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Abstract

The developable surface in R® has the unique (singular or non-singular) Legendrian
lift to the projective cotangent bundle on R3. In this paper we show that the converse
assertion holds for singular ruled surfaces. We call such a surface a ruled front. We give
an explicit form of the generating family of the Legendrian lift of a developable surface (a
ruled front) and study singularities and their stability.

1 Introduction

Developable surfaces in R® are the classical subject in differential geometry. It is, however,
paid attention in several areas again. (i.e., Projective differential geometry[17], Computer
graphics[7, 19] containing the industrial design etc.) The developable surface is a surface with
the vanishing Gaussian curvature on the regular part and it is also a ruled surface. If the surface
is the form z = f(z,y) (i.e., the graph of the function f(z,y)), then the surface is a developable
surface if and only if the Monge-Ampére equation 7t — s = 0 is satisfied on the surface, where
T = Zgz, § = Zgy, t = Zyy. It has been classically known that the regular developable surface is a
part of a cone, a cylinder or the tangent developable of a curve. The cylinder and the plane are
complete non-singular developable surfaces, other developable surfaces always have singularities
if these are complete. Recently there appeared several articles concerning on singularities of
developable surfaces in R® (cf, [5, 8, 9, 10, 11, 12, 15, 16, 18]). In these article classifications of
singularities of developable surfaces are given. The set of developable surfaces forms a special
class of ruled surfaces (ruled surfaces are also special surfaces in general singular surfaces), then
the meaning of the genericity is quite delicate. For the tangent developable of a space curve,
Cleave[5] is the first person who gave a generic classification of singularities. He has shown that
the tangent developable of generic space curve is locally diffeomorphic to the cuspidal edge or
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the cuspidal crosscap at a singular point (cf., Example 2.5). Moreover, the cuspidal crosscap
point corresponds to the point where the torsion of the curve vanishes. So the swallowtail
does not appear for the tangent developable of a generic space curve. The more degenerated
singularities of the tangent developable of a curve are classified by Mond[15], Sherbak[18] and
Ishikawa[9]. It has been known that the tangent developable of a regular curve is the envelope
of the osculating plane along the original curve. There are other two natural developable
surfaces along a regular curve with respect to the Frenet frame. One is the envelope of the
normal planes which is called a focal developable of the curve. Another one is the envelope
of the rectifying planes which is called a rectifying developable of the curve. The situation
is, however, rather different among these developable surfaces. The singularities of the focal
developable (respectively, the rectifying developable) of a generic space curve has been classified
by Porteous[16] (respectively, Izumiya, Katsumi and Yamasaki[11]). These developable surfaces
are locally diffeomorphic to the cuspidal edge or the swallowtail at a singular point. Here,
C xR = {(z1,22) | 21> = z5° } X R is the cuspidal edge, CCR = {(x1, 22, %3) | 23 = 23z} } is
the cuspidal crosscap and SW = {(x1, Z2, %3) | 1 = 3u? + v?v, 25 = 4ud + 2uv, 23 = v } is the
swallowtail.

In this paper we consider a generic classification and the stability of the singularities of
general developable surfaces. Briefly speaking, the cuspidal edge, the cuspidal crosscap or the
swallowtail appear as singularities of generic developable surfaces (cf., Theorems 2.8 and 2.9,
Fig.1).

Fig. 1

In Example 2.7 we define the Gaussian rectifying surface of a space curve with non-vanishing
curvature. As a corollary of our theorem, we can show that the all above singularities appear
on the rectifying Gaussian surface of a generic space curve.

On the other hand, these singular surfaces are realised as wave fronts of Legendrian inclu-
sions (cf., [3]). So these surfaces have the structure of both of wave fronts (i.e., co-orientable
surfaces) and ruled surfaces. We call such the surface a ruled front. Proposition 3.2 asserts that
the singular ruled front is a developable surface. It follows from the general theory of Legen-
drian singularities (cf., [2, 3, 20]) that these surfaces (with extra components) have generating
families at least locally . In this paper we explicitly give the generating family of a developable
surface under a certain good condition. We apply ordinary techniques of singularity thoery
to these families of functions, so that we interpret the meaning of stability and give a part of
classifications.

All curves and maps considered here are of class C* unless stated otherwise.
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2 Basic notions and examples

We now present basic concepts and properties of ruled surfaces and developable surfaces in
R3. The classical theory has been given in [6]. These are, however, not so popular now, so
that we review the classical framework in the first place. Since developable surfaces are ruled
surface, we start to give the definition of ruled surfaces. A ruled surface in R® is (locally) the
image of the map F(, 45 : I x J — R® defined by Fiy6)(t, u) = ¥(t) + ud(t), where v : I — R?,
§ : I — R®\ {0} are smooth mappings and I, J are open intervals. We assume that I is
bounded. We usually call the map F,4) the ruled surface in stead of the image. We call v a
base curve and & a director curve. The straightlines u — (t) + ud(t) are called rulings.

For the ruled surface F{,g), if 4 has a constant direction, then it is a cylindrical surface.
Therefore, the ruled surface Fi,s) is said to be noncylindrical provided &' A & never vanishes,
where A denotes the exterior product of vectors in R®. Thus the rulings are always changing
directions on a noncylindrical ruled surface. It is clear that the set O, consisting of noncylin-
drical ruled surfaces is an open and dense subset in C32(I, R® x S?). Then we have the following
lemma (cf., [6]).

Lemma 2.1 (1) Let F,5)(t,u) be a noncylindrical ruled surface with [|6(t)|| = 1. Then there
exists a smooth curve o : I — R® such that Image F\, 5y = Image Fi, 5 and (o'(t), 8 (t)) = 0,
where {,) denotes the canonical inner product on R®. The curve o (t) is called the striction curve
of Fly8)(t)-

(2) The striction curve of a noncylindrical ruled surface Fi, s u) does not depend on the
choice of the base curve .

