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Abstract

We study instabilities that are present in two models that retain some
of the dynamics of vortex tube stretching in the motion of a fluid in 3
dimensions. Both models are governed by a 2-dimensional PDE and are
hence more tractable than the full 3-dimensional Euler equations. The
first model is the so called surface quasi-geostrophic equation. The sec-
ond model is a class of 3-dimensional flows that are invariant with respect
to one spatial coordinate. Both models are constructed in the context of
a rapidly rotating fluid. Instabilities due to an effect analogous to vor-
tex tube stretching are detected: these instabilities are in the linearised
equations in the first model and in the nonlinear equations in the second
model. Such instabilities are absent, or weaker, in strictly 2-dimensional
fluid motion.



1 Introduction

The Euler equations for the motion of an incompressible, inviscid fluid are
0
a—‘: +(q-V)g=~VP (1.1)

V-g=0 (1.2)

where g(z,t) and P(z,t) are the velocity vector and pressure respectively. We
consider these equations in spatial dimensions D = 2 or 3. The equation for
the vorticity £ = curl q is obtained by taking the curl of (1.1) to give

%_?+(q.v)n:(ﬂ-V)qE(g—:) Q. (1.3)

For motion in 2-D 2 = QE, where % is the unit vector perpendicular to the
2-D plane, hence the R.H.S. of (1.3) is zero and the scalar vorticity satisfies

(%+q-v) @) =0. (1.4)

This is the classical result that in 2-D the vorticity is conserved on the trajec-
tories of g and remains bounded for all time. As a consequence of this basic
fact fluid motion in 2-D is much less complex than in 3-D. Important mathe-
matical properties of the 2-D Euler equation, such as existence and uniqueness
of solutions for appropriate initial and boundary conditions, are rather well
understood (see, for example, Kato [18]). The picture is quite different in 3-D
where the term (2- V) q is in general non-zero and can, by a mechanism known
as vortex tube stretching, generate vorticity. This allows for the development
of structures with very complex topology that are closely connected with insta-
bilities and the possible development of singularities. It is an open question in
3-D whether or not there exists a solution to (1.1)~(1.2) that is initially smooth
but develops singularities at some finite time later. Beale et al [4] proved that
it is the maximum norm of vorticity that controls the possible breakdown of
smooth solutions. Hence the temporal growth of vorticity is a significant (and
open) problem for 3-D fluid motion.

Partly because of the seeming intractability of the full 3-D Euler equations a
number of authors have considered reduced models which retain to some degree
the effects of (£2: V) g in the vorticity equation without its full complexity. The
primary physical force that is invoked to construct many of these models is
rapid rotation (see, for example, [2], [9], [17]). The constraint of rotation limits
the freedom of motion of a fluid moving in 3-D and hence leads to approximate



models that are simpler than the full system. Density stratification also imposes
a tendency towards 2-dimensionality on a 3-D flow. Furthermore rotation and
stratification are the crucial ingredients in any mathematical model for the
ocean or atmosphere and hence such reduced models have practical applications
(cf. [22], [21])-

In this paper we consider the effects of a vortex tube stretching type term on
the existence of instabilities in two models where although the underlying PDE
is 2-dimensional some of the physics of 3-D flow has been retained. The physical
rational for both models has as its basis the constraint of rapid rotation.

In Section 2 we investigate the unstable spectrum with respect to growth in
the energy of a perturbation of the linearised “surface quasi-geostrophic” (SQG)
equation. This is an approximate model that is derived from the equations of
motion for a rapidly rotating, density stratified fluid. It is a 2-D equation for
an active scalar # where k x V8 (= V- 6) plays a role analogous to the vorticity

in (1.3). The singular integral that relates (g—g) to Q2 in 3-D has as its analogy

the singular integral in 2-D that relates (gg) and V< @ (see Constantine et al

[5]). High frequency asymptotics applied to the Euler equations by Friedlander
and Vishik [10] produced a geometric quantity they called a “fluid Lyapunov
exponent” whose supremum determines the maximal growth rate of instabilities
in the continuous spectrum of the linearised Euler equations. We calculate this
exponent for the SQG equation and show that there are instabilities that are
not present in strictly 2-D fluid motion. Furthermore if the steady state has a
hyperbolic saddle the instabilities are stronger than those for 2-D Euler. These
results support our expectation that the vortex tube stretching term in 3-D
Euler is inherently destabilising.

