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DEFORMATION OF OKAMOTO-PAINLEVE PAIRS AND PAINLEVE
EQUATIONS

MASA-HIKO SAITO, TARO TAKEBE & HITOMI TERAJIMA

ABSTRACT. In this paper, we introduce the notion of generalized rational Okamoto—Painlevé pair
(S,Y) by generalizing the notion of the spaces of initial conditions of Painlevé equations. After
classifying those pairs, we will establish an algebro-geometric approach to derive the Painlevé
differential equations from the deformation of Okamoto—Painlevé pairs by using the local coho-
mology groups. Moreover the reason why the Painlevé equations can be written in Hamiltonian
systems is clarified by means of the holomorphic symplectic structure on § — Y. Hamilton-

jan structures for Okamoto—Painlevé pairs of type E—,(: Pyr) and Da(= Pg?) are calculated
explicitly as examples of our theory.

0. INTRODUCTION

In the study of Painlevé equations, the spaces of initial conditions introduced by K. Okamoto
[01], [02], [O3] have been playing essential roles. It is known that each Painlevé differential equa-
tion is equivalent to one of Hamiltonian systems whose Hamiltonians are given by the polynomials
in two variables (z,y). (See Table 7 and 8 in §7). The space (z,y) € C? can be compactified
and one can obtain a pair (5,Y) of complex projective surface S and an anti-canonical divisor
Y €| — Kg| such that S — Y;.q becomes a space of initial conditions. In the study of the space
of initial conditions as in [Q1], [MMT], it became clear that after eliminating the singularities
of Painlevé differential equation by blowings-up, the boundary divisor ¥ should have the same
configuration as in the list of degenerate elliptic curves classified by Kodaira [Kod]. This condition
can be translated into the following conditions. Let Y = 3_._, m;Y; € | — Kg| be the irreducible
decomposition. Then Y is called of canonical type if and only if

deg(—.Ks)|y.. = dngly,. =Y- Yg =0 for all ¢

In [Sa-Tak], we call such a pair (S,Y) an Okamoto—Painlevé pair if S — Y;cq contains C?
as a Zariski open set and F = S — C? is a normal crossing divisor. One can verify that all
compactifications of the spaces of initial conditions of known Painlevé equations satisfy these
conditions (cf. [O1], [MMT]). Therefore, in this notation, the former studies of Painlevé equations
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establish the route in the direction:

IPainlevé equations| = IOkamoto—Painlevé pairs (S,Y) | (1)

The main purpose of this paper is to establish the route backward, that is, the route in the
following direction

lOka.moto—Pa,inlevé pairs (S,Y) | = [Pa.inlevé equations l (2)

Our main tool here is the deformation theory of pairs (S,Y’) (cf. [KS], [Kaw]) and local cohomol-
ogy exact sequence (cf. [B-W]). The deformation theory was established by Kodaira—Spencer in
[KS] in late 1950’s. Kawamata [Kaw] generalized the deformation theory to compactified complex
manifolds, or pairs of smooth compact complex manifolds and simple normal crossing subvarieties.
Applying the deformation theory, we can see that the space of infinitesimal deformations of the
Okamoto—Painlevé pair {3,Y) is isomorphic to the cohomology group H!(S, ©s(—log D)) where
D = Y,¢q. Looking at the restriction homomorphism

res : H(S, Os(—log D)) — H'(S - D,0s_p),

we see that the kernel of the restriction map res has the important meaning, that is, the direction
corresponding to the kernel of res is the infinitesimal deformation of (S, Y") which induces the trivial
deformation on S — D. Roughly speaking, one can say that the Painlevé differential equations
describe the deformations corresponding to the direction of the kernel of the restriction map.

To be precise, let us consider a family of Okamoto—Painlevé pairs D < & — Bgr with one-
dimensional base space Bgr with a coordinate ¢ such that the Kodaira—Spencer class p(‘%) lies
in the kernel of the restriction map res. Then by using the affine covering of § — P and Cech
cocycles, we can derive a system of ordinary differential equation. Note that this observation will
be applicable to the higher dimensional cases.

From these observation, we see that the kernel of res corresponds to the directions of time
variables in the Painlevé differential equation.

Furthermore, we can apply the local cohomology exact sequence to our settings and obtain the
exact sequence (cf. [B-W], [Gr])

H}(S,05(~log D)) -+ H(S,05(—log D)) = H'(S — D,Os_p).

Under the condition that (S,Y) is of non-fibered type, the map g is injective, and hence, the
local cohomology group H} (S, ©s(— log D)) coincides with the kernel of res. Therefore, non-zero
element of the local cohomology group Hp, (S, ©(—log D)) corresponds to a time variable of the
Painlevé equation. For a generalized rational Okamoto—Painlevé pair (S,Y) of additive type, if
Y,eq is normal crossing divisor, Terajima [T] proved that the dimension of the local cohomology
group is positive, hence, we can always obtain a differential equation.

In order to obtain an explicit differential equation for each type R from our setting, we need
to construct a global family of generalized rational Okamoto—Painlevé pairs of type R over a
parameter space Mpg x Br which is semiuniversal at each point. Moreover we need to introduce
a good affine open covering of the total space such that the rational two form wg restricted to
S — Y,eq has a canonical form. (See §5 and §6.)
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The organization of this paper is as follows. In §1, we define the notion of generalized Okamoto—
Painlevé pairs and recall the relation to generalized Halphen surfaces, which are studied by Sakai
[Sakai]. We also classify generalized rational Okamoto-Painlevé pairs (S,Y) such that Y,.4 are
normal crossing divisors. A generalized rational Okamoto—Painlevé pair (S,Y’) is called of fibered
type if there exists a structure of elliptic fibration f : $ — P! such that f*(co) = nY for some
n > 1. We show that (S,Y} is not of fibered type if and only if regular algebraic functions on
S—Y,cq are just constant functions. This fact is also important for later purpose. After recalling the
theory of deformation of pairs in §2, we investigate the cohomology groups for generalized rational
Qkamoto—Painlevé pairs. In §3, we will apply the theory of local cohomology to our situation, and
have the fundamental exact sequence (Proposition 3.1). Moreover, we state an important result,
Theorem 3.1, which is proved in [T]. After reviewing the Kodaira—Spencer theory in §4, in §5,
we will explain how one can construct the family of generalized rational Okamoto-Painlevé pairs
and their open coverings. In §6, we will state our main theorem (Theorem 6.1), which states that
from the special global deformation of generalized Okamoto-Painlevé pairs one can obtain the
differential equations. Moreover the reason for the equations to be in Hamiltonian systems will
be explained geometrically. In §8, we will derive the Painlevé equations from the deformations of
Okamoto—Painlevé pairs of type E7 and Dsg.

Prior to our work here, in [SU], M.-H. Saito and H. Umemura essentially pointed out that the
deformation of spaces of initial conditions describes Painlevé equation completely. In this sense,
this paper is a continuation of [SU], though we have clarified the meaning of time variables by
means of local cohomology groups in this paper.

The recent work due to Sakai [Sakai] introduce the following beautiful viewpoint: The geometry
of certain rational surfaces with the symmetries induced by Cremona transformations describe the
discrete Painlevé equations and the Painlevé equation can be obtained as a limit of the discrete
Painlevé equations. We owe much to his beautiful paper [Sakai]. In particular, some of the explicit
calculations are done by using his descriptions of the family of Okamoto—Painlevé pairs in [Sakai].

The works of Takano et al [MMT)], [ST] is also essential to our work. In §8, we use the coordinate
systems introduced by them.

The series of the work is started by [Sa-Tak], where we introduce the notion of Okamoto-Painlevé
pair and classify Okamoto-Painlevé pairs (S,Y).

One of missing points in our work here is the theory of Backlund transformation of Okamoto-
Painlevé pairs. In this direction, one should refer to a series of works of M. Noumi and Y. Yamada
(e.g. [NY]), also Sakai’s work [Sakai]. In [SU], the authors tried to understand the Bécklund
transformation by using the notion of “flip ” or “flop” in the theory of the minimal models of
higher dimensional varieties. We will investigate this point in future.

1. GENERALIZED OKAMOTO—-PAINLEVE PAIRS

Let S be a complex projective surface. We denote by Kg the canonical line bundle or the
canonical divisor class of S. Assume that the anti-canonical divisor class — K g is effective, that is,
there exists an effective divisor Y € | — K5|. Geometrically, this is equivalent to the existence of
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a rational 2-form wy on S whose corresponding divisor (wy) = —(wy)e = —Y. Such a divisor Y’
is called an anti-canonical divisor of S as usual. Since wy dose not vanish on S — Y, it induces a
holomorphic symplectic structure on S —Y.

In [Sa-Tak], we introduce a notion of Okamoto—Painlevé pair (S,Y) which is a pair of complex
projective surface S and an anti-canonical divisor Y satisfying certain conditions ([Definition 2.1
[Sa-Tak]]). Generalizing the notion, we will start this section with the following definition.

Definition 1.1. Let (S,Y) be a pair of a complex projective surface S and an anti-canonical
divisor Y € | — K| of S. Let Y = }"7_; m;Y; be the irreducible decomposition of Y. We call a
pair (S,Y) a generalized Okamoto—Painlevé Pairif for all ,1 < i < r,

Y -Y; =deg Yy, =0. (3)

According to [Sa-Tak}, we listed the additional conditions for Okamoto—Painlevé pairs besides

the condition (3) as follows.