We can specify the place where the singularities of the ruled surface are located.

Lemma 2.2 Let Fi,5 be a ruled surface with the striction curve o and ||6(t)|| = 1. If zp =
Fio.6)(to, uo) s a singular point of the ruled surface Fi, 5 then up = 0 (i.e., zo € Imageo).
Moreover, if o'(ty) # 0, then the ruling through o (to) is tangent to o at t;.
Proof. We can calculate the partial derivative of Fi, s as follows:

0F (5.5) OF

— ! ' a,9) —_
" (t,u) = o'(t) + ud'(2), 8—u(t, u) = 6(t).

Therefore we have
OFep , OF(0,5)
at ou
where A denotes the exterior product in R®. Since ||6(2)|] = 1/(6(¢),d(¢)) = 1, we have
(8'(t), 8(t)) = 0. By the condition that (¢”(t), d'(t)) = 0 and the above, there exists a smooth
function A(t) such that o'(t) A 8(t) = A(t)d'(t). So we have
6}?(0',5)
(el

(t,u) = o'(t) A 6(t) +ud'(t) A 6(2),

A af;’;(;ﬁ) Gwl? = |IA®) @) + ud'(t) A 6|

= A O + 22()u(d' (1), 8'(t) A 6(2)) + u?[18'(2) A S(B)|I*
(A@®)? + w6 )1
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Suppose that zy = F{;4)(to, u0) is a singular point of the ruled surface F;g), then

6};(0 5 35(0- 8)
? Y t —_ )
I ot A du (to, uo)| =0
Since F, 4 is noncylindrical, this means that ug = A(tp) = 0. O

By Lemma 2.2, the singularities of a ruled surface are located on the striction curve. If
U ut
, , , then v(t) = (#2,0,0), ~/'(t) =
T T ) then 700 = (£,0,0), ()
—t 1
2¢,0,0) and &'(¢) = [ O, ,
( ) © ( V823 /(1 +82)
Fly,6)(t, u) and the singular point is (0,0, 0).
Let F(,4) be a ruled surface. We say that F, 4 is a developable surface if the Gaussian
curvature on the regular part of F,4) vanishes. Let (¢,u) € I x J be a regular point of F(,
and IT = Ldt?+2Mdtdu+ Ndu? be the second fundamental form. Then the unit normal vector

is 7' () A 8(2) + ud'(t) A 5(2)

we consider the crosscap F{,4)(t,u) = (t2

. By definition, «(¢) is the striction curve of

%) = @ A8 + w8 () A ST
Since ¥'(t) A 6(¢) + ud'(t) A 8(t) = v"(t) + wd"(t), %(t, u) = &'(¢) and

(&) A 8(t) + ud'(t) A b(t) = 0,
we have

M

_JBE N det(y(t) 6(8) 8(0)
= <atau‘t’ ) )> @A) +ub @) AT

N = <?9—Z:—(t,u),n(t,u)> = 0.

Therefore, K(t,u) = —M? = 0 if and only if det(+'(¢t) 6(t) & (t)) = 0. So we adopt the
following definition of singular developable surfaces: We say that F,4) is a developable surface
if det(y'(t) (¢) &'(t)) = 0 for any t € I. Then we have the following simple lemma.

Lemma 2.3 Let F,;) be a noncylindrical ruled surface. Then F\, ) is a developable surface if
and only if there ezist smooth functions p, A : I — R such that v'(¢) = p(t)d(t) + ()8 (¢).

By the lemma, we can control noncylindrical developable surfaces by using u(t), A(t) and
d(t). We adopt the space of noncylindrical developable surfaces as follows:

Dev(I,R®) = {(u, A, 8) | (u, A, 8) : I — R* x (R*\ {0}) proper C™ map with 6(t) A&'(t) # 0}.

The purpose of this paper is to study genericity and stability of noncylindrical developable
surfaces in Dev(I,R*) with Whitney C* topology. We now detect the singular locus of a
noncylindrical developable surface.

Corollary 2.4 Let Fi, 5 be a noncylindrical developable surface. We fix smooth functions
mA I — R with o'(t) = p(t)d(t) + A(t)d'(t). Then the set of singular points of Fi, 4 is a
curve parametrized by o (t) = (t) — M(¢)d(2). If the curve a(t) is non-singular, Fi, 5 is the
tangent developable of o (t).



Proof. It is clear that (ty,ug) € I X J is a singular point of F{, s if and only if

7 F(%J)
ot

If we substitute the relation v/(ty) = u(to)d(to) + A(to)d'(to) into the last equality, we have

OF| ]
(to, wo) A =522 (t0, uo) = 7' (t0) A B(to) + uod(to) A 8(te) = 0.

A(to)8(to) A &' (o) + uod(to) A 6'(tp) = 0.
Since 8(tp) A &'(to) # 0, we have ug + A(fo) = 0. So the singular locus on F{, 4) is given by
S(Fia0) ={7() - A(#)o(t) [t el }.

