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ABSTRACT. The subject of the paper is the propagation of linear waves in 2D and
3D spaces. We describe some typical singularities and metamorphoses of their fronts
when the light hypersurface has conical singularities. Such singularities appear if the
waves propagate in a nonhomogeneous anisotropic medium and are controlled by a
variational principle.

Let us consider the Fuler—Lagrange system of linear partial differential equations
defined by some variational principle

6/Ldtd:c1...d:bn =0

with a Lagrangian L(¢,z,us,u,) = T(t,z,us) — V (¢, 2, u,), where t,z1,...,z, are
the independent variables, u1,...,u,, are the unknown variables, the density of
kinetic energy T is a positive definite quadratic form of the first time derivatives
of the unknown variables, and the density of potential energy is a nonnegative
definite quadratic form of the first space derivatives of the unknown variables. The
coefficients of the both quadratic forms are assumed to be smooth functions of ¢
and x. The propagation of perturbations in an elastic medium is a good model
example of the above situation, where u is a shift vector of a point of the medium
and the quantity of the unknown variables is equal to the space dimension (m = n).

The propagation of shock and short waves is described by some hypersurface
in the contact space of the projectivised cotangent bundle over space-time. This
hypersurface is called light and defined as the degeneracy set of the principal matrix
symbol of our system of partial differential equations. Let the big front of shock
wave be the hypersurface in space-time where the solution is discontinuous, a big
front of short wave approximation be a level hypersurface of its phase. Sections of
big fronts with isochrones t = const are momentary fronts propagating with time.
The momentary front at the fixed time ¢ = 0 is called initial. The propagation of
a momentary front is defined by the light hypersurface and the initial front. Even
if the initial front is smooth the momentary front can become singular after some
time.

A momentary front propagating with time can experience metamorphoses. If
the light hypersurface is smooth then, in case of a generic smooth initial front, all
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singularities of momentary and big fronts as well as metamorphoses of momentary
fronts are known, provided that the dimension of space does not exceed five (see,
for example, [A1, Chapter 3] and [B1]). However, if the quantity of the unknown
variables is more than one (m > 1), there can be singularities on the light hypersur-
face. When the coefficients of the original variational principle depend generically
on a point of space (or space-time), typical singularities of the light hypersurface
are classified up to formal contact diffeomorphisms in [A2] (see also [A1, Chapter 8]
and [Kh]). These singularities generate new singularities of momentary fronts, new
singularities of big fronts, and new metamorphoses of momentary fronts.

In the present paper we classify up to diffeomorphisms some of such new singu-
larities of momentary and big fronts in physically interesting cases n = 2 and n = 3
provided that the smooth initial front is generic. The nontrivial metamorphoses of
momentary fronts defined by our new singularities of big fronts are shown in Fig. 1
for n = 2 and in Fig. 2 and Fig. 3 for n = 3.

Fig. 1: New metamorphose ©3 of momentary fronts in plane.

In mathematical terms the big front is the projection of the Legendre submanifold
being the extension of the initial front along characteristics of the light hypersurface.
New singularities of momentary and big fronts appear when our Legendre manifold
becomes singular. According to [Al, Chapter 8], if n = 2 it can have only two
different singularities up to contact diffeomorphisms. Their codimensions on the
Legendre submanifold are 1 and 2. The corresponding new singularities of big
fronts and metamorphoses of momentary fronts are described in [B2] and [B3] only
in case of codimension 2 — the simplest but nontrivial case of the singularity of
codimension 1 is missed there! The missed metamorphose of a momentary front is
shown in Fig. 1.

In Theorem 1 of the present paper we find the stabilizations of the singularities of
the Legendre submanifold from [A1, Chapter 8] if n > 2. We call these singularities
as A; and A,, on the Legendre submanifold they have the same codimensions 1
and 2 respectively. In case n = 2 the singularities A; and A; exhaust all possible
singularities of the Legendre submanifold up to contact diffeomorphisms provided
that the coefficients of the original variational principle depend generically on a
point of space and the initial front is generic. In case n = 3 there exist other
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singularities whose classification is an open problem.