In Section 3 we consider a class of exact solutions to the 3-D Euler equation
where the motion is independent of one direction (the axis of rotation for a ro-
tating fluid). Yudovich [24], [25] observed that flows of this type give examples
of 3-D motion in which there is temporal growth in the vorticity. Viewing such
a flow as a perturbation of a steady state, the temporal growth of the vorticity
of a perturbation implies nonlinear instability of the steady state in a norm
that measures the magnitude of vorticity. We give an explicit expression for
the solution of the vorticity equation for “2%” dimensional flows. The vorticity
behaves as the tangent vector to a 2-D flow which can be determined explicitly
on each trajectory that is not a stagnation point. In general there are initial
conditions that lead to growth of the vorticity which becomes exponentially
strong on a trajectory that is itself a hyperbolic fixed point. Hence, as in the
SQG model, hyperbolicity plus even a limited form of vortex tube stretching
produce strong instabilities. It is to be expected that such mechanisms for in-



stability occur in the full 3-D Euler equations and are an important ingredient
in the appearance of turbulence as a consequence of instability to small but
finite disturbances that generate vorticity.

2 Surface Quasi Geostrophic Equation

In a series of papers Friedlander and Vishik [10], [11], [12] and Lifschitz [19],
Lifschitz and Hameiri [20] developed and exploited a “geometric optics” type
analysis to detect instabilities in the Euler equations, in 2 or 3 dimensions,
linearised about a steady state with a smooth velocity U(z). The linearised
Euler equation for a perturbation velocity v(z,t) is

g—:+(U-V)v+(v-V)U=—VP (2.1)

V-v=0 (2.2)

with initial condition v(z,0) = vo(x) € L? and V - vy = 0. We consider free
space or periodic boundary conditions. High frequency asymptotics are used
to define a geometric quantity A which is called a fluid Lyapunov exponent.
Like the classical Lyapunov exponent which measures exponential growth of a
tangent vector to a flow, the fluid Lyapunov exponent measures stretching in
fluid motion. The positivity of A implies instability in the continuous spectrum
of the linearised Euler operator-acting on the space of square integrable, diver-
gence free vectors. In fact the maximal fluid Lyapunov exponent determines the
essential spectral radius, i.e. the maximal growth rate due to the continuous
spectrum (Vishik [23]). A is defined by the following system of O.D.E.:

dx

& = U(z) - (2.3)
¢ au\*
= - -(%) ¢ (24)
db ou au
T = -(5)e+2|(5) v erer (25)
with x(0) = xo, £(0) = &, b(0) = by and, by definition,
A=AD) = tl_i)ngo % log szp [b(z0, &g, bo; t)] - (2.6)
lsulzl,fl;o?m
£o by=0



Here % = % + U -V denotes the derivative on the trajectories of U and (%’a];)

denotes the Jacobian matrix.

Equation (2.4) is called the co-tangent equation and equation (2.5) the bi-
characteristic amplitude equation to the flow U (z). Heuristically the equations
can be obtained as the leading order equations for perturbations of the form is

v(z,t) = b(x, 1) 5@/ 1 0(5) (2.7)

where
E(x,t) =VS+0(9). (2.8)

Taking curl of (2.7) gives, to leading order, the perturbation vorticity
w=%wxaéﬂumuy (2.9)
Using (2.4) and (2.5) to calculate the evolution of b- £ and b x & gives
d
= (-6 =0. (2.10)

Since incompressibility requires bg - £, = 0, it follows from (2.10) that

b-£=0. (2.11)

4 bxe)=-bx ((%‘mi)Ts) -((32)8)xe @

In 3-dimensions the R.H.S. of (2.12) is, in general, non zero. Identifying b x §
with the vorticity (see 2.9), interprets the R.H.S. of (2.12) as the linearisation
of the vortex tube stretching term in the 3-D vorticity equation (1.3).