By a direct calculation, we can easily show that the singular locus «(t) — A(t)d(t) is the
striction curve of F{, ;. Moreover, we have

Y (@) = N(2)8(t) — A®)&'(t) = p(t)d(t) + A(£)8'(£) — X (2)O(t) — M(t)d'(¢) = (u(t) — X'(2)) 6(2),

so that the developable surface F{, ) is considered to be the tangent developable of the singular
locus if u(t) — X'(t) # 0. O

If (t,u) € I x J is a regular point, the normal direction of F,4 at (t,u) is given by
Ai(t,u) = ¥'(t) A 8(t) + ud(t) A 6(t). Since v'(t) = p(t)d(t) + A(t)d'(t), the direction of the
normal #(t,u) = — (A() +u) 8(t) A 8'(t) does not depend on u. Even if the point (t,u) is a
singular point of F, ), 8(t) A 8'(t) determines the normal direction. We say that a surface is
co-orientable if the normal direction of the surface is determined at any point of the surface.
A regular surface is, of course, co-orientable. The above assertion means that a developable
surface is co-orientable.

We now give important examples of developable surfaces.

Example 2.5 (Tangent developables of space curves). Let v : I — R® be a regular curve
(i.e., ¥'(t) # 0). If we adopt 6(t) = +'(t), then we call the developable surface F{, s the tangent
developable of ~. The developable surface F{,,y) is noncylindrical if and only if v'(¢) Avy"(t) # 0.
It is equivalent to the condition that the curvature x(t) of 4(¢) does not vanish. It has been
classically known that the tangent developable of a space curve has the cuspidal edge along the
curve (t) if the torsion 7(¢) # 0 (cf., Fig.1). It is incredible that the generic classification of
the singularities of tangent developables was found quite recently. Cleave[5] has shown that the
tangent developable of a space curve has the cuspidal crosscap (cf., Fig.1) at the point v (to) if
7(to) = 0 and 7'(tp) # 0. These conditions are generic for space curves. It is known that the
tangent developable is the envelope of the family of osculating planes along ~.

On the other hand, even if there exists a point £y € I such that 4'(¢9) = 0, we can smoothly
extend the tangent vector field along the curve under a certain condition (cf., [9]). Here, we only
consider an example given by ~(t) = (¢2,#3,t*). In this case v'(t) # 0 except at the origin. The
direction of «'(t) is equal to the direction of the vector §(t) = (2, 3¢, 4¢*) which is also smooth
at the origin. So the ruled surface Fi, s is called a tangent developable surface of the singular
curve ¥(¢) = (#2,t%,%). Since v/(t) = t8(t) + 08'(t), the condition in Lemma 2.3 is satisfied.
Arnol’d[1] gave the observation that this surface has swallowtail at the origin. More detailed
description is given by [9]. It is, however, known that the curve () = (¢2,%,t*) is deformed
into a regular curve under a sufficiently small perturbation. Therefore, the swallowtail is not
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a generic (stable) singularity of tangent developable surfaces of space curves. For the curve
v(t) = (t?,t%, 1), the tangent developable is given by F, 5 (¢, u) = (£ +2u, t* + 3tu, t* + 4tu). If
we slightly perturb the curve into v, (t) = (¢2, t3 —et, 1), the corresponding tangent developable
is Fiy, 5)(t, ) = (8% + 2tu, t3 — et + u(3t? — ), t* + 4t3u) which has the cuspidal crosscap at the
origin. The situation is depicted in Fig.2. The left picture is F{, (¢, ) and the right one is

F(’)’o.s,ts) (t’ ’U,)

Fig. 2

Example 2.6 (Focal developables of space curves). Let v : I — R® be a regular curve such
that the curvature and the torsion of the curve do not vanish at any point. The envelop of
the family of normal planes along = is called the focal developable (or the polar developable)
of the curve ~. In order to represent the focal developable in our form, we now consider the
arclength parameter s, so that the tangent vector v'(s) is a unit vector. The principal normal

"
of v is n(s) = ”’Z; ((:))” and the binormal is b(s) = (s) A n(s). We denote 7(s) the torsion of
: 1 K'(s)
7(s). We now give a new curve o (s) = vy(s) + @n(s) and 4(s) = —Wb(s). Then the

focal developable is the surface Fi,; (cf., [13]). The set of singularities is the locus of centres
of osculating spheres. We remember that the osculating sphere of the curve is the sphere which
has at least fourth points contact with the curve. Porteous[16] has shown that the siguralities
of the focal developable of the generic space curve is the cuspidal edge or the swallowtail. The
swallowtail of the focal developable corresponds to the point ~(sq) at where

() _(_R0) ()Y L (R Y

k(s)  \K2(s)7(s)/ * \(s) HOUOVE
Under the assumption that x(s) # 0 and 7(s) # 0, the curve ~ is a spherical curve if and
only if 7(s)/k(s) = (k'(s)/k*(s)7(s))". Moreover the swallowtail point of the focal developable

corresponds to the point on the curve v at where the curve has exactly five points contact with
the osculating sphere.

Example 2.7 (Rectifying developables of space curves). We also consider a unit speed regular
curve v : I — R® with non vanishing curvature x(s). There is another important developable
surface along v with respect to the Frenet frame. The envelop of the family of rectifying planes
along v is called the rectifying developable of the curve ~. Here, the rectifying plane at ~(s)
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is defined to be a plane generated by the tangent vector 4'(s) and the binormal vector b(s).
In [11] we studied the singularities of rectifying developables of space curves and the geometric
meaning. In the classical treatises of differential geometry, the Darbouz vector of -y is defined by
D(s) = 7(s)¥'(s) + x(s)b(s). However, we define a vector D(s) = (7/k)(s)¥'(s) + b(s) which
is called a modified Darbouz vector of «y. We can show that the rectifying developable of a
unitspeed space curve v is F(, p)(s,u) = ¥(s) + uD(s). We also define another developable
surface Fis)(s,u) = b(s) + uy'(s). We call it a rectifying Gaussian surface of v(s). In [11] we
have staudied the singularities of the rectifying developable and the rectifying Gaussian surface
of a space curve v(s) with the condition that x(s) # 0 and 7(s) # 0. It has been shown that
the singularities of the rectifying developable and the rectifying Gaussian surface of a generic
curve with the condition that x(s) # 0 and 7(s) # 0 are the cuspidal edge or the swallowtail.