Fig.2: New metamorphoses ®3 of momentary fronts in 3D space.

Fig.3: New metamorphose =4 of momentary fronts in 3D space.

Main Theorem of the present paper classifies typical fronts of the singularity
Ay with respect to diffeomorphisms in physically interesting cases n < 3. Our
classification consists of five new singularities @5, O3, @f, and Z4 of momentary
and big fronts. All of them are stable in the following sense: after any small
perturbation of the initial front and the coefficients of the variational principle the
front does not change up to a local diffeomorphism.

Distribution of material. In Section 1 we formulate Main Theorem giving nor-
mal forms of our new singularities @5, O3, @f, and =4 of momentary and big fronts
with respect to diffeomorphisms. Main Theorem asserts that in physically interest-
ing cases n < 3 all generic fronts of singularities A; of a Legendre submanifold are
exhausted by this list up to diffeomorphisms.

Section 2 contains normal forms of typical singularities of the light hypersur-
face with respect to formal contact diffeomorphisms. These normal forms are
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found in [A2] provided the light hypersurface satisfies some extra conditions of
non-degeneracy. According to the transversality theorem from [Kh], these con-
ditions are realized if the coefficients of the original variational principle depend
generically on a point of space-time.

In Section 3 we formulate and prove Theorem 1 describing singularities A; and
A5 of the extension of a generic initial front along characteristics of the light hy-
persurface which has the singularities from [A2] presented in Section 2. For n = 2
the singularity Ay is found in [A1l, Chapter 8]. If n = 2 the singularities A; and
A5 exhaust all possible singularities of the extension with respect to contact dif-
feomorphisms preserving the light hypersurface. Even if n = 3 there exist other
singularities whose classification is an open problem.

Main Theorem is a corollary of Theorem 2 presented in Section 4 and describing
normal forms of generic Legendre bundles up to the so-called weak A;-equivalence
provided n < 3. We start to prove Theorem 2 with finding in Section 5 normal
forms for separate fibers with respect to contact diffeomorphisms preserving the
normal form A; itself. The corresponding results are formulated in Theorem 3
which is reduced in Section 5 to Lemma 2.

We prove Lemma 2 in Section 6 with the help of the standard homotopy method
applied to the group of contact diffeomorphisms preserving the normal form A;. It
turns out that the Legendre bundles from Theorem 2 are versal deformations of the
separate fibers from Theorem 3 in the class of all smooth Legendre submanifolds.
We develop the corresponding versality theory in Section 6. It turns out, for ex-
ample, that the infinitesimal versality in our situation is nothing but the Givental’
criterion of stability of the Legendre mapping of the singularity A; (see [G, 3.3]).

1. SINGULARITIES AND METAMORPHOSES OF FRONTS

Case n = 2. In this case the momentary front at typical time can have cusps
Ay and new stable singularities ©5, the latter ones are discontinuities of the third
derivative and propagate along rays. At separate times the momentary front can
experience the new metamorphose shown in Fig.1. The singularities ©2 of the
momentary fronts propagate along a smooth ray and their cusps run through a
couple of smooth curves with an infinite order of tangency. Our metamorphose is
described by a big front lying in 3D space-time and called ©3. The front ©3 looks
like the usual swallow tail but its cuspidal edge consists of two smooth curves with
an infinite order of tangency.

Case n = 3. In this case the momentary front at typical time can have cuspidal
edges A,, swallow tails A3, and new stable singularities ®2 and ©3. The singular-
ities ©, propagate along rays. New singularities of the big front are ©2, Os, @ff,
and Z4. The two possible metamorphoses ©3 are shown in Fig.2, the metamor-
phose =4 — in Fig. 3, the singularity ©®, does not give us a new metamorphose of
momentary fronts, and the metamorphoses @f are topologically trivial — before and
after their instants the momentary fronts have the singularity ©3 and are locally
homeomorphic to the momentary fronts at the instants of the metamorphoses. It
should be noted that during the metamorphose =4 the singularities 5 run through
the Whitney umbrella.

