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ABSTRACT

This article is devoted to recent developments and open questions concerning
instabilities in ideal fluid flows. It is argued that in some appropriate sense almost
all steady flows of an ideal incompressible fluid are unstable. However there are
different kinds of instability. Many of the instabilities that are described could be
termed “slow” and technically they are associated with the Jordan cell structure
of the governing operator as opposed to the “fast” instabilities associated with iso-
lated unstable eigenvalues. Numerous examples are given to stress the importance
for the existence of instabilities of the norm in which the growth of disturbance is
measured.

1 Introduction

The topic of this article is linear and nonlinear instability of steady (i.e. time
independent) flows of an ideal incompressible fluid. Our goal is to discuss
our understanding of this subject, rather than to try to survey all works in
this domain. We admit that our list of references is quite incomplete and
personal. The ideal incompressible fluid is a basic model in fluid dynamics.
It is believed to describe correctly the motion of real fluids in conditions such
that the effects of viscosity and compressibility are negligible. The stability
and instability of steady flows is an old subject with many impressive achieve-
ments and many well-developed methods. However there remain significant
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unsolved problems, and we may say that the main problems of instability are
open.

Let us start from the notion of stability and instability of steady flows.
The motion of an inviscid incompressible fluid in a domain M c R” is
described by the Euler equations:

%%_'_ (u, V)u+ Vp=0; (1.1)

V-u=0. (1.2)

Here u(z,t) is the velocity field of the fluid, p(z,t) is the pressure. The
boundary conditions are u,,l =0, 1.e. the flow is tangent to the boundary;
the initial condition is u(z, 0) = ue(z).

Let Up(z) be the velocity field of a steady flow of an ideal incompressible
fluid. Uy satisfies the steady Euler equation

(Uo, V)Uo + Vpo = 0; (13)
V. Up=0. (1.4)

Loosely speaking, this flow is unstable if a small change of initial velocity
field results in a considerable change of the actual flow field u(z,t) at some
time T'. If, on the other hand, small perturbations result in small changes of
the flow during arbitrarily long time, the flow is stable.

Both stability and instability are important features of fluid flows and
deserve much attention. It appears that only stable flows may exist for a
long time, while the unstable ones break down, or require some external
stabilization or some feedback to persist. Note that both breaking down of
unstable flows, and their stabilization and control are of great interest for
numerous applications in natural sciences and engineering. There exists an
inverse relation between the stability and the controllability. The system
which is excessively stable is difficult to control, and conversely, unstable
system is usually easier to control if one manages to stabilize it. For example,
today’s jet fighters are intentionally built unstable, so that they cannot fly
without the stabilization done by an on-board computer. But this instability
makes these planes very maneuverable.

The breakdown of unstable flows itself may be very important; for ex-
ample, the action of the most of musical instruments is based on some sort
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of instability. The impression that only stable flows persist for a long time
without external stabilization may be wrong. There exist different kinds
of instability and some of them, which may be called ”slow instabilities”,
are delicate enough and, in their turn, very unstable themselves; they are
described in more detail below.

The question of instability falls naturally into two parts, linear and non-
linear instability. The majority of the classical work is connected with the
linear problem and studies of properties of the eigenvalues of the operator
obtained by linearizing (1.1), (1.2) about a specific steady flow [DR], [Cha].
Much of the work has concentrated on a relatively small number of special
fluid configurations, and even in these open questions remain. In section 2 we
describe some recent results obtained through a study of the evolution opera-
tor for the linearized Euler equations which shed light on the linear instability
of rather general Euler flows. We also discuss the existence of unstable dis-
crete eigenvalues in a few specific cases. Linear instability where growth is
measured in the energy norm appears to be ubiquitous for 3-dimensional
Euler flows.

The problem of nonlinear stability/instability is even more subtle and
perplexing than the questions assocated with the linear theory. We address
certain aspects of this problem in section 3. We do something that is rather
unusual: we work with two definitions of nonlinear stability/instability and
discuss ramifications that follow from these two related but nonequivalent
definitions. That we proceed in this fashion is at least partly dictated by our
lack of full understanding of the nature of fluid instability and partly due
to the subtleties of a system which exhibits fascinating degrees of instabil-
ity. The first definition allows us to discuss a general result of instability in
function spaces that are “correct spaces” for the Euler equations, i.e. where
local existence and uniqueness of solutions is known. The second definition
applies to spaces that are not “correct” in this sense but are natural spaces
from a physical point of view. Although we discuss results concerning fairly
general flows, much of the section 3 concentrates on one of the most basic
classes of flows, namely plane parallel shear flows. The simplest nontrivial
example, i.e. a shear flow with a linear profile, illustrates the complexity of
fluid stability:

(i) it is linearly (spectrally) stable;
(i) it is nonlinearly stable in the sense of Arnold in the vorticity norm;
(#ii) it is nonlinearly unstable in any norm that includes derivatives of



vorticity;

(iv) it is nonlinearly unstable in the L?-norm (with no conditions on the
derivatives of velocity);

(v) it is linearly and nonlinearly unstable as a 3-dimensional flow in a
norm which includes the magnitude of vorticity.

The energy and strength of these instabilities will be different from the
“fast” exponential instabilities that exist for shear flows with inflection points
in the profile.

Throughout this article we hope to communicate several key observations,
namely the crucial importance of the norm in which growth of disturbances is
measured and the existence of different types of instability that all influence
the evolution of a fluid configuration.

2 Linear instability

We consider the linearized Euler equations for a small perturbation v(z, t)
about a steady flow Uy, satisfying (1.3), (1.4):

v

5 = (U0, V)v = (v, V)l - VP; (2.1)
V-v= 0: (22)

with initial condition
v(z,0) = vo(z). (2.3)

These equations may be recast in the following more convenient form:

ov
-é? = L’U, (24)
where
Lv=—P(({Us- V)v+ (v-V)U); (2.5)

here P is the orthogonal projector in L%(M, R™) onto the space J of incom-
pressible vector fields tangent to M.



The stability problem for the linearized Euler equations may be posed as
follows. Let us choose a function space X of vector fields where the problem
(1.1), (1.2) is well posed. We ask if there exists an initial condition vy € X
such that ||v(t)||x is unbounded on the whole t-axis; in this case the zero so-
lution of linearized equations is unstable. Otherwise it is stable. The classical
approach to linear stability of fluid motion is based on an investigation of the
spectrum of the operator L in a given space X. Much of the discussion in
such texts as [Cha] or [DR] concerns properties of eigenvalues of L in the case
of of specific, relatively simple flows Uy. There is a more powerful approach
in which the spectrum of the evolution operator is studied (see [VF], [V],
[FV]).

The spectrum o of the operator e’ is naturally decomposed into a discrete
part consisting of isolated eigenvalues of finite multiplicity and an essential
spectrum:

0 = Ogisc U Tess- (2.6)

The operator L is a degenerate non-selfadjoint non-elliptic operator. For
an arbitrary steady flow Uy(z) the structure of the spectrum o is remarkably
little understood. Although, as we will describe, we have some general results
concerning the essential spectrum, the problem of the existence of discrete
eigenvalues is at present too difficult for any general results and must be
treated on a case by case basis.

2.1 The unstable essential spectrum

Recently Friedlander and Vishik [VF],[FV] developed a useful tool for in-
vestigating the unstable essential spectrum of the linearized Euler equation
(2.1), (2.2). One of the main ideas in [VF] is to replace the study of the
spectrum of L by the study of the spectrum of the evolution operator e*Z for
t > 0. This permits the development of an explicit formula for the growth
rate of a small perturbation due to the essential spectrum. The following
theorem proved by Vishik [V] gives an expression for the essential spectral
radius regg(e??) in terms of a geometric quantity that can be considered as a
Lyapunov exponent for fluid low. The results are proved for free space or pe-
riodic boundary conditions and are valid in any spatial dimension, although
spatial dimensions 2 and 3 are, of course, physically the most interesting. We
consider perturbations with vy € L2, V - vy = 0.



Theorem 2.1

Tess (etL) = e"t; (27)

where

o1
p = lim : log sup |b(zg, &o, bo; t)]- (2.8)

Here supremum is taken over all triplets (o, &, by), such that |bp| = 1, |&| =
1,&0-bo = 1, and the vector b = b(zg, &, bo; t) is determined by the following
system of ODE’s which we call the bicharacteristic amplitude equations:

@ o =U@
B € =-(52)¢ (2.9)

0 & (Bl e
with £(0) = o, £(0) = &, b(0) = bo.

