Some invariants of admissible homotopies of
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Abstract

A regular homotopy of a generic curve in the projective 3-space is called ad-
missible if it defines a generic one-parameter family of curves, in which every curve
has no self-intersections, no inflection points, is not tangent to a smooth part of
its evolvent and has no tangent planes osculating to the curve at two different
points. We introduce a number of invariants of admissible homotopies of space
curves and prove, in particular, that in the class of such homotopies the curve
z = cost,y = sint,z = cos 3t cannot be deformed into a curve without flattening

points.

1 Introduction

For every point of a C®-smooth curve in the three-dimensional real projective space P3,
there exists a plane intersecting the curve at this point at least three times. Such a plane
is called an osculating plane to the curve at a given point. A point of a curve is a flattening
point if the multiplicity of the intersection of the curve with an osculating plane at this
point is more than three. A flattening point of a curve where the osculating plane is not
unique is called an inflection point. '

Suppose that for any two points (taking the multiplicities into account) of a smooth
closed curve in P3, there is a plane which passes through these points and does not
intersect the curve anymore. Then this curve has at least four geometrically different
flattening points ([3]).

Notice that a curve satisfying the above condition has no inflection points, is embedded
and affine. Moreover, such a curve lies on the boundary of its affine convex hull. It has
been shown in [6] that any smooth closed curve embedded into the affine three-dimensional
space R?® without inflection points and lying on the boundary of its convex hull has at
least four geometrically different flattening points.

It would be interesting to extend the theorem on four flattening points to a wider class
of space curves. One of the approaches to this problem was suggested by V. I. Arnold in
[1]. It is based on methods of contact geometry.

Namely, consider a closed generic front in P3. It is a singular surface with cuspidal
edges, swallowtails and transversal self-intersections. The union of cuspidal edges and
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vertices of swallowtails is called the cuspidal line of a front. This curve has no self-
intersections but has cusps at vertices of swallowtails.

The closure of the set of self-intersection points of a front is the union of curves
having only cusps, generic double or triple self-intersections and end-points at vertices of
swallowtails. These curves are called double lines of a front. Vertices of swallowtails form
a connected pair if they are end-points of a front double line.

Take a smooth closed generic curve in P3. The set of tangent planes to this curve is
a closed generic front in the dual space. The cuspidal line of this front is the dual curve
(the set of osculating planes to the initial curve). Flattening points of the curve one to
one correspond to vertices of swallowtails of the front (that is, to cusps of the dual curve).

1.1. Definition. Two flattening points of a smooth closed generic curve in P? form a
connected pair if the corresponding vertices of swallowtails on the front of tangent planes
to this curve form a connected pair.

Orient a given curve and the ambient space. A germ of the curve at a flattening point
has a parametrization £ = ¢,y = 2+ ...,z = t* + ..., in a suitable system of affine
coordinates. The flattening point is called positive (negative) if this coordinate system
orients the ambient space positively (negatively).

The number of connected pairs of flattening points having the same sign does not
depend on the choice of orientations. This number is called the sturmianity of a curve.
According to [1], the sturmianity is an invariant of so-called admissible homotopies of a
curve.

1.2. Definition. A regular homotopy of a smooth closed generic curve in P3 is called
admissible if it defines a generic 1-parameter family of curves where every curve has no

1) self-intersections (that is, its front has no self-tangencies);

2) inflection points (that is, the dual curve is irreducible);

3) tangencies with a smooth part of its evolvent (that is, cuspidal edges of the front
are not tangent to its smooth part);

4) tangent planes osculating to the curve at two different points (that is, the dual
curve has no self-intersections).

In an admissible homotopy, the number of flattening points of a curve can not become
less than twice its sturmianity. But the sturmianity can be 0. Let us consider, for example,
the curve

I':x =cost,y=sint,z =cos3t, ¢ mod 2.

The set of singular points of its front (the cuspidal line and self-intersections) is represented
on Fig.1 (see details in Section 6). Generic curves sufficiently close to I' (in C*®-topology)
have 6 flattening points. Some of them have zero sturmianity. V. I. Arnold raised the
following question (see [2]; the problem 1998-6): is it possible to annihilate all 6 flattening
points of such curves by admissible homotopies?