The swallowtail point of the rectifying developable corresponds to the point y(sg) at where
the conditions

"

T\’ T 7\ )
(;) (s0) # 0, (;) (s0) =0, (;) (s0) #0
are satisfied. Moreover, the swallowtail point of the rectifying Gaussian surface corresponds to

the point y(s¢) at where the conditions

(Z) =0, (£) o) #0

are satisfied.

On the other hand, the curve (s) satisfying the condition that (7/k)(s) is constant is a
cylindrical heliz. So the singularities of these developable surface describe how ~y(s) is different
from cylindrical helices. In our paper[11] we did not consider the point y(so) at where 7(so) = 0.
In 1997, Toshi Fukui observed cuspidal crosscaps on rectifying Gaussian surfaces by using the
graphical tool of Mathematica. In fact, Fig.3 is the picture of the rectifying Gasussian surface
of v(t) = (¢,t2,t*). We can observe the cuspidal crosscap.

Fig. 3

By the result in this paper, we can assert that the rectifying deirelopable is nonsingular at such
a point, but the rectifying Gaussian surface is locally diffeomorphic to the cuspidal crosscap for
generic . (cf., Theorem 2.8). This means that Fukui’'s obsevation is true.
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We also have other examples which are given by equi-affine differential geometry on space
curves [10]. Since we have already used large space for examples, we do not present it here. We
now state a classification theorem of singularities of generic developable surfaces.

Theorem 2.8 Let Fi, 5 : I x J — R® be a noncylindrical developable surface. We fix smooth
functions p, A : I — R with v/(t) = p(t)d(t) + A(t)d'(t). Let (to,uo) € I x J be a singular
point of Fi, 5 and put zo = vy(to) + uod(to) = Fiy,4)(to, o).
(1) Suppose that det(d(ty) 8'(to) 0" (to)) # 0. Then

(a) The germ of Fi,5(I x J) at o is locally diffeomorphic to C x R if ug = A(ty) and
p(to) # A'(to)-

(b) The germ of Fiy 5(IxJ) at xg is locally diffeomorphic to SW if ug = A(ta), u(to) = N (to)
and ' (to) # A" (to)-
(2) Suppose that det(d(to) d'(to) 0" (to)) = 0. Then The germ of Fiy5(I x J) at zo is locally
diffeomorphic to CCR if ug = A(to), u(to) # N(to) and det(d(to) &' (to) @ (t0)) £ 0.

The proof of Theorem 2.8 will be given in §5 and §6. The classifications in all examples we
mentioned in this section are corollaries of Theorem 2.8.

By the ordinary arguments on the jet transversality theorem, we have the following theorem.
Since the arguments on the jet transversality theorem are traditional way, we omit the detail.

Theorem 2.9 There exists an open and dense subset O C Dev(I,R®) such that the following
conditions hold for any (u, A, 8) € O :

(i) There are no point (to,ue) € I x J with ug = Aty), u(te) = N(te) and u'(ts) = X'(to).

(ii) There are finitely many points (to,ue) € I x J with ug = A(ts), u(te) = N(tp) and
(ko) # N'(to).

(iii) There are no point (to,up) € I x J with det(8(ty) &' (ta) 6"(to)) = 0, uo = A(to) and
p(to) = X (to)-

(iv) There are no point (to,uo) € I x J with det(8(to) 8'(20) 8"(t0)) = 0, and ug = A(to).

(v) There are finitely many points (to,up) € I x J with det(d(to) 8'(to) 8" (o)) = 0, ug =
A(to), t(to) # N(to) and det(8(to) 8'(to) 6 (to)) = 0.

By Theorems 2.8 and 2.9, the cuspidal edge, the cuspidal crosscap and the swallowtail are
the exhausitve list of singularities for generic noncylindrical developable surfaces. Since @ in
Theorem 2.9 is an open set in Dev(f, R?) these singularities are stable under the perturbations
of (u, A, d).

3 Ruled fronts

Since a developable surface is co-orientable, we can construct a unique lift to the projective
cotangent bundle 7 : PT*R® — R3. Firstly, we review geometric properties of this space.
Consider the tangent bundle 7 : TPT*R® — PT*(R3) and the differential map dr : TPT*R® —
TR® of 7. For any X € TPT*R®, there exists an element o € T/R® such that 7(X) = [a]. For
an element V € T, R3, the property a(V) = 0 does not depend on the choice of representative
of the class [a]. Thus we can define the canonical contact structure on PT*R® by

K ={X € TPT*R®|7(X)(dn(X)) = 0}.



Because of the trivialization PT*R® = R® x P(R®)*, we call
(($1,$2,$3), [&1 : 62 : 63])

a homogeneous coordinate, where [£; : & : &) is the homogeneous coordinate of the dual
projective space P(R®)*.

It is easy to show that X € K(g ) if and only if ELI i€ = 0, where dii(X) = Z?:l ”iaiw,-'
An immersion i : L — PT"R3 is said to be a Legendrian immersion if dim L = 3 and diy(T,L) C
Kiq) for any ¢ € L. For a subset 7 : L C PT*R3, it is called a Legendrian inclusion if i is a
Legendrian immersion on the regular part of L. We also call the set W (i) = imagew o4 a wave
front of ¢ and ¢ (or, the image of 7) is called a Legendrian lift of W (7). If i is a Legendrian
immersion, we say that the image of 7 is a regular Legendrian inclusion and the wave front
W (i) has a regular Legendrian lift. Otherwise the image of ¢ is called a singular Legendrian
inclusion and W (i) has a singular Legendrian lift . We now define the notion of ruled fronts.
We say that the surface in R® is a ruled front if it is a ruled surface and has a Legendrian lift.