This theorem is proved by writing the evolution operator €L as a product
of a pseudo-differential operator and a shift operator along the trajectories
of the equilibrium flow Uj. This allows the growth of the evolution operator
to be studied to precise exponential asymptotics. A heuristic derivation of
this result is obtained by applying a “geometric optics” treatment based
on high frequency solutions of equations (2.1), (2.2). In the language of
geometric optics, equation (2.9b) is the Eikonal equation and equation (2.9c)
is the transport equation. Equation (2.9¢) is the evolution equation for the
amplitude of a high frequency wavelet initially localized at z,, with initial
wave number vector &. The quantity on the RHS of (2.8) is the ”fluid
Lyapunov exponent” corresponding to the maximal exponential growth rate
of such an amplitude vector b(t).

The result of Theorem 2.1 gives one piece of information concerning the
stability spectrum for inviscid flows, namely the maximum growth rate of
instability in the essential spectrum. Moreover it implies that any point 2 in
the spectrum o(e’) such that |z| > e** is necessarily an eigenvalue of finite
multiplicity. A positive lower bound for the value of the Lyapunov exponent
p can be explicitly computed in many examples [FV],[FV1]. Furthermore
theorem 1 provides an effective sufficient condition for instability of large
classes of inviscid fluid flows. Since expression (2.8) involves the supremum
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over initial conditions (zo, &, bp), it is only necessary to show there exists at
least one initial condition for which the solution to the system (2.9) of ODE
gives

.1
Jim Zlog]b[ >0 (2.10)

to conclude that x > 0, and hence the unstable essential spectrum is nonempty.

We comment briefly on some other results obtained in the context of
fluid instability using a “geometric optics” approach. This method has been
employed successfully by a number of authors with the earliest work being
on the hyperbolic systems for compressible fluids by G. Friedlander in 1958
[Fr] and Ludwig in 1960 [L]. Later Eckhoff [E] and Eckhoff and Storesletten
[ES] studied the stability of azimuthal shear flows of a compressible fluid and
more generally symmetric hyperbolic systems using an approach based on a
generalized progressive wave expansion. Eckhoff shows that local instability
problems for hyperbolic systems can be essentially reduced to a local analysis
involving ODEs. We note that the incompressible Euler equations (1.1), (1.2)
do not form a strictly hyperbolic system, and the proof of Theorem 1 does
not follow directly from Eckhoff. Results using a system of ODEs equivalent
to (2.8) to detect instabilities in incompressible flows include those of Bayly
et al [BHL], who obtained the growth rate of instabilities for columnar and
elliptic vortices, and Lifschitz and Hameiri [LH] who obtained instability
conditions for vortex rings.

We will now discuss in a little more detail some of the explicit instability
results of Friedlander and Vishik that follow from Theorem 2.1. The idea
that exponential stretching of fluid particles could imply instability for the
Euler equations is originally due to Arnold [A1]. Friedlander and Vishik [FV]
use Theorem 2.1 to prove that every flow with exponential stretching, even
at one point, is linearly unstable.

Theorem 2.2 Consider a steady solution Uy of 3-dimensional Euler equa-
tions. Suppose the flow Uy has a positive classical Lyapunov exponent at
some point xy. Then u > 0, and hence the flow Uy is unstable.

The proof of this theorem follows from a result obtained from the system
(2.9) of ODEs, namely:

%(bl x by - £) =0, (21D
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where b; and b, are two linearly independent solutions of (2.9) corresponding
to a cotangent vector £ that satisfies (2.9). Since the flow is volume pre-
serving the existence of a positive Lyapunov exponent (i.e. an exponentially
growing tangent vector) implies the existence of an exponentially decaying
cotangent vector £. From (2.10) we then conclude the existence of at least
one exponentially growing amplitude vector b, which implies i > 0. There-
fore we note that in 3 dimensions the classical Lyapunov exponent provides
a lower bound on p.

In 2 dimensions, the system (2.9) of ODEs provides an even stronger
constraint on the relation between b(¢) and £(t), namely

d
Z(b@)le) =o. (212)

Hence in 2 dimensions the fluid Lyapunov exponent p and the maximal
classical Lyapunov exponent for the dynamical system # = Uy(z) are the
same.

It follows from Theorem 2 that any flow Uj (in 2 or 3 dimensions) with
a hyperbolic stagnation point z, is unstable (i.e. U(zp) = 0 and there exists
an eigenvalue of (22),, with positive real part). There are large classes of
fluid flows U, with such stagnation points. For all such flows 7 > 1.

A class of flows with presumably chaotic stream lines was identified by
Arnold [A2]. An example is the so-called ABC flow Uy = (%, 9, ) where

= Asinz+ Ccosy
Y= Bsinz + Acosz (2.13)
z2=Csiny+ Bcosz.

For general values of the constants A, B and C numerical investigations
[OFGHMS] indicate that ABC flows exhibit the phenomenon of Lagrangian
chaos which suggests strong exponential stretching. Analytic treatment of
ABC flows [FGV], [Chi] proves that for certain ranges of 4, B and C there
is exponential stretching either at hyperbolic points or associated with hy-
perbolic closed trajectories. The result of Theorem 2 then proves that these
ABC flows are hydrodynamically unstable.

In 3 dimensions the mechanism of vortex tube stretching, which is ab-
sent in strictly 2-dimensional flows, can give rise to values of x4 which are



greater than the classical Lyapunov exponent. For example, in [F] analy-
sis of a model equation for 3-dimensional Euler known as the surface quasi-
geostrophic equation leads to a quantity analogous to u that tends to infinity
for flows with hyperbolic structures: i.e. there exist perturbations that grow
like €. This result suggests that a 3-dimensional flow with hyperbolic struc-
ture is strongly unstable. Furthermore in 3 dimensions it is possible to have
flows Uy for which the classical Lyapunov exponents are all zero yet the fluid
exponent y is positive. Such an example is constructed in [FV]. It is proved
that the integrable flow Uy x curlly = —VH with VH # 0 has pu positive
provided that a certain geometric condition is satisfied by the stream lines.
The following (non sharp) condition ensures p > 0:

T
/ {k#i - VH — 1,Up - curlUp/|VH[?}dt > 0 (2.14)
0
where, for any stream line of the flow as it wraps around the toroidal surface
H = H,, T is the period, s the curvature, 7, the geodesic torsion and # the
principal unit normal to the stream line.
We have described many fluid flows where it can be shown that x> 0.
In a few cases u can be computed explicitly. For example, the 2-dimensional
cellular flow

Up = (—sinz cosy, coszsiny). (2.15)

In this case  is given by the positive real eigenvalue of the matrix (22) at a
hyperbolic stagnation point. Thus 2 = 1 for this simple cellular flow. There
are certain classes of 2-dimensional flows for which it follows from (2.8) that
p = 0 [FSV]. In particular = 0 (i.e. there is no unstable essential spectrum)
for 2-dimensional flows with no stagnation points or any 2-dimensional plane
parallel shear flow.

2.2 Examples of Instability in the Discrete Spectrum

We now turn to the question of existence and distribution of unstable eigen-
values in the discrete spectrum of equation (2.1), (2.2). The linearized Euler
operator is degenerate, non-elliptic, and there are no general theorems that
may be applied to prove the existence of unstable discrete eigenvalues. How-
ever in certain rather special examples it is possible to construct unstable
eigenvalues.



The spectral problem for the linearized Euler operator is considerably
simpler in 2 dimensions rather than in 3 dimensions. In particular, in 2
dimensions we can define a scalar stream function to replace the divergence
free vector field. We write

Up =k x VU(z,y), v="Fk x Vé(z,y,1). (2.16)

Hence,

V x Up = kEV?¥(z,y), V x v = kV3¢(z, y,1). (2.17)

Here £ is the unit vector perpendicular to the 2-dimensional plane with Carte-

sian coordinates (z,y). The 2-dimensional steady equations (1.3), (1.4) will
be satisfied when V¥ satisfies an elliptic equation of the form

ViU = —F(¥). (2.18)

Taking the curl of equation (2.1) gives the equation for the evolution of the
perturbation vorticity w =V x v:

3“’ = (Up,w} +{v,V x Up}, (2.19)

where {, } denotes the P01sson bracket of two vector fields, i.e.

