A’priori estimates for higher order multipliers
on a circle

A. Alexandrou Himonas Gerard Misiolek *

ABSTRACT: We present an elementary proof of an a’priori estimate of Bour-
gain for a general class of multipliers on a circle using an extension of methods
developed in our previous work. The main tool is a suitable version of a counting

argument of Zygmund for unbounded regions.

1 Introduction and the result

In a series of papers beginning in early 90-ties Bourgain derived various pe-
riodic analogues of Strichartz inequalities. Apart from their intrinsic interest
such inequalities have become a powerful tool for establishing well-posedness
results for various nonlinear partial differential equations (see for example [B1],
[B2], [B3], [HM1], [ST]). In [B1] and [B2] Bourgain provided explicit proofs of
these inequalities in the quadratic (v = 2) and cubic (v = 3) cases and used
them to study the periodic Cauchy problem for the nonlinear Schrodinger and
KdV equations respectively. In [B3] he stated them for a much larger class of
multipliers with arbitrary integer v > 2 (see (1.1) below). In our previous paper
[HM2] we gave an elementary proof of these inequalities for the case when v is

even. Our approach was motivated by the work of Fang and Grillakis [FG| on
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the Boussinessq equation. In this paper we extend those methods to complete
the picture by establishing the inequalities for odd v.

Our main result is contained in the following

Theorem 1.1 Let v > 2 be a positive integer. Then there is a constant ¢, > 0

such that for any test function f, we have
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whereQSqSooand%+%=1+% and 4 < r < oco.

It is of interest to determine what is the best possible estimate of this type
for any given v > 2 above. In [B1] Bourgain constructed an example showing
that if v = 2 then the corresponding inequality fails for p = 6/5 and ¢ = 2. He
suggested however that it may continue to hold if we allow p= (6 —€)/(5 — €),
for any sufficiently small positive €. In a similar vein one may speculate that
when v = 2 inequality (1.1) will hold for p = 6/5 and ¢ = (2 — €)/(1 —¢).

The proof of Theorem 1.1 in the next section follows the approach used in
our previous paper [HM2]. Using standard harmonic analysis we first reduce
the proof to a certain bilinear estimate (see Lemma 2.2) and then develop a new
counting argument ala Zygmund [Z] (see also [FG]) that enables us to suitably
estimate the number of integer points located on certain intersections of straight
lines with unbounded regions (see Lemma 2.3 and Lemma 2.4 below). These

constructions are the main technical device used in the paper.

2 Proof of Theorem 1.1

The principal step in our proof of the Theorem will be to establish the following

inequality.

Proposition 2.1 For an arbitrary integer v > 2 and for any test function f,

we have
vy—LtL 2
”(1 + |T - § |) v f”LZ(ZxIR) < cy||f“L4/3(’ﬂ‘xR)- (2.1)



As mentioned above (2.1) was proved in [B1] for » = 2 and in [B3] for v = 3.
Theorem 1.1 will now follow by interpolating between the above estimate and
the trivial Fourier transform estimate using Stein’s interpolation theorem (see

for example [SW]).

Proof of Proposition 2.1 The proof of the proposition in the case of even v
can be found in [HM2] and it will not be reproduced here. We shall therefore

concentrate on the case when v is odd. Observe that dualizing (2.1) gives
v\t 2
1fllze < Cll(X+ |7 — €)% 722

We proceed to derive this inequality beginning with some standard preliminaries
(see [HM2] for more details, if necessary). First, without loss of generality we

may assume that
supp f C {(¢,7) : 7 — € > 0}.

Next, we introduce a dyadic decomposition of the Fourier frequency (¢, 7)-space
using a cut-off function in C*°[1/2, 2] with the property that ©(z) + ¢(22) =1
for all z € [1/2,1]. Defining

z

o) =p (%), wle)=1-Y oi(o)

and setting
fi&, ) = 0i(r =€) (&),

we can conveniently decompose
F=X5
j=0
in such a way that
suppf; C {(¢,7): ¥ < T <2}, j=12... (2.2)

and
suppf, C {(€,7): 0 < T — ¢ < 2}.
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Using the above decomposition we have

£ = 1F20z2 < D N1 fellza-

7,k=0

A straightfoward manipulation using Cauchy-Schwarz inequality and the fact
that

(o0}
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makes it possible to reduce the proof of Proposition 2.1 to the proof of the

following lemma.