Normal forms of fronts. Normal forms of the singularities 05, O3, @ff, and =4
are given in local coordinates (y,z) = (y1,-.-,Yn, 2) by the equations

z=F(s,y), Fy(s,y) =0,
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where s = (s1, s2) are parameters and
©,) F = —siIn(s/e) + yis1;
@ki) F = —s?In(s2/e) + 5182 +sk4yiso+--- +yk,1s§*1 wheren+1>k > 3;
E,) F=—s7In(s}/e) + s3 +y1s1 + y252 + yss1ss.

Remarks. 1) The singularity ©, is given by the equation z = ¢(y1) = y?/Iny? +
o(y?/Iny?) as y1 — 0 where ¢ is just the Legendre transform of the function
—s?1n (s?/e).

siln(s7

2) The change s — —s shows that the singularities @: and ©, are diffeomorphic
if £ is odd.

3) Removing from F' the terms of degree 3 and more we get the following as-
ymptotic normal form for the singularities @kjE where k£ > 3:

F = —s2In(s3/e) + 8159 + y152 + y253.

It shows us that these singularities are homeomorphic to each other.

Definition. A smooth bundle 7 : E — B is called Legendre if its space F is a
contact manifold and the fibers are Legendre submanifolds. The image 7(A) of a
Legendre submanifold A C E is called its front.

Remark. In our case E = PT*R"*! and B = R*+!.

Main Theorem. Let (p,q,u) = (P1,---,Pn,q1,---,qn, u) be coordinates in E such
that the contact structure is given by the form

0 = du — (pdg — qdp) /2,
A ={2pilnpi +¢1=0,po=--=p, =0, u+p; =0} CE

be a fized Legendre submanifold, and m : E — B be a generic Legendre bundle.
Then, provided n < 3, the fronts of the germs of Ay at its singular points are
diffeomorphic to the normal forms ©4, O3, @f, and Z4.

2. SINGULARITIES OF LIGHT HYPERSURFACE

Let ¥2" C PT*R"*! be the light hypersurface of our variational principle. Ac-
cording to [A1l, Chapter 8], [A2], and [Kh], if its coefficients depend generically on
a point of space-time and n > 1, in neighborhoods of typical singular points %2"
is reduced by formal contact diffeomorphisms to one of the two following normal
forms

P +p2q2 =0, pPi=p;+a

which are called hyperbolic and elliptic respectively. Here (p, ¢, u) are coordinates in
PT*R"*! such that the contact structure is given by the form 6 = du— (pdq—qdp) /2.

In contrast to the elliptic case, each hyperbolic singularity of %2 has two
characteristics passing through it. Let H2" 2 C 2" be the manifold of all hy-
perbolic singularities of the light hypersurface and H?"~! C ¥27 be the union
of all its characteristics passing through H2"~2. In the above local coordinates

H? 1 ={p1 =p2=0}U{p1 = ¢ =0}.
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3. SINGULARITIES OF LEGENDRE SUBMANIFOLDS

An initial front defines a Legendre submanifold L™ C PT*R**! consisting of
all contact elements which are tangent to the initial front. The transversal inter-
section L"~! = L™ N X?" is an integral submanifold of PT*R"*! and the union
of all characteristics of ¥2" beginning on £" ! is a Legendre submanifold denoted
by £ C PT*RH!. Tts projection is the big front in space-time describing the
propagation of momentary fronts defined by the initial one. If some characteristic
beginning on L™ ends at a hyperbolic singularity of X2, then after this instant the
Legendre submanifold Lr acquires singularities which are described by Theorem 1
proved in [A1l, Chapter 8] for n = 2.