In 2-dimensions the R.H.S. of (2.12) is zero. This follows since ((ﬂ) £

ax

Also

ox
some scalar c (t). Hence from (2.12)

- (B_U_)TE).E =0 and b-£ = 0, we can write (%g—)Tﬁ = (%) £+c(t)b for

c% (b x &) = —Trace (%[;I) (bxg =0 (2.13)

since V - U = 0. This is a restatement of conservation of vorticity in 2 dimen-
sions for perturbations of the form given by (2.7). From (2.11) and (2.13) it
follows that

d
5 (bl €D =0 (2.14)



hence |b| |¢| = constant. Thus exponential growth of |b|, i.e. positivity of A,
requires exponential decay of |£]. Since the flow U(z) is volume preserving
it follows that in 2 dimensions the fluid Lyapunov exponent and the classical
Lyapunov exponent are equal. Hence in 2-dimensions the only nondegenerate
flow U (z) for which A is positive, is a flow with a hyperbolic fixed point.

In 3-dimensions we expect the additional stretching mechanisms to pro-
duce additional, and possibly stronger, instabilities than those that occur in
strictly 2-dimensions. In order to investigate this we will examine not the full
3-dimensional problem but rather a model equation known as the surface quasi
geostrophic (SQG) equation. This equation has received considerable attention
recently because although it is analytically simpler than the 3-dimensional Eu-
ler equation, it retains a number of crucial features that are analogous to those
of equations (1.1)~(1.2). This mathematical and physical analogy is described
in detail by Constantine et al [5]. The SQG model is a PDE for an active
scalar which represents temperature # evolving on a 2-dimensional boundary
of a rapidly rotating, density stratified, inviscid fluid. It is derived from the full
Euler equations in a rotating coordinate system with the addition of a buoy-
ancy term. Under geophysically valid scaling, several approximations are made
and the potential vorticity (i.e. the augmented vorticity of a stratified fluid in
a rotating frame of reference) is set to zero. A description of the derivation of
the SQG equation is given in the books of Pedlosky [11], Salmon [22]. The geo-
physical relevance of this equation and the ubiquitous generation of secondary
instabilities associated with the SQG model is discussed by Held et al [15].

The SQG equation has the following form for a scalar field 8(z, ¢):

)
(E +aqy- v) =0 (2.15)

where the 2-dimensional velocity gy and the active scalar  are coupled via a
stream function ¥(z,y, ¢), namely

ag =V = (—y, ¥s) (2.16)
and
0=—(-A)"2y (2.17)

where (z,y) denote cartesian coordinates for a 2-dimensional plane. The non-
local operator (—A)!/2 is determined through the 2-dimensional Fourier trans-
form

wm%w=/ﬁ%“whﬂ% (2.18)



by

(-A) 2y = /ez’”'""“’ 27r|k|$dk. (2.19)
Taking V- of (2.15) gives
9 La_ aqH L
(at+QH'V)V 0—(——3:c v+e. (2.20)

1t is clear that (2.16) has a superficial resemblence to the 3-dimensional vortic-
ity equation (1.3) with V+ @ playing the role of the vorticity £2. Constantine
et al [5] show that this resemblence is more than superficial when they con-
struct physical, geometric and analytic analogies between (2.20) and (1.3). In
particular, the level sets of § correspond to vortex lines in (1.3). Both types
of curves move with the flow and the nonlocal equation for the evolution of
the tangent vectors to the level sets is completely analogous to the equation of
vortex stretching. Cordoba [6] explores scenarios for the possible development
of singularities in (2.20) as a model for (1.3) and rules out singularities caused
by the closing of a hyperbolic saddle.

In this present paper we investigate instabilities in the SQG equation. We
apply high frequency asymptotics of the type discussed at the begining of this
section to the linearised SQG equation. We note that the geometric construc-
tion we described for the fluid Lyapunov exponent applies directly to an aug-
mented system of ODE in the case of a stratified fluid (see [12]). The existence
of an exponentially growing vector b that is the amplitude of a perturbation
velocity implies the presence of a continuous unstable spectrum. The spectrum
of the linearised SQG equation will encompas a subset of possible instabilities
of the 3-dimensional stratified Euler equations. Instabilities in the continuous
spectrum can be detected by the construction of an exponent A that is the
exponential growth rate of the amplitude of a velocity perturbation governed
by the linearisation of (2.15)-(2.17).

Let to(z,y) be the stream function for a steady 2-dimensional flow. The
time independent form of (2.15)-(2.17) gives

(U-V)8=0 (2.21)

where
U = Vi (2.22)
B = —(—A)2yyq. (2.23)

We consider the following class of solutions to (2.21)~(2.23), namely functions
1o that satisfy an elliptic PDE of the form

8o = (—A)/% o = g(tho) (2.24)



hence

Ao = —g'(%0) g(tho)
= —f(zho) (2.25)

where g(1p) is a given smooth function of one real variable. Let t;(z,y,t) be
a small perturbation of the stream function. The linearisation of (2.15) about

Yo gives
(%+U-V) 61 +Viy, -V =0 (2.26)
with
0, = —(—A)Y2y, .

