CÔNE NORMAL ET RÉGULARITÉS DE KUO-VERDIER

par Patrice Orro & David Trotman

RÉSUMÉ. — Nous introduisons de nouvelles régularités de Kuo-Verdier (r^e) et montrons que pour une stratification C^2 $(a+r^e)$ -régulière, en particulier (w)-régulière, la fibre du cône normal le long d'une strate Y est égale au cône tangent à la fibre d'une rétraction sur Y. Ceci généralise le résultat analogue pour les stratifications sous-analytiques (b)-régulières démontré par J.-P. Henry et M. Merle [9], et aussi le résultat analogue pour les stratifications différentiables $(w+\delta)$ -régulières démontré par nous-même [16]. Nous démontrons aussi l'ouverture de la projection du cône normal - appelée pseudo-platitude normale.

ABSTRACT. — We introduce new Kuo-Verdier regularities (r^e) and prove that for an $(a+r^e)$ -regular (in particular for a (w)-regular) C^2 stratification, the fibre of the normal cone along a stratum Y is equal to the tangent cone of the fibre of a retraction onto Y. This generalises the analogous result for (b)-regular subanalytic stratifications proved by J.-P. Henry and M. Merle [9], and also the analogous result for $(w+\delta)$ -regular differentiable stratifications proved by the authors [16]. We further prove that the projection of the normal cone is open - one says then that the stratification is normally pseudo-flat.

1. Introduction

Dans la suite k est un entier supérieur ou égal à 2. Soit \mathcal{Z} un fermé stratifié de \mathbb{R}^n , ayant pour strates des sous-variétés différentiables de classe C^k . Pour chaque strate Y de \mathcal{Z} on notera $C_Y\mathcal{Z}$ le cône normal de \mathcal{Z} le long de Y, c'est à dire la restriction au-dessus de Y de l'adhérence de l'ensemble $\{(x, \mu(x\pi(x))) : x \in \mathcal{Z} - Y\} \subset \mathbb{R}^n \times S^{n-1},$ où π est la projection canonique locale sur Y, et $\mu(x)$ le vecteur unitaire $\frac{x}{\|x\|}$. En fait $C_Y\mathcal{Z}$ est la réunion des cônes normaux C_YX_i , où les X_i sont les strates de \mathcal{Z} adhérentes à Y.

L'objet principal de cette note est de préciser sous quelles hypothèses sur la stratification \mathcal{Z} les conditions suivantes sont vérifiées :

PATRICE ORRO, Laboratoire de Mathématiques (EP 2067), Université de Savoie, Campus scientifique, 73376 Le Bourget-du-Lac Cedex, France. • E-mail: orro@univ-savoie.fr
DAVID TROTMAN, Laboratoire d'Analyse, Topologie et Probabilités (UMR 6632), Université de Provence, Centre de Mathématiques et Informatique, 13453 Marseille, France.
E-mail: trotman@gyptis.univ-mrs.fr

Condition (n): La fibre $(C_Y \mathcal{Z})_y$ de $C_Y \mathcal{Z}$ en un point y de Y est le cône tangent $C_y(\mathcal{Z}_y)$ à la fibre $\mathcal{Z}_y = \mathcal{Z} \cap \pi^{-1}(y)$ de \mathcal{Z} en y.

Condition de pseudo-platitude normale (ppn): La projection $p: C_Y \mathcal{Z} \to Y$ est ouverte pour toute strate Y de \mathcal{Z} .

Nous rappelons au §2 les conditions de régularité usuelles, dont nous aurons besoin, en particulier la condition (a) de Whitney. Quand une stratification vérifie deux conditions, par exemple est (a)-régulière et (n)-régulière, nous dirons qu'elle est (a+n)-régulière, pour la simplicité des notations. Les stratifications sous-analytiques vérifiant les conditions (a+n) ou (ppn) ont un cône normal ayant un bon comportement du point de vue de la dimension des fibres. En effet elles vérifient la condition

$$\dim(C_Y \mathcal{Z})_y \le \dim \mathcal{Z} - \dim Y - 1. \tag{*}$$

C'est évident pour (a + n), et pour (ppn) cela résulte de (5.1.ii') (voir aussi [4], [5, lemme 2.4]). Pour des stratifications différentiables il y a le problème de savoir ce que c'est que la dimension.

