4« n e
It is easy to see that at a point ¢ € T, M™ the quantities
A, def [Hfllg 3 ,]
* = g ||lell, %5

form an element of T, M™ ® T, M™. Since the metrics are positively definite,
we can choose a basis in T, M™ such that the matrices of the metrics g, § are
diagonal matrices diag(1,1,...,1) and diag(p1, p2, ---, Pn), Tespectively. Then

Asj def 9 (Et VE +o 4 )_

—Pings =
% P1E* + o+ pptn?

12



Pi i
71111 lI€113
= diag(ps,..., ptn) — A® B,

3]F;
5 ”6“.‘] —Pifi ( glg _pJH%H?EJ) =

def def .
where p; = —mH%Hj, A; = pig* and

Hells _ . 11éllg
B; def H_ETI-: p’”ﬁ E: éi‘

o €13
We have
, - | (x) | (A + tdy;) |
det(P*wy — twy) = detI 7 o R 0
= det(A,-j + t6,-,-)2.
Therefore,
A™(t) = det (diag(t + pa, ...yt + ptn) —a ® b). (6)
Lemma 5. The following relation holds:
A™Mt) = (t+pa) - (E+pn) = (ab)(E +p2) - (E+pn) — o
— (t+m)- (+ pn-1)(anbn) (7)

The lemma follows from induction considerations.

To divide the polynomial by (¢ —a) we shall use the Horner scheme. Suppose
that A™(t) = t" 4+ ap_1t" L +---+ag and 6" 1 (t) = t* 1+ byat™ 2+ + by,
Then we have

bp-1=an =1,
bp—2=0np-1+a, (8)

by = agy1 + abgya,

0 = ag + abg. (9)

It follows from Lemma 5 that
ao = (p1.pin) — (A1B1)(pi2.--ptn) — -+ — (p1--pin—1)AnBn =
n
S () G
07 ey ) 2o on)

Combining with (9) we get

_ 90 _ _qyeer (LY
by = 2 —( 1) (”6“3) (pl Pn)-
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Since 2g:;¢'¢7 is an integral of the geodesic flow of the metric g, the function

Io = (p1--- pn) " *HTg(¢, &)

is also an integral of the geodesic flow of the metric g. Using Lemma 5 we have

Gn-1 = (1+ ..+ pn)— (A1B1+..+ A,B,) =
_ gl 2412 2en2y
= ”6”:5 {(Pl £ 4 ... +pn"E")

) n2y) _ lI€lls
= (o1 + e+ )8+t ™)} - W

Using (8), we obtain
bp-z2 = Gpo+a=

- e
g

— (o1 et o) (P18 + o+ ")}

Therefore, the function

def

L (Pl - 'Pn)_’%"1 {(Plzflz + ...+ pn2€n2)_

= (o1t o) (1€ ot pnﬁ"z)}

2 2
is an integral. (It is easy to see that %@- =(m ---,z;n)_7~+r1 ”il)l )
H
Arguing as above, we see that the functions

_ k42 2
I ¥ (o1 pn) “_1_1{(;)1’““51 + oo+ ppF 2 -

— (1 e pa) (1P ot prERT)
+ (D ok(pry s pa) (028 + e+ put™) },

are integrals of the geodesic flow of the metric g, where by o} we denote the
elementary symmetric polynomial of degree k. It is obvious that (—1)¥o} = cx,
from Theorem 1, and therefore Iy = g(Si,€). Thus Iy, k = 0,...,n — 1, are
integrals of the geodesic flow of the metric g.

6 Levi-Civita Theorem

Let g, § be Riemannian metrics on M™. Consider the fiberwise-linear mapping
G given by the tensor ¢g*®g,;. At each point z € M", consider the different
eigenvalues p; (z) > p2(z) > ... > pm(z) of the restriction of the mapping G to
Ty M™. Let ki(x) be the multiplicity of the eigenvalue p;(z) so that k; (z) + ... +

km(z) = n. Consider the ordered set K(z) def {kr(z), k2(z), ... b ()}

14



Definition 4. A point z € M™ is called stable (with respect to the metrics g,
g), if it has a neighborhood U(z) such that K(z) = K(y) for any y € U(z).

The following theorem was proved in Levi-Civita [10].