We give below the negative answer on this question, namely, we show that the num-
ber of flattening points of any generic curve sufficiently close to I' cannot vanish in an
admissible homotopy. For the proof, we define a new invariant of admissible homotopies
of space curves — the number of closed double lines of a front. Besides, we construct
an invariant generalising the sturmianity of a curve. It is a chord diagram in which the
number of chords intersecting odd number of other chords coincides with the sturmianity
of a curve.



2 Closed double lines of a front

Let v : S! — P® be a smooth closed generic curve in P? and [ be a double line of its
front. Orient the dual space P3*, the dual curve * and the line [. A cusp c on [ is positive
(negative) if the following set of three vectors in T P** is positively (negatively) oriented:

1) a tangent vector to *;

2) a direction vector of the one-sided half-tangent line to [ at ¢;

3) a vector in the tangent plane to the smooth part of the front of v at ¢ showing the
direction of the deviation of the branch of [ going out of ¢ from the line tangent to [ at c.

2.1. Definition. The absolute value of the difference between the number of positive
and the number of negative cusps on a line { is called the weight of .

The weight of a line [ does not depend from the choice of orientations.

2.2. Theorem. The (unordered) set of weights of closed double lines on the front of a
smooth closed generic curve in P3® is an invariant of admissible homotopies. In particular,
the number of these lines is not changed in such homotopies.

The proof is given in Section 4.

2.3. Definition. Two smooth closed curves embedded into P? are called isotopic if
they -are homotopic in the space of embedded curves.

Admissible homotopies preserve the isotopy class of a curve.

2.4. Theorem. Let a smooth closed generic curve in P3 be isotopic to affine. Then
its front has double lines (that is, there exist projective planes in P3 tangent to the curve
at two different points).

If a curve is affine, then this is evident. Indeed, such a curve has affine support planes
tangent to it at two different points (see [5]). The proof in a general case is given in
Section 5.

2.5. Remark. If a curve in P2 is not isotopic to affine, then its front can have no
double lines. The curve (cost : sint : cos 3¢ : sin 3t), ¢ mod 7 is an example of this (any
plane intersects it at most at three points).

Theorems 2.2 and 2.4 imply

2.6. Corollary. Let a smooth closed generic curve in P? be isotopic to affine and its
front have no closed double lines. Then this curve has flattening points as well as any
other curve obtained from it by admissible homotopies. -

Consider the curve I" from Section 1. It is affine.

2.7. Proposition. The front of any generic curve sufficiently close to I' has no closed
double lines.

The proof is given in Section 6. Proposition 2.7 and Corollary 2.6 imply the answer
to the mentioned question of Arnold:

2.8. Corollary. The number of flattening points of any generic curve sufficiently
close to I' cannot vanish in an admassible homotopy.

3 Principal flattenings diagram of a curve

Consider flattening points of a smooth closed generic curve « in P3.



3.1. Definition. The weight of a connected pair of flattening points of a curve 7 is
the weight of the double line of its front which connects the corresponding vertices of
swallowtails.

"T'wo connected pairs of flattening points are alternate if going around a curve a flat-
tening point of one connected pair follows a flattening point of the other one. Flattening
points of alternate connected pairs are basic flattening points of a curve.

3.2. Definition. A connected pair of flattening points of a curve is called non-
principal if its weight is 2 and points of this pair separate the curve onto two open arcs
one of which has no basic flattening points. All other connected pairs are called principal.

The curve v defines a weight chord diagram D, of unordered pairs of points on S!
which are preimages of principal connected pairs of flattening points and equipped with
weights of these pairs. Two such diagrams are equivalent if one of them can be transferred
to another by an orientation-preserving diffeomorphism of S.

3.3. Definition. The equivalence class of the diagram D, is called the principal
flattenings diagram of a curve +.

3.4. Remark. The sturmianity of a curve is equal to the number of connected pairs of
flattening points which alternate with an odd number of other connected pairs, that is, to
the number of chords of the principal flattenings diagram which intersect an odd number
of other chords. In particular, the sturmianity of a curve does not exceed the number
of all chords of the principal flattenings diagram, that is does not exceed the number of
principal connected pairs of flattening points.