Theorem 1. Let L™ not pass through singular points of 2" and transversally
intersect H>"~! at a point O. Let P € H>"~1 be the endpoint of the characteristic
beginning at O. Then the Legendre submanifold L™ is reduced in a neighborhood of
P to the normal form

Ay ={2piInps+¢1 =0, p] +p2g2 =0, p3 =--- =p,, =0, u+p; /2 =0}

by a contact diffeomorphism preserving the light hypersurface p? + p2gs = 0.

Corollary. The Legendre submanifold L™ described by Theorem 1 has singularities
when py =+ =py, = q1 =u =0 and g2 < 0. If g2 < 0 then in neighborhoods of
these singularities L™ is reduced to the normal form

A ={2plnpl+q =0,po=---=p, =0, u+p; =0}
by a local contact diffeomorphism (reducing the light hypersurface to the form ps =
0).

Proof. Explicitly: p» — (p? — p2)e 2, ¢1 = q1 + 2p1q2, q2 — —e®, and u
u+ (p? — p2 +pag2)/2. O

Proof of Theorem 1. Our proof is analogous to the one proposed in [A1, Chapter §]
for n = 2. In the above coordinates the characteristics of £2” are described by the
equations

(1) D1 =0, P2 =—p2, G1 =2p1, 2 =¢q2, Px =G« =0, 4 =0
where p, = (p3,...,ps) and ¢ = (¢3,...,qn)- Let the considered characteristic

O? be given by the equations p; =0, p2 > 0,91 =¢2 =0, px =¢s =0,and u =10
(maybe after an obvious change of the variables). On X2” the intersection

Lrt ={p,=1}nL"
is transversal to H2"~! whose equation on 2" is p; = 0. So, (p1,qs) will be

coordinates on £" ! after several contact changes preserving ¥2" and having the
form (p;, q;) — (gi, —p;) where i = 3,...,n. Therefore,

£n71 = {p2 = 17 Px = .fq* (plaq*)a g1 = _fpl (plaq*)a g2 = _pﬁa u = g(plaq*)}
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Indeed, the function f exists because d ((fqldp1 -I-p*dq*)\gn,l) =dpAdglz._. =
—db|z.-, = 0. The symplectic change

(P1, D2, x> 415425 Gx) = (D1, 02, P — fo. (D1, @), @1 + foy (P150x), 425 G)

kills f preserving ¥2". The corresponding contact change reduces g to —p?/2
because on L™ ! we get du = (padgs — q2dp2)/2 = —pidp; if f = 0. Thus,

En*l = {p2 = 15 Dx = 05 q1 = Oa q2 = 7p§’ u = 717%/2}

But the functions 2p; Inps + g1, p? + P2ga, P+, and u + p3 /2 are constant along the
characteristics (1) and vanish on £"~!. O

4. NORMAL FORMS OF LEGENDRE BUNDLES

Main Theorem follows from Theorem 2 formulated in this Section and proved in
Section 6.

Definition. Let A C F be a Legendre submanifold. Two Legendre bundles w, 7' :
E — B are called weakly A-equivalent if 7’ o h = f o where f is a diffeomorphism
of B and h is a diffeomorphism of F which preserves A.

Remarks. 1) If 7 and 7' are weakly A-equivalent then the fronts m(A) and 7'(A)
are diffeomorphic.
2) The diffeomorphism g is not required to be contact.

Definition. Let W : R® x R®*! — R be a smooth function of p;, ¢s, and

(Y1, ,Yn,2) € R"1 which satisfies the condition of nondegeneracy:
W:DI?J W:DIZ
det Wqu Wqu 7é 0
w, W,

where INJ =0, TUJ ={1,...,n}. Then W is called a generating family of the
Legendre bundle 7 : (p,q,u) — (y, z) whose contact structure and fibers are given
by the formulas

du — (pdq — qdp) /2 = 0,
Wﬁl(yaz) = {pJ = WQJ’qI = _Wpl’u =W _pIWPI/2 - qJWQJ/2}'

Remark. This bundle is correctly defined in consequence of nondegeneracy of W.