{A,B}=(B-V)A—(A-V)B. (2.20)

In general the second Poisson bracket on the RHS of (2.19) is very difficult
to analyse. However in 2 dimensions the problein greatly simplifies because
k- V(-) = 0. The vorticity equation (2.19) reduces to

A+ Uy VIw+ (v- V)V x Up) =0. - (2.21)

We consider the eigenfunction ¢ and the eigenvalue X for equation (2. 19)
after substituting (2.18) and (2.21) into (2.19) we obtain equation

) ) ,
AV2 = Ty — ‘I’zgg)(v% + F'(T)4). (2.22)

We take the boundary conditions to be 2r-periodicity in (z, y).

A simple and very classical example that has received much attention
in the literature of the past 100 years is plane parallel shear flow (see, for
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example, [DR], [Cha]). In this case Up = (U(y),0) and (2.22) becomes the
so-called Rayleigh equation:

(U~ K)20) - U'@30) =0, (229

where we have written

d(z,y,t) = @(y)eik‘”e)‘t. (2.24)

The celebrated Rayleigh stability criterion [DR] says that a necessary condi-
tion for instability is the presence of an inflection point in the profile U(y).
As we remarked in section 2.1, the concept of the “fluid Lyapunov exponent”
p given by expression (2.8) can be used to prove that equation (2.22) with
periodic boundary conditions has no unstable essential spectrum for any pro-
file U(y). It remains to discuss the possibility of discrete unstable eigenvalues
(i.e. X such that ReX > 0) associated with equation (2.23) for profiles U(y)
that contain at least one inflection point.

Meshalkin and Sinai [MS], followed by Yudovich [Y1] investigated the
instability of a wviscous shear flow U(y) = sin my using techniques of contin-
ued fractions. More recently Friedlander et al [FSV], [BFY], [FH] showed
that these techniques could be used for the inviscid equation (2.23) with
U(y) = sinmy. Eigenfunctions are constructed in terms of Fourier series that
converge to C®-smooth functions for eigenvalues A that satisfy the charac-
teristic equation. We write

o0
B(y)= Y. a.e™. (2.25)
n=—oo

The recurrence relation equivalent to (2.23) yields a tridiagonal infinite alge-
braic system which is analyzed using continued fractions to yield the charac-
teristic equation relating the eigenvalues to the wavenumbers k and m. The
Fourier coefficients a,, decay exponentially with n for each root X of the char-
acteristic equation. In the example U(y) = sinmy this procedure exhibits
the complete unstable spectrum in L? of the linearized Euler equation.

The existence of unstable eigenvalues for shear flows with a general rapidly
oscillating profile U(my), m >> 1, was demonstrated in [BFY] using homog-
enization techniques to compute the spectral asymptotics. Gordin [G] has
solved numerically an interesting problem of finding a “maximally unstable”
profile U(y), provided its enstrophy [ |U’(y)|?dy is fixed.
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On the other hand, if the profile U(y) is close enough to the linear one,
ie. U(y) = y+¢ef(y) for arbitrary smooth function f(y) and sufficiently
small ¢ > 0, then there are no unstable eigenvalues (for a fixed wave number
k). This may be deduced from the paper of L. Faddeev [Fa]. We can regard
this result as relating to flows on the side surface of a cylinder, in which case
the wave number of perturbation cannot be smaller than some constant. We
shall discuss these flows in section 3.5.

There are a few results concerning the unstable eigenvalues of (2.22) for
somewhat more general flows Up. A specific “cats-eye” type flow was studied
by Friedlander et al [FVY] and the method of averaging was used to construct
the formal asymptotic expansion for eigenfunctions of a class of unstable
eigenvalues for equation (2.22) with F(¥) corresponding to the“cats-eye”
flow. We remark that the existence of hyperbolic stagnation points in this
flow means that, in contrast with parallel shear flow, u is positive. Hence
both the discrete and the essential unstable spectrum are nonempty.

3 Nonlinear Instability

Problems connected with stability and instability of the full nonlinear Euler
equations (2.1)-(2.2) are even more complex than those related to the spec-
trum of the linearized equation discussed in Section 2. Hence many questions
remain open. However some results have been obtained recently. We will de-
scribe these “small steps of progress” and indicate some promising paths for
future development.

A steady state is called nonlinearly stable if every disturbance that is
“small” initially generates a solution to the nonlinear Euler equation which
stays “close” to the steady state for all time. There are several natural pre-
cise definitions of nonlinear stability and its converse instability. To a certain
extent these definitions incorporate a concept of “degrees” of instability. The
definitions reflect the crucial dependence of a stable or unstable state on the
norm in which growth with time of disturbances is measured. The first defi-
nition we give allows us to consider nonlinear stability /instability in function
spaces for which it is known that there is local existence and uniqueness.
Later in this section we prove a theorem under this definition relating linear
instability in L? with nonlinear instability in H*,s > n/2 + 1. In the second
definition we consider nonlinear stability in L? and H! which are natural
spaces to measure growth of a disturbance but are not “correct” spaces for

12



the Euler equation in terms of proven properties of the solutions of the non-
linear equation. The elegant nonlinear stability results of Arnold [A3] fall
under this second definition, as does the concept of minimal flows introduced
by Shnirelman [S1].

3.1 Definitions of Nonlinear Stability /Instability

First definition of nonlinear instability. We define nonlinear stability
for a general evolution equation of the form

u; = Lu+ N(u), u(0)= u,, (3.1)

where L and N are respectively the linear and nonlinear terms. Let X and
Z be a fixed pair of Banach spaces with X C Z being a dense embedding.
We assume that for any uy € X there exists a T' > 0 and a unique solution
u(t) to (3.1) with

u(t) € L=((0,1); X) N C((0,T1, 2) (32)
in the sense that for any ¢ € D(0,T)

T
J{u()#(7) + (Lu(r) + N(w(®)@(r)}dr = 0. (3.3)
0

The initial condition is assumed in the sense of strong convergence in Z:

lim [Ju(r) — wo|[z = O. (3.4)
T30F

Definition 3.1 The trivial solution uy = 0 of (3.1) is called nonlinearly
stable in X (i.e. Lyapunov stable) if for all € > 0 there exists § > 0 so that
[|uol|x < & implies

(a) we can choose T in (3.2) to be T = oo, and

(b) ||u)t)||x < € for a.e. t € [0, 0).

The trivial solution is called nonlinearly unstable in X if it does not satisfy
the conditions stated above.

We remark that by this definition finite time “blow up” (i.e. a maximal
finiteT > 01in (3.1)) is a special case of nonlinear instability. This is valuable
in the context of the Euler equations (1.1), (1.2) since in 3 dimensions the
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possibility of finite time blow up has not yet been ruled out. In the context
of the Euler equations the “natural” choice for the spaces X and Z are H®
with s > n/2 + 1 where 7 is the space dimension and L? respectively.

Second definition of nonlinear instability. The second notion of
(in)stability is what we call Z-(in)stability. In this definition we do not split
the operator into linear and nonlinear parts, because such splitting makes
no sense for strong perturbations we are dealing with. Let X C Z be a pair
of Banach spaces with dense and compact embedding. Consider an operator
equation having the form

du
Suppose that for every ug € X and every T > 0 there exists unique solution
u(t) € L=((0,T); X)N((0, T); Z). Let Up € X be a fixed point, i.e. A(U;) =
0.

Definition 3.2 The constant solution u(t) = Uy is called stable in Z, or
Z-stable, if for every € > 0 there exists § > 0 such that if v € X and
llvo — Uollz < 6, and if v(t) is a solution of (3.5), satisfying v(0) = vy,
then [|v(t) — Up|| < € for all t € R. Otherwise steady solution Uy is called
Z-unstable.

3.2 Instability may depend on the functional space

In infinite-dimensional systems like a fluid the choice of functional space may
be crucial for the stability/instability of the system, as was emphasized by
Yudovich [Y2]. This is both a linear and a nonlinear phenomenon.

To illustrate the dependence of stability on the choice of norm. consider
the following simple example given in [Y2], namely the Cauchy problem

ov ov
i 1"(%, v(0) = ¢(z). (3.6)
The unique solution for an arbitrary smooth function ¢(z) is
v(z,t) = ¢(ze'). (3.7)

A simple calculation shows that
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k
NZ8)) = g0 gy (38
Hence this linear equation is asymptotically stable in L? for any p,1 < p <
oo and disturbances decay exponentially. The solution is stable but not
asymptotically in L®(R), C(R) and W''(R). In any space W*?(R) with
k> 1or k=1,p>1, the solution is exponentially unstable.