1. Let us set D := Yyeq = Z:=1 Y;. Then S — D contains the complex affine plane C? as a
Zariski open set.

2. Set F = S — C? where C? is the same Zariski open set as in (1). Then F is a (reduced)
divisor with normal crossings. In particular, D = Y4 is also a reduced divisor with normal
crossings.

Under this definition, we proved the following classification of Okamoto—Painlevé pairs in

[Sa-Tak]. We remark that an Okamoto—Painlevé pair of type Dy did not appear in the classi-
fication of classical Painlevé equations [O1].

Theorem 1.1. ([Sa-Tak].) Let (S,Y) be a generalized Okamoto-Painlevé pair and assume that
S —V,.q contains C% and F = S — C? is a reduced divisor with normal crossings. (That is, (S5,Y)
is an Okamoto-Painlevé pair in original sense. ) Then we have the following assertions.

1. The surface S is a projective rational surface.

2. The configuration of Y counting with multiplicity is in the list of Kodaira’s classification of
singular fibers of elliptic surfaces (c¢f. [Kod]). More precisely, it coincides with one in the
following Table 1. (In Figure 1, each line denotes a smooth rational curve C with C? = —2
and the configuration of lines show how they intersect to each other. The number next to
each line denotes the multiplicity of each curve in Y = —Kg.)

Generalized Halphen surfaces

According to Sakai [§4, [Sakai]], we recall the following definition.

Definition 1.2. 1. Let S be a rational surface with an effective anti-canonical divisor ¥ €
| — Ks|. Let Y = Y, m;¥; be the irreducible decomposition. The divisor Y is called of
canonical type if

Ks-Y;=-Y -Y,=0 forall ¢
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Y Es | E; | Dy Ds Ee¢ | Ds | Dy

Kodaira’s notation || I1* | III* | I3 Vi wv* | Iy | I

Painlevé equation Pr | Prr PIDI} PIIIZPIDI‘} Py | Py | Pyg

TABLE 1.

2. A rational surface S is called a generalized Halphen surface if S has an effective anti-canonical
divisor Y of canonical type. A generalized Halphen surface S is called of index one if

dim|— Ks|=1.

Remark 1.1. By Riemann-Roch theorem, it is easy to see that for a generalized Halphen surface
S dim|— Kg| < 1.

The following Proposition ensures that one can obtain a generalized Halphen surfaces from
blowing-up of 9-points of P2.

Proposition 1.1. ( Proposition 2, §2, [Sakai] ). Let S be a generalized Halphen surface, then
there erists a birational morphism p: § — P2.

Let (5,Y) be a generalized Okamoto-Painlevé pair such that S is a rational surface. Then Sisa
generalized Halphen surface with a specified anti-canonical divisor Y. As a corollary of Proposition
1.1, we obtain the following corollary.

Corollary 1.1. Let (S,Y) be a generalized rational Okamoto—Painlevé pair. Then S can be ob-
tained as 9 points blowing-up of P2.

One can show that Y has a same configuration as one of Kodaira’s degenerate elliptic curves
for a generalized rational Okamoto—Painlevé pair (S,Y") (cf. Proof of Theorem 2.1 in [Sa-Tak]}.

If S is a generalized Halphen surface of index one, the morphism associated to the linear system
| — K| induces an elliptic fibration ¢ : § — P! with ¢*(c0) = Y. (Here ¢*(co) denotes the
scheme theoretic fibers at co € P!. ) This leads us the following

Definition 1.3. A generalized Okamoto-Painlevé pair (5,Y) is called “of fibered type” if there
exists an elliptic fibration ¢ : S — P! such that ¢*(00) = nY for some n > 1. If (S,Y) is not of
fibered type, we call (S,Y) “of non-fibered type ”.

Note that if (S,Y) is of fibered type and ¢ : S — P! is elliptic surface with ¢*(c0) = nY
with n > 1, ¢*(c0) is called a multiple fiber. This happens only when Y is of elliptic type or
multiplicative type in the notation below.
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= 0. In the case when

In [Sakai], Sakai classified generalized Halphen surface S with dim |- K5
dim | — Kg| = 0, the associated Okamoto-Painlevé pair (S,Y) with a unique member Y € | — K|
is of non-fibered type and they can be classified by means of the configuration of Y.

Let Y = Y7, m;Y; be the irreducible decomposition of Y. Denote by M(Y) the sublattice of
Pic(S) ~ H%*(S,Z) generated by the irreducible components {Y;};_;. Here the bilinear form on
Pic(S) is (—1) times the intersection form on Pic(S). Then {Y;}i_; forms a root basis of M(Y')
and we denote by R(Y) the type of the root system.

One can easily classify R(Y) as in Table 3. Note that according to the type of Y, R(Y) can
be classified into three classes: elliptic type when Y is a smooth elliptic curve, multiplicative type
when Y is a cycle of rational curves, additive type when the configuration of Y is tree. These types
also correspond to the type of generalized Jacobean Pic’(Y) of Y. If we denote by (Pic®(Y))? the
component of identity of Pic®(Y), we have the following correspondence (cf. Table 2).

R(Y) (Pic’ (v))°
elliptic type smooth elliptic curve Y
multiplicative type | G,, ~ C*
additive type G,~C
TABLE 2.

R(Y) (Kodaira type)

elliptic type Ao(= Ip)

multiplicative type /Io*(z L), Ai(= 1), , Az(= Is), As(= Is)

additive type A (= I, Ay (= 11D, &3 (= IV)
Dy(=I§), -+, Dg(= Ia)

Eg(= IV*), Ez(= IIT*), Es(= II*)

TABLE 3.

Proposition 1.2. Let (S,Y) be a generalized rational Okamoto—Painlevé pair such that Y;eq is 6
divisor with only normal crossings. Then besides the list of Okamoto—Painlevé pairs in Table 1,
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we have a pair (S,Y) of type Ds and also A, for 0 <r<8and ffo*. Here for Ay, Y is a smooth
elliptic curve (Kodaira Iy-type) and for }To*, Y is a rational curve with a node (Kodaira I -type).

We list up generalized rational Okamoto—Painlevé pairs with normal crossing divisor Yyeq in
Table 4.

Y Es |Ds| E7 | D7 | Ds| Be | Ds | Ds| Ay | Ao | Ao

2¢rco [ P=1|r=

Kodaira’s notation || JI* | Iy |III* | I3 | I3 | IV* | If | I} I, Iy I

r=4of comps. of Y || 9 9 8 8 | 7 7 6 | b T 1 1
TABLE 4.

Regular algebraic functions on S —Y.

Let (S,Y) be a generalized rational Okamoto-Painlevé pair. If (S,Y) is of fibered type, that
is, if there exists an elliptic fibration ¢ : S — P! with ¢(c0)* = nY, pulling back non-constant
regular algebraic functions on P! — {oo} ~ C, we have many non-constant regular functions on
S —Y. We can prove the converse of this fact.

Proposition 1.3. Let (S,Y) be a generalized rational Okamoto—Painlevé pair. The following con-
ditions are equivalent to each other.

1. (8,Y) is of non-fibered type.
2. H(S —Y,0%9) ~ C, that is, all reqular algebraic functions of S—Y are constant functions.

Proof. As we remarked as above, the implication (2) = (1) is obvious. Assume that there exists
a non-constant regular function f on S — Y. Then the morphism f : § —Y — C extends to a
morphism
Ff:5—PL
Set Y = F (00). Since f is regular on S — Y, recalling the irreducible decomposition of ¥ =
Si—1 miY;, we can write
r
Y = Z a;Y;
i=1
with a; > 0. First we show that a; > 0 for every 1 < ¢ < r. If a; = 0 for some ¢, the configuration of
.4 becomes a proper sub-graph of the configuration of Y;.q. Since the graph of Y,4 corresponds
to an affine Dynkin diagram, one can easily see that Y’ can be contracted to rational double points
{p1,---,ps} and obtain a normal surface S’ with normal singular points {p;,--- ,p,s}. Since S$—Y"’
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FIGURE 2.

and S’ — {p1,--+,p,} are isomorphic and f is regular on S — Y’ ~ & — {p1,---,ps}, [ extends
to a regular function on §’. Since S’ is proper, f must be constant and hence f is also constant.
This contradicts to the original assumption. Hence we see that a; > 0 forall 1 <i<r.

This implies that Y,,; = Yrcq and since Yy.q is connected, so is Y,/ ;. Taking the Stein fac-
torization if necessary, we may assume that all of the fiber of f : § — P?! is connected and
_f*(oo)red =Y, ;= Yreq. (Note that S is a rational surface, hence the irregularity of S is zero.) We
will show that general fiber of f is an elliptic curve. Since S is smooth and 7 has connected fibers,
we only have to show that the virtual genus of Y’ is one. Since —Ks =Y and Y’ =3;_, ;Y;, we
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see that

Ks-Y' =) ai(-Y) % =0
i=1
by definition of Okamoto—Painlevé pair. Moreover since Y’ is linear equivalent to a general fiber
of f, we see that Y'-Y; = 0 for all 1 < i < r. Hence we see that (Y’)? = 0. Then the virtual genus
of Y’ is given by
Ko Y/ Ve 2
_Ks Y+ (V) n
2
and this completes the proof of proposition. O

m(Y’) 1=1,

2. DEFORMATION OF GENERALIZED RATIONAL OKAMOTO-PAINLEVE PAIRS

In this section, we will recall necessary background of theory of infinitesimal deformation of
Okamoto—Painlevé pairs. First, we will recall the general theory of deformation of pairs.