Lemma 2.2 There is a positive constant ¢ such that

v+i

I fi fellz2(rxr) < 5—1—|,'k_|”(1+|T §')) % fJ”LZ(me)”(l"HT k2 fk“L"(uXR)

Proof of Lemma 2.2. It suffices to consider k£ < j, since the case k& > j
is analogous. Applying the inverse Fourier transform and setting 7 = 7, + 7o,
g =Ty — & and £ = §; + & we can represent the product f;fy in the following

form

fifv(z,t) = / Ze’(tT""”E)G x(€,7)dT,

£el

where

Gnle,T) = / S fE— & —a— &) filna+ € da

§2€Z
Notice that the restriction imposed on the supports of f, in (2.2) leads to the

following relations for ¢ and &;
IS Ak [2k -t 2k+1] and 52 € Aj(Ta €1 q))
where, for a =7 — g — 27%1 we put

Aj(T7§7 ) {é‘ZEZ a<£1 +£2S a+ - 2] £1+§2 ‘f}



Finding suitable estimates of the cardinality of the set A;(7,¢&, ¢) will be crucial

in what follows. First, however, using Plancherel equality and Jensen inequality

we obtain
55 = Gl < [ Z( / Zlf,fkldq) ar
"'{EA
Ag) dadr =
= fmgme%( k/ (;; |fgfk) gdr =

It is at this point that we need to change our strategy as compared with the case
of even v. As mentioned above, to estimate I we will require a suitable bound on
the cardinality of the set Aj(7,£,q). In order to overcome the difficulty caused
by the fact that the region defined by the inequalities a < &7 + & < a + %Zj is
unbounded we shall consider two cases.

Case (1). 2 (%)1/" <PV = 7 —q <2V 4 2FL

and
Case (2). 2 (%)1/" > 20/Y = 7 —q> vl 4 2

According to these, we decompose I into two pieces

I=14 dgdr+
I kl/[_qsy—y+1+2j+lz Z |f]fk qaT

EEZ \ £2€EA;

A dqd
+| kl‘/,/1:_q>2j_,,+1+2,-+lz Z If]fk qaT

E€Z \ L2€A;

= I]_ +.[2

Case (1). This case corresponds to estimating I;. To proceed we will need the

following “counting lemma”.

Lemma 2.3 The set A; of all € for which the integrand in I, is not zero satisfies

the estimate
sup card (4;(7,q)) < 6-27/*.

g



Proof of Lemma 2.3. Observe that in this case the line & + & = (%)1/ Y lies

“below” the line & + & = 27/, as shown on the following picture.

From the picture we also find that
d(O1PE) = d(O,PI) +d(PI1PE) < d(OsP]) +d(PI:PE)r

where the various points have coordinates

= ()" 0"

1 - 1 . a 3 R 1/” a 3 . 1/V
PJ- = (521/1/’ 52]/:/), and Pg = ((5 + ZQJ) ] (_2_ + 21_2]) )

Since, clearly
3 1/v "
d(Pr,Ps) <VE(3) 27,

we must have

1/v
d(0, Pg) < 21 + /2 (%) 2" < 3.9/,
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However, since the set A; is contained in the interval {0, K] (refer again to the
picture above) and since, necessarily, K; < v/2d(0, Pg), we conclude that A;

must satisfy the desired estimate. [

We now return to estimating the contribution I;. Using Minkowski’s inequality

we find that
2

L <A // fifel | dgdr
1 S 1A gz Z Z | f3 fx] q

{EAJ' EZ EA]'

sinvd [ [T S mfkl)zdvdq

“§€A; \b2€A;
2

. . 1/2
([lhe-er—a-elidea+eprar) | d

sy [ |3

EEA; T \&2€A;

N . 1/2 2
=CIAkIZ/]R > 1&g +8) (/lej(f—&,r—q—&s)ﬁdr) dg.