The following simple example of Shnol [Sh] shows that an Euler flow may
be linearly stable in one natural function space and unstable in another one.
Let Up(z) be a plane-parallel flow in a strip with a linear profile: Up(z,y) =
(ay,0), a # 0. Then its vorticity is constant, and the linearized equation

for the perturbation vorticity is

Ow Ow
5 tayo— = 0, (3.9

i.e. the vorticity perturbation is transported by the flow. The zero solution
of this equation is stable in the space J; where ||u||ly = |jullzz + ||V %
u||zz. On the other hand, it is unstable in Sobolev spaces H® for s > 1,
because the derivatives of vorticity grow in time. Interesting enough, the
zero solution is unstable also in J = L?, but the reason for this instability is
quite different. Namely, every smooth solution of (3.9) tends weakly to some
function depending only on y, as ¢ — oo; this means that the velocity field
tends in L? to some field, parallel to the z-axis and depending only on y, and
this field is zero, if the mean value of the initial perturbation along the z-axis
is identically zero. Thus the subspace of parallel flows in the space J appears
to be an attracting set, consisting of fixed points. But (and this is the original
reasoning of Shnol) the equation (3.9) is time reversible; this means that there
exist arbitrarily small in L? perturbations of velocity, which grow arbitrarily
big after some time; this means that this simplest nontrivial parallel flow
is linearly unstable in L?. The same is true for arbitrary nontrivial parallel
flow. A similar situation may be observed for other classes of steady flows,
for example for a potential flow in a multiconnected domain with one or more
hyperbolic stagnation points.

As Yudovich [Y3] observes, there exists a class of exact solutions to the
full nonlinear Euler equations which imply that 2-dimensional steady flows
are, with very few exceptions, unstable with respect to 3-dimensional per-
turbations in any norm which includes the maximum of vorticity modulus.
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In particular, consider the plane parallel shear flow Uy = (f(y),0,0) with
y € [0,1]. This flow is well known to be linearly stable in L? if there are no
inflection points in the profile of f(y) in [0, 1] (see, for example, [DR]). In an
appropriate sense that we discuss in the next section it is also nonlinearly
stable to 2-dimensional perturbations. It is easy to check that the following
is an exact solution to the full nonlinear Euler equations (1.1)-(1.2) for any
smooth functions f and w:

u= (f(y)1 0, w(a: - tf(y))) (3'10)
The corresponding vorticity
V xu=—(tf'(y)w'(z - tf(y)), w'(z ~tf(y), '(¥)) (3.11)

Hence the vorticity of a perturbation (0,0, w) to the steady shear flow grows
linearly with time provided only that f and w are nonconstant functions.
Thus a shear flow, even with no inflection points, is nonlinearly unstable to
3-dimensional perturbations in any norm that incorporates the magnitude of
vorticity.

This set of exact solutions to the 3-dimensional Euler equation can be
generalized to a suitable z-independent perturbation of any 2-dimensional
steady flow (see [Y3], [F]), namely

u=(—-%;, %9, w(z1y,t)), (3.12)
where ¥(z, y) is a stream function for a steady 2-dimensional flow (see Section
2.2) and w satisfies

(-g—t + ((k x V)¥) - V)w =0. (3.13)

The evolution equation for the vorticity gives

S (kx V)W) V) x Vu) = (kx Vu-V(GEX VYY), (3.14)

i.e. the vorticity component (l:: x V)w evolves as a tangent vector to the
2-dimensional flow uy = (k x V)¥. Hence for almost all choices of ¥ there
exists a perturbation w(z,y,t) such that the vorticity of the 3-dimensional
Euler flow (3.12) grows with time. This growth can be exponential on a set
of measure zero if the flow ugy has a hyperbolic fixed point.
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Note that these instabilities are associated with the essential spectrum
and thus have different nature than instabilities connected with discrete
eigenvalues. If the perturbation is an eigenfunction of the linearized equa-
tions (2.1), (2.2) with an eigenvalue having a positive real part, then, of
course, it grows exponentially in any norm.

3.3 A nonlinear instability theorem

In this section we describe a result which applies to nonlinear instability in
the sense of our first definition (see section 3.1). In the context of the Euler
equation the result relates spectral instability of the evolution operator in L2
with nonlinear instability in the Sobolev space H*,s > n/2 + 1.

We formulate the relevant theorem in a general setting. We consider the
stability of the zero solution of an evolution equation

dv
= = v+ N@), (3.15)

where L and N are respectively the linearized and nonlinear parts of the
governing equation. Once the spectrum of the linear part L is analyzed and
shown to have an unstable component (i.e. the zero solution is linearly unsta-
ble) then the question arises whether the zero solution is nonlinearly unstable.
It is well known (see, for example, Lichtenberg and Lieberman [LL] that the
linear instability implies nonlinear instability in the finite-dimensional case
(i.e. if (3.15) is an ODE). In the infinite-dimensional case (PDE) such general
result is not known, although for many particular types of evolution PDE’s it
has been shown that linear instability implies nonlinear instability (e.g. such
a result for the incompressible Navier-Stokes equations in a bounded domain
has been proved by Yudovich [Y2]). Difficulties with deriving the nonlinear
instability from the linear one usually appear whenever the essential spec-
trum of L is non-empty as it generally is for the Euler equation.

In [FSV] Friedlander, Strauss, and Vishik proved the following abstract
nonlinear instability theorem under the spectral gap condition.

Theorem 3.1 Fix a pair of Banach spaces X — Z with a dense embedding.
Let (3.15) admit a local existence theorem in X. Let N and L satisfy the
following conditions.
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(1) IN@)||; < Collv|lxllvllz for v € X with ||v||x < p for some p > 0.
(3.16)

(2) A spectral “gap” condition, i.eo(e’) =0, Uo_ witho, #¢ (3.17)

where
or C {z€Cle™ < 2| < M}
o- C {z € CleM < |z]e*t} (3.18)
with
—0<A<a<M<A<ooand M > 0. (3.19)

Then the trivial solution v = 0 to equation (3.15) is nonlinearly unstable.

The main idea of the proof of this theorem is as follows. We assume
the contrary, namely that the trivial solution v = 0 is nonlinearly stable.
Let ¢ > 0 sufficiently small be given: it will be specified later. From the
definition 1 of nonlinear stability it follows that there exists a global solution
v(t),t € [0, 00) such that |[v(t)||x < e provided ||V (0)||x < &(¢).

We project v(t) onto two subspaces using the spectral gap condition
(3.17), (3.18). We denote by P, the Riesz projection corresponding to the
partition of the spectrum created by the gap and introduce a new norm |||-|||
on Z. For any = € Z let

el = [[1Pyll] + ||| P-zl]
o0 o0
- / e~ P, z||ze™dr + / leEP_z||ze™odr.  (3.20)
0 0
The norm ||| - ||| is equivalent to || - ||z, i.e. there exists C' > 0 such that
CHlzllz < IIXNI| < Cllz|z- (3.21)

Since v(t) is a solution to (3.15) it can be shown that
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(2@l = NIP-v@1DIE:
> f{MIHP+'v(T)III — o [|P-v(7)]]] (3.22)

+C (@)l = N (u(r)[}dr

for any interval 0 < ; < t,.
We choose the initial condition vy = 67y, where 7y € X is an arbitrary
vector satisfying

1| P+Bo||| > |[|1P-olll, ||Z0]|x < 1. (3.23)

Since ||vo||x < & our assumption of nonlinear stability implies

llv@®)||x <& for a.e. t € [0,c0), (3.24)
and from condition (3.23)

IN@@)I £ Ceollv@®)ilz < CPeoel|lo(@)]]] for ae. t € [0,00).  (3.25)

Now the inequalities (3.24)-(3.25) plus Gronwall’s inequality give

P @I = I P-v(@)]]
> §(|I| P+ olll — P-7ol|])e™, ¢ € [0,00), (3.26)

provided ¢ is chose so that £ < min(C~3¢; 1 p). Since M > 0, for sufficiently
large ¢t the inequality (3.26) contradicts our assumption that ||v(t)||x < e.
Hence the trivial solution to (3.15) is nonlinearly unstable in X.