For any developable surface F( 45 : I X J — R3, we define a smooth mapping L,z : I X
J — PT*R® by L(y.6)(t, u) = (F(y,5(t, u), [6(t)Ad'(t)]), where we denote that [v] = [v; : v : vs]
for any vector v = (v1, V2, v3).

Let (t,u) € IxJ beapoint and V = f% + 775% € T(s,u)({ x J) be a tangent vector, then we
have dr(dLy5(V)) = &(+'(t)+ud'(t))+nd(t). Since there exist smooth functions 4, A: I — R
such that v'(t) = u(t)d(t) + A(t)d'(t), we can easily show that

(7' (t) +ud'(t)) +nb(t), 8(t) AJ'(t)) = 0.

This condition means that dL¢,s) (V) € Kr_ ;). Thus we have shown the following proposi-
tion.

Proposition 3.1 Any noncylindrical developable surface is a ruled front.

We consider the converse of the above proposition. We can say that any non singular surface
is co-orientable, so that it has the unique Legendrian lift.- If we consider Hyperboloid of one
sheet, it is a non singular ruled surface and it is not a developable surface. This example shows
that the converse of the above proposition does not hold in general. We can, however, show
the converse of the above proposition for singular ruled fronts.

Proposition 3.2 If a noncylindrical ruled front has singular points, then it is a developable
surface around the singularities.

Proof. Without loss of generality, we assume that F(, ) is a ruled front such that ~ is the

striction curve and [|6(¢)|] = 1. By Lemma 2.2, singularities are located on the striction curve
7.
Let &g = F{y4)(to,0) be a singular point. If 4/(y) = 0, then the normal direction
OF OF,
) (43, 0) 7 2209 (4,0) = (8 () 1 8(00)

is constant along the ruling through z.

It also follows from Lemma 2.2 that the ruling through z, is tangent to ~ at (o) if
~'(ts) # 0. In this case the direction of the normal vector of Fi, s at zo is also given by
&' (to) A (%0).



On the other hand, if there exists a sequence {t,}2, convergent to to such that Fly) 18
non singular at each (Z,,0), then we have the normal vector v'(¢,) A 8(t,) of the surface Fi, s
at (¢,,0), so that we have

(0 (tn) A 6(8), Y (8) A 8(tn)) = (' (tn), ¥ (£)){8(2n), 6(tn)) ~ (&' (tn), 8(t))(8(tn), ¥ (tn)) = 0.

This means that the direction of v'(t,) A 8(t,) is always orthogonal to the direction of &'(t,) A
0(tn). If we consider the limit position of the direction v'(t,) A 8(t,) as n — oo, then it is
also orthogonal to &'(y) A d(¢5). This means that we cannot determine the normal direction of
Fly,5) at (to,0). This contradicts to the assumption that F, ;) is a ruled front.

Hence, the singular set S = {t € I | F{, ) is singular at (¢,0) } is an open subset in I. Since
the singular set S is a closed subset in a connected set I, the surface F{,s) is singular along
<. By the previous arguments, the surface F{, 4) is a tangent developable along « on the place
~'(t) # 0. In this case the normal direction is constant along the ruling through = = Fiy5(t,0).
As we already mentioned that the normal direction is also constant along the ruling through
T = Fy,5(¢,0) if v'(¢) = 0. This is the condition that the ruled surface Fi, 4 is a developable
surface. O

We have the following condition that the developable surface has the regular Legendrian
lift.

Proposition 3.3 Under the same notations as the previous paragraph, the Legendrian lift L, s
is an smmersion at (to, uo) if and only if det(d(to) 8'(to) 6" (%)) # 0.

Proof. We denote that Dy;(t) = &(t)85(t) — 8;(t)6}(t) for 4,5 = 1,2,3, then 8(t) A 8'(t) =
(D23, —Du3, Dy3). Without the loss of generality, we may assume that Das(tg) # 0. In this case
the local representation of L, s in the affine coordinate of PT*R? is given by

Laun(t) = (10w, - 210, D))

Therefore we have

Das(t) —D13(t),| ’D%(t) Ds»(t)
Das(t) —Dis(t) | | Das(t) Diy(t)

aL (7.,9) - ! li
at (tJ ’U,) - 7 (t) + 'u’é (t)’ (D23 (t))2 ] (D23(t))2

6L(7,5) _

W(t’ u) = (4(t),0,0).
OL(4,5)

It follows that rank i (f0, o) = 2 if and only if

3L
—a22(to, uo)

(R

Concerning on the other cases, we can state that L, ) is an immersion at (¢o, uo) if and only if

( ~Dis(to) Di2(to) 'Dlz(to) Dss(to) 'Dzs(to) Di3(to)
_Dis(tﬂ) Diz(to) ’ Diz(to) Déa(to) ’ D’23(t0) D’13(t0)

) # 0.0

lDlz(to) D3 (to)
"| D1a(to) Dis(to)

) #0.00,
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Since
8(to) A 6'(to) = (Das(to), —Dis(to), Dia(to)) and 8(fo) A 8" (t0) = (Das(te), —Dis(to), Diz(t0)),

this condition means that (8(to) A &' () A (8(to) A 8" (t0)) # 0.