Theorem 5 ([10]). Let g, § be Riemannian metrics on M". Let a point z €
M™ be stable; let K(z) be equal to {ky,kz,...,km}. The metrics are geodesically
equivalent in some sufficiently small neighborhood U (z) of the point z, if and
only if there exists a coordinate system T = (%1,...,Em) (in U(z)), where Z; =
(z1, ...,:z:f‘), (1 <€ i < m), such that the quadratic forms of the metrics g and §
have the following form:

9(z,z) = I(Z)A1(Z1,%1) + H2(Z)A2(Z2,Z2) +--- +

+  Un(2) Am(Zm, Tm), (10)
§(%,2) = pIL(2)A1(31,31) + p2ll2(Z) A2(Z2, Z2) + -+ +

+ oIl () Am(Zm, Tm), (11)

where A;(%;,%;) are positive-definite quadratic forms in the velocities T; with
coefficients depending on Z;,
def
I 2 (¢i—d1) (9 — dic1)(Pir1 — i) -~ (bm — i)
and ¢1,¢2,..c; O, 0 < @1 < P2 < ... < Py, are smooth functions such thaet
i(Z:), o k=1
wef B0 9

* constant, otherwise.

It is easy to see that the functions p; as functions of ¢; and the functions ¢;
as functions of p; are given by
. 1 1
pi 1O B

¢

1 1
P (p1p2---pm) 5

so that if m = n then the numbers ¢; from Theorem 5 coincide with the numbers
¢; from Sections 3,7.
Levi-Civita observed that the following functions
Ly = A +---+1,A,,, which is twice the energy integral,
L, = 01(¢21 ooy ¢m)H1A1 +---+ 0’1(¢1, veey ¢m—1)HmAm7
Ly = oa(¢2, s $m)1 A1 + -+ 02(1, s 1) A,

Lm = (¢2¢m)H1A1 + e+ (¢1---¢m—1)HmAm,

are integrals of the geodesic flows of the metric g. Here o denotes the elemen-
tary symmetric polynomial of degree k of the indicated variables. We will call
these integrals Levi-Civita integrals.
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From the results of Painlevé [22] it follows that Levi-Civita integrals com-
mute. More precisely, let D = (d%) be an m x m matrix. Suppose that for any
i,j the element d; depends only on the variables z;. Denote by A the determi-
nant of the matrix D and by A;- the minor of the element d; In the paper [22]
it was shown that, for arbitrary functions 4;(Z;, Z;), quadratic in velocities Z;,
the Lagrangian system with Lagrangian

_ Ay(Z1,%1) | Az(Zs,Z2) A (T, Tm)
T1—A( Ai + A% +...+—_A}n

admits (m — 1) integrals

T, =A (Al(ﬂ?l;zl) (Al)z + A2($27$2) (A )2 + .. +Am($m; xm)(Afn)Z) s

where i = 2,...,m, and if we identify the tangent and cotangent bundles the
Lagrangian T; and consider the standard symplectic form on the cotangent
bundle, then the integrals commute.

If we take di = (#;)™ ¢, then A and A} are given by

A; = (—l)m—lai—l(¢11 ¢21-"7¢j—1)¢j+11"'3¢m) H (¢a - ¢ﬁ)7
a>B>1,a#4,6#]

=0" ] (da—¢s)-
a>f>1
Therefore, '
AA:
W = 0i-1(h1, B2, ey Bjm1, Pjg1, ooy O )L,
so T; = —L; and thus the integrals I; are commute.

7 The eigenvalues of G behave regularly

Let g, g be Riemannian metrics on M™. At each point z € M™, consider the
linear mapping G : T,M™ — T, M™ given by the tensor g**g,;. Denote by
p1(z) > pa(z) > ... > pn(z) its eigenvalues. As in Section 3, we denote by
$1(z) < Pa(z) < ... < ¢n(z) the numbers

def

¢i(x) (@) P1(@)2 (@) pn(a)) T g

p(-’lc

Lemma 6. Suppose the metrics g, § on M™ are geodesically equivalent. Con-
sider a geodesic segment v : [0 —€,1 4+ €] - M™ in the metric g, where € is a
small positive number. Then for any i € {1,...,n — 1} the following statements
are true:

1. $i(7(0)) < ¢ir1(v(1)).
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2. If ¢:(7v(0)) < ¢i11(7(0)) then there exists a neighborhood U(y(1)) of the
point y(1) such that ¢i(2) < ¢ip1(2) at almost every point z € U(y(1)).