3.5. Theorem. The principal flattenings diagram of a smooth closed generic curve
in P3 is an invariant of admissible homotopies. In particular, the number of principal
connected pairs of flattening points of a curve is not changed in such homotopies.

The proof is given in Section 4.

3.6. Corollary. In an admissible homotopy, the number of flattening points of a
smooth closed generic curve in P? cannot become less than twice the number of principal
connected pairs of flattening points of the initial curve.

Consider the curve I' from Section 1. It is not generic (T’ has three pairs of points
where the osculating planes coincide).

3.7. Proposition. The principal flattenings diagram of any generic curve v suffi-
ciently close to T' has one of the following two types:

1) the empty diagram (without chords; the curve vy has three non-principal connected
pairs of flattening points; for every pair, the front double line connecting the corresponding
vertices of swallowtails has two cusps of the same sign); '

2) the nonempty diagram having two intersecting chords of weight 0 (the curve vy has
two alternate and one non-principal connected pairs of flattening points; the front double
line connecting the vertices of the swallowtails corresponding to the non-principal pair has
two cusps of the same sign; the front double line connecting the vertices of the swallowtails
corresponding to any principal pair has two cusps of opposite signs).

The proof is given in Section 6. Proposition 3.7 and Corollary 3.6 imply

3.8. Corollary. The number of flattening points of any generic curve which is suf-
ficiently close to I' and has nonempty principal flattenings diagram can not become less
than 4 in an admissible homotopy.



4 Proof of Theorems 2.2 and 3.5

Consider an admissible homotopy of a smooth closed generic curve in P3. It defines a
deformation of the front of this curve. Perestroikas of the front which can happen in such
a deformation were listed in [1]. They are as follows:

Ay abirth or a death of a connected pair of vertices of swallowtails on a front cuspidal
line which are close to each other along this line (the front double line which connects
them has two cusps of the same sign);

As + A;: a passage of the smooth part of the front through a vertex of a swallowtail
(a pair of cusps of opposite signs appears or disappears on a front double line);

A, +2A;: a passage of a cuspidal edge through a front double line;

4A,: a passage of the smooth part of the front through a point of its triple self-
intersection;

24, || A;: a tangency of a front double line to the smooth part of the front.

Perestroikas As + Ay, Ay + 241, 44, and 24, || A; do not change the number of front
double lines, their types (closed or unclosed) and weights. An A, perestroika changes
the number of front double lines which connect vertices of swallowtails corresponding to
non-principal connected pairs of flattening points of the curve. Theorems 2.2 and 3.5 are
proved. ..

5 Proof of Theorem 2.4

Let v be a smooth closed generic curve in P3.

5.1. Lemma. If the front of a curve v has no double lines, then any plane in P*
intersects this curve at most at four points (taking the multiplicities into account).

ProoF. Consider an arbitrary plane 7 intersecting the curve y at n > 3 points. Only
one multiple point can be among them and its multiplicity is not greater than three. '

If there is a multiple intersection point, then the osculating plane to the curve v at
this point intersects the curve n times. This follows from the fact that the number of
intersection points of the curve v with any plane tangent to it at a given point is the
same. ' '

If all intersections are transversal, then one ¢an find a plane which is tangent to the
curve v and intersects it at n points. Such a plane is obtained by a deformation of the
plane 7 in which two points of the intersection 7 N+ move along the curve y towards each
other.

Thus, there exists a plane osculating to the curve 7 at some point O and intersecting
it exactly n times. If we rotate this plane around the tangent line to the curve y at
the point O, then its n — 2 intersection points with v will move along the curve in the
same direction. At the moments of their passing through O, the rotating plane will be an
osculating plane to the curve. But the curve vy has no inflection points. Hence, n—2 < 2,
that is n < 4. Lemma 5.1 is proved.