We now consider Theorem 3.1 in the context of the Euler equations (1.1)-
(1.2). We write

u=Up+v,
Lv=—((U-V)v—(v-V)Uy — Vp,
N(@w)=—(v-V)v— Vg; (3.27)
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thus the notation of the general theorem applies to instability of the steady
flow Up. The local existence requirement and condition (1) of Theorem 3.1
are easy to satisfy by making the natural choice for the spaces X and 7,
namely

X=H,,s>g+1andZ=L2 (3.28)

with the restriction to vector fields that are divergence free and satisfy ap-
propriate boundary conditions. However the spectral gap condition is much
more difficult to verify for a given steady solution U because, as we have
discussed, the essential spectrum of €'’ is non-empty and at least in some
examples fills the whole annulus.

One piece of information we have about the structure of the spectrum
is the essential spectral radius theorem discussed in section 2.1. In some
examples the “fluid Lyapunov exponent” u can be explicitly calculated. Also
the theorem implies, in particular, that any z € o(e*f) with |z| > et is a
point of the discrete spectrum (i.e. an isolated point with finite multiplicity
where the range of (z — €*) is closed). Any accumulation point of g (e?F)
necessarily belongs to oess(e?). Thus if

a(e){lz] > e} £ 0, (3.29)

then there exists a partition

o(er) =0y | Jo- (3.30)

satisfying the gap condition (3.17), (3.18).

There are several examples of 2-dimensional flows where 1 can be com-
puted and discrete unstable eigenvalues calculated to show that (3.18) holds.
These are the examples of discrete unstable eigenvalues discussed in section
2.2. As we remarked in section 2.1, in 2 dimensions the fluid Lyapunov ex-
ponent and the classical Lyapunov exponent are equal. Hence u = 0 for any
plane-parallel shear flow. It therefore follows from Theorem 3.1, plus the
result of [BFV] that there exist unstable discrete eigenvalues for any shear
flow with a rapidly oscillating profile, that all such shear flows are nonlinearly
unstable in H2,

Other recent results concerning nonlinear instability of 2-dimensional
shear flows include the work of Grenier [G] who proves nonlinear instability
in L* for piecewise linear profiles. Koch [K] proves in 2 dimensions that
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nonlinear stability in C1*® requires uniform boundedness of the derivatives
of the flow map which implies that all steady shear flows are nonlinearly
unstable in C1°.

A more general 2-dimensional flow than parallel shear flow that can be
shown to be nonlinearly unstable is the “cats-eye” flow studied in [FVY]. In
this case the existence of hyperbolic stagnation points implies that x > 0.
The exact value of u can be calculated as the positive eigenvalue of the
gradient matrix of Uy at the hyperbolic point. The results of [FV] show that
there exist discrete unstable eigenvalues with real part > u, hence again we
can invoke theorem 3.1 to prove that such “cats-eye” flows are nonlinearly
unstable.

The problem of verifying the gap condition for the spectrum correspond-
ing to 3-dimensional flows is more difficult and the structure of the spectrum
remains an open question. As we discussed in Section 2.1, there is some
evidence that in 3 dimensions the combination of vortex tube stretching and
hyperbolic stagnation points may provide a situation in which 4 — oo and
hence it would be very difficult to verify the gap condition. Proving instabil-
ity is then beyond the tools we have presently available.

3.4 Arnold stable and minimal flows

In this section we discuss some results and open questions concerning non-
linear stability in the sense of our second definition.

The most frequently employed method to prove the nonlinear stability of
particular flows and classes of flows was developed by Arnold [AK]. He used
the Energy-Casimir method based on the existence of two different integrals
of motion. The simplest example of an application of this method is to the
stability of rigid rotation of a fluid in a disk. Here we have two integrals, the
energy E and the angular momentum §2. Consider the space J of all square
integrable incompressible vector fields in the disk tangent to its boundary.
The fields with given momentum €y form a hyperplane in this space, and
the functional F achieves an absolute minimum Ej on this hyperplane at the
field U(z), which is the velocity field of the rigid rotation. This critical point
is nondegenerate (its second variation is positive definite in L?). Hence, every
vector field u(z) of the space J with the energy F and the angular momentum
£, close resp. to Ey and Q, is close in the space J to the field U(z) and
remains close forever, because the functionals E and 2 do not depend on
time.
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For more general flows the Energy-Casimir method assumes more sophis-
ticated forms. We use the fact that the vorticity w is transported by the fluid.
In other words, the fluid moves in such a manner that its vorticity field at
every moment is obtained from the vorticity at the initial moment by some
volume-preserving diffeomorphism depending on ¢: w(z,t) = w(g;*(z),0)
(in the terminology of Arnold, the velocity fields of the flow at any two mo-
ments are isovortical). The relation of equivorticity defines partition of the
space of velocity fields into equivalence classes which may be regarded as a
sort of generalized Casimir. For a given field Uy(z) the class of isovortical
fields is an infinite-dimensional manifold V', which is the orbit of the group
D of volume-preserving diffeomorphisms in the space X of incompressible
vector fields. Arnold has proved [AK] that the steady solutions of the Euler
equations are exactly the fields of V' which are critical points of the energy
functional E, restricted on V. If the critical point is a point of a strict local
maximum or minimum of E, then the flow is nonlinearly stable in the space
J1, whose elements are incompressible vector fields u(z) in the flow domain,
tangent to the boundary and having a finite norm |jul];, = |[ul|2+||V x u|| 2.
The development of this idea gives rise to the celebrated results of Arnold
concerning the nonlinear stability of certain classes of steady flows. In partic-
ular, Arnold’s methods show that for plane-parallel shear flow in 2 dimensions
the Rayleigh criterion (i.e. no inflection points in the profile) guarantees not
only spectral stability but also nonlinear stability in J; (see [AK] for more
details).

‘This theory has several weak points. Firstly, on the manifold V of isovor-
tical fields there may be no critical points at all. At least, the functional E
usually does not assume its maximum and minimum on the surface V. Here
is the typical example of situation, where the minimum and/or maximum
of E on V cannot be achieved. Consider some velocity field ug in a strip
0 < y < 1 with the period L along the z-axis. Let wo(z,y) be its vorticity,
and suppose that [ fwdzdy = 0. We are looking for a flow u(z,y) with
vorticity w(z,y) such that w is obtained from wy by a volume preserving per-
mutation of points, i.e. element of the group D; in other words, u and u, are
on the same manifold V' and the energy E(u) should be minimal (maximal).
But the minimum cannot be achieved, because it is zero. In fact, we can
construct a sequence gi, ga, - - - of diffeomorphisms, becoming more and more
"mixing” , which transform wg into wy, ws, - - -, and this sequence of vorticities
tends weakly to 0. Corresponding velocity fields uy, us, - - - tend to 0 strongly
in L?; thus, E(u;) — 0. The maximum value of E is also not always achiev-
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able. In fact, the supremum and infimum of energy on V depend only on the
value distribution of wy, and not on the topology of its level lines. Thus, if
for some ug the maximum is achieved (say, at the same ug), then it cannot be
achieved for any other function uy with the same value distribution of vor-
ticity, but with different topology. For example, if the flow domain is a disk,
and wy is positive, depends only on the radius, decreases when the radius is
growing, and is concentrated in a small neighborhood of the center of the
disk, and wj is another vorticity, having the form of fwo such spots whose
size is /2 times smaller, then for the corresponding flow u{ the maximum of
E on its surface V' cannot be achieved. In all cases we see no evidence of the
existence of other local maxima and minima, different from the global ones.

Secondly, as Sadun and Vishik [SV] observe, there is a serious drawback in
applying the Arnold method in 3 or more dimensions. A natural way to prove
that a critical point is a strict local maximum or minimum of E is to show
that the second variation of the energy (the Hessian) defined on the tangent
space to V is negative or positive definite at a critical point ug. However
Sadun and Vishik show in [SV] that in 3 or more dimensions the spectrum
of the Hessian is not only never definite, but is generally unbounded from
below as well as from above. The only exception are harmonic flows (i.e. both
divergence and curl are zero) in which case the Hessian is identically zero.
This result is suggestive, but does not prove that most flows in 3 dimensions
are likely to be nonlinearly unstable in the Arnold’s sense.