3. If ¢i(7(0)) = pir1(7(1)) then there exists T € [0,1] such that
$i(v(1)) = dira (7(7))-

Remark 3. Since any two points of a connected manifold can be joined by a
polygonal line made up of geodesic segments, Corollary 2 immediately follows
from the second statement of Lemma 6. We will use the first and the third
statements in Section 9.

Evidently, any point z such that N(z) = max N(y) is stable.
y n

Corollary 9. For geodesically equivalent metrics, the set of stable points points
15 everywhere dense.

Proof of Lemma 6. Suppose the metrics g, § on M™ are geodesically equiv-
alent. Consider the geodesic 7y : [0 — ¢,1 + ¢] = M™ in the metric g. As in
Section 3, consider the the polynomial in ¢ function

Fi(z,8) =t" L _1(z,8) + ... + Ip(z, §)

and its roots
ti(x,€) < ta(x,€) < ... <tpa(z,8).
By Theorem 1, the functions I are constant on the orbits of the geodesic
flow of g. Then each root #; is also constant on each orbit (v, %) of the geodesic

flow of g so that
t:(7(0),4(0)) = ti(y(1), ¥(1)).

Using Lemma 2, we obtain

¢i(7(0)) < t:((0),4(0)), and t(y(1),¥(1)) < b (7(1))-

Therefore ¢;(7(0)) < ¢;11(7(1)) and the first statement of Lemma 6 is proved.

Let us prove the second statement of Lemma 6. There exists a sufficiently
small neighborhood U (-y(1)).of the point (1) and such that the point ¥(0) can
be joined with any point of U((1)) by a geodesic lying in a small tubular neigh-
borhood of the geodesic y. We assume that any two points of the neighborhood
U(v(1)) can be joined by a geodesic; for example we can assume that U is a
small ball of radius less than the radius of injectivity. Suppose ¢;(y) = ¢i+1(y)
for any point y of some subset V C U(y(1)). Then by the first statement of
Lemma 6, the value of ¢; is a constant (independent of y € V). Indeed, joining
any two points yo,y1 € V by a geodesic, we have

#i(yo) < div1(y1) and ¢i(y1) < biv1(¥o)-

Denote this constant by C. Let us prove that ¢;(7(0)) = ¢;+1((0)) = C. Let
us join the point y(0) with every point of V' by all possible geodesics. Consider

17



the set Vo C T, (g)M™ of the initial velocity vectors (at the point y(0)) of these
geodesics.

By the first statement of Lemma 2, for any geodesic ; passing through any
point of V, the value ¢;(71,71) is equal to C. Then, by the second statement of
Lemma 2, the measure of the set V¢ is zero and therefore the measure of the
set V is also zero. The second statement of Lemma 6 is proved.

Let us prove the third statement of Lemma 6. Let ¢;(v(0)) = ¢i11(7(1)) = ¢
for some ¢ € {1,..,n — 1} (and for some constant ¢). We will assume that
$:(7(0)) < ¢it1(7(0)). Let us show that the geodesic vy consists of the points
where either ¢; or ¢;11 (or both ¢; and ¢;11) are equal to ¢.

If t; is a multiple root of the polynomial F;(v(0),4(0)), or if there exists a
point z € U(y(0)) C M™ such that ¢;_;(z) = ¢ then the statement obviously
follows from Lemma 2 and the first statement of Lemma 6. Suppose t; is not
a multiple root and ¢;_;(z) < ¢ for any z from some neighborhood of v(0).

Consider the function Fy : TM™ — R. Let at some point (z,v) € TM™,
v # 0, the differential dFy is zero. Let us show that then either ¢; or ¢;y; (or
both ¢; and ¢;11) are equal to ¢.

Indeed, consider the coordinate system such that the metric g at the point
z is given by the diagonal matrix diag(l,1,..,1) and the mapping G is given by
the diagonal matrix diag(p1, p2,--, pn). Then the restriction of the function Fy
to the tangent space T, M™ is given by

- ZPa(¢)£§u

a=1
where the polynomials P; are given by (2). The partial derivatives % are

O0F

3, 2P, (¢)éu-
Then ¢ is equal to one of the numbers ¢, ..., ¢, ; by assumption it can be equal
to either ¢;(z) or ¢iy1(2).