On the other hand, we can easily show that (a A b) A (a A ¢) = det{a b c)a for any vectors
a,b, c € R3. So the above condition is equivalent to the condition that det(8(¢o) &' (to) 8" (o)) #
0. ]

4 Generating families

For the study of singularities of wave fronts, we refer the Arnol’d-Zakalyukin theory [2, 20] as
follows: Let F : (RF x R®,0) — (R, 0) be a function germ. We say that F' is a Morse family
if the mapping

oF OF
F— . ..,—):(R*xR}0) — (RxRF,0
(R 5 ) ) — ( )
is non-singular, where (¢,z) = (qi,---,qk, T1,%2,23) € (RF x R%,0). In this case we have a

smooth surface
oF OF
5.(F) = {(0,9) € (® xB,0) | Fg.0) = 5 (0.0) =+ = §g,0) =0 }
: on 0qx

and the map germ &5 : 3,(F) — PT*R3 defined by

&p(q,7) = (m o 02) o0,9): (e m)])

is a Legendrian immersion. Then we have the following fundamental theorem of Arnol’d-
Zakalyukin [2, 20].

Proposition 4.1 All Legendrian submanifold germs in PT*R3 are constructed by the above
method.

If F is not a Morse family, X, (F) is not a smooth surface and the image ®5(Z,(F)) is a
singular Legendrian inclusion. We call F' a generating family of & or W(®p). Therefore the
wave front is

W(@F)Z{x € R® |there exists ¢ € R¥ such that F(g,z) = a—F(q, r)=---= QF—(q, z)=0 } ;
O Ok

KF- 1(0) is a non singular surface for any g € R¥, then it is the envelope of the k-parameter fam-

ily of surfaces { Fq—l(O)}qeRk.'We usually denote that D = W(@F) and call it the discriminant

set of F.

We now introduce an equivalence relation among Legendrian inclusion germs. Let ¢ :
(L,p) C (PT*R%,p) and ¢ : (L',p') C (PT*R3,p') be Legendrian inclusion germs. Then
we say that 7 and ¢’ are Legendrian equivalent if there exists a contact diffeomorphism-germ
H : (PT'R%,p) — (PT*R3,p’) such that H preserves fibres of = and that H(L) = L. A Leg-
endrian immersion-germ into PT*R? at a point is said to be Legendrian stable if for every map

11



with the given germ there is a neighbourhood in the space of Legendrian immersions (in the
Whitney C*° topology) and a neighbourhood of the original point such that each Legendrian
immersion belonging to the first neighbourhood has in the second neighbourhood a point at
which its germ is Legendrian equivalent to the original germ.

We can interpret the above equivalence by using the notion of generating families. We
denote £, the local ring of function germs (R",0) — R with the unique maximal ideal M,, =
{h€& | h(0)=0}. Let F,G: (R* x R®,0) — (R, 0) be function-germs. We say that F' and
G are P-K-equivalent if there exists a diffeomorphism-germ ¥ : (R* x R®, 0) — (R* x R?, 0) of
the form ¥(z,v) = (Y1(g, 7), ¥2(x)) for (¢,z) € (R* x R?,0) such that ¥*((F)¢,,,) = (G)q, ., -
Here ¥* : £x 13 — &y is defined by ¥*(h) = ho ¥ .

Let F': (RF x R®,0) — (R, 0) a function-germ. We say that F' is a K-versal unfolding of
f = F|R* x {0} if

s = TUO0) + (5o B x {0}, ZIR x (0}, ST IR x (o}, )

0) 0
T(0)(f) = <5&f—%f> .

]
R

where

(See [14].)
The main result in Arnol’d-Zakalykin’s theory[2, 20] is as follows:

Theorem 4.2 Let F,G : (R* x R®,0) — (R,0) be Morse families. Then
(1) ®r and P are Legendrian equivalent if and only if

rankH(F | R* x {0}) = rankH(G | R* x {0})

and F, G are P-K-equivalent.
Here H(F | R* x {0}) is the Hessian matriz of F' | R* x {0} at 0.
(2) @ is Legendrian stable if and only if F' is a K-versal unfolding of F' | R* x {0}.

Let Fi,s be a noncylindrical developable surface. By Proposition 3.3, the Legendrian lift
L(,,5) is a Legendrian immersion at the point (o, up) where det(d(¢y) &'(to) 6”(to)) # 0. Thus,
the generating family of L, s exists at L(,,5) (%o, uo) by the general theory.

We now explicitly write down the (global) generating family of L(y,5)- Since F(,4) is non-
cylindrical, 8(¢) A 8’(t) never vanishes. We define a smooth family of functions

F:IxR —R

by
F(t,z) = (v(t) — z,6(t) A 6'(2)).
We denote that f,(¢t) = F(¢,z). Then we have the following proposition.
Proposition 4.3 Let Fi, 5 : I x J — R® be a noncylindrical developable surface. Then
(1) f2(t) = 0 if and only if there exist £,n € R such that T = ~(t) + £6(t) + nd'(t).

(2) fo(t) = f2(t) = 0 if and only if there exist £,n € R such that z = (t) + £8(t) + 6’ (t) and
ndet(d(t) 8'(t) 8"(t)) = 0.
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Proof. Since there exists functions p, A : I — R with v/(¢) = p(t)d(t) + A(t)d'(t), we have
F2(8) = (7 (2), 6(8) A 8'(2)) + {7(t) — =, 8() A 8" (1)) = (¥(t) — =, 6(t) A 6" (2))-

The assertion (1) is trivial. For the proof of the assertion (2), we may assume that there
exist &,m € R such that z = y(t) + £6(t) + nd'(¢). Since f,(t) =0,

0 = (—£8(t) — nd'(t), 8(t) A 8" (2)) = —n{8'(£), 8(t) A 8"(£)) = ndet(8(t) &'(¢) 8" (2)).