Malgré cette limitation, le cône tangent $C_y(\mathcal{Z}_y)$ à la fibre $\mathcal{Z}_y = \mathcal{Z} \cap \pi^{-1}(y)$ (et donc la fibre $(C_Y\mathcal{Z})_y$ du cône normal, supposant (n)) peut être assez arbitraire : des travaux récents de Ferrarotti, Fortuna et Wilson montrent que tout cône semi-algébrique fermé de codimension ≥ 1 est réalisé comme le cône tangent en un point d'une certaine variété algébrique réelle [6], et Kwiecinski et Trotman ont montré que tout cône fermé est réalisé comme le cône tangent en une singularité isolée d'un certain espace stratifié $C^{\infty}(b)$ -régulier [13].

Les premiers résultats dans la direction de notre étude ont été obtenus par Hironaka, qui a montré dans [10] qu'une stratification de Whitney (i.e.(b)-régulière) d'un ensemble analytique (réel ou complexe) est normalement pseudo-plate le long de chaque strate. J.-P. Henry et M. Merle [9] ont montré l'assertion analogue à (n) avec \mathbb{Z} remplacé par $X \cup Y$ quand X et Y sont deux strates adjacentes d'une stratification de Whitney sous-analytique de $X \cup Y$. Un exemple algébrique réel de [2] montre qu'il ne suffit pas en général que la stratification soit $(a + \delta)$ -régulière.

Dans [16], nous avons étendu le résultat de Henry et Merle au cadre différentiable, avec l'hypothèse que la stratification vérifie les conditions (w) de Verdier et (δ) de Bekka-Trotman. Ici nous améliorons les résultats de [16] par un affaiblissement de la régularité imposée à la stratification. Nous montrons dans le théorème 3.1 que (n) est vérifiée par toute stratification différentiable (a)-régulière ayant en plus une régularité (r^e) , que nous introduisons ici.

Toute stratification C^2 (w)-régulière vérifie automatiquement (a) et (r^e) , c'est-àdire $(a+r^e)$. Pour des strates sous-analytiques la combinaison $(a+r^e)$ est équivalente (proposition 2.5) au critère (r) introduit par T.-C. Kuo en 1971, ce qui entraîne la condition (b) de Whitney [12]; on sait depuis [18] que (r) est strictement plus faible que (w) dans le cas semi-algébrique, et il existe même des exemples algébriques réels

[3]. L'équivalence de (b), (r) et (w) pour les stratifications analytiques complexes est connue depuis 1982 ([17], [8]).

Nous montrons aussi, dans la proposition 5.2, la pseudo-platitude normale de toute stratification $(a+r^e)$ -régulière. L'exemple 4.2 (un "escargot de Kuo", déjà utilisé par nous dans [15]) montre qu'une stratification différentiable (b)-régulière ne vérifie pas forcément (n) ou (ppn). A la fin du §5 nous décrivons des exemples semi-algébriques montrant qu'il n'y a pas d'implication entre les conditions (n) et (ppn), même en supposant la condition (a).

2. Définitions et résultats préliminaires

Nous rappelons d'abord les définitions des conditions (a) et (b) de Whitney, (r) de Kuo [12], (w) de Kuo-Verdier [20] et (δ) de Bekka-Trotman [1], [2].

Soient X et Y deux sous-variétés de \mathbb{R}^n telles que $Y \subset \overline{X}$, π la projection locale sur Y. Suivant Hironaka [10], nous notons par $\alpha_{X,Y}(x)$ la distance de T_xX à $T_{\pi(x)}Y$, qui s'exprime par

$$\alpha_{X,Y}(x) = \max\{\langle \mu(u), \mu(v) \rangle : u \in N_x X - \{0\}, v \in T_{\pi(x)}Y\},\$$

et par $\beta_{X,Y}(x)$ la distance de $x\pi(x)$ à T_xX exprimée par

$$\beta_{X,Y}(x) = \max\{\langle \mu(u), \mu(x)\pi(x)\} >: u \in N_x X - \{0\}\},\$$

où <, > est le produit scalaire sur \mathbb{R}^n .