General Theory of Deformation of Pairs

Let (X, H) be a pair of a complex manifold X and a (reduced) normal crossing divisor and let
H = 577_, H; be the irreducible decomposition of H. By a technical reason we will assume that
H is a simple normal crossing divisor, that is, each irreducible component H; is a smooth divisor.
We call such a pair (S, H) is a non-singular pair .

For such a non-singular pair (S, H), the normalization H of H is given by the disjoint union
]_I:zl H; of H’s, and we denote by v : H — H the normalization map.

First, we recall the general theory of deformation of a non-singular pair (X, H) due to Kawamata
[Kaw]. (See also [SSU)).

Let ©% (log H) denote the sheaf of germs of meromorphic one forms on X which have logarithmic
poles along H. Moreover, we set

Ox (—log H) := Hom(Q% (log H), Ox).
This is the sheaf of germs of regular vector fields which have logarithmic zero along H.

Definition 2.1. (Cf. [Definition 3, [Kaw]]) A deformation of a non-singular pair (X, H) is a
5-tuple (X, H,n, B, )

1. # : X — B is a proper smooth holomorphic map from a complex manifold X to a connected
complex manifold B

2. # =Y;_, H; is a simple normal crossing divisor of X

3. For a point 0 € B, we have an isomorphism ¢ : (7~1(0), #=1(0) NH) = (Xo, Ho) ~ (X, H).

4. 7 1s locally a projection of a product space as well as the restriction of it to A, that is, for
each p € X there exists an open neighborhood U of p and an isomorphism ¢ : U — V x W,
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where V = n(U) and W = n~1(n(p)), such that the following diagram

v L vxw
TN\ W P
‘f
is commutative and (U NH) =V x (WNH).
The deformation of a pair is often denoted by the following diagram:
X < H
L
B

For a deformation w : ¥ — B of complex manifold X = X, we can define the Kodaira—Spencer
class

p:To(B) — HY(X,0Ox).
Similarly, for a deformation of a pair (X, H) as above, we can define the Kodaira-Spencer map
p:To(B) — HY(X,0x(—log H)).
As for the existence of Kuranishi space of local semiuniversal deformation of a pair, we have the

following theorem due to Kawamata [Cor. 4, (Kaw]].

Theorem 2.1. For each pair (X, H) of a compact complex manifold X and a normal crossing
divisor H, there erist a germ of a compler variety (B, o) and the semiuniversal deformation of
(X, H)

X ~ H= Z:=1 H;

T, e
B

Moreover if
Hz(Xa @X(— IOgH)) = {0}7
the germ (B,0) is smooth and the Kodaira-Spencer map induces an isomorphism
To(B) = HY(X,O9x(~log H)).

The following Lemma is well known and easy to verify.

Lemma 2.1. Let (X, H = Y_:_, H;) be as above, and let v : H = [T;_, H; — H be the normal-
ization map. Then we have eract sequences of sheaves:

0 — Q& — QL (log H) 25 v, (9}, 0m,) — 0 (4)

0 — Ox(—log H) — Ox — vu(&®'_ Na,yx) — 0 (5)

Here the map P.R. : Q4 (log H) — vu(®}_,On,) is induced by the Poincaré residue and Ny, x =
Ox(H:)/Ox denotes the normal bundle of the divisor H; C X.
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Deformation of generalized rational Okamoto—Painlevé pairs

Let (S,Y) be a generalized rational Okamoto—Painlevé pair. Recall that ¥ = >"7_, m;Y; is
the anti-canonical divisor —Ks. Moreover we set D; = Yooy = z;=1 Y:. From now on, we will
calculate some cohomology groups of the pair (S, D) for Okamoto-Painlevé pair (S,Y) which we
will use later.

Let 4 : D < S be the natural inclusion and » : D = [J}_, ¥; = D the normalization map. Set
j =1-v. First, let us consider the following Gysin exact sequence

HY(S,C) — HY(S — D,C) — H(D,C) L+ H2(S,C) — -+ . (6)

The following lemma is important.

Lemma 2.2. Under the same notation as above, the Gysin map gives an injective homomorphism
H°(D,C) = H*(S,C).
Proof. Since
HD(D1 C)= $£=1H0(Yi1 C) =42, C - 1y,,
and the image of the Gysin map of 1y, is just the divisor class ¥; € H%(S,C) ~ Pic(S) % C, we

only have to show that the classes {Y:}!_, is lineally independent in H?(S,C). Looking at the
intersection matrix of {Y;}/_,, we easily see that only possible linear relation is

.
Y = ZmY =0.
=1

On the other hand, K5 = —Y and S has at least one (—1)-smooth rational curve £. By adjunction
formula, we see that Y - £ = —(Kj)- E = 1, hence we see that {Y;};_; is linearly independent. O
As a corollary to Lemma 2.2, we obtain:
Corollary 2.1. For a generalized rational Okamoto-Painlevé pair (S,Y), we have the following.
1. HY(S-D,C)=0.
2. H°(S,Q%(log D)) = 0.
3. H%*(S,05(—1log D)) = 0.
4. H*(S,05) =0.

Proof. Since S is a rational surface, we have H!(S,C) = 0. From the exact sequence (6) and
Lemma 2.2, we have the first assertion. Then from the mixed Hodge theory, we have an inclusion

H®(S,Q%(log D)) — H'(S — D, C).
This proves the second assertion. For the third assertion, let us consider the Serre duality
H*(S,05(=log D))V ~ H%(S,Q%(log D) ® Ks).
Since Kg = Og(—~Y), we have an inclusion

H%(S,Q%(log D) 6 Ks) — H°(S, QL (log D)) = {0},
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This shows the third assertion. From the exact sequence (5), we obtain the exact sequence
— H%(S,05(—log D)) — H*(S,05) — H*(D,Np,;s) — 0.

Since dim D = 1, H3(D, Np,;s) = 0, hence, from the third assertion we obtain the fourth assertion.

The following geometric facts are very important for our purpose. (cf. [Lemma 3, [AL]], [SU]).

Proposition 2.1. Let (S,Y) be a generalized rational Okamoto-Painlevé pair such that Y is a
divisor with normal crossing and (S,Y) is not of fibered type.
1. H(S - D,0%) ~ C
2. H°(S - D, G“SIED) ~ 0. Here GZI_D denotes the sheaf of germs of algebraic regular infinites-
tmal automorphisms.
3. H%(S,05(H)) =0 for any effective divisor H supported on D.
4. H°(S,05(—log D)(H)) = 0 for any effective divisor H supported on D.

Proof. The first assertion follows from Proposition 1.3. Since on S there exists a non-zero
rational 2-forms wg which is non-degenerate on S— D, wgs induces an isomorphism ©s_p =~ Q};_ D-
Hence it suffices to show that H°(S — D,Q%*8) = (0). Taking a section n € H%(S — D, Qy*3),
we see that dn/wg is a regular holomorphic function on S — D, hence constant ¢ (cf. Propositin
1.3). So this implies that dp = ¢ - ws. On the other hand, we can easily see that ws is non-zero
element in H2 (S — D, C), hence dn = 0. Hence it lies in H°(S — D,d0%9 ). Since we have an
isomorphism (cf. [3.1.7.1, [D]])

HY(S—-D,Cs_p) ~Hpg(S — D),
and H1(S — D,Cs_p) = (0) from Corollary 2.1, (1), we see that n can be written as df for some
f € H(S — D,0%9 ). However since f is constant (Proposition 1.3), we see that 5 = df = 0.
The last two assertions easily follow from the second assertion. O

The following proposition shows that the Kuranishi space of a generalized rational Okamoto—
Painlevé pair (S,Y) is smooth and has dimension 10 — » where r denotes the number of irreducible
components of Y.

Proposition 2.2. Let (S,Y) be a generalized rational Okamoto-Painlevé pair such that D = Yyeq
is a simple normal crossing divisor and Y # Ao-type. Then we have

¢2(S) = topological Euler characteristic = 12, (7
b2(S) = rank H?(S,Z) = 10, (8)
dim H'(S, ©5) = 10, 9)
and
dim H'(S,05(—log D)) =10 —r (10)

where r is the number of irreducible components of Y. Moreover, the Kuranisht space of the local
deformation of the pair (S, D) is smooth and of dimension 10 — r.
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Proof. First, from Noether’s formula, we obtain
1
x(S,05) = 2 (Ks)? +¢2(8)). (1D

From the definition of a generalized rational Okamoto-Painlevé pair (5,Y), we have K5 = —Y
and (Kg)? = Y? = 0. Since S is rational, we have x(S, @s) = 1. Hence, we have

62(5) =121

Since B1(S) = 0, the above equality implies that By(S) =12 — 2 = 10.
From Riemann-Roch-Hirzeburuch formula, we obtain

[N

(7 (Ks)? — 5ea(S5)).

cb]r—-

x(8,05) =Y (1)’ dim H*(S,05) =

=1
Then again from (Ks)? = 0 we obtain

2 ea(S) = —g x 12 = ~10,

x(5,05) = ~

Moreover from Corollary 2.1, (4) and Proposition 2.1 we obtain H*(S,05) = 0 for i = 0,2, and

hence
dim H'(S,0s) = 10. (12)
For H!(S,©5(—log D)), consider the exact sequence
0 — O5(—log D} — O5 — vu(Di=1 Ny,ys) — 0. (13)

Remember D = Y,.q = E;l Y;. Since Ks -Y; = 0 and Y; ~ P! by assumption, the adjunction
formula shows that

deg Ny‘./s = -2 or Ny‘./g ~ 01:1(—2).
Then since H°(P!, Op:(—2)) = 0, H(P!,0p:(—2)) ~ C and H?(S,Os(—log D)) = 0, we have
the following exact sequence

0 — HY(S,05(—log D)) — HY(S,05) — &7_,C[Yi] — 0 (14)

This implies that the assertion (10) holds. The last assertion follows from Theorem 2.1 and the
fact that H2(S,©s(—log D)) = 0.