Now let us show that the differential dF; vanishes at every point (y(7), ¥(1)).
Evidently the differential of any integral is preserved by the geodesic flow so that
it is sufficient to prove that the differential vanishes at the point ((0),4(0)).

By Lemma 2, we have

¢ = ¢:i(7(0)) < t:(7(0),7(0)) = ti(v(1),4(1)) < dira(v(1)) = ¢

so that ¢ is a root of the polynomial F;(7y(0),¥(0)) and therefore the orbit (-, %)
of the geodesic flow of g lies in the topological space

QY {(2,n) € TM™: Fy(z,n) = 0}.

In order to show that the differential dF,; vanishes at the point (y(0),(0)) €
TM™, we show that any neighbourhood W C @ C TM™ of the point (y(0),¥(0))
in the topological space @ is not homeomorphic to a disk.
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By assumptions, the eigenspace of G corresponding to the eigenvalue ¢; is
one-dimensional in some small neighborhood U C M™ of the point v(0). Then
there exists a smooth vector field v on U such that Gv = p;v and g(v,v) = 1. In
particular, the eigenvalue ¢; depends smoothly on the point of U and therefore
the polynomial P;(t) from (2) depends smoothly on the point of U. Further we
will write P;(¢; z) instead of P;(2).

Consider a coordinate system in T,(o)M™ such that the metric g is given by
the matrix diag(l,1,...,1) and the mapping G is given by the matrix

diag(p1(7(0)), p2(7(0)), ..., pn(¥(0)))-

In this coordinates, the component number : of the vector v is equal 1 and the
other components are zero; for any vector 7, its component number ¢ is equal
to the scalar product +g(7,v).

Consider the function I : TM™ — R, I(2,7) def g(m,v). Evidently I(v(0),%(0)) =
0 and the partial derivative g—é at the point (7(0),¥(0)) is not zero. By implicit
function theorem we have then that there exists some neighborhood V' of the
point ((0),(0)) in the topological space

Q* ¥ {(z,m) € TM™ : I(z,7) = 0}

such that V is homeomorphic to the direct product U’ x D™1, where U’ C U
is a neighborhood of the point ¥(0) and D™~! denotes the disk of dimension
n — 1. Moreover, the restriction of the natural projection 7 : TM™ —+ M™ to V
coincides with the natural projection : U’ x D*~1 — U'.

For any point (z,v) € V C TU', consider the points

(Z,I/.l_): (Z,V—l—’l] %):

Fy(z,v
(z,v-) = (z,u—'u Pf(qﬁ'z))) ;
By assumptions, P;(¢;z) is not zero and IE}(%_:T) is grater or equal than zero.

It vanishes if and only if ¢;(z) = ¢. It is easy to see that if, for some points
(2%, v1), (22,v2) € V, at least one of the relations

(Zl,V-}-) = (zz”/-zi-)1 (zlsyl—) = (zz,ui),
(24 vh) = (2%,02), (2',v1) = (2%,12),

holds then automatically (z!,2!) = (22,+2).

1t is easy to verify that Fiy(z, 1) = Fg(z,v_) = 0 and that any point (z, £) of
some neighbourhood Wy C Q of the point (y(0),¥(0)) is either (z,v}) or (z,11).
Then some neighborhood of the point (7(0),4(0)) in @ is homeomorphic to the
direct product of two copies of the disk U’ glued along the points z where
$i(z) = ¢ and the disk D*~!. Then no neighborhood W C @Q of the point
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(7(0), %(0)) is homeomorphic to (2n—1)-dimensional disk. Thus, the differential

dFy vanishes at each point of the orbit (,4). .
Finally, any point of the segment [0, 1] lies in one of the following sets:

o = {re[0,1):¢i(r(r)) = ¢},
I = {rel0,1]: ¢ia(y(r)) = ¢}
The subsets I'g, I'; are evidently closed and non-empty. Then they intersect; at

each point 7 of the intersection we have ¢;(v(7)) = ¢it1(¥(r)) = ¢. Lemma 6
is proved.