Let
Lpy = (U -V)(-A) "2 ¢h1) + V1 - V. (2.27)

This is the operator that is the SQG analogue of the linearised Euler operator in
3-dimensions. Following the treatment of the linearised Euler operator given in
Friedlander and Vishik [10] and Vishik [23] we consider L acting on the space of
functions 1, where V- ¢, is square integrable. The positivity of the Lyapunov
exponent Agqg for the SQG equations detects instabilities in the continuous
spectrum of the operator elt. The maximal value of this exponent gives the
essential spectral radius for elt.

By analogy with the heuristics for the high frequency asymptotic treatment
for the Euler equation we write

P = B(z,y,t) e5@vD/5 | g(4) (2.28)

with

£=VS. (2.29)
Hence the leading order contributions to the amplitude of the perturbation
velocity, vorticity, and temperature are

v = (% Bk x 5) eS/% 1 0(1) (2.30)
w = (—(‘% |§|2E) €*5/% 1.0(1/4) (2-31)
0, = (-% B |g|) e/ 1 0(1) (2.32)



where k is the unit vector perpendicular to the (z,y) plane. The SQG analogue
of the system of ODE (2.3)—(2.5) are

dx
= _ v (2:33)
T
‘;_f = _(%> ¢ (2.34)
2@l = BEx8-V (235)

with initial conditions £(0) = xo, £(0) = &, B(0) = Bo. Here |5€| plays the
role of |b|. The fluid Lyapunov exponent for the SQG model is

] 1
Asqe = im = log ﬂf:&o I8¢l (2.36)
1801=1,1€51=1

As we discussed at the begining of this section, in the case of strictly 2-
dimensional Euler equations the vorticity is constrained so that % bxg=0
and hence |b] |¢| = constant. This severely curtails the circumstances under-
which [b| can grow. The evolution of the vorticity for the SQG equations is not
similarly constrained. From (2.34) and (2.35) we obtain

’ ' T
SEEm =Pl Ex Ve -5 (5) €6 (2

In general, the R.H.S. of (2.37) is not zero and mechanisms exist for growth of

the vorticity in the SQG model.
Equation (2.35) can be rewritten using the steady state equation (2.24) to

give J
= (Bg) =B (Wo) € - U (2:38)
;From (2.33) and (2.34)

Len) - -(2) evre ()
= 0. (2.39)

Hence &€ - U is constant on each trajectory. Clearly g'(1o) is also constant on a
fixed trajectory since the level curves of 1 are the trajectories of the flow Uyp.
Hence (2.38) gives

d
= (8l€D = 6C . (2.40)



Since |€| # 0 we obtain

t_c
16| = 18&lt=o o & (2.41)
and hence
Asqge = lim  sup ! / t _C_ dr (2.42)
ST 50 anty o €M) '
1€o1=1

where C = —g'(to) (U - £)(0).

We now investigate the behaviour of the R.H.S. of (2.31) by considering the
time dependence of a co-tangent vector £(¢) on a given trajectory of U. On
any trajectory which is itself a stagnation point (i.e. U = 0) the valueof £ - U
is zero hence the exponent Agqe computed on such a trajectory is zero. On
any trajectory which is not a stagnation point an explicit formula for £(t) was
proved in Friedlander et al [14]. The solution to (2.34) for U # 0 is

) = CU@E)/IU@=)P

: ((%) U+(%)TU) ExU

+ |o-af o (2(r)) dr
& x U(z(t)) (2.43)
where o U
£(0) = lt}(—m(;?} +Cok x U(zy). (2.44)

Since U (x) # 0 and bounded we get
ICi| < ClE0)], G2l <C
for some constant C. Hence from (2.43)
€@ s (1+12)1£(0)], t > 0. (2.45)

Changing t — —t we also find

€012 EA (2.40

Indeed if we start at point z(t) and apply the previous argument to —U then
the equation for £(t) has the same solution just run in the reverse direction.