!Note that this also follows from the fact that S is a 9-points blown-up of P2,
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Table of the deformation of generalized rational Okamoto—Painlevé pairs.

Y Es| Ds | Ev | Dy | Ds | Es | Ds | Dy | Ap_1, 7 >2
Number of components of Y || 9 9 8 8 7 7 6 5 r
dim H(S, ©5(~log D)) 1 1 2 2 3 3 |4 5 10—r
Painlevé equation Py PE? Prr Pg} PE‘} Prv | Pv | Pys none
TABLE 5.

3. LOCAL COHOMOLOGY SEQUENCES AND TIME VARIABLES

Let (S,Y) be a generalized rational Okamoto-Painlevé pair and set D = Y;.q. Moreover, in this
section, we assume that
1. (S,Y) is of non-fibered type and
2. Y;eq is a normal crossing divisor with at least two irreducible components, i.e. (r > 2) so
that all irreducible components of Y;.4 are smooth rational curves.

In what follows, @5 and Og_p denote the sheaves of germs of algebraic regular functions on S
and S — D respectively. Moreover all sheaves of Og-modules are considered in algebraic category
unless otherwise stated. Let us consider the following exact sequence of local cohomology groups
([Corollary 1.9, [Gr]])

H°(S,05(—log D)) — H°(S — D,0s5(—logD)) - Hp(Os(—logD)) — (15)
HY(S,05(—log D)) =% HY(S - D,0s(—logD)) . (16)

Since (S,Y) is of non-fibered type, from (2), Proposition 2.1, we see that
H°(S — D,05(—log D)) = H*(S — D,0s) = {0}.
Hence, we have the following

Proposition 3.1. For a generalized rational Okamoto—-Painlevé pair of non-fibered type, we have
the following exact sequence:

0> Hb(Os(-logD)) — HY(S,0s(-logD)) =Z HYS - D,0g(—logD))
(17)

The following theorem is proved in [T].
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Theorem 3.1. Let (S5,Y) be a generalized rational Okamoto-Painlevé pair (S,Y) with the condi-
tion above. Moreover D = Y, .4 15 of additive type. Then we have
dim H°(D,©s(—log D) & Np) = 1. (18)
Here we put Np = Og(D)/Os.
Since we have a natural inclusion
H°(D,0g5(—log D) © Np) — H}L(Os(—log D)),
we obtain
dim H}, (©5(~log D)) > 1. (19)
This theorem plays an important role to understand the Painlevé equation related to (S,Y).

We will not investigate the further structure of local cohomology here. Instead, we propose the

following

Conjecture 3.1. Under the same notation and assumption as in Theorem 3.1,
H}L(0@s(—log D)) ~ H*(D,0s(—log D) ® Np) ~ C. (20)

From the exact sequence (17), we see that the subspace H} (S, @g(—logY)) of H1(S,©5(—logY))
coincides with the kernel of pu. This implies that:

HY(S, 05(—log D)) = {

In §6, we will show that any direction corresponding to a non-zero element of the local coho-
mology group H} (S, ©5(—log D)) induces a differential equation (at least locally) by using Cech
coboundaries.

At this moment, we can not prove Conjecture 3.1 in the full generality. However, we see that the
one dimensional vector subspace H!(D, ©g(—log D)®Np) of H}(©s(—log D)) C H(Os(—log D))
really corresponds to the time variable ¢ in the known Painlevé equation. It is unlikely that we
will have more time variables, so this gives an evidence of Conjecture 3.1.

Let us explain the strategy of proving Theorem 3.1 in [T]. Recall that

Hp(S,05(—log D)) = lig Ext!(Op, ©5(—log D))

where Onp = O5/Os(—nD) (cf. [Theorem 2.8, [Gr]]).
On the other hand, since ©g(—log D) is a locally free Og-module, we see that

Infinitesimal deformations of (S, D) whose restriction
to S — D induces the trivial deformation '

Hom(Ornp,Os(—log D)) =0, (21)
and
£ztY(O,p,0s5(—log D)) = O5(—log D) @ Npp, (22)
where N,p = Og(nD)/Os. By an argument using a spectral sequence, we see that
Hp(S,0s(~log D)) = lim H®(85(~log D) & Nup) (23)

Hence, we have a natural inclusion

H°(©5(—log D) ® Np) = H}(S,05(—log D)). (24)
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Lemma 3.1. Let (S,Y) be a generalized rational Okamoto—Painlevé pair as above and set D =

Yreqa. Then we have the following exact sequences

0—©@p2Np —0Os® Np —)V*(GBf:lNy‘./s)O?JND — 0. (25)
0 — v (Pi—1 Ny,/5) — Os(—log D) @ Np — ©p @ Np —» 0. (26)
Here ©p denotes the tangent sheaf of D and v : D —s D the normalization map.

Proof. The first exact sequence (25) follows from [(1.9), [B-W]].
Let us consider the following diagram:

0 0 ker A
{ { {
0— 93(— logD) — @5(— logD) B} Os(D) — 65(—logD) s Np —0
{ { A
0— Os — ©s5 2 0s(D) — Os & Np —0
! { {
Ve (D=1 Ny,/s) £ (@ Nyys)@Np — coker A —0
{
0 0 0

By the snake lemma, we obtain the exact sequence
0 — ker A — 1, (@], Ny,/5) — vu(®7=1 Ny,75) @ Np — coker A —» 0.
From a local consideration, we see that the map p is the zero map, hence
ker A ~ v (@71 Ny./5), va(®7=1Ny;s5) @ Np = coker A.

Moreover since Im A ~ ker[@s @ Np — vi(®j_; Ny,/5) ® Np], from the exact sequence (25),
we obtain the exact sequence (26).

O.

From the exact sequence (26), one can obtain

H(@]_, Ny,/s) — H°(©5(—log D) @ Np) — H®(©p ® Np) -+ H (@], Ny./s).
27)

where § denotes the connected homomorphism.
Note that since Ny,;s = Oy,(—2), we have
HO(#7= Nyyys) = {0}, H'(®}=1Nyys) = C".
Moreover, one can easily see that
Op ~ v (@Oy;(—1i)) = v (®0v;(2 — t3))
where #; is the number of intersections of ¥; with the other ¥;s. On the other hand, since D -Y; =

t; — 2, we see that
HO(OD @ ND) i HO(@LlOYi)i

hence
H©p ® Np) ~C". (28)
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From this, the connecting homomorphism 4
§: H(©p 9 Np) — &1 H' (Ny,/s) (29)
can be identified with a linear map d : C" — C” and we have an isomorphism
H°(D,0s(—log D) & Np) ~ ker é. (30)
The following proposition is the main theorem of [T].

Proposition 3.2. Let (S5,Y) be as in Theorem 3.1. A matriz representation of the linear map
6 : H°(©p @ Np) — @j_H'(Ny,/5) in (29) is equal to the & of the intersection matriz of
D=5%_,Y;, that is,

6 = ((Y: - Yj))gij<r
Since the intersection matriz ((Y; -Y;))1<i j<r has ezactly one-dimensional kernel corresponding to

the space of Y =5 1 _; m;Y:, we have

H°(D,05(—log D) ® Np) ~kerd = C.

4, REVIEWS ON KODAIRA—-SPENCER THEORY

In this section, we review on Kodaira—Spencer theory of complex analytic deformation. A main
reference is [KS].
Let X be a compact complex manifold of dimension n. We can take a locally finite open covering

Y.

{Ui}:er of X such that each open subset U; admits local coordinates z; = (21, , z):
X = UserU;.
For a poirnt p € U; N U;, \.Ne have two local coordinates z;(p) and z;(p) whose coordinate transfor-
mation are given by
2 = (2,20, -, 2') = fij(z5),

or more precisely fora =1,---,n,
zf = fz‘;(zjl, s ZJ“) (31)

Here ff(z;) are holomorphic functions defined on U; NU;. Note that one can give the compatibility
conditions for U; NU; N Uy # 0

Filze) = F5(Flze), -, fi(ax)) (32)

Complex structure of X can be deformed by changing these coordinate transformations keeping
the compatibility conditions.