By Proposition 4.3, we have I, (F) = Xpe,(F) U 5 (F), where
Tpes(F) = {(t,z) € R x R® | there exists £ € R such that z = ~y(t) + £4(t) }
and

Yo (F)={(t,z) € R x R? | there exist £, € R such that
z=(t) + £8(t) +nd'(t) and det(d(¢t) 8'(t) 6"(t)) =0 }.

Therefore the discriminant set of F' is
Dr =W(®F) = F(,M)(I x J)Un(Z,(F)).

It follows that ®5(Zpey (F)) is the unique Legendrian lift of the developable surface Fi, 5. By
this reason, we call the function F'(¢t,z) = {v(t) — z,6(t) A &'(t)) the generating family of the
developable surface Fi, ;). By the general theory of Legendrian singularity[2, 20], the Legendrian
inclusion L, ) is non singular if the generating family is a Morse family. The following theorem
give the condition that the generating family is a Morse family.

Theorem 4.4 Let F,5: I x J — R3 be a noncylindrical developable surface and (to,uo) be
a singular point of F, 5. Then the followings are equivalent:
(1) Leyg) : I x J — PT*R® is non singular at (o, wo)-
(2) det(8(to) 6'(to) 6" (20)) # 0.
(3) F(t,z) = (v(t) — z,8(t) A &§'(t)) is a Morse family at (to, o).
Here, o = ~(ty) + uod(to).

Proof. By Proposition 3.3, the conditions (1) and (2) are equivalent. By the general theory of
Legendrian singularity, the condition (3) implies the condition (1).
We now prove that the condition (2) implies the condition (3). For the purpose, we have

oF F

0 oF
6_.’131(t, .'B) = —ng(t), Eg;(t,.’ﬂ) = Dlg(t), a—zg(t, fL‘) = —Dlz(t).

Therefore we have

OF . OF . ®F ,
92,01 (t, z) = —Dyy(t), m(t z) = Dis(t), m(t, z) = —Di,y(t).

Hence, the Jacobian matrix of (F(t, z), %—f—(t, x)) is

_( Ftz) —6@)Ad()

( 50 oo oot o) ) N ( ﬁ—%(t, z) —o(t) A 68" (t) ) '

G (tm) —Dis(t) Di(t) —Dis(t)
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Since (tp, up) is a singular point of F, 5, we have

oF , - o’F
F(to, 7o) =' W(to,fﬂo) = W(to,-’ﬂo) =0.
By the last arguments in the proof of Proposition 3.3, 8(¢;) A 6'(¢y) and d(¢s) A 8"(t,) are
linearly independent if and only if det(d(¢y) 8’(to) " (¢o)) # 0. This completes the proof. O

5 Unfoldings of functions of one variable

In this section we use some general results on the singularity theory for families of function
germs. Detailed descriptions are found in the book [4]. Let F': (R X R", (¢, %)) — R be a
function germ. We call F' an r-parameter unfolding of f, where f(t) = Fy,(t, zo). We say that
f has Ag-singularity at t, if f®) () =0forall1 < p <k, and FE(ty) # 0. We also say that
f has Asj-singularity at t if f®(t;) = 0 for all 1 < p < k. Let F be an unfolding of f and
f(t) has Ag-singularity (k > 1) at t,. We denote the (k — 1)-jet of the partial derivative g—:: at
to by j(k‘l)(g—ﬁ(t,xo))(to) = Zf;ll ajt? for ¢ =1,...,7. Then the following lemma holds (cf.,
[4, 14]).

Lemma 5.1 F is a K-versal unfolding if and only if the k x r matriz of coefficients (s, aj;)
has rank k (k < 1), where ay; = 'g—f;(to, Tg).

We are interested in the discriminant set Dg of F. Then we have the following well-known
result (cf., [4]).

Theorem 5.2 Let F : (R x R", (9, 29)) — R be an r-parameter unfolding of f(t) which. has
the Ay singularity at t,.
Suppose that F' is a K-versal unfolding.

(1) If k =1, then Dy is locally diffeomorphic to {0} x R™1.

(2) If k = 2, then Dr is locally diffeomorphic to C x R™—2.

(3) If k = 3, then Dg is locally diffeomorphic to SW x Rr—3.

Here, C = {(21, z2)|:® = z23} is the ordinary cusp and SW = {(z1, z3,x3)|z1 = 3u® +
v, 2y = 4u® + 2uv, T3 = v} is the swallowtasl.

We consider the case when the generating family F(¢,z) = (7y(t) — z,8(¢) A §'(t)) of F(, 5
is a Morse family at (to, zo) (i.e., det(8(to) 8'(to) 6" (to)) # 0).

Proposition 5.3 Let Fi,5 : I x J — R be a noncylindrical developable surface. As-
sume that there exist function p,A : I — R such that v'(t) = p(t)d(t) + A(t)d'(t) and
det(d(to) 6'(to) 6"(t0)) # 0.

(1) fzo(tO) = ;o(to) = :o(to) =0 Zf and only Zf Ty = ’)’(to) - A(to)(s(to)

(2) faolte) = fa,(te) = fi (to) = f,ﬁg)(to) = 0 if and only if the condition of the assertion (1)
holds and p(to) = X' (to).

(3) faolto) = fiy(t) = fI(to) = FD(to) = fi3(ts) = O if and only if the condition of the
assertion (2) holds and p/(ty) = M'(to).
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Proof. We have already calculated the first derivative of f;, in the proof of Proposition 4.3, so
that we have f.(t) = (y(t) — z, 6(t) A 8"(t)). Therefore we have

Fae)= (7 (), 8(8) A 8" () + (¥() — =, 8'(¢) A 8"(1)) + {¥(t) — 2, 8(t) A 6P (2)
=M(E)(8'(t), 8(t) A 8" (1)) + (7(8) — 7, 8'(2) A 8" () + (7 (t) — 2, 8(t) A 0 (2)).