10



We claim that the limiting behaviour of |£(t)| given by the inequalities (2.45)
and (2.46) is achieved on trajectories that form a hyperbolic saddle. Consider

the specific example
o = sinz siny. (2.47)

In the notation of (2.25) this corresponds to

fo) =290, 9(%0) =2 Yo,
U = (—sinz cosy, cosz siny) . (2.48)

In a neighbourhood of the hyperbolic stagnation point at (0,0) 4y can be
approximated by 4o ~ zy. Close to (0,0) the trajectories of U are hyperbolae

t

z=z0e" y=yoe (2.49)

where |z(0)| = /23 + y2 is chosen to be non-zero but sufficiently small. The
co-tangent equation on a hyperbolic trajectory given by (2.49) is

& (-1 0
E—_(O 1)5, (2.50)

Hence for small ¢ the local behaviour of a co-tangent vector to U near (0,0) is
£+ = (1’0) et , &= (01 1) e’ (251)

ie. .
|6 =@ +2t), [€_|~@@+%)"", ¢small

Thus on such a trajectory the limiting inequalities (2.45) and (2.46) on the
growth and decay £ with time are achieved. On a trajectory of the flow (2.48)
that passes close to a hyperbolic point

&, @) =Co(l+1), [E_(B)]=Co(l+8)", t>0 (2.52)

where Cy depends on |z(0)| and decays away from a hyperbolic point. Choosing
¢ = §_ in (2.42) and calculating g'(¢o) and U-£_ from (2.48) gives an exponent

.1 :
Asqe = Jim < /0 Co VZyol1+7)dr — lim ¢ o0 (2.53)

A similar calculation gives the same result Asqe — oo for trajectories
corresponding to more general hyperbolic saddles when the stream function
has the local form 1y = zy — ¥ coty (or a locally conformal map of this curve

11



in the neighbourhood of the origin). Thus the essential spectral radius of the
operator elt, with L defined by (2.27), is infinite when the unperturbed flow
has hyperbolic trajectories. This is in contrast to the purely 2-dimensional
Euler operator where A is finite and given by the largest eigenvalue of the

matrix %) at the hyperbolic points. The dynamic and analytic similarities

between the SQG model and the 3-dimensional Euler equations catalogued in
[5] suggest that the presence of hyperbolic structures in 3-dimensional flows will
imply that A — co. Hence the SQG model suggests that hyperbolicity implies
the existence of strong instabilities as measured by growth in the continuous
spectrum in L? of the linearised 3-dimensional Euler equation.

In the neighbourhood of an elliptic point for the flow U (e.g. at zo = 7/2,
yo = 7/2 in the example ¢y = sinz siny) there exists a co-tangent vector &
to an elliptic trajectory of the form £ = £, e**?. Hence on such a trajectory
I€] = |&o]- The exponent Asqg given by (2.42) computed on an elliptic closed
trajectory is

Asqa =C=4g'(¥)€-U. (2.54)

Thus the exponent that arises in the SQG model from the presence of an el-
liptic point is non-zero. Again this is in contrast to the 2-dimensional Euler
equations where the exponent A arising from an elliptic point is zero. These
elliptic point instabilities in the SQG equation are analogous to elliptic instabil-
ities in columnular elliptic vortices in the 3-dimensional Euler equation which
have been studied using high frequency asymptotics by a number of authors
including Bayly et al [3]. The evolution of an elliptical vortex in the context of
SQG dynamics with application to geophysics is discussed by Held et al [15).

One class of steady 3-dimensional Euler flows with presumably chaotic
streamlines was identified by Arnold [1]. These are so called Beltrami flows
whose velocity U is an eigenfunction of curl. A particular periodic example is
an “ABC” flow,

U = (Asinz+ Ccosy, Bsinz + Acosz, Csiny + Bcosz). (2.55)

These flows are non-integrable for nonzero values of the constants A, B and C.
However the Lagrangian trajectories have been subject to a number of com-
puter investigations, e.g. Henon [16], Dombre et al [8] which indicate that the
trajectories possess intricate hyperbolic and elliptic structures. It appears that
the trajectories are dense in certain open areas of 3-dimensional phase space.
Stagnation points may occur and when they do there is numerical evidence
that they are connected by a web of heteroclinic streamlines. Friedlander et al
[13] prove (for some ranges of A, B and C) that there is a positive lower bound
for the fluid Lyapunov exponent A and hence such flows are unstable. The

12



analogy between ABC flows with hyperbolic trajectories and the SQG model
with a hyperbolic saddle suggests that for ABC flows not only is A positive
but A — oo, implying the existence of strong instabilities.