Theorem 2. If n < 3 then in a neighborhood of a singular point of the Legendre
submanifold A1 a generic Legendre bundle is weakly A;-equivalent to one of the
normal forms given in a neighborhood of the origin by the following generating
families:

0, ) W(p,y,2) =y1p1 +++ + YnPn — 2;

O3 ) W(q1,p2,- - Py ¥, 2) = £qF +y1q1 +- -+ yp—1ql " +yap2+ -+ YnPn — 2,
wheren + 1>k > 3;
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By ) W(P1,92:D3 -+, Pns ¥y 2) = @5 +Y1P1 + Y202 + Y3p1g2 + Y3ps + - - + YnPn — 2,
where n > 3.

Remarks. 1) The change (p1,¢1) — (—p1, —¢1) shows that the singularities @Z‘ and
©, are reduced to each other if k is odd.

2) One can show that all simple stable mappings of the Legendre submanifold
A are exhausted by the singularities @ki and Z4.

Proof of Main Theorem. Explicit check that the fronts of A; from Theorem 2 give
the normal forms from Main Theorem. O

5. NORMAL FORMS OF FIBERS

We start to prove Theorem 2 with finding normal forms for separate fibers which
pass through singular points of the Legendre submanifold A; with respect to contact
diffeomorphisms preserving A; itself. The corresponding results are formulated in
Theorem 3.

Definition. Let A C F be a Legendre submanifold. Two Legendre submanifolds
are called A-equivalent if they are the same with respect to a contact diffeomorphism
preserving A.

If the contact structure is du — (pdg — gdp)/2 = 0 then in the coordinates (p, ¢, u)
any Legendre submanifold L is locally given with the help of at least one of the 2™
generating functions w(pr,qy) by the formulas

Py =Wq,, QI =—Wp, U=W—Prwpy,/2—qrwy,/2

where INJ =0 and TUJ = {1,...,n}. On the other hand, if (ps,qs) are local
coordinates on L then

w(plaq‘]) = '(/)I‘La where lpl(pvqau) =u- (plql 7pJqJ)/27

is its generating function. For example, w(p1,qz,-..,q,) = p?In(p?/e) is a gener-
ating function of the Legendre submanifold A;.

Theorem 3. Let us consider a generic family L, of Legendre submanifolds depend-
ing on a point b € B where dim B < 4. Let Ly be any Legendre submanifold from
L, which intersects the Legendre submanifold Ay at its singular point. Then for
any n > 1 in a neighborhood of this point Ly is Aq-equivalent to one of the normal
forms given in a neighborhood of the origin by the following generating functions:

0, ) w(p) =0;

@ki) w(q1,p2,---,Pn) = £q¥, where dim B > k > 3;

Ey ) w(p1,42,p3---,pn) = g3, where dim B > 4.

Remark. The fibers of a generic Legendre bundle form a family of Legendre sub-
manifolds depending generically on a point b € B where dim B =n + 1.

Proof. Let Lj intersect A; at its singular point p = 0, ¢ = ¢° = (0,¢3,...,4°),
u = 0. The contact diffeomorphism p — p, ¢ +— q — ¢°, u — u + pqg®/2 moves this
point to 0 and preserves A;. So the Legendre submanifold obtained from L; can
be locally given by a generating function w such that w(0) = wp, (0) = w,, (0) = 0.

The singularities of A; form a submanifold of codimension n + 2 in E. So the
germs of Legendre submanifolds from L, at singular points of A; form a family
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depending generically on dim B 4+ dim L — (n + 2) = dim B — 2 < 2 parameters.
Any germ from such a family can be given by a generating function w(py, ¢.;) where
fJ = 0 or 1. Indeed, the condition dimT'L, N {dp = du = 0} > 1 for the tangent
plane T'Ly, to the germ of L requires at least three parameters. It remains to prove
the following Lemma 1. O

Notation. For two germs w and w' of generating functions we write w ~p w’ if
the corresponding germs of Legendre submanifolds are A-equivalent.