By Proposition 4.3, we may assume that there exists £ € R with 2o = (o) +£8(to). Substituting
(to, To) into fJ/(t), we have the assetion (1).
By direct but rather long calculations, we have other assertions. Therefore we omit the

Moreover , we have the following proposition

Proposition 5.4 If f,, has the Ag-singularity (k = 1,2, 3) at to, then F is a K-versal unfolding
of fao-

Proof. Case (1) When f,, has the Al—singularity at tp, we define the 1 x 2-matrix A as follows:

oF
( (to, xo) (to, 970) (to, wo))
As we already calculated in the proof of Theorem 4.4 that
OF OF
E(t,m) = —Dgg(t), a—m;(t,iv) D13(t) (t IE) —Dlg(t)

On the other hand, we have
A = (—Das(to), D1s(to), —D12(to)) = —8(ta) A &'(to) # 0.

Therefore rank A = 1.
Case (2) When f,, has the A,-singularity at tp, we also require the 2 x 3-matrix

oF oF 8F
—(tomo) 7—(to,z0)  7—(to,Zo)
B | 0= " 0z, 03
- 82F ( ) 62F (t :1:) 82F (t )
81,0t »0 Lo 97,0t 0, To 9250t 0, Zo

to be nonsingular. By Proposition 5.3, fz,(t) has the Ay-singularity at tp if and only if zp =
~(to) — AM(to)8(to) and p(ts) # N(to). It also follows from the proof of Theorem 4.4 that

B = ( —Do3(te) Dis(to) —Dia(to) ) _ ( —d(to) A &'(to) ) ‘
—Dis(te) Dis(te) —Dia(te) —d(to) A 8" (t0)
Since det(8(to) &' (to) 8”(to)) # 0, 8(to) A6’ (to) and 8(2o) A8"(to) are linearly independent. This
means that the rank of B is two.
Case (3) When f,, has the Aj-singularity at o, we consider the 3 x 3-matrix

oF oF oF
+—(to, To) ~—(to, Zo) —(to,fvo)
&b s e

C= 5};37(@0 Zo) 5 326%(150,-’130) 3 330t(t°’$°)
o F o F oO°F

W(t’ﬂ To) W(to, o) m(to, To)



Since

62F azF 32F i .
(axlat (to, o), —axzat(t"’ To), —6$33t (to, xo)) ="—68(ty) A 8" (%),

we have
( BF OBPF OF

vy - — = ¢ ") — 3)
3x13t2 (tJO m0)7 axzatz (t)o $0)7 a$3at2 (t,o .'I)g)) 6 (to) A 6 (to) é(to) A 6 (tO)-

Therefore we have

det(C) = (~8'(to) A 6" (to) — 8(ta) A 8 (to), (—8(to) A 8'(t0)) A (—8(t0) A 8" (t0)))
= (—8'(to) A 8" (to) — 8(to) A 8@ (o), det(d(2o) &' (o) 6" (t0))d(to))
= —det(8(to) &'(to) 6" (20))(d'(to) A 8" (t0), 8(t0)) = —(det(8(to) 8'(to) 8" (t)))>.

By the assumption, we have det(C) # 0. This completes the proof. (]

By Theorem 5.2 and Proposition 5.4, we compltete the proof of the assertion (1) of Theorem
2.8.

6 The cuspidal crosscap

In order to prove the remaining part of Theorem 2.8, we use the classification result on tangent
developables. As we already mentioned in Example 2.5 that Cleave [3] has shown that the
tangent developable of a regular space curve -(t) has the cuspidal crosscap at a point (ty)
if and only if 7(4) = 0 and 7'() # 0. We now apply this result to our situation. Let
Flq,5) be a developable surface. We fix two smooth functions y, A : I — R3 with 4/(t) =
p(t)8(t) 4+ A(£)d'(t). By Corollary 2.4, the singular locus of the developable surface is given by
o(t) = v(t) — A(t)d(¢). Since o' (t) = (u(t) — N'(t))d(t), o(t) is a regular space curve if and only
if u(t) — X'(t) # 0. Under this condition the torsion of o (t) is given by

det (o’'(t) a"(t) a®)(2))
llo’(8) A e (@)]1?

By the direct calculation that the torsion of o (%) is

7o) = (ult) - ) S FO I £

The first derivative of the torsion of & (t) is

o (1) = () — X(£))det (8(2) O'(2) 8"(£))
’ [16(¢) A 8" ()17
_ 2(p(t) - N(@)((8(2) A 87(2)), (8(2) A &'(t)))det (8(2) 8'(2) 8" (2))
16°() A 8" (2)11*

s det (87(2) 8"(8) 0P (2))
+ (,Lt(t) —A (t)) Hal(t) A 6"(t)”2 .
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Therefore the tangent developable Fi, s of o(t) has the cuspicalcrosscap at the point o (ty) =
’)’(to) - A(to)&(to) if and only if

det (8(to) 8'(to) 8" (to)) = 0 and det (8(to) & (to) 6 (2y)) # 0.
This completes the proof of the assertion (2) of Theorem 2.8.

Remarks Since a developable surface is considered to be the tangent developable of the singular
locus, we can also apply the method of Ishikawa in [9] for the proof of Theorem 2.8. The
calculation is, however, a rather complicated compared with the method we used in this paper.
Moreover, our method also gives information on generating families of developable surfaces.
These facts clarify the feature of singularities of developable surfaces from the view point of
contact geometry.
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