Suppose that there exists a plane IT in P? transversally intersecting a curve -y at exactly
two geometrically different points. We denote by R3 the affine chart in P* for which the
plane II is infinite. In this chart, the curve vy is presented by two branches y; and v, for



which there exist two parallel planes m, 73, satisfying the following conditions (i = 1, 2):

1) the plane 7; transversally intersects the branch «; at exactly two points and has no
common points with the other branch;

2) any plane obtained from 7; by a parallel translation into the half-space which does
not contain the second plane transversally intersects the branch v; at exactly two points
and has no common points with the other branch as well.

Let P;, Q; be intersection points of the curve 7; with the plane 7;. Denote by %; the
closed curve in R? which is the union of the segment P;Q; and the arc of the curve v
bounded by points P;, Q;.

5.2. Lemma. If the front of a curve v has no double lines, then 1) any plane in R®
which is parallel to the planes my, 72 and lies between them intersects one of the curves
71,725 2) such a plane can intersect every curve y1,7v2 only two times (taking the multi-
plicities into account) 3) the linking number of the curves 7;,%, is 1.

PRrROOF. 1) Consider any plane m C R? which is parallel to the planes m;, 7, and lies
between them. If it does not intersect the curves <y;,7,, then v is an affine curve and
hence, its front has double lines (see [5]).

2) Assume that 7 intersects ;. Then the number of their intersection points is not
greater than four by Lemma 5.1. But this number is even. Hence it is either two or four.

Suppose that the number of points of the intersection w Ny, is four. Then the plane
7 does not intersect the curve 7, and there exists a plane 7% satisfying the following
conditions: it is parallel to 7, does not intersect v;, is tangent to ; at some point O such
that a germ of v; at O and the curve 7y, lie on different sides of 7.

Denote by L; and L, the affine parts of the tangent line to the curve « at the points of
the intersection v NII. Since these lines are crossed, there exists a projection p : R* — R?
sending the plane 7 onto the line p(#) and the lines L, Ly into a pair of parallel lines
p(Ly), p(Lz) transversal to the line p(#).

Consider the projections p(y;),p(72) of the curves 7;,v;. They are non-closed C'°-
parametrised curves in R? having only finitely many cusps and simple double self-inter-
sections. Each of the curves p(7y;) goes to infinity asymptotically approaching one of the
lines p(L1),p(L2) when the parameter increases, and the other one when it decreases.
Moreover, both distant pieces of the same curve lie on the same side of the line p(7#) and
distant pieces of the different curves lie on different sides of this line.

This implies that lines in R?, tangent to the curve p(7y;) or passing through its cusps,
sweep the entire connected component of R?\ p(7) containing p(7y2). At least two of these
lines have common points with the curve p(v;) and are supporting lines for it (distant
ends of the curve p(72) asymptotically approach parallel lines at the infinity!). It is clear
that the p-preimage of each of the indicated supporting lines is a plane in R* tangent
to both curves 7, v,. But this contradicts the fact that the front of the curve v has no
double tangent planes.

Thus, the number of intersection points of the plane & with the curve v, is 2.

3) Fix an arbitrary sphere S? in R?® containing the curves #; and #, inside. This sphere
intersects the curve 7y, at two geometrically different points P’, Q' whose order P' — Q'
defines an orientation of ;. It is easy to see that the linking number of the curves 9y, %,
is equal to the linking number of the curve 9, with the closed curve -y} which is the union
of the segment P'Q’ and the arc of the curve ; bounded by the points P',Q'.



Consider the plane #' in R® which is a supporting plane of the curve ; and is parallel
to the planes m;, 7. It lies between these planes, is tangent to the curve 7y, at some point
O’ and has no other common points with ;. The tangent line L' to the curve y; at O’
intersects the sphere S? at points P”,@" such that P” lies on the negative half-tangent
line and @” is on the positive.

Denote by 6_ (6, ) the set of intersection points of the sphere S? with negative (positive)
half-tangent lines to the curve v, at points of the arc P'O’ (O'Q', respectively). Since
the front of the curve v has no double lines, the sets 6_,d; are non-intersecting arcs of
C*°-parametrised curve on S? without self-intersections but with cusps. Hence, the union
A of the segments P'Q'/P"Q”" and arcs d_,d, is a simple closed curve in R>.