8 Commutativity of the integrals I,

Let g, § be Riemannian metrics on M™. Let them be geodesically equivalent.
Our goal is to verify that the integrals I, ..., I,_; commute. In view of Lemma 6
and Corollary 9, almost each point of M™ is stable. Therefore it is sufficient to
verify the commutativity near the stable points only. By Theorem 5, in some
neighborhood of any stable points, the metrics are given by

g(i, 3_2) = I, (E)A;[ (z1, 51) + I1,(%) A2 (5}2, Z_i'z) +-e-+
+ O (2) A (Ems Em), _
§(&,2) = p1l1(Z)A1(Z1,%1) + poll2(F)A2(Z2,32) + -
+ oIl (Z) A (B, Tm)-
We will show that the integrals Ij are linear combinations of the Levi-Civita

integrals.
For each ¢ € R, consider the function F; : T*D™ — R given by

L™ Y4 L ot" 2+ ..+ L.

By definition, F; is a linear combination of the integrals I;.
Take different ty,t1,...,tn—1. Easy to demonstrate that each I is a linear
combination of the functions Fy,, F,, ..., Ft,_,. Indeed,

Fy, Ity + Liatd 2+ 4+ I i S N2
F, L at? '+ Lot %+ L+ Iy 7 72 L 1) | I
Fi._, Liatt 14+ I att 2+ .+ ]y 1l on2 I
The Vandermonde matrix
tp~t g2 1
G 1
e T A S |
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is non-degenerate. Therefore the functions I are linear combinations of the
functions Fi,, Fy,, ..., Ft,_y -

Now let us show that for any ¢ the function F; is a linear combination of
Levi-Civita integrals L, ..., L, from Section 6.

The fiberwise linear mapping G is evidently given by the matrix

G = diag(p1, ) P15 s Privs ooes P )-
N —’ S —
ks Em

Then, by Lemma 1, the fiberwise linear mapping Sy is given by the matrix

Sk = ("1)n_kdiag(?n—k—1 (431)7 ey On—f—1 (4‘5127 --"g'n—k—-l (ém), vy Op—f—1 (‘im)l)y

k1 km

where 0,(;) denotes the elementary symmetric polynomial of degree p of n — 1
variables

DLy ooy DLy ey Ly weey Dy ooy Oy vey O
S — N —’ ———

kl kl -1 km

Then the integrals I are given by
(-1)" %I = 0p_p-1(¢1) 1 A1 + o + On—i—1 (P ) L Arn.

Using that

n—1
Y tRoa w1 ($)(-1)FT = (= 1) (8 = G2)*2 (= 90) 5Tt — Bm)
k=0

we have
n—~1 m
F = Z (—=1)nk¢k Z On—rk—1(P:)TL: A;.

k=0 =1

= — Z [(t — $1)% (t — 2)*2..(t — $a)* 1o (t — ém ) ASL]

i=1
m—1
= (t _ ¢1)k1—1(t _ (bz)k“_l...(t _ ¢m)km—1 Z tk(—l)m—kLm_k.

k=0

If k&; > 1 then ¢; is constant. Then for any i € {0,1,...,m}, t € R, the
function (¢ — ¢;)*~? is constant also. Hence each function F; is a linear com-
bination of Levi-Civita integrals L1, L, ..., I,. Therefore, each function I is a
linear combinations of Levi-Civita integrals.

Finally, since the integrals Iy, ..., [,—1 are linear combinations of Levi-Civita
integrals with constant coefficients, and since Levi-Civita integrals commute,
the integrals Iy, ..., I,_; also commute. Theorem 1 is proved.

21



9 Strictly non proportional geodesically equiva-
lent metrics on closed manifolds

Let M™ be closed connected. Let g, § be geodesically equivalent Riemannian
metrics on M™. Let them be strictly non proportional at each point of M™.
Our goal is to prove Corollary 8; that is, we must prove that M™ is covered by

the torus.
By Lemma 6, there exist numbers 74,...,7n—1 such that at each point of
* € M™ we have

$1(z) <11 < d2(2) < ... < o1 < P(a). (12)
Consider the polynomial
—(t— 1)t —72)(t = Tno1) = Cre1t™ 1 + Crat™ 2 + ... + Co.
Consider the subset
L" = {(z,§) e TM" : Iy(z, &) = Co, I1(2,€) = C1, ..., In—1(2,£) = Cnr }.
Let us show that at each point of this subset the differentials
dly,dh,...,dI, 1

are linearly independent. It is sufficient to show that for each point (z,£) € L™
the determinant of the matrix

oL

9¢;

is not zero. Let us fix the point £ € M™ and consider the functions

W,'j =

F¢1(z), F¢2(m), veny F¢“(z).