Another approach to nonlinear stability in 2 dimensions introduced by
A. Shnirelman [S1] is based on the following ideas. Consider the space J; of
incompressible vector fields in the flow domain M, which are tangent to the
boundary and have a finite norm ||u|[3, = [|u||2.+ ||V x u|2.. Consider the
group D of volume preserving diffeomorphisms of M; it acts in L?(M) by the
formula g - f(z) = f(¢~*(z)). This is a unitary operator in L?(M), and we
shall identify the group D with the group of these unitary transformations.
Now, for every g € D and every u € J; we define g-u as a unique field v € Jj,
such that V x v(z) = V x u(g7*(z)) (assume for simplicity that the domain
M is simply connected). Thus, we have defined an action of the group D in
the space J;. Hence we see that the manifolds of isovortical fields are just the
orbits of this action. Consider now an extension of the group D. It consists
of linear operators in L?, having the form K f(z) = [ K(z,y)f(y)dy, where
the kernel K(z,y) satisfies the following conditions:

23



(1) K(z,y) >0 (i.e. K(z,y)dzdy is a positive measure) ;
2 dzr = 1; 3.31
@ [ K@yds=1, (3:31)

(3) /M K(z,y)dy = 1.

Such operators, usually called bistochastic, or, in the terminology of A. Ver-
shik, polimorphisms, form a semigroup P; it consists of contracting operators
in L?, and the group D is dense in P in a weak operator topology.

Let us define the action of the semigroup P in the space J;. For every
u € J; and K € P we define K - u as a unique field v € Ji, such that
V xv = K(V x u). We can define a partial order relation in the space J;:
suppose u,v € Ji; we say that u < v, if u = K - v for some K € P.

For any ug € J; let us consider the set S,, of vector fields u € J;, such
that u < ug, and [|u||r2 = ||uel||z2. This set is a lattice with respect to the
binary relation <; using Zorn’s lemma, we prove that there exists a minimal
element v € S, (not necessarily unique). It turns out that this minimal
element, which is a vector field, is a velocity field of a steady flow in M. We
call such flows minimal flows.

Minimal flows have a clear physical meaning. The flow of an ideal incom-
pressible fluid transports its own vorticity. It is natural to assume that the
vorticity is permanently distorted by the flow, and effectively mixed. But the
mixing operators are just polimorphisms. So, at any remote time moment
t >> 1 the vorticity is (presumably) close in a weak sense to the result of the
action of some operator K; € P on the initial vorticity wy = V X ug, which
means that the velocity field u(z,t) is L?-close to K; - ug(z).

The mixing of the vorticity field by the flow is practically irreversible,
and we may assume that it proceeds until some constraint makes further
mixing impossible. These constraints may be any integral of the motion, the
primary one being the energy E(u); further mixing is impossible, if every
operator K € P changes the kinetic energy of the flow. Thus minimal flows
are the most degenerate states of fluid motion.

Our conjecture is that all (generic) 2-dimensional flows of an ideal incom-
pressible fluid have a similar asymptotic behavior as ¢ — co: every such flow
tends to some minimal flow. This hypothesis appears difficult to prove. It
sounds close to (but in fact is very far from) “statistical hydrodynamics” in
the sense of J. Miller and R. Robert [M], [R].
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We do not expect the regularity of minimal flows to be very high; even if
up € C®, the corresponding minimal flow v € S, has a priori only bounded
vorticity, and it is unclear whether its vorticity is at least continuous.

There exist three classes of minimal flows. If a minimal flow belongs to
the first class, then every mixing operator applied to its vorticity can only
increase the kinetic energy. For a flow from the second class, every mixing of
its vorticity decreases its energy. The third class contains only one flow (up
to a multiplicative constant), namely the flow with constant vorticity.

Every minimal flow realizes a global minimum or maximum (for minimal
flows respectively of the first and the second class) of the energy E on its
orbit V; for the flow of the third class its orbit consists of one point. But we
cannot assert (and it may be false) that this critical point is nondegenerate.
In some examples the maximum of energy is attained on a compact set
H C V, containing v (the convexity considerations show that the global
minimum of energy is always assumed at a single point). In fact, consider
the following example. Suppose that the flow domain M is a circular disk
lz] < 1, and the velocity field ug(x) has the form of two small spots of
vorticity of opposite sign, such that the total vorticity is zero. If we decrease
the size of these spots, keeping the total vorticity (i.e. the circulation along
the contour encircling each of the spots) constant, we can make the energy
E arbitrarily big, because it grows as logarithm of the spot diameter. We
assume that the size of both spots is small enough. The set S,,, defined
above, contains a minimal flow v; if the size of vortices is small enough,
this flow looks like two standing vortices of opposite signs (this configuration
realizes the global maximum of the energy E on its isovortical manifold V).
But this flow is not axisymmetric, and therefore the same minimal value of
E is assumed on the whole circle in V, consisting of the flows, obtained from
v by rotations. If we add to v the velocity field of a slow rotation of the disk,
we obtain a nonsteady solution of the Euler equations in the disk, having the
form of two small vortices of opposite signs, slowly rotating in the disk on
the backdrop of a small uniform vorticity. (This type of flows is analogous to
the precession of the axisymmetric rotating body; see [S1] for more details).

Thus minimal flows are not generally stable. What may be asserted is that
they are ” compactly unstable”. This means that if v is a minimal flow, then
there exists a compact H C Jj, containing v, such that for all initial velocities
w(z, 0), close to v, the flow w(z,t) is close to H for all ¢t > 0.
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3.5 Spectrally stable and Arnold stable flows

We call a steady flow Uy spectrally stable if the linearized equations (2.1),
(2.2) have no exponentially growing solutions, i.e. the linearized operator L
has no eigenvalues with a positive real part. What is the relation between the
classes of spectrally stable and Arnold stable (or minimal) flows? In the case
of a channel flow the essential spectrum of the linearized evolution operator
e*l' lies on the unit circle; applying the theorem 3.1 we conclude that if the
flow is spectrally unstable, it is nonlinearly unstable; thus, it is not Arnold
stable. For generic steady flows the question is less clear, because unstable
eigenvalues of the operator ' may occur on its essential spectrum. This may
happen, if, for example, the flow U, contains a thin jet in one part of the
flow domain M, and a hyperbolic stagnation point elsewhere in M. In this
case the essential spectrum of e*” contains an annulus e~ < ||| < eA?, and
the eigenvalue e* satisfies 1 < e* < eA’. Theorem 3.1 is no more applicable,
and it is now unclear whether the flow Uj is stable (while it is unlikely that
a distant saddle point could stabilize the jet).

In the other direction the answer is clearer: there exist steady flows which
are spectrally stable, and are not Arnold stable. Our examples are plane-
parallel flows in a channel —1 < y < 1, periodic in the z-direction with
the period L (so that the flow domain may be regarded as a side surface
of a cylinder). In the first example the velocity profile U(y) has the form
U(y) = y + ef(y) for an arbitrary smooth function f(y) and small £ > 0;
in the second example U(y) may be an arbitrary smooth function, but the
period L in the z-direction is small (depending on U). In both examples, if
€ or respectively L are small enough, there are no unstable eigenvalues. This
is proved in the paper of Faddeev [Fa] which is excellent for its clarity.