Clearly, the curve A is isotopic to the curve «;: an isotopy is defined by a retraction
of arcs 0_,d, along the half-tangent lines indicated above. But the curve <y, does not
intersect tangent lines to y;. Therefore, the linking number of the curves 7,7, is equal
to the linking number of the curves 4,, A. Thus, to prove claim 3 of the theorem, it is
sufficient only to show that the curve 7, intersects the plane 7’ at exactly two geometrically
different points lying in this plane on different sides of the line L'.

Let us check that the latter is true. Firstly, 7' N~y # 0. Indeed, otherwise any plane 7’
obtained from 7’ by a sufficiently small parallel translation in the direction to the plane
7, would not intersect the curves 7i,72 that (as we saw in the proof of the first claim)
contradicts our condition. Hence, the plane #’ intersects the curve 7y, at exactly two points
and no-one of them lies on the line L'.

Secondly, the plane 7’ cannot be tangent to the curve ;. In fact, if the intersection
points 7' N v, coincide, then the curves 7,7 lie on different sides of the plane #'. But
distant pieces of these curves do not lie in the region between the planes 7y, 7;. Therefore,
the convex hulls of the curves 41,2 do not intersect each other and hence there exists a
plane in R?® which does not intersect 71, y2 which again contradicts the condition.

Thirdly, the intersection points of the plane #’ with the curve v, cannot lie in this
plane on the same side of the line L'. Indeed, otherwise one could rotate the plane 7’
around L' so that its intersection points with v, would move along the curve towards each
other. Hence, there would exist a plane tangent to both curves 7, ; which contradicts
the absence of double lines on the front of the curve .

Lemma 5.2 is completely proved.

Now, let us formulate the condition under which there exists a plane in P* that
transversally intersects the curve « at exactly two geometrically different points.

5.3. Lemma. If a curve v i3 isotopic to affine and its front has no double lines, then
there exists a plane in P3 transversally intersecting this curve at ezactly two geometrically
different points.

ProOOF. By Lemma 5.1, any osculating plane to the curve < intersects it exactly
four times and, moreover, three times at the point of osculation. The required plane
is obviously obtained by a small rotation of the osculating plane around the point of
osculation in the tame direction. Lemma 5.3 is proved.

Lemmas 5.3 and 5.2 imply that if a curve <y is isotopic to affine and its front has no
double lines, then, in the-space of smooth immersions of a circle into P3, this curve can
be connected with unknotted affine curve by a generic homotopy containing exactly one
self-intersecting curve which is homeomorphic to a pair of intersecting projective lines.



Thus, to prove Theorem 2.4, it is sufficiently only to check the following statement:

5.4. Lemma. Assume that ¢ smooth closed generic curve in P? can be connected, in
the space of smooth immersions S* — P3, with an unknotted affine curve by a generic
homotopy containing exactly one self-intersecting curve which is homeomorphic to a pair
of intersecting projective lines. Then it is not isotopic to an affine curve.

This fact must be well-known to specialists. We will deduce it from a more general
statement describing an invariant of contractible curves in the projective space. The
construction of this invariant is realized according to the standard scheme of knot theory
stated in [4].

Let v be a smooth closed contractible curve embedded into P3. At isolated moments
of a generic retraction of this curve to a point, there appear curves with one simple double
self-intersection homeomorphic to the union of two smooth closed non-contractible curves
embedded into P3. The number of such moments will be called the projectivity coefficient
of the curve .

5.5. Proposition. The projectivity coefficient of a smooth closed generic contractible
curve in P3 does not depend on its retraction, that is, this number is an invariant of a
curve. In particular, the projectivity coefficient is not changed in isotopies of a curve.

PROOF. Consider the set Q of all smooth closed contractible curves in P3. Non-
embedded curves form a singular co-oriented stratified submanifold T in this space ([4]).