Since the functions Fy, (z), Fy,(z)s --» F4,, (s) are linear combinations of the func-
tions Iy, ..., In_1, it is sufficient to show that the determinant of the matrix

- OFy,
Wi = 52
is not zero.

Consider a coordinate system in a neighborhood of = such that at the point
z the metric g is given by the matrix diag(1,1,...,1) and the mapping G is given
by the matrix diag(pi(z), p2(z), ..., pn(z)). In this coordinates, the restriction
of the function F; to the tangent space T, M™ is given by (3) and therefore the
matrix W equals

diag(—2Pi(¢1)é1, —2Pa(¢2)é2, ..., —2Pn($n)én).
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By (12), each component P;(¢;)¢; is not zero and therefore the determinant
of the matrix W is not zero.

By Arnold-Liouville theorem, the fiber L™ is homeomorphic to the n-torus.
By implicit function theorem, the restriction of the covering = : TM™ — M™,
7(z,€) = z, to the torus L™ has no singular points and therefore is a covering
of the manifold M™ by the torus. Corollary 8 is proved.

Remark 4. We see that if two metrics are strictly non proportional at a point
then the differentials of the function I are linear independent at almost every
point of the tangent space at the point. Therefore, if two geodesically equivalent
metrics are strictly non proportional at least at one point of a connected manifold
then the corresponding geodesic flows are Liouville integrable.

10 Killing vector fields for geodesically equiva-
lent metrics

Let g, g be Riemannian metrics on M™. Let them be geodesically equivalent.
Qur goal is to prove Corollary 7; that is, given a (non-trivial) Killing vector
field for the metric g we must produce a (non-trivial) Killing vector field for the
metric g.

Because of Noether’s theorem, if a metric admits a (non-trivial) Killing vec-
tor field, then the geodesic flow of the metric admits a (non-trivial) integral,
linear in velocities, and vice versa.

Suppose the function
n
P =Y ai(a)¢
=1

is constant on the orbits of the geodesic flow of the metric §. Then the function

is constant on the orbits of the geodesic flow of the metric g. Since the function

Iy = (%%) wH g(¢,€) is an integral of the geodesic flow of the metric g, and

since the function ||¢||, = 1/g(&, €) is also an integral of the geodesic flow of the
metric g, then the function

V9, €) = det(g) i
L & F) = (det ) Za,(z)f

linear in velocities, is also an integral of the geodesic flow of the metric g.
Corollary 7 is proved.

‘QI
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11 Geodesically equivalent metrics on the ellip-
soid

Proof of Theorem 3. We show that in the elliptic coordinates the restrictions

of the metrics
n
. dwz)Z
ds? def i\2 d dr? def (
5 E (dz*)* an r E p

i=1 21_1 (a,- ) (i—l

2

to the ellipsoid > 7. ; a‘ = 1 have precisely the form from Levi-Civita The-
orem, and therefore are geodesically equivalent. More precisely, consider the
elliptic coordinates »!,...,". Without loss of generality we can assume that
al < a? < ... < a™. Then the relation between the elliptic coordinates # and
the Cartesian coordinates Z is given by

HJ—-I,J#%(G ) .

Recall that the elliptic coordinates are non-degenerate almost everywhere, and
the set

{v' =0,a1 < v? < az,03 < v® < a3,...,an_; <¥" < a"}

is the part of the ellipsoid, lymg in the quadrant {z' > 0,22 > 0,...,z" > 0}.
Since for any i the symmetry z* — —z* takes the ellipsoid to the ellipsoid and
preserves the metrics ds? and dr?, it is sufficient to verify the statement of the
theorem only in the quadrant {z! > 0,2% > 0,...,z" > 0}.

In the elliptic coordinates the restriction of the metric ds? to the ellipsoid

has the following form
7
> MAi(dv)?,
i=1

where II; & I gy #( —v9), and A; def I]"—(‘;’——TT The restriction of the

metric dr? to the ellipsoid is
2...a") Z pill; As(dv')?,
i=1

where p; = ;-(77127 We see that the metrics ds?, dr? have the form (10,11)
and therefore are geodesically equivalent. Theorem 3 is proved.
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