Lemma 1. If w(pr,qs) is the germ at 0 of a generating function such that w(0) =
wp, (0) = w,, (0) = 0 then
a) J =0 = w~y, 0;
b) J ={1}, 02 w(0) = --- = 0 'w(0) =0, ¥ w(0) #0, k >3 = w ~xp, *qf;
c) J={2}, aplalhw(o) = 8321-0(0) =0, 8321-0(0) #0 = w~na, qg'

Proof. 1t is sufficient to prove the cases a), b) for n = 1 and the case c) for n = 2.
This follows from the equivalence w ~j, wo where wo(pr,q7) = wlp,, =0, I' =
I'n{1}, and I" = IN{2,...,n}. The equivalence is performed by the contact
diffeomorphism

(plvaaQIanau) = (pIapJ 7,&)\11.]7q1 +ﬁ}puanu7’Lﬁ+pI@p1/2+qJﬁ}qJ‘/2)

where W = w — wg. This diffeomorphism preserves A; because it shifts the plane
pr = 0 along only gy (preserving pr, ps, qr, qs, and u) that follows from the
equality @|,,, —o = 0.

The infinite chains ay = ag = ..., b* = b}, = b}, = ..., and * = ¢§ =
¢S = ... of propositions of the following Lemma 2 prove the cases a), b), and c)
respectively on the level of formal series. To prove Lemma 1 in smooth case it is
enough to use the finite-determinacy theorem [AGLV, Chapter 3, §2] for the nice
geometric group of A-equivalence [AGLV, Chapter 3, 2.5]. O

Lemma 2. Let ay = degpy and By = degqy be positive integer quasidegrees and
Ao D A; D ... be the corresponding quasihomogeneous filtration in the algebra of
the germs at 0 of smooth functions of p; and qy. Then

ag)n=1,J=0,a1 =1, wg € Ag, d>2 = wg ~p, 0 (mod Agy1);

bk) n=1,J= {1}, B1 =1, wy € .Ak, 8§1wk(0) 75 0, k>3 = wyg ~A, :|:q{C
(mod Ajy1);

bﬁ)nzl,J:{l},Bl:1,wd€Add>k23¢iq{“+wd~Al :|:q{C
(mod Ag1);

S)n=2,J={2}, a1 =3, B2 =2, wg € As, 3,ws(0) # 0 = we ~na, 5
(InOd A7),‘

E)n=2,J={2}, a1 =3, 0 =2, wqg € Ag, d > 6 = ¢5 + wqg ~a, ¢
(mod Agy1).

Lemma 2 is proved in Section 6.

6. CoNTACT VECTOR FIELDS AND A-VERSALITY

In this Section we prove Theorem 2 and Lemma 2. Theorem 2 follows from
Theorem 3 which was reduced to Lemma 2 in Section 5.

A vector field preserving a contact structure on a manifold is called contact. It
is well known that any contact field is uniquely defined by its generator. If the
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contact structure is given as the null subspaces of a 1-form 8 then the generator of
a contact vector field v is the function K = 8(v). In our case § = du— (pdq — qdp) /2
and v is defined by the formulas

p=K,+pK,/2, ¢=—-K,+qK,/2, u=K— (pK,+qK,)/2.
Let L(w) be the Legendre submanifold given by a generating function w(ps, g):
L(w) = {pJ = Wq,;,4q1 = —Wp,, U =W _prP1/2 - waQJ/2}

and K(w) denote the derivative of the generating function when the Legendre
submanifold is acted by the contact vector field v with the generator K.