Let B be a complex manifold with a (global) coordinate system (t1,---,%,) and a specific
marked point 0 = (0,---,0) € B. We may think that B is an affine variety or a complex analytic
small open ball around the origin.
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Definition 4.1. A deformation of X with a parameter space B 3 ({1, -+ , ;) is a proper smooth

holomorphic map 7 : X — B such that the following diagram is commutative:
12

X & X9 =X

T }
B 5 0

Definition 4.2. A deformation 7 : ¥ — B of X Is sald to have a finite covering relative to B if
X is covered by {U; = U; x B} such that the following diagram is commutative:

X = UieI(Ui X B)
T \:
B = B

Let us assume that « : X — B has a finite covering relative to B and take the local coordinate

of U; = U; x Bby (2},---, 28 t1,-- - ,tm). The coordinate transformation for Ui N (jj is given by
:f‘g(z}v'“ 3 ]Jtl)"' tm)-

We may assume that for t = 0, we have f3(zf,---,2},0,---,0) = 2z, 2.

Now we can introduce the Kodaira—Spencer class of the deformation 7 : ¥ — B for each t € B.

For simplicity we assume that B is one dimensional, hence ¢ = ¢, is the global parameter of B.
Let h be a holomorphic function on an open subset V of X'. Then on U; NV, his a function in a
local coordinate h(z},-- - ,2?,t). Assume that I/; N U; NV # 0. Regarding as

h(z:'!t) = h(fi]:j(zj’t): T ’f?j(zj’t)J):

from the chain rule, we obtain

dr\ _ (8h < 0f3(z5,t) Oh
(3),-(5), 57 e o

This implies that, as a vector field on U;n [7]-, we have the following identity:

(8),= (), 2 e 59

a=1

Let us set {f;;(t)} by
= 0ffj(=5,t) @
bis(t) = — S (35)
a=1 ¢
From the compatibility conditions for U; N U; N Uy # 0
T2k, ) = f5(F(ar, 1), fi(ze, 1), ), (36)
we obtain the identity
Ok (£) = 0i5 (1) + 03 (1)
This implies that {6;;(t)} defines a Cech 1-cocycle with values in Ox,, hence defines a cohomology
class

8(t) € H'(X:,Ox,),
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which is called the Kodaira-Spencer class .
If the dimension of B is greater than one, we can define the cohomology class for each %. More
precisely one can define the Kodaira-Spencer map

p:T(B) — HY(X:,0x,) (37)
v o p(v) = 6,(8) (38)
by
k) o 6
by,ij = {0v,i5(t) = Z u(f5 (25, t))az_f’}'
a=1 g
Here for
7 Is}
v = Z Au(t)E,
p=1
we set

= 7 'ia' ':t
v(f5(z5,%) = Za%

p=1
Definition 4.3. A deformation 7 : X — B is called locally trivial, if for each point t € B there
exists an open neighborhood I of t such that Aj; — I is complex analytically isomorphic to the
product X¢ x 1.

Proposition 4.1. ([KS]) Let m : X —» B be a deformation of a compact complex manifold with
parameter space B 3 t = (t1,- - ,tm). If for every point t € B dim H'(X;, ©y,) is constant and
Kodaira—Spencer map p is the zero map, then = : X — B is a locally trivial fibration.

For a proof in detail, we refer the reader to [Theorem 5.1, [KS]]. Since we will use the idea of
the proof later, we explain an outline of the proof of theorem when dimB = 1. By replacing B
with a neighborhood of t € B, we may assume that a deformation 7 : X — B has a finite covering
{ﬁ; = U; x B} relative to B. Then the Kodaira—Spencer class

o) = 0(t) € H' (%, 0.
is represented by Cech cocycles {6;;(t)} given in (35). Since 8(t) is cohomologus to zero, for each
t we can find
6:(t) € T(U; N X;, Op,).
such that
0:;(t) = 0;(t) —6:(t) on TinT; N
From (34), we obtain the following identities of vector fields on each U; N U; N X,

(g) - (g) + (65(0) - 6:(1), (39)

() -0 (8) -0

and hence
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At this moment, it is not obvious that the dependence of
= 7}
(1) = (e _
6;(t) = aE=1 k (z,,t)az? (41)

with respect to ¢ is in C*® class. However under the condition that dim H(X;,©%,) is constant
on B, one can prove that #;(¢) can be chosen as a vector field on U; = U; x B in C* class.
This implies that the vector field

(3) ~20hes (42)

on U; can be glued together and defines a global C*°—vector field, say, © on the total space X. We
see that ¥ is a lift of vector field % by #. Then on each open set U;, we can consider the ordinary
differential equation
a
%:—Bf(zi,t) a=1,---,n. (43)

And these set of differential equations can be patched together on whole X'. Starting from an initial
conditions {ay, - ,an,ts) € At,, the solution (z1(a;,t),- -, zn(a;,t)) of differential equation (43)
defines a C®—curve which is transversal to each fiber X;. Then the whole solutions of (43) define
a foliation on X and define C®-defeomorphisms ¢; : Xy = X,. Moreover, one can show that this
defeomorphism ¢; is a complex biholomorphic morphism for each ¢ € B.

This implies the following. If we have a family of compact complex manifolds 7 : & — B with
a parameter ¢ € B such that the Kodaira-Spencer map p; is zero, we will obtain a differential
equation as in (43) defined on the total space A'.

Summarizing these, we have the following implications (cf. Figure 3).

Deformation n : X — B of complex manifolds
with zero Kodaira—Spencer map

U

There exists a vector field ¥ on X which is a lift of %.

U

| Differential Equation on m : X — B given by l

i

m)cal trivializations of the deformation ¥ — B ]

FiGURE 3.
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5. GLOBAL DEFORMATIONS OF OKAMOTO—PAINLEVE PAIRS

Affine coverings and Symplectic Structures on S — D

Let (S,Y) be a generalized rational Okamoto—Painlevé pair. Then by definition, S has a rational
2-form wy whose pole divisor is Y. Setting D = Y4, the rational 2-form wy induces a non-
degenerate holomorphic 2-forms on the open surface S— D, hence induces a holomorphic symplectic
structure on 5 — D.

In [O1], Okamoto introduced the space of initial conditions of Painlevé equation of each type,
which can be written as 5 — D for an Okamoto-Painlevé pair (5,Y). The main reason why Painlevé
equations can be written as Hamiltonian systems is this holomorphic symplectic structure. For
Painlevé equations Py, (J = II,111,1V,V,V 1), Takano et al. [ST], [MMT] constructed a good
family of Okamoto—Painlevé pairs (Sq,:, Yo,:) depending on the time variable and a system of
auxiliary parameters a = (a1, - -, @;) appeared in each Painlevé equation.

Summarizing results in [ST], [MMT], let us explain the situation of spaces of initial conditions
of classical Painlevé equations in the way of our setting. Let R = R(Y) be a type of the root
systems corresponding to a Painlevé equation. Then there exist an affine open subset Mg of
C? = Spec C[a] = Spec Cle, - - - , 5], an affine open subset Bg of C = Spec C[t] and the following

deformation of non-singular pair

S « D
Tl < P (44)
MRXBR

where § — Mp x Bgr is a smooth family of rational surface and P < § is a normal crossing
divisor. In order to relate this diagram to Okamoto—Painlevé pair, let Qi. /M xBr (*D) denote the
sheaf of germs of relative rational two forms on & which have poles only along D. There exists a
section
ws € F(S:Q?G/MRXBR(*D))

which induces a rational 2-form ws, , for each fiber S, ;. The pole divisor ws is denoted by J,
and with suitable choice of ws we may assume that each fiber (Sa ¢, YV t) is an Okamoto—Painlevé
pair of type R = R(Y) and Y,.q = P. (Note that on & — D the relative rational 2-form wg
is holomorphic and non-degenerate on each fiber 8ot — Do ). Assuming that the family (44)
is effectively parameterized and semiuniversal at each point of Mg x Bg, or equivalently the
Kodaira—Spencer map

p: Tapt(Mr x Br) — H'(Sayt, Os,,,(—10g Day)) (45)
is an isomorphism at each point, we have the equality

dim Mg = dim H(Sa.t, Os,. ,(—log Da,e)) — 1. (46)

(Note that the Okamoto—Painlevé pairs of type Dg, D7 did not appear in the classical literatures
(cf. [01], [02], [MMT]).)
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The dimensions of Mp for generalized
rational Okamoto—Painlevé pairs.

R = R(Y) Es D~8 E~'7 D~7 DNG Es D~5 D~4

Painlevé equation Py | PBs | Py | PRy | PEs | Prv | Py | Pyr

s = s(R) = dimMp ol o | 1] 1] 2| 2]|3]4
(= § of auxiliary parameters.)

TABLE 6.

More notably, Takano et al. [ST], [MMT] constructed an affine open covering {U; }:¥™ of S for
the classical Okamoto~Painlevé pair of Painlevé equation Py (J = II,---,VI), which is relative
to 7 and so that

ﬁ,‘ =M R X BR X U,'

where U; = Spec C[z;, ;] ~ C2. Moreover, we may assume that {U:}}_, covers & — D and for
1< <1, we have

weig, = dz; A dy; (47)
In this sense, the restricted morphism
T:8$—-D—M R X BR

is a deformation of open symplectic surfaces.
By using the results in Appendix B of [Sakai], we can generalize the result of Takano, et al. as
follows.

Proposition 5.1. Let R = R(Y) be one of types of the root systems appeared in Proposition 1.2
which is additive type, so that
dim H} (©s(—1log D)) > 1

for corresponding generalized rational Okamoto-Painlevé pair (S,Y) (cf. Theorem 3.1). (That is,
R+£ fi,_i). Moreover denote by r the number of irreducible components of D = Yyeq.