3 Nonlinear Instability in “2*” Dimensions

In this section we present another model of fluid motion that incorporates some
of the effects of the generation of vorticity that occur in 3-dimensions but with-
out the full complexity of equations (1.1)-(1.3). As was the case for the SQG
model, physical motivation comes from rotating fluids. The Euler equations for
an inviscid, incompressible fluid written with respect to a coordinate system
rotating with constant angular velocity Q about an axis in the direction of unit
vector k are

E(%+q-V)q+2Exq=—VP (3.1)

V.g=0. (3.2)

The dimensionless parameter £ = U/QL where U and L are characteristic
velocity and length scales. The additional term 2k x g that occurs in a rotating
coordinate system is Coriolis force. The Rossby number £ measures the relative
strengths of inertia and Coriolis force. In many geophysical contexts ¢ < 1. In
this case, to first approximation neglecting the inertia term, (3.1), (3.2) reduces
to

2kxgq=-VP, V.-q=0 (3.3)

which are called the equations of geostrophic balance. Taking the curl gives

the condition .
(k-V)g=0 (3.4)

i.e. flows in geostrophic balance are independent of the coordinate z parallel
to the axis of rotation. This constraint, known as the Taylor-Proudman the-
orem, is a fundamental feature of a rapidly rotating fluid. We will examine
a particular class of flows that satisfy this constraint and are exact solutions
of (3.1)—(3.2) for all values of . We refer to these solutions as “2%” dimen-
sional flows since the velocity has components in 3 dimensions but is invariant
with respect to one coordinate. We will show that, in contrast with strictly
2-dimensional flows, the vorticity of such flows grows, possibly rapidly, with
time.
The following expression

q(z,y,t) = V- o(z,y) + W(z,y,0) k (3.5)

13



is an exact solution to (1.1)~(1.2) for any smooth functions vo(z,y), W (z,y,t)
provided

e(Ug-V)Uyg—-Vip=-VP (3.6)
and 5
E(E+UH-V)W=O (3.7
where
Ug =Viy. (3.8)

One class of solutions to (3.6) is given by streamfunctions v (z,y) that satisfy
an elliptic PDE of the form

VZ 40 = —f(%0) (3.9)

where f is a given smooth function of one real variable. We consider (3.9)
subject to suitable boundary conditions, e.g. doubly periodic in = and y or
1o = constant on a given closed boundary. There is an extensive literature
on this problem whose solutions determine steady, 2-dimensional fluid motion.
For any specific solution 1 (, y) the vertical component W (z,y, t) is a function
satisfying (3.7) with a suitable initial condition.

We remark that flows of the form (3.5) cannot satisfy physical boundary
conditions with respect to z: e.g. finite energy in an infinite domain or “rigid
lid” conditions W = 0 at z = 0. In this sense they can only be an approximate
model for a physical problem. However they are consistent with an “interior”
solution in a rotating bounded domain which is the first order approximation
arising from the Navier-Stokes equations for a viscous fluid. When W is suitably
scaled with respect to a viscous parameter (the Ekman number) boundary layer
asymptotics can be used to approximate rigid boundary conditions.

The vorticity £2(z,y,t) corresponding to the flow (3.5) is

Q=curlg=V*W +EA. (3.10)
The evolution equation for the vorticity becomes

fadt . = == 11

<6t+UHV)VW (6:1:)VW (3.11)
with the non-zero R.H.S. of (3.11) being the restriction to z-independent flows
of the general 3-dimensional “vortex tube” stretching term on the R.H.S. of
(1.3). We note that this equation has the same structure as the “vorticity”
equation (2.20) that arises from the SQG model. However W, umlike 6, is a

14



“passive” scalar that is not coupled to Up to produce a nonlinear equation.
Rather, for any given 1 that satisfies (3.9) plus boundary conditions, it follows
from (3.11) that the horizontal vorticity V- W is a tangent vector to the flow
VL 4o. Hence the question of possible growth with time of the vorticity is the
question of the time dependence of tangent vectors to 2-dimensional steady fluid
flows. We note that properties of the Cauchy problem for a linear transport
equation of the type of (3.11) were proved by DiPerna and Lions [7].