Lemma 3. K(w) = K|L(w)

Proof. Indeed, (pr,qs) are local coordinates on L(w) and w(pr,q.) = ¥1|L(w) Where
TP{(P,%U) =u—(prqr—psqs)/2. So, K(w) = ¥r|r(w)— (P1]L(w)Wps + 45| L(w)Wq,) =
(Y1 +prqr — 4ip7) L(w) = (@ +Pq/2 — p4/2)|L(w) = Klpw)- O

Definition. Let A C E be a Legendre submanifold. Two families L., L) of
Legendre submanifolds depending on a point b € B are called A-equivalent if
L’f(b) = gp(Lp) where f is a diffeomorphism of B and g, is a family of contact
diffeomorphisms of E preserving A and depending on a point b € B.

Lemma 4. Two Legendre bundles m,n' : E — B are weakly A-equivalent if the
families of their fibers are A-equivalent.

Proof. Because the families '~ (%), 7~ (%) are A-equivalent we get 7' (f(b)) =
go(m (b)) = k(7" (b)) where h(e) = gy (c)(e), e € E. The mapping h preserves A
(but not the contact structure in general) and performs diffeomorphisms between
the fibers 71 (b) and 7'~ '(f(b)) for any b € B. Therefore, h is a diffeomorphism
such that 7' oh = for. O

Let £ be the algebra of the smooth functions on E and Zp, C & be the ideal
consisting of all functions vanishing on A. Contact vector fields with generators
from Zp are tangent to A. Then, according to Lemma 3, the tangent space to the
A-equivalence orbit of the Legendre submanifold L(w) is the restriction Zx | (u)-
Let W (p1,q.7,b) be a smooth deformation of the generating function W (py, ¢s,0) =

w(pr,qs) and W = 0,Wp—o € &,,4, be its initial velocities which are elements of

the algebra &,,,, of the smooth functions of p; and ¢;.

Definition. The deformation W of the generating function w is called infinitesi-
mally A-versal if it is transversal to the A-equivalence orbit of L(w):

W) + Zal(w) = Epras-

Remarks. 1) If W is a generating family of a Legendre bundle = : E — B then
A-versality of W is nothing but the Givental’ criterion of stability of the Legendre
mapping A — E = B from [G, 3.3].

2) In order to define A-versality without coordinates let us consider a deformation
L, = g+(L) of a Legendre submanifold Ly = go(L) where g, is a family of contact
diffeomorphisms depending smoothly on a point b € B and L is a fixed Legendre
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submanifold. Let go(go(€e)) = Orgs(€)|p—o be the initial velocities of the deformation
g, which are contact vector fields on E. In this situation the deformation L, is called
infinitesimally A-versal if

(0(g0))e +Zn +Ip, = &

where 7y, C £ is the ideal consisting of all functions vanishing on Ly. The point is
that contact vector fields with generators from 7, move Lg along itself.

Proof of Theorem 2. The generating families from Theorem 2 are infinitesimally
A;-versal deformations of the generating functions from Theorem 3. Indeed, Zp, =
(u+p?,pay...,pon), b= (y,2), and .

@2) w(p) = 0, L(w) = {q =0,u = 0}7 Z'1\1|L(w) = (p%vp%“-apn)a Wie =
<1ap>R;

eki) w(q17p27"'7pn) = :}:q{c’ L(w) = {pl = :}:kqfilaq2 : = Qqn = O,U =
:b(]- - k/2)q:]l€} where k& > 3, IA]‘L(UI) = (vap%---apn)a <W>R = <1,<I17P2 +
@, Pk1 4+ 6" pr, ..., po)r where n >k — 1;

Ey) w(pr,q2,ps3.--,0n) = ¢3, L(w) = {p2 = 3¢3, 1 =q3 = - = qn = O,u =
7(13/2}7 Ih, ‘L(w) = (p%a qaap& cospn)y Wr = (1,p1,42,p3 + P12, P4y -+, Pn)R
where n > 3.