Let Mg be an affine open subscheme in C* = Spec Clay, - - - , &) of dimension s = s(R) =9—r
and Br be an affine open subscheme of C = Spec C[t]. Then there exists the following commutative
diagram satisfying the conditions below.

S

(_)
Tl vd
MRXBR

D
@ (48)
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1. The above diagram is a deformation of non-singular pair of projective surfaces and normal
crossing divisors in the sense of Definition 2.1
2. There exists a rational relative 2-form

ws € T'(S, Q‘ZS/MRXBR(*D))

which has poles only along D.

3. If we denote by Y the pole divisor of ws, then for each point (c,t) € Mg x Br, (Sa,t, Va,t)
is a generalized Okamoto—Painlevé pair of type R = R(Y) and Yyeq = D.

4. The family is semiuniversal at each point (a,t) € Mg x Bg, that is, the Kodaira—Spencer
map

p:Ta(Mp x Br) — Hl(Salt, Os, ,(—logDa,)) (49)

ts an tsomorphism. For a Zariski open subset of Mg x Br on which the corresponding
Okamoto-Painlevé pairs are of non-fibered type, one can choose the coordinate t such that
(cf. Proposition 3.1)

15,
i) € Hp,, (Sat: 05, (—10gDa ) = H (Sayt, Os, . (—log D)) (50)

5. Let Mgr and Br denote the affine coordinate rings of Mg and Br respectively so that Mg =
Spec Mg and Br = Spec Bg. (Note that Mg and Bp is obtained by some localization’s of
Cley, -, ] and C[t] respectively. ) There exists a finite affine covering {U;}\1* of 8
relative to Mg x Bgr such that there exists an isomorphism for each i

] € Spec Clev, t, z;, 4] ~ C**3 ~ 127

T~ spec(MRcyBR)[mhyhm (51)
i\ Iy &5 1

Here f;(x;,y;, o, t) is a polynomial in (Mp¢ Br)[2;, yi). Moreover we may assume that S—D
can be covered by {ﬁi}iﬂ. Moreover for each i the restriction of the rational two form ws
can be written as

dz; Ady;
Wefp, = = 52
0= Filar, v o, O Y
6. For each pair i,j such that U; N (~Tj # 0, the coordinate transformation functions
zi = fij(zj, 95, 001), ¥ = 9ij(2;, 95, 1) (53)

are rational functions in Clz;,y;, a,t].

Here we will give a sketch of the proof of Proposition 5.1. (See [Sa-Te] for explicit constructions.)
For a generalized rational Okamoto—Painlevé pair (S, Y'), we see that S can be obtained as a blowing
up of P2 at (possibly infinitely near ) 9-points which lie on anti-canonical divisors. Then one can
parameterize these 9-points in a suitable way, and this leads to a special time parameter ¢ and other
parameter a,-- -, a;, hence we obtain affine schemes Mg and Br, Moreover we can construct a
semiuniversal family 7 : § — Mg x Bg of rational surfaces by blowings—up of P2 x Mg x Bg.
Moreover by these explicit constructions, we can obtain the affine coverings of the total space S
as above,
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Remark 5.1. We can construct a similar family of generalized Okamoto-Painlevé pairs of type
Ay_1, 2 < r <9 (multiplicative type). However as proved in [T], we see that

H(S,05(—1logY)) = {0}.

This result implies that we can not obtain a differential equation from the generalized Okamoto—
Painlevé pair of type A, as in the way above.

6. FrROM GLOBAL DEFORMATIONS TO HAMILTONIAN SYSTEMS

In this section, we will explain how one can derive Hamiltonian systems from global deformation
of generalized rational Okamoto-Painlevé pairs of additive type. Strictly speaking, we can obtain
differential equations from certain special deformations of generalized rational Okamoto—Painlevé
pairs of additive types, but these equations are not always Hamiltonian systems in the global
algebraic coordinate systems given in Proposition 5.1. In this section, we will clarify this point by
means of symplectic structure on the open surfaces. For classical Okamoto-Painlevé pairs, it is
known that these Hamiltonian systems are equivalent to the original Painlevé equations.

Let R = R(Y) be one of types of additive affine root systems appeared in Proposition 1.2 and
let

S « D
T % (54)
MRXBR

be a global deformation of generalized Okamoto—Painlevé pairs of type R as in Proposition 5.1.
The total space S has a finite affine covering {U;}:¥* such that

U; ~ Spec(Mg © Bgr)[zi, v, ] C Spec Clax, t, 24, i} (55)

filzi, yi, o, 7)
as in (51). Moreover, we may assume that S — D can be covered by {U;}._,, that is,
S—-D=U_U.
Let us recall that the coordinate transformations in (53) for U; N{7; # @ are given by the rational
functions
& = fij(z5, 95, 1), ¥ = gij(z;,¥5, 1) (56)
The Kodaira—Spencer class p(%) can be represented by the Cech 1-cocycles

Oy g 0% 0 000
Plg) =10 =3 5% 3¢ a5 €

From (50) of Proposition 5.1, we may assume that p( %) is non-zero element of the local cohomology
group

L(U: NTj, 08/ mpx8r(—logD)) } (57)

H%alg (Sa,tl esu,! (_ lOg Da,t))- (58)

Since the local cohomology group is the kernel of the natural restriction map (cf. Proposition 3.1)

res : H'(Sa,t,9s.,. ,(—logPayt)) — H'(Sayt — Payt, Os.. (—log Day)), (59)
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the Kodaira-Spencer class p(Z) is cohomologus to zero in H(Sa,; — Pa,t, Os, ,(— 108 Da,t))-
Since dimensions of these cohomology groups are constant as a function of (a, t), by an argument
using the base change theorem, we see that for 1 < 7 <! there exist regular vector fields

0 .0 ~
0i i Yi, :t = i\Li, Yi, 1t A i(Zi, Y, 0,8) — I‘Ui;(-)--
(zi, v, o, 1) = nil@s, i, o v R )6%_ € I'(Ui,0p,) (60)
such that
g'ij(xix Yi, a:t) = gj(xja yjaant) - ei(xi;yi)aat)' (61)

Since we are working in the algebraic category, we can choose 7;(z;, i, o, t) and (s, y:, o, ) as
rational functions in the variables o, t, z;, ;.
As in (34) of §4, we have the identity for i,

(), (3),ase

and hence just for 1 <, j <!, we have

(%),- - (%),- + (05 (2j, yj> o, 1) — Os{ai, wi, o, 1)), (63)

or

d d
(E) . —Hj(a:j,yj,a,t) = (E).—Gi(mi,y,-,a,t). (64)
J K
This means that the vector fields
ot
can be patched together and defines a global vector field
v E P(S — D,@s_'p)

{<6)i —Oi (@i, v, o, ) hicie (65)

Note that this global vector field 7 is a lift of 5‘9; viamw:8 —D — Mg x Bg.
From the above argument, we have the following

Theorem 6.1. Let R= R(Y), 8§,D, MrxBgr 3 (a,t) be as above. Then we obtain the differential
equation defined on & — D whose restriction to each affine chart U;, 1 < i<, is given as
dx;
d—'; = “ﬂi(-’b'i,yi:a;t)
J (66)
% = —Gi(zi,yi0,1)

where the functions appeared in the right hand sides are rational functions in the variables z;, y;, o, t.

Remark 6.1. 1. The argument above shows that there exists a differential equation as above
at least locally for any direction corresponding to the kernel of the restriction map

res : H}(S,©5(~log D)) — H(S — D,05(—log D)).
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2. Let us recall the so-called Painlevé property which is states as follows. If (z(t), y(t)) is a local
solution of (66) determined by an arbitrary initial conditions (zo = z(to), yo = y(to)) € Us
with fized ty € Br then both solutions z(t) and y(t) can be meromorphically continued along
any curve in Br with a starting point {y. For non-classical Okamoto—Painlevé pair, it is not
clear that the differential equation in (66) has the Painlevé property. In general, the proof
of Painlevé property for classical Painlevé equation is not so easy. We hope that there is an
easy geometric proof of the Painlevé property for differential equation in (66).

It is well-known that each classical Painlevé differential equation Py, J = [,II,--- VI is
equivalent to a Hamiltonian system (H;) whose Hamiltonian Hj(z,y, ,t) is a polynomial in
(z,y) € C? (cf. [O1], [MMT]).

d_:c _ 0H,;
a 0
Hj): y 67
(H1) @ el (67)
dt Bz

In what follows, we shall show how this Hamiltonian systems arise from our differential equations
in (66) obtained from the deformation of generalized rational Okamoto-Painlvé pairs.
Let us recall the general situation. Recall that & — D is covered by {{;}}_, and

U; = Spec(Mr 9 Br)[zi, vi, ] C Mg x Br x C?,

filzi, vi a,t)
and the restriction of the relative two form ws to U; can be written as
weg, = de; A dy;
P filza v o)™

Let 6;(z;, i, o, t) be the vector fields defined in (60). The contraction of f; and wg ;. is given by

(68)

1
b; - wgg, = }'{‘rx‘?(ﬂidyé — Gidz;).

Consider the following regular two form on U; for each 1 < i <

Q; = Ws|o; (0,’ "“’SII?;) Adt.