Let us co-orient this manifold and consider the subset Yy C T consisting of curves
which are homotopic to the union of two smooth closed non-contractible curves in P3.
Since no one-point curve in P? belongs to the manifold Yy, the projectivity coefficient of
any curve v € 2\ T is equal (up to a sign) to the algebraic number of points at which a
generic path in the space {2 connecting v with one-point cuive intersects the smooth part
of the manifold Yy. Thus our statement claims that the projectivity coefficient satisfies
the cocycle condition, that is, the algebraic number I(s) of intersection points of any
closed generic path s in the space 2 with the manifold T is equal to 0.

For the proof, notice at first that the manifold Ty does not have a boundary. This
follows from the fact that a generic point of a boundary would correspond to a curve in
P? having one simple cusp and no self-intersections. But no curve sufficiently close to
such a curve belongs to the manifold Ty. Hence, the number I(s) depends only on the
homotopic class of the path s in the space 2, that is it is sufficient to check the cocycle
condition on an arbitrary element of the fundamental group of this space. ,

Let O be an arbitrary point in P? and {O} € Q be the one-point curve. Mark a
point on every curve vy € € so that the bundle p : Q@ — P23 which associates the marked
point to a curve is smooth. Since mo(p™'(0),{0}) = 0 (the space Q2 is connected) and
m(p~1(0), {0}) = m(P3,0) = 0 ([7], p. 78), then the exact homotopic sequence of the
bundle p

<= m(p7(0),{0}) = m(Q,{0}) = m(P?,0) = m(p™'(0),{0})

implies m (2, {O}) = m(P3,0) = Z,.

Thus, it is sufficient to check the cocycle condition only for a path s C Q such that
p(s) = 6 where § is a projective line in P3. For such a path, one can take the path s;
consisting of the one-point curves defining by points of the curve 6. Since the path s;
does not intersect the manifold Ty, then I(s;) = 0. Proposition 5.5 is proved.
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PROOF OF LEMMA 5.4. The projectivity coefficient of an affine curve is 0. The
projectivity coeflicient of a curve satisfying the conditions of Lemma 5.4 is 1. Hence, such
curves are not isotopic according to Proposition 5.5.

Lemma 5.4 and Theorem 2.4 as well are proved.

6 Proof of Propositions 2.7 and 3.7

Consider the curve I' from Section 1. It lies in the affine space R® = {(z,y,2)} and has
a strictly convex projection onto the plane z = 0. Hence, any osculating plane to I or a
plane tangent to it at least at two different points is transversal to the line z = y = 0 and
is defined by the equation z = az + by +c.

Let us take the coefficients (a,b,c) as an affine coordinate system in the dual space
R* and make some calculations.

6.1. Lemma. For any two points t; and ty of the curve I,

z'(t) «'(t2) =(t) — z(t2) ty—t\* ty—t; . 3
det | ¥'(t1) ¥'(t2) w(t1) —y(tz) | =32 (sin—— cos Lsin = (¢ + t1).
2t Zlt) 2(t) - #(t) ( 2 ) 2.2

It follows from Lemma 6.1 that any two points ¢;,t; (taking the multiplicities into
account) at which the curve I' has a common tangent plane satisfy one of the following
four equations (mod 27):

2
tz-l—tl:%k (k20,1,2) and tz—t1=71’.

6.2. Lemma. The set of planes tangent to the curve I' at least at two points (taking
multiplicities into account) is the union of four curves in R3*:

a=3(—1)*cos ZE(4cos?t — 1)
&kt b=3(-1)FsinZ(4cos’t —1) , t€[0,7}, k=0,1,2;
c=—8(~1)*cos®t
a = 2cos2t — cos 4t
n: {b = —2sin2t —sin4t, t mod 7.
c=0
The curves &3, &3, &3, 7 are flat. Namely, the curve & lies in the vertical plane a sin ’;—k =

bcos ’;—’“, and 7 lies in the horizontal plane ¢ = 0.

We denote the front of the curve I' by X.
6.3. Lemma. Every curve &,k = 0,1,2, is a part of a semicubical parabola with a
cusp
B4l wk k1 . Tk
Cr = (3(—1) *cos —3—,3(—1) *lsin ?,0) :

Its end-points

k
v = (90" cos T, o(-1)hsin 8- ), m=o,1
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are vertices of swallowtails of the front X. The curve 7 is a hypocycloid with three cusps
Cy, C1, Cs.