For flows Uy that have no stagnation points the tangent equation (3.11)
can be solved explicitly on each trajectory (). We decompose the initial value
of VIW =Qpy att =0as

_ z ’Ii; X UH((Z:())
Qp(zo) = C1 Ug(zo) + C2 _—IE <Un(@) (3.12)
Then
An(@(t)) = (Cs + Ca al®) Un(a@) + G 22 TEEW) g 1q)

& x U (=(2))?

where

aft) = /Ot [((6;2‘1) + (3;{‘:H)T) (k x UH)] l—gr}Hl_“ (z(r))dr. (3.14)

The proof follows by direct substitution of (3.13)—(3.14) into the tangent equa-
tion (3.11) in the same way as the solution to the co-tangent equation (2.34)
was obtained in Friedlander et al [14]. Since Uy is bounded and non-zero it
follows from (3.13)—(3.14) that

8@l < 10 ()1 S (1+8) o) (315)

For example, in the particular case of rotational flow Ug = r A(r) where
(r,8) are polar coordinates the expression (3.13) can be computed explicitly to
give -

Qul(e(t) = ;%ﬂ (01 + C?ZTA(};)) r A(r)8. (3.16)
In this example equation (3.7) implies
W =F(@—tA(r)) (3.17)

15



where F' is any smooth function of one variable. On the trajectory of Uy
starting at a point (rg,f) the constants C; and C; can be written in terms of
F'(6) to give

F'(60)

To

Qu(z(t)) = +(C +t A (r0) F'(69)) 8. (3.18)

For flows Uy that possess a hyperbolic stagnation point z. exponential
stretching takes place on the trajectory that is itself the stagnation point.
There exists a positive Lyapunov exponent for Ug. Let X be the positive

eigenvalue of ( %ﬂ) . There exists a sequence t; — oo such that z(t;) — z.
@,

1
and a tangent vector 7(¢) such that tEm n log [n(t)| = A. Since the horizontal
oo

component of vorticity £2z(t) satisfies the tangent equation (3.11) there exist
initial conditions that permit a 3-dimensional Euler flow of the form (3.5) whose
vorticity grows exponentially as the sequence t; — oo.

We have therefore constructed a large class of examples of exact solutions
to the 3-dimensional nonlinear Euler equations whose vorticity grows with time
and this growth is rapid when the horizontal component of velocity U g has a
hyperbolic fixed point.

Yudovich [24], [25], in the context of possible loss of smoothness of solutions
to the Euler equation, discusses mechanisms that could lead to temporal growth
of the derivatives of the velocity. He observes that the flow whose vorticity is
given by (3.18) is just such an example where a derivative, namely the vorticity,
grows linearly with time. Yudovich observes that we can draw an interesting
conclusion concerning the intrinsic instability of 3-dimensional flows of the type
given by (3.5). Consider the steady flow Uy = V4 4(z,y) as a flow in 3-D
and let EW(m,y,t) satisfying (3.7} be a perturbation of Uy. We consider
the stability of Uy where growth is measured in a norm that includes the
magnitude of vorticity, e.g.

lg —Uxkll = max |curl(g — Ug)| + llg = Unlh (3-19)

where || || is some other norm depending only on the magnitude of (g — Ug)
and none of its derivatives. We say that Uy is nonlinearly (Lyapunov) stable
with respect to this norm if for every € > 0 there exists 6§ > 0 such that
llg — Unllt=o < & implies ||g — Ugx|| < € for t € [0,00). Otherwise Uy is
nonlinearly unstable with respect to this norm. When (g —Upg) = W(z,y,t) &
we can choose the initial condition so ||Wil;=o < ¢ for any 6. However ||W]||
grows with time provided only Uy has a trajectory on which there exists
a growing tangent vector. Thus by this measure of growth almost all flows
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Uy are nonlinearly unstable: rigid body rotation, i.e. A(r) constant, being
perhaps the only example that is stable. We note that such temporal growth
is strongest when the flow Uy has a hyperbolic point. As we discussed in
Section 2 the existence of a hyperbolic point in the SQG model implies that
the maximal growth rate in the continuous spectrum of the linearised operator
tends to infinity. This suggests that there is a close (but as yet not understood)
connection between the continuous unstable spectrum of the linearised Euler
operator and strong temporal growth of vorticity of solutions to the nonlinear
3-dimensional Euler equations.
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