Lemma 6.1. On U; N U; # 0, we have
Qi =Q; eT(U:NTj,9%_pjamz)-
Hence, we have a regular two form @ € I'(S — D, Q?S_D/MR) such that
Qg, =%
Proof. Since 7 : § — D — Mg x Bg is smooth, we have the following exact sequence

*y1 1 1
0 — 7 Qpysrimr — s—pfmr — Ls_p/Mmaxs, — 0
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Moreover since the relative dimension of 7 : §—D — Mg x Bg is two, we have the exact sequence

1 +ol 2 2
0— Qs_p/maxBr 2T QptpxBr/mr — Ys_pjmp — Ls—pjmpxse — 0
Note that the global section wg lies in the space
ws c F(S - D, Qﬁ'—'D/MnXBR)
Hence by a local calculation if we restrict ws to each (7,-, then on U; N (7]- # 0 we have the relation
Wsig; = WsE; — aij Wi Adt
where 0;; is Kodaira-Spencer class representing p(%). Then, by using the relation (61), we see
that
wslt‘j-._ - 91' 'LdslU"-‘_ Adt = wslgj e 0,7 - wslﬁj Adt. (69)
This completes the proof. O
Let
ds-p/mMe Qe _pjmr — Bopjmp

be the relative exterior derivative. Since the deformation § — D —» Bgr preserves the regular two

form wg_ ,, by an standard argument we have the following

ce,t?

Proposition 6.1.
ds-p/ma(2) =0

Looking at the isomorphism

Q% p/mn = UB_pipmaxse @ T (UdnaxBr/Mnr);
let us write
ds_p/mgp(Q) = ns_p Adt
where
Ns-p € T(S — D, Q% _p/pmpxsn)-
(Note that ns_p may not be a global regular 2-form in Qs_p/az. ) Then we have
dz; A dy;

dS—'D/MH(QIﬁ.’) = ds—’D/Mn(m — (0,' . us) A d‘t)
3 1
= (E (m) dz; Ady; — d(6; -ws)) Adt

where we set dr = ds_DjMpxBr-
Therefore, Proposition 6.1 implies the following important

Corollary 6.1. For each i, 1 < ¢ <, we have the fundamental equation

0 1
E (f‘i(xi: Yi, a7t)mi) dmi A dyz B dﬂ(gi ' LUS) =0 (70)

Now we obtain the following fundamental results.
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Proposition 6.2. Fori, 1 <i <! such that
U; = Mg x Br % Spec C[z;, 4] ~ Mg x Br x C2, weyg, = de: A dyi, (71)

we have
dr (9,' cdz; A dyi) =d, (nidyi — C,'d:l:,') =0.
Since HY(C?) =0, we have a regular function Hi(z;,y;, o, t) € (Mg & Br)[z;, yi] such that

JH; OH;
dH; = 'adei + a—y_dyi = —(0; - dz; A dy;) = —midy; + Gidz;.

From this, we have
OH; 0H;

= B_y,-’_Ci = " r
Therefore, the differential equation (66) can be written in the Hamiltonian system

dei _ OH;

da Oy (72)
dvi _ _OH;

da Ox;

Remark 6.2. 1. If fi(%:,9i, a,t) in (68) is independent of ¢, from the fundamental equation
(70),we obtain

dz; A dy;

' filz, g, o)™

Therefore, we may have a chance to have a regular function H:(z;,y:, o, t) on U; such that
dz; A\ dy;

fi(zs, i, )™
In this case, the differential equation in (66) can be written in

7

dw(gi ) =0.

d.H; = —0;

dIL‘i . BH,'
o= g

£ dt 6yi (73)
o (gyme O

. 4t ! Oz; '

or equivalently,

(1 dm _ BH

Z (fi)mi dt 3%‘ (74)
_ 1 dy _ _OH;

L (f,')m" da Ox;

2. In general, we can not transform the differential equation in (66) into a Hamiltonian system
in the global affine coordinates.

3. Takano, et al. show that for any Okamoto—Painlevé pair (S,Y) of type 134(: Py I),f)5(=
Pv),]js(z PIU),ES(z PIV),E'7(: Pry) , the open surface S — Yy¢q is covered by a finite
number of affine spaces I’; = C? and regular 2-form wg|g, can be written as in dz;Ady;. Hence
from Proposition 6.2 we obtain the Hamiltonian systems for those Okamoto—Painlevé pairs
on any affine chart U; of §— D as proved in [O1], [MMT]. Note that for an Okamoto—Painlevé
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pair (S,Y) of type Dg, S — Y;¢q does not contain C2 (cf. Theorem 1.1 and Proposition 1.2).
For explicit descriptions of E; and Dg, see §8.

We summarize our results in this section as follows (cf. Figure 4).

Deformation D <+ § — Mg x Br 3 (a, t) of Okamoto-Painlevé pairs such that
for any (a,t) € Br the Kodaira-Spencer class p(£) lies in the Kernel of the
restriction map res : H!(Sqa t, Os.,. ,(—10g Da,t)) — HY(Sa,t —~ Dayt, Os. . (—10g Dayt))

U

There exists a global holomorphic vector field ¥ on & — D which is a lift of a%

U

| Differential Equations on 7 : § — D — Mpg x B defined by 9 l

Y | Painlevé property |

[Loca.l trivializations of the deformation § — D — Br l

Ficure 4.
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7. PAINLEVE EQUATIONS

Let us recall the classical Painlevé differential equations and Hamiltonian systems which are
equivalent to the Painlevé equations ([IKSY], [T], [O1]).
Painlevé equations Py (J = I,II,---,VI) are given in Table 7:

Pr: f;T;: = 6z?+t¢,

Prr: Z—i; = 23 4itr+a,

Pir: % = %(Z—f)z—%z—j+%(arz+ﬁ)+‘)’m3+%,
Prv : iddi_: = -21_:0 (Z—:)Z + gza + 4tz? +2(t% — o)z + g,

Py;: — =

p,. Pz o_ (1 1 d_m21d_m+
Ve @z T \2z z—1) \dt t dt
1
2

LR SR S N £ R £ O
z z—1 x-—t dt i

(:L‘_—l)_i(az_'_g) +7£+5M,
x xr
1

12 1
dz
t b

TABLE 7.

Here z and ¢ are complex variables, o, 3,v and § are complex constants. It is known that each
Pj is equivalent to a Hamiltonian system (cf. [O1], [IKSY], [MMT]):

dz
dt
dy
dt
where the Hamiltonians Hy are given in Table 8.

(Hy) :

0Hj
8y’
8Hy

~ 5

(75)

Moreover the relations between the constants in the equations Py and the Hamiltonians H; are

given in Table 9.

For the meaning of the constants in Table 9, see [IKSY], [02]. Note that these constants are
not effective parameters. In some cases, we can normalize these constants further by coordinate

transformations. Moreover, the equivalence of P; and (H ;) means that if we eliminate the variable

y in (Hj) then we obtain (Py).
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1o

H](Il:,y,t) = §y —2:1:3—t:(:,
1, 9 2 1
Hu(e,yt) = 5y - (w +2)y— (a+2)m
1
Hipr(z,y,t) = n [2mzy2 - {2noota:2 + (260 + 1)z — 2170t} Y+ Moo (K0 + Koo ) t:c],
Hiv(z,y,t) = 2zy* — {2® 4+ 2tz + 2k} y + 5oz,
1
Hy(z,y,t) = ;[ (z - 1)%? — {ko(z — 1)? + krz(z — 1) ~ gtz } y + k(z — 1)],
1
-
Hurle,w) = g le(e=Die— 08" = {sole = Dz =)
+r1z(z — ) + (ke — De(z — 1)}y + &z — 2)]
1
(n = 1 {(IC0+I121 + K — 1)2 —K:czx_}).
TABLE 8.
o I5) ] ) number of aux. parameters
P none none none none 0
Pir o none none none 1
Prrr —4N o Koo 4neo (o + 1) 4nZ, ~4n) 2
Prv || —ko + 2600 + 1 —2K32 none none 2
Py 355 36 | —n(l+ k) | —3n/2 3
Py 1K 363 362 $K2 4
TABLE 9.

Remark 7.1. For the Painlevé equation of type Prrr, we have the following remark by Sakai in

[Sakai]. The Painlevé equation of type Pry; as in Table 7 can be transformed into

d?x 1 (d=z ldz z? B é
w-z(a) ta Tt gt (76)
If 70 # 0, then we can normalize v = —§ = 4 without loss of generality. In this case we obtain the

Painlevé equation of type Pﬁ‘}:
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5, 2z 1 [de\" 1ldz z2
-

g 1
-z \dt Ta Tttt g

If one of v and J equals to zero (not both), then we have PE}.
d*z 1 (dz\® ldz 42 1+2a
dt2  r \ dt '

D7 .
P

Moreover when v = d = 0, we have PIL}—‘}:
p,. d’x_1/[de Z_Ed_x_azz 4
I gz ™ g \ dt

33

(79)

These differential equations correspond to generalized rational Okamoto-Pailevé pairs of type

ﬁs, D7, Dg respectively.
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8. EXAMPLES

In this section, we will apply our methods for deriving the differential equation in (66) from
the explicit deformations of Okamoto—Painlevé pairs. We shall give a full detail of the cases of
E7(= Pry) and Dg(= PP3). For other cases, see [Sa-Te].