However these flows, for some profiles U, are not Arnold stable. For
example, consider U(y) = sin(mmny) for integer m > 1 and sufficiently small
period L so that the flow is spectrally stable. Let Uy = (U(y), 0) denote the
flow field and let wy = V x Uy be its vorticity. Let us show that this field
is neither the point of a local minimum nor the point of a local maximum
of the energy E among the fields u isovortical with Uy. To do this, it is
sufficient to show that for every € > 0 there exist two volume preserving
diffeomorphisms 5 and ¢ such that |jwoon™'—wp||r2 < €, ||woo¢ " —wy||12 < €,
and E(wg o7') < E(wo), E(wo o (™) > E(w,), where E(w) denotes the
kinetic energy of incompressible flow with vorticity w. We divide the flow
domain M = {(z,y)|0 < ¢ < L, -1 < y < 1} into small equal cells M;;
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for example, they may be equal squares of size 4. Consider permutations
of these cells, and for every permutation 7 consider the function 7-wp =
wgoT ™! (here 7 is regarded as a measurable transformation of the flow domain
M, preserving the Lebesgue measure). As it is proven in [S2], for every
permutation 7 there exists a smooth volume preserving diffeomorphism 7/,
such that 7’ = 7 outside an arbitrarily small neighborhood of Ui 8 M. Thus,
||wo o 7' —wp o 7||r2 may be made arbitrarily small, and we shall consider now
only the action of permutations of cells on the vorticity and velocity fields.
We define two permutations, 73 and 72, such that the action of 71 on wy
increases the energy of the flow, while the action of 72 decreases the energy.
Note that if wy and wy are two vorticity fields, which are equimeasurable,
i.e. mes{wy < ¢} = mes{w) < c} for every c, then there exist a partition
of M into sufficiently small equal squares Mj; and a permutation 7 of these
cells such that ||wf — wp o 7||z2 is arbitrarily small (see [S2]). Furthermore,
there exist functions wj which are equimeasurable with w, E(wg) > E(wo),
and ||w) — wo||z2 is as small as we wish. For example, we can inflate a little
one period of wo(z,y) = msinmy in the y-direction while shrinking other
periods. Now we can find a permutation 7,, which approximately transforms
wp into wf, and then approximate this permutation by a smooth volume
preserving diffeomorphism 7. Our construction shows that ||wg 0 7 — wol|z2
may be made arbitrarily small and that E(wp o n) > E(wp). Thus wp is not
a point of local minimum of £ on V. '

To show that wp is not a point of local maximum of E on V, observe first
that the mean value of wy is zero. This makes the following construction
possible. Let us divide M into N equal cells and pick n << N cells by
random. Let 7, be a random permutation of the chosen n cells. If N —
00, n — 0o, n/N — 4, then, with probability 1, wp o 72 tends weakly
in L>(M) to (1 — €)wp; on the other hand, |lwp o 72 — wpl||rz < cd; hence,
we can find a‘diffeomorphism ¢; such that |jwp o { — wpl||zz2 < ce, while
E(wp o) < E(wp) — €2. This shows that wy is not a point of local minimum
of E on V. Hence we have the following

Problem. We have shown that there exist steady, plane-parallel flows
such that the linearized problem has no unstable eigenvalues, but these flows
don’t satisfy the conditions of the Arnold stability (or minimality, which is
essentially the same). Are they stable in J;7 On one hand, there is no “fast”
exponential instability. On the other hand, the vorticity integrals are not
constraints that prevent a flow from going far away from Uy, if initially it
was close to Uy in J;. So, either there exist other constraints of unknown
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nature, or the above flows are unstable in J;. However such an instability is
quite different from instabilities with which we are familiar.

3.6 Problems and conjectures on the Arnold stable
and minimal flows.

We have four remarkable classes of steady flows: Lyapunov stable flows,
Arnold stable, minimal flows, and spectrally stable ones (in the sense that
the linearized equation has no unstable eigenvalues). What are relations
between these classes?

Suppose that the steady flow Us(z) does not satisfy Arnold’s condition
of stability. This means that U is a critical point of the energy E restricted
on the surface V' of isovortical vector fields in the space J;, but this flow
is not the local minimum or maximum of the functional £ on V. Then we
may anticipate that this flow is unstable, because there is nothing to hold
the perturbed flow u(z,t) close to Up(z); the Energy-Casimir method breaks
down. If the flow U, is spectrally unstable, then Theorem 3.1 shows that it
is nonlinearly unstable. But there is a wide gap between spectrally unstable
flows and those which do not satisfy the Arnold’s conditions. We conjecture
that those flows which are neither Arnold stable nor spectrally unstable are
nonlinearly unstable in the space Ji, but the nature of their instability is
different from that of linearly unstable flows.

3.7 L*instability

In the above theories of nonlinear stability we considered stability of smooth
flows with respect to small perturbations, which are small in the J; (i-e.
in H') sense: the vorticity of perturbations should be small in Z2. The
theory breaks down if we drop the condition on the vorticity perturbation
and consider all (smooth) velocity fields u(z, 0) which are close to Up(z) in L?
without any conditions on derivatives. Note that this class of perturbations
is no less physically significant than the previous one, because it describes
perturbations with small energy. Such perturbations may be easily created,
for example, by inserting small obstacles in the flow. In this case, the vorticity
integrals are completely destroyed and it appears that nothing prevents the
flow from going far away from U,. Hence, the natural conjecture is that
every nontrivial flow (i.e.flow having a nonconstant velocity) is unstable with
respect to small in L? perturbations.
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Consider the simplest basic steady flow, namely a parallel flow. Let M
be a strip 0 < z, < 1 in the (z1, z2)-plane. We restrict ourselves to the flows
having period L along the z,-axis; this period is the same for all flows that
are considered below. Suppose that the velocity field Up(z) has the form
(U(z2),0), where U is a given smooth function (the velocity profile). The
original question asked, for which profiles U is the flow Uy is stable. Our first
result is the following

Theorem 3.2 For every nontrivial (i.e. different from constant) velocity
profile U the flow Uy is L?-unstable. This means that for every function
U(zs) 5 const there exists C' > 0, such that for every € > 0 the following is
true. There exist T > 0 and a smooth force f(z,t), defined in M x [0,T],
such that [T || f(-,t) ||z2 dt < &, and f transfers the flow Uy during the time
interval [0, T) into a steady flow u1, such that || Up — vz ||r2> C.

This theorem is proved in [S3] by an explicit construction, based on the
variational method. The next result is much stronger, but here we use a
weaker notion of instability (see [S4]). Let X be a Banach space of incom-
pressible vector fields in M, tangent to the boundary. Consider the Euler
equations with a nonzero right hand side (i.e. external force):

%%‘ +(u, V)u+Vp=f; (3.32)
V-u=0. (3.33)

Here f = f(z,t) is a smooth in z vector field such that V- f = 0 and
f(z,t)|an is parallel to &M . Consider the behavior of u(z,t) when f is small
in the following sense: [ || f(-,t) ||zz dt is small, where [0, is the time
interval (assumed to be long) where the flow is considered. For example, if
f has the form f(z,t) = F(z)d(t) we return to the initial stability problem.

Definition 3.1. Suppose that u(z1,z2) and v(z1,x2) are two steady
flows. We say that the force f transfers the flow u into the flow v during
the time interval [0,T], if the following is true: if w(z,t) is the solution
of the nonhomogeneous Euler equations (3), (4) with the initial condition
w(z,0) = u(z), then w(z, T) = v(x).

We note that if the force f satisfies a stronger condition [T || w(-,t) ||z
dt < e, where w = V x f is the vorticity, then for every Arnold stable flow
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Up, the resulting perturbation at time ¢ will be small, too. But the following
theorem shows that situation in L? is quite different.

Theorem 3.3 Suppose that U(zs) and V' (z;) are two velocity profiles, such
that [y U(zz)dz, = [ V(22)des, and [y §|U(zs)%dzs = fy 1V (22)|des; let
Us(z1, z2) = (U(z2),0), vo(z1,z2) = (V(z2),0) be corresponding steady par-
allel flows (having equal momenta and energies). Then for every € > 0 there
exist T > 0 and a smooth force f(z,t), such that [y || f(-,%) |lz2e< €, and f
transfers u into v during the time interval [0, T].

In other words, the flow may be considerably changed by arbitrarily small in
L? force, provided the time interval is sufficiently long.

This means that the flow of an ideal incompressible fluid is perfectly control-
lable by arbitrarily small force.

Theorem 3.2 is proven by an explicit construction of the flow. Note first,
that if Uy, Uy, - - -, Uy are velocity profiles, and Theorem 2 is true for every
pair (U;, Uit1) of velocity profiles, then we can pass from U; to Uy by simply
concatenating the flows connecting U; and Ujy;; thus Theorem 2 is true
for the pair (U, Uy). Therefore it is enough to construct the sequence of
steady flows with profiles Uy, - - -, Uy, and the intermediate nonsteady flows
connecting every two successive steady ones. We also note that it is enough
to construct a sequence of piecewise-smooth flows, because it is not difficult
to smooth them, so that the necessary force will have arbitrarily small norm
in LY{0, T; L*(M)).

As a first step, we change the flow with the profile U = U; by a piecewise-
constant profile U, with sufficiently small steps; this may be done by a force
with arbitrarily small norm. Thus, Us(z:) is a step function, Ua(ze) = Uék)
for mgk_l) < z3 < :cgk) , k=1,---,K. Every successive profile U; is also a
step-wise function. We are free to subdivide the steps and change ‘a little the
values of velocity, if these changes are small enough.