Notice that the curves £, 3, &3 have two common points 7y = (0,0,—1) and T} =
(0,0,1). They are triple self-intersection points of the front ¥. The union of the curves
€1,€2, &3, 7 is presented on Fig.2 (for simplicity, we present cusps by angles).

6.4. Lemma. The osculating plane to the curve ' at a point t has the following
coordinates in R3*:

a=~6cos2t+ 3cosdt, b=3sin4t—6sin2t, ¢ = —8cos3t.

The formulas of Lemma 6.4 define a parametrisation of the dual curve I'*.

6.5. Lemma. The curve I'* is a closed curve with siz cusps Vi, k € {0,1,2},m €
{0,1}, and three self-intersection points Cy, Cy,Co. Every point Cj is an intersection
point of two branches of the curve I'*; every branch transversally intersects at this point
the plane ¢ = 0 and the osculating plane to the other branch.

The dual curve I'* is presented on Fig.3. 'We will suppose that it is oriented by the
order of its cusps: V@ - V! =5 V! = Vi -V - Vil — V2.

6.6. Remark. Fig.1 is obtained by a superposition of Fig.2 and Fig.3.

Consider germs of the front ¥ at the points Cy, C;, Co. By Lemmas 6.2 and 6.5, they
are diffeomorphic to a germ at 0 of the set {y?> = 23} U {2 = 2%} (a germ of the front
2 at the point C; is presented on Fig.4). A small generic deformation of the curve T,
creates two cusps on double lines of the front of a curve at each of the points Cy, C, C.
In addition, a double line going into a cusp along the curve 5 leaves it along one of the
curves &, &, &3.

This shows that a germ of the front ¥ of the curve T at any point Ci, k =0,1,2, can
be deformed in two different ways. Hence, the set of singular points of the front of any
generic curve sufficiently close to I' can be obtained from the set Sy = §U&UEURUT™
by one of 8 deformations. But the set Sy is invariant with respect to the reflection
(a,b,¢) = (a,b,—c) and rotations around the line a = b = 0 through angles which are
multiples of 27 /3. Therefore it is sufficient to consider only two small deformations of the
front T (they are realized by suitable small deformations of the curve I'):

©,: the intersection points of branches VPV, VRV, VRV (VIV2, VAV, ViIVY) of the
curve I'* with the plane ¢ = 0 go outside of the triangle CyC;C, (inside the triangle,
respectively);

©,: the intersection points of branches ViV, VRV, VIV (VOVE, VR VL, ViIVY) of the
curve I'* with the plane ¢ = 0 go outside of the triangle CyC;C; (inside the triangle,
respectively);

A front obtained from ¥ by one of these two deformations has the following double
lines:

SNy, —>01 NG /e Voo Lo v
O : V" LT Loy B, 0 80 Lo &
5 8y 1 Gy ‘f"vo V-5 8 1 G 25 1y
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Here we denote close vertices of swallowtails of the initial and deformed fronts by the
same letters; an arrow means that a double line goes along a curve written on this arrow;
cusps of double lines arising from a point Cj are denoted by C’ki and C’,f, where the sign
+(—) means that a given cusp is positive (negative) with respect to the orientation of a
double line indicated by the arrows (the orientation of the space R3* is (g, b, c)).

It easy to see that:

1) fronts obtained from ¥ by deformations ©;,©; have no closed double lines; this
proves Proposition 2.7;

2) the principal flattenings diagrams of curves in R?® with fronts obtained from X by
deformations ©; and ©, are diagrams described in claims 1 and 2 of Proposition 3.7
respectively; thus this proposition is proved as well.

6.7. Remark. Admissible homotopies of a curve preserve homotopy type of the dual
curve (in the space of closed curves in P** without self-intersections but with cusps). If
a generic curve <y obtained by an admissible homotopy from a curve sufficiently close to
I' has a nonempty principal flattenings diagram, then its dual curve is unknotted. If a
curve <y has the empty principal flattenings diagram, then its dual curve is homotopic to
the trefoil.
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