Example 8.1. E;—type: In this case, we will use the Takano’s description of the family of
Okaomoto-Painlevé pairs of type E7 (cf. [Theorem 4, [MMT]]). We will not consider all of
the family § — Mg x Bg, but consider the family § — D — Mg x Br which is constructed as
follows (cf. [SU}). Let us set
Mp = SpecCla] ~ C, Bgr =SpecCft]~C

and take three affine schemes i = 1,2, 3

U; = Spec Cla, t, z:, 3] ~ C*. (80)
The family § — D — Mg x Br can be constructed by patching these affine schemes by the
coordinate transformations given as follows (cf. [MMT]):

1 1
(L‘G — = —
1 T2
o =zi((—a=3%)—zi1m) = 2252+t 4 (@ — Has — y-a3
1
:1:1 :.’,[,‘2 = —
To
_ 2 t 2a+ = (=5 1) Z0%0)
h = lmg m% 2 Y2 =0 2 oYo
T2 = — =
“0 1 2 4 2
5.4 2 2 _
Y2 —2-'Eo+iwo+(a—-2-)£o—$oyo —E+w—%+z+y1

The Kodaira-Spencer class p(Z)s,-p, is given by the Cech l-cocycle
0
-2

3}
0op =0, Og2= e 012 = —z] 7 (81)
Setting
t] @ 1] 8
by =
0 [ Yo+ + ]50 [2x0y0+a+ ]Byo (82)
1
6 = 3 [—-2 — t:(:% - .’.'::13 — 2a:l::13 - 2:8‘11111] (9_w1 (83)
1 )
+Z[(1+2a+4x1y1)(t+m1(1+2£x+2$1y1))]£ (84)
1
1 a
8, = 5(2 + t:cg + (20 — 1)$g - 2x§y2)—6?2
1 0
—|——( 1+20:—4:L'2y2 t+$2( 1+2a—2$2y.°))—, (85)
4 Oy2

we have the relations

Bo1 =01 — 0o, BGoo=0s—08g, 012=02—0,
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that is,
bp =01, 02 =002+ 0p.
Since on each U;, the relative 2-forms ws_p is given by
wS—’D|L—f,- =dz; A dy,',

by Proposition 6.2 the 1-forms §; dz;Ady; is exact form, hence there exists a polynomial H;(z:, y;, o, t)
satisfying
—Oidz; ANdy; = dp H;.

The polynomials H; are called the Hamiltonians and given by

1 i 1
Ho(xo,y0,2,t) = 593 = (1’3 + 5) Yo — (Of + 5) Zo, (86)
tzy  otzy  2?  ax?  o? 1
Hy(z1,y1,0,1) = T‘+ 21+§1+Tl+ 21+y1+§tz%y1 (87)
3 wdy?
+_12y1 + ax‘;’yl + 12y1 ;
1 2,2 3 4 32
Hz(mg, Y2, a,t) = g [(1 — 2a) Ty — 8y2 —_ 4(—1 + 201)1'2?/2 -+ 4m2y2 (88)
—2tzqo(1 — 20 + 222y2))]. (89)
Hence the Hamiltonian system defined on g is given by
dzo _ OHo _ .2 1
@9. — g_f_fg =92 + a4+ 1
dt B8zo Todor @y
Eliminating yo in (90), we obtain
d?x
Tzo =223 4+ 2ot + 0, (91)

which 1s the Painlevé equation Py in Table 7.

Example 8.2. Dg—type: The Okamoto-Painlevé pair (S,Y) of type Dg did not appear in the
former literatures [IKSY], [O1] explicitly. Since S — Y;.4 does not contain C? as a Zariski open set
( cf. Theorem 1.1), the situation is a little bit different from the classical cases.

We can construct a family of generalized rational Okamoto—Painlevé pair of type Dg  :
8 — D — Bg by blowings-ups as in Sakai [Sakai]. For detail, see [Sa-Te]. Here note that
dim H!(S;,0s,(—logD:)) =1 and dimMpg = 0 and

Br = Spec C[t,t™1] ~ C*.
The total space & — D is covered by the three affine open sets:
S—-D =ﬁoUﬁ1Uﬁ2.
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These affine open sets are given by:

~ 1

Uy = Spec C[l:g,y(), y—,t,t_l] 3 (02 — {yo = 0}) x C*,
0

~ 1

= C — _t,t7 = (C?-{F = C*

Ul Spec [zl’yl,Fl(xlyyl)’ ’ ] ( { l(xl’yl) 0}) X )

Uy, = C - _t,t7] = C? - {F t)=0,t=0

2 SPeC [mZ)y2)F2(m2,y2’t)) 3 ] { 2(.’82,?]2, ) ) }:

where
Fi(z1,31) = l+zm’, (92)
Fy(za,y2,t) = t—tys+ z2m’. (93)

The coordinate transformations are given as follows

1
g =——— =—,
’ ylFl(mlxyl) Y2
1 2
= —_— — " 9 —¢
YT WiR(enLw) 2" (T +zay2” — ),
2(—go? +
T = szll—yo). = yg(t-l—:l?zy% —ty2)7
Lo 1
B == - ’
Yo y3(t(1 — y2) + 2233)
14+t F3(2F — 1
2y = o(—teo+2dyo +1) = —— 16(?/; : ),
Y Fy
1

Zo
The Kodaira-Spencer class p(Z)s,—p, € H(S: — Ds, Os,(—log Dy)) is given by Cech cocycles

-1+ Zp ) -1+ Y2 I}
—, O9 = —
zo3 Oyo ’ 2 yz2 Oz (94)

0or =0, 6oz =
Since p(Z£)s,—p, = 0 € H'(S; — D;,0s,(—log D)), we can obtain Cech coboundary {8; €
I‘((},’,@gi/BR} such that
{65} = {0; — 6:}.

In fact, we can choose the following holomorphic vector field ¢; on each open set U;

'g_t—yozi —2zoyo O
T Tty Bz t Oyo’
i i

oo = filz1, 1, )i+91($1,y1, ) 8 (95)

Tt Fi(z1,11) 0z1  t Fi(zh, 1) O’

0y = fa(2,92,1) 0 | ga(z2,y2,8) 8
\ t Fy(z2,y2,t) Oz2  t Fa(z2,v2,%) Oy
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where
filzn,y,t) = =2y1(t — 2212 + Btz 2 + 9wy Pt + Ttz 3y ® + 2t21 % 8),
gi(z,y,t) = l—zyp®+tp*+ 3tz1y 8 + 3t 2y ® + tz1 3 10,
Fa(z2,y2,t) = —t% + 3tagy — 283ys + txays — 222%yn + T3ya? — 813y0® — 8t220y0?,
+383y* + 18122y0? — 108222125 — 108222105 + 118z22y25 — 4293y,7, (96)
g2(@2, 42, 1) =  —t+17yn? — 2%y° + 12400 + 2za10° — 2wy’ + 22%y,°.

Then we actually have the following relation as required
0o =01, 02 =802+ 6o.

Hence, we have the differential equation on & — D as in Theorem 6.1, and on each open set
U;,i=0,1,2 the differential equation can be written as follows (cf. (66)).

dIo _ _t —y[]2 _ aHo

T = Yo
J dt t )
On U dy  2z04 oMy (97)
dat 1 8z
1 dm xr s ’t 6H
i i _tle(l(lTwyl; =Rl
on b < dy __gilznyt) _Fi(e1, p1)° 0H, (98)
\ dt 1 F](ﬂ:‘lyyl) ’ 6:1:1 :
((dey ___falzauet)
7 dt - th(x21y2)t)
On U2 < dy: _ ga(@2,1,1) (99)

[ dt ~ t Fy(za,y2,0)
Here Hy, Hy are given by

Hy = (—m—:i+%‘l+ ;—0) (100)
H = (y12 + oyt + t_(_lT;:cllyT) . (101)
Moreover on each U;, i = 0, 1,2, the relative 2-form ws_p are given by
Ws_plg, — yl_o dzo A dyo
Ws_p|t, Fl(:cll, e dzy Adys
Ws_pjo, = m dzo A dys.

For each ¢ = 0,1, 2, consider the 1-form on U;

0; (Ws—vlt'f,-)-
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Then since 0; (“’s—'D[ﬁ,«) does not depend on £ for 7 = 0, 1, the fundamental equation (70) is reduced
to

dr(0i(ws_pjp,)) =0, fori=0,1. (102)

Though Uj; is not simply connected, we can integrate 6; (“’S—Du'f.-) and obtain H; for ¢ = 0, 1 defined
in (100) and (101), that is,

deHi = Oi(ws_p|57,)- (103)

On the other hand, since 83(wg_p,p,) is really depend on ¢, the fundamental equation (70)
becomes as follows.

0 1
Bt— (F2(22yy2)t)) dw? A dy2 B d" (af(ws_plﬁ")) =0. (104)
This last equation is equivalent to the following equation, which one can check by hand.
0 1 0 fZ a g2 ) _
ot (F2> + L) (thz) + Oy (tF22 =0 (105)

Eliminating @ from the differential equation (97), we obtain the differential equation

2 1 (dy\®> 1ldyo 202 2
Yo - Yo __ﬂ_kﬂ__. (106)
dt2 " oy \ dt tdt otz ¢

It is easy to see that this equation is equivalent to the equation PI[}‘} in (79).
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