Every flow uy is obtained from the previous one ux_; by one of two oper-
ations, described in the following theorems.

Theorem 3.4 Let U(z) be a step function, U(zs) = U®) for a;gk_l) <y <
mgk); let V(z3) be another step function, obtained by transposition of two
adjacent segments [mgk_l),xgk)] and [:cgk)’,a:gk"'l)]. Let u(zy, ), v(z1,z2) be
parallel flows with velocity profile U(zz), V(z2). Then for every € > 0 there
exist T > 0-and a piecewise-smooth force f(z,t), such that [T || f(-,t) ||z2<
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g, and the force f transfers the flow u into the flow v during the time interval
[0,T].

To formulate the next theorem, we recall the law of an elastic collision
of two bodies. Suppose that two point masses m; and mg, having velocities
u; and uy, collide elastically. Then their velocities after collision will be
v = 2ug — Uy, Vg = 2ugy — ug, where up = (Tmyuy + maus)/(my + my2) is the
velocity of the center of masses. The transformation (uy,us) — (v1,v2) is
called a transformation of elastic collision.

Theorem 3.5 Assume that the profile U(z2) is like the profile in Theorem
3, and the profile V(z3) is equal to U(z;) outside the segment :L'gk_l) < Ty <
23D on the last segment, V(zz) = v®), if 28 < 2, < 2P, and V(z2) =
o®) i 2 < 2y < 2 where (v®), v*+1) is obtained from (u®), u*+1)
by the transformation of elastic collision, the lengths acgk) —:cgk_l), xgk“) —:z:gk)
playing the role of masses my, my. Let u(z1,z2),v(x1,z2) be parallel flows
with profiles U(zs), V(z2). Then for every € > 0 there exist T > 0 and a
force f(x,t), such that [T || f(-,t) ||z2< €, and the force f transfers the flow

u into flow v.

Assume now that U(z;) and V' (z,) are two velocity profiles, having equal
momenta and energies. Then it is not difficult to construct a sequence of
step functions Uy(x2), Us(x2), - - -, Un(x2), so that U, is L2-close to U, = U,
Uy is L?-close to V, and every profile Uy, is obtained from U;_; by one of
two operations, described in Theorems 3 and 4. Using these theorems and
the discussion above, we construct a piecewise-smooth force f(z,t) such that
JE | £ |lze dt < € and f transfers U into V during the time interval
[0, T].

Theorems 3.4 and 3.5 are proved by explicit construction of the flows.
They are true also for circular flows in a disk, with the angular momentum
taking the place of momentum in Theorem 3.5. But for generic 2-dimensional
domains the situation is not so clear. We don’t know whether there is an
integral of motion, similar to the angular momentum, in any domain different
from the disk. If such integral does not exist, which is most likely, then the
natural conjecture is that for any two flows with equal energies the conclusion
of Theorem 3.3 is true. But this behavior is paradoxical: just imagine a nearly
circular flow in a nearly circular domain (e.g. ellipse), which after some long
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time changes the sign of the angular velocity. This question requires more
study.

3.8 L2-instability and scattering for the Euler equa-
tions

The L?-instability may be regarded as another side of of the hypothetical
picture of an asymptotic behavior of generic flow as ¢ — oo, developed in
section 3.4. According to this hypothesis, the vorticity carried by the flow is
mixed more and more until its further mixing becomes impossible because
of the energy conservation. Thus the flow u(z,t) tends to some minimal flow
uy(z). This passage from an initial (arbitrary) flow uo(z) = u(z,0) to the
final state (minimal flow) u, (z) is analogous to the scattering of linear waves
on an obstacle (or potential); to make this analogy closer, we can continue
the flow back in the direction of negative ¢; as t — oo, the flow u(z,t) tends
to some minimal flow u_(z). Consider the passage from u_ to u,; this is
the exact analog of the scattering operator. The vorticity field for |t| very
big is a highly oscillating function in the flow domain, which approaches the
vorticity of the final flow only in a weak sense. Thus the velocity field u(z, t)
for ¢ < 0 and |t| very big may be arbitrary close in L? to u_(z). If we take
it as the initial condition for the Euler equation, we obtain an example of a
small in L? perturbation of a minimal flow u_(z), which grows considerably
on a large time interval.

The scattering property was proved by Caglioti and Maffei [CM1] for
1-dimensional Vlasov-Poisson equation, which has some features similar to
the 2-dimensional Euler equation but is much simpler. As for the Euler
equations themselves, they attempted in [CM2] to construct an asymptotic
decomposition of their hypothetical scattering solution as |t| — oo, having
the form of a collection of long and narrow vorticity filaments (this form
would be assumed by the vorticity field if it is transported as a passive scalar
by a smooth and steady field). However they managed to construct only
the first term of this asymptotics. The difficulty lies in the fact that the
interaction between the oscillating part of the vorticity field and the mean
field decreases very slowly (as |t|™!) when |t| — oo; the vorticity perturbation
remains “active” for all ¢, and in no way can be regarded as a passive scalar.
The opposite difficulty was pointed out by Isichenko in his paper [I]; in this
smooth picture the transverse motions of fluid parcels decay too rapidly (as
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|t|~5/?) when |t| = oo, and therefore the state of the minimal flow is out of
reach.

Our hypothesis is that the approach to the final state is not that smooth.
The flow picture at small scales is being transformed all the time, infinitely
many times.’ Thus, the asymptotic solution in the form assumed in [CM2]
simply does not exist. The true picture is much more violent (including
infinite series of refolding of vorticity filaments and appearance of new, sec-
ondary filaments, which complicates the picture even more). This problem
deserves extensive study.

4 Conclusion and further questions

In this paper we did not try to cover all the vast field of the fluid instability;
rather we have concentrated on some particular aspects of it. We tried to
show that there exist different kinds of instability. In fact the differences are
so big that they deserve to be regarded as different phenomena, and not as
different kinds of one phenomenon. The difference may be illustrated by the
following simple example. Consider a pendulum balanced upside down in the
top position. It is certainly unstable; almost any small disturbance will grow
in time. Consider, on other hand, a particle moving freely in Euclidean space
which is at rest in some point. This equilibrium is also unstable, because
every small impulse will result in steady motion, which after a long time will
move the particle far away. These two instabilities appear quite different.
Technically, the second one is associated with the Jordan cell structure of
the governing operator, while in the first case it is an unstable eigenvalue
that determines the instability.

In the context of fluid motion, we see the same two sorts of instability
but in a much stronger form. Most of the linear and nonlinear instabilities
considered in this work belong to the second class; they may be called “slow”
instabilities, as opposed to “fast” instabilities, associated with isolated un-
stable eigenvalues. The reason for the ubiquity of slow instabilities is the
fact that steady flows in 2 dimensions themselves have a Jordanian structure
at almost every point in the sense that the differential of the flow map (i.e.
diffeomorphism produced by the flow during some time) is a Jordan matrix.
This fact alone is enough to explain linear growth of perturbations in the
smooth norms. On the other hand, instability in the energy (L?) norm is as-
sociated directly with the simple picture of a freely moving particle described
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above. And finally, the nature of a hypothetical instability in a vorticity norm
beyond “Arnold” stability and spectral instability is quite unclear.

If there are unstable discrete eigenvalues in the spectrum of linearized
operator, then the flow is definitely unstable. This is “fast” instability with
exponential growth of disturbances. Less clear is the situation when the
unstable continuous spectrum of the evolution operator is nonempty (e.g.,
when the basic steady flow has a hyperbolic stagnation point). In this case
the spectrum fills an annulus, and for each point of the spectrum we can
construct a solution of the linearized equation which grows in time, but not
monotonically; rather it has “outbreaks” in some rare time moments, being
small most of the time. It is unclear whether we can construct a growing
solution to the full nonlinear Euler equations showing similar behavior. May
be we have here one more kind of instability, unaccounted for at present in
the traditional scheme of instability..

The case of an unstable eigenvalue embedded in the essential spectrum
is also unclear. Does a growing solution appear, or will the continuous spec-
trum “damp” it? What will happen if we change a little the basic steady
flow? Does the eigenvalue “dissolve” in the continuous spectrum? Is there
something analogous to the Fermi rule?

So we can be optimistic: there is a lot of work ahead of us.
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