£€A; E3€A;
Applying Cauchy-Schwarz and changing appropriate variables it follows that
the last integral is bounded by

MY [ T el | | X [l -tar-a-gPar | dg

EEA; E2EA; £3€A;

= A . 3 2 g e 2
c| Axll4y] ( /R &%m(ez,m)l dnz) (; /R |fi (€ — &,m)] dm)
= c2277|| fil| 22| £l 3.

Therefore, since 7 — £ ~ 27, we immediately find that

(44 v+l _wfl ~ .
L < 0 %1 (k) 2% 7 2%k | £l 2| fiell 2
¢ yy 2L 2 piy 2Ll 2
= oy 10+ = €D filpl 1+ I = D felln



Case (2). This time we need to estimate the contribution of I; which requires a
different argument. Note, however, that now the region in question is bounded
and so a version of a “counting lemma” employed in [HM2] for even v should

do the job. More precisely, we have
Lemma 2.4 Let 2(a/2)"" > 29/*. Then there is a constant ¢ > 0 such that

sup card (A,(r,€,q)) < 2"
7,64

Proof of Lemma 2.4. It will once more be convenient to refer to the picture
above. Begin by observing that the line & + & = 2 (%)1/ ¥ is tangent to the

inner level curve L,: & + &5 = a at the point

r=((3)"(5)")

while the line &; + & = 27/% intersects the diagonal & = & at the point
P = 127'/” 121'/” .
7\27 2

Assume s > (-g—)j/ ”. Let A be the point on the inside level curve L,, for which
&1 = s. Then the other coordinate of A is & = (a — s*)'/* and the equation of
the line passing through A and having the slope —1is & = —& + s+ (a—s")/7.
Consider now the following function

Ma) =&+ (-6 +s+(@-s)")" —a- 223'.

Note that h(£;) = 0 if and only if the point B = (&1, —&; + s + (a — s*)/¥) lies
on the curve Ly: & + & = a + 227. On the one hand we easily find that

v 3. 3.,
h(s)=s8"+ (—s+s+(a—s)") —a— ;2 =52 <.

On the other hand, we claim that
3 1/v
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In order to obtain this inequality we need to call on our assumptions. First, we
3 . 1/v

1w\ ¥ 1/v v
= (s—i— (g?) ) + (— (22’) + (a — s”)l/”) —-a-— ng.

Next, noting that (a — s*)/¥ < s and recalling that v is an odd integer, we can
g

substitute

estimate

h(s + (g?) 1/V)

v
@
<
+

[NLR L
(2]
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=]
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3 \5 3.
> Soi) " _Zod.
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Now, since s > (%)1/ ¥ the last inequality gives

3 .\ 3 \5 ,sa\l/r 3 .
—97 —97 _ ) ¥
e+ (32) 2w (32) 7 (9" -3

1/v

However, bringing in the assumption that 2 (2)”” > 2//* and using the fact

that v > 3, we find that

3 A\ 3 N5 1., 3. 3(uv/3\F .
Zod > Zoi Zoifv _Zoi SV [Z — i > 0.
h(s+(2 ) )_v(2 ) ¥l — 22 2(3(2) 1]27>0

Denote by C the point on the line & + & = € with coordinates
3 . 1/v 3 . 1/v
- Z9i | Zo7 _ 1y .
C (s+(2 ) ) (22) + (a — §")
A quick check shows that
3 . 1/v
d(4, B) < d(4,C) = V2 (527)
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and so the Lemma is proved. [
Using Lemma 2.4 we are now ready to estimate the second contribution to I.
Namely we have

2

Bo=a dgd
: | kl/‘/'f‘—q>2j—"+1+2j+1z Z |f1fk qart

£eZ \&2€A;
< clAk|25f/ DY Ufifil? dgar
TP VAP ven fea;
< 22 [ 3 [ SUie -t —a- )Pl g+ )P dgar
REG R{zew
= 22 Y3 [1he-amlin- [ el in
g€z Lez U B

= c2Fal [BAAFAY

Therefore, since 7 — £ ~ 27, we get as before

I < —o

< gy I+ Ir =& © fillell @+ I = €)% felle.
2% (J k)

The above estimate combined with the corresponding estimate for I; yields the

desired inequality in Lemma 2.2 and concludes the proof. [
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