Let m : E — B be a generic Legendre bundle. Then its fibers form a family
L, = n~1(x) of Legendre submanifolds depending generically on a point b € B.
Therefore, provided n = dim B — 1 < 3, the germs of the family L, at singular
points of the Legendre submanifold A; are infinitesimally A;-versal deformations
of Legendre submanifolds described by Theorem 3. So, they are Aj-equivalent
to deformations described by Theorem 2 in consequence of the general versality
theorem [AGLV, Chapter 3, 2.3, 2.5]. Lemma 4 implies the required weak A;-
equivalence of the corresponding germs of Legendre bundles. [

Proof of Lemma 2. We use the standard homotopy method. Namely, let w, be a
family of generating functions depending smoothly on a parameter 7 and K, be a
smooth family of generators satisfying the homological equation

K, (@) + 8,@, =0

on a segment [7o,71]. Besides, the corresponding contact vector fields vy are
assumed to be tangent to the Legendre submanifold A; and to preserve 0: vk _(0) =
0. For the generators K, these conditions mean K, |5, = 0 and K,(0) = §,K,(0) =
0,K(0) = 0 respectively. Now solving the Cauchy problem

3-(p, q,u) = vk, (9-(p,q,u),  gro(Pyq,u) = (P, q,u)

with respect to a family of diffeomorphisms g, on the segment [7y,71] for small
(p, g, u) we get the equivalence w,, ~a, W,, performed by the local contact diffeo-
morphism g,, preserving A; and 0.
aq) In this case wy = ap?. Let @, = tp¢ and [y, 71] = [0,a]. Then
K, = —(u+pi)p{°
is a required solution of the homological equation. Indeed, using Lemma 3 we get

K, (@;) + 8:@; = —(r(1 = d/2)p{ + p})p} > +pf =0 (mod Agy1)
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provided d > 2.

b*) In this case wy, = ag} where a # 0. Let @, = 7¢F and [r9, 1] = [a, sign(a)].
Then
Ko— WP
T(k/2 - 1)

is a required solution of the homological equation. Indeed, using Lemma 3 we get

(1 — k/2)gk 4+ m2k2¢%F 2

K, (w,) + 0,0, = +¢¥ =0 (mod Azi1)

T(k/2 1)
provided k& > 3.
b%) In this case wq = ag?. Let 0, = +¢f + 7¢{ and [r0, 71] = [0,a]. Then
_ 4y +pi s
T k/2—-1"

is a required solution of the homological equation. Indeed, using Lemma 3 we get

K. (0;) + 0;w, =

+(1—k/2)gf +7(1 —d/2)qf + (ke " + qufil)zqdfk d

+ k21 i " +a1 =0 (mod Agy1)

provided d > k > 3.

®) In this case wg = ap? + bg3 where b # 0. The contact change ps — b'/3ps,
g2 — b '/3qy preserves A; and reduces wg — ap? + ¢3. Let @, = 7p? + ¢3 and
[T0, 1] = [0, a]. Then

K, = —(u+p}) —p2q2/6

is a required solution of the homological equation. Indeed, using Lemma 3 we get
K () + 0-0, = —(7(1 = 2/2)p} + (1 — 3/2)q3 + p}) — 343/6 + pi = 0.

&) In this case wqg = ag—6(p1,92)p? + ba—s(p1,q2)q3 where aq_g € Aj_s and
ba—a € Ag_4. Let @, = g5 + 7wy and [19, 7] = [0, 1]. Then

K, = —aq—6(p1,q2)(u+ p} + p2g2/6) — ba_a(p1,92)p2/3

is a required solution of the homological equation. Indeed, using Lemma 3 we get

K (@) + 0B = —aq—6(p1,q2) (P} + 7(wa — P10y, wa/2 — 204,w4/3)) —
—ba—4(p1,42)(q5 + Og,wa/3) + wg =0 (mod Agy1)

provided d > 6. O
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