Pour $v \in \mathbb{R}^n$, la distance du vecteur v à un plan B s'écrit

$$\eta(v, B) = \sup\{v.n : n \in B^{\perp}, ||n|| = 1\}.$$

Posons

$$d(A,B) = \sup \{ \eta(v,B) : v \in A, ||v|| = 1 \}.$$

Posons encore

$$R_{X,Y}(x) = \frac{\|x\|\alpha_{X,Y}(x)}{\|x\pi(x)\|} \quad \text{et} \quad W_{X,Y}(x,z) = \frac{d(T_xX,T_zY)}{\|x\pi(x)\|}.$$

Lorsque aucune confusion ne sera possible nous omettrons de préciser les indices X et Y.

DÉFINITION 2.1. — Le couple de strates (X,Y) vérifie en $0 \in Y$:

la condition (a) si, pour x dans X,

$$\lim_{x\to 0}\alpha_{X,Y}(x)=0,$$

la condition (b) si, pour x dans X,

$$\lim_{x\to 0}\alpha_{X,Y}(x)=\lim_{x\to 0}\beta_{X,Y}(x)=0,$$

la condition (r) si, pour x dans X,

$$\lim_{x \to 0} R_{X,Y}(x) = 0,$$

la condition (w) si, pour x dans X et y dans Y, $W_{X,Y}(x,y)$ est borné près de 0,

la condition (δ) si, pour x dans X et y dans Y, l'angle entre la droite xy et T_xX est borné, près de 0, par une constante $\delta < \pi/2$.

Dans cet article nous introduisons la condition (r^e) suivante, de type Kuo-Verdier.

DÉFINITION 2.2. — Soit $e \in [0,1]$. Nous dirons que (X,Y) vérifie la condition (r^e) en $0 \in Y$ si, pour $x \in X$, la quantité $R_e(x) = \frac{\|\pi(x)\|^e \alpha_{X,Y}(x)}{\|x\pi(x)\|}$ est bornée près de 0.

Cette condition est invariante par difféomorphisme de classe C^2 . Ce n'est autre que (w) quand e=0, ainsi (w) implique (r^e) pour tout $e\in [0,1]$. Mais, contrairement à (w), la condition (r^e) quand e>0 n'implique pas la condition (a): on construit facilement un contre-exemple d'une surface semi-algébrique dans \mathbb{R}^3 obtenue en pinçant un demi-plan $\{z\geq 0, x=0\}$, de bord l'axe 0y=Y, dans une région cuspidale $\Gamma=\{x^2+y^2\leq z^p\}$, où p est un entier impair tel que $p>\frac{2}{e}$, de telle façon que dans Γ il y ait des suites tendant vers 0 pour lesquelles la condition (a) ne soit pas vérifiée. On peut vérifier que cet exemple est (r^e) -régulier.

Il est bien souvent utile de savoir que l'intersection transverse de deux stratifications régulières est encore régulière, et nous aurons besoin de cette propriété pour la condition $(a + r^e)$ dans la preuve du théorème 3.1.

Une démonstration du fait que la condition (b) est préservée par intersection transverse était donnée par Gibson [7], pour la condition $(a + \delta)$ voir [1] ou [2]. Pour la condition (w) nous ne connaissons aucune référence : la propriété d'invariance ne semble pas avoir été énoncée sauf dans le cas d'une section par une variété lisse [20]. La démonstration du théorème suivant s'applique à toutes les conditions envisagées ci-dessus.

THÉORÈME 2.3. — Les conditions (a), (b), (r), (w), $(a+\delta)$ et $(a+r^e)$ pour $0 \le e < 1$ sont invariantes par intersection transverse de deux stratifications de classe C^1 .

Démonstration. — Chaque cas se déduit de la preuve que nous donnons pour $(a+r^e)$. Considérons tout d'abord deux plans A et B transverses. Pour $v \in \mathbb{R}^n$, la distance du vecteur v à B s'écrit

$$\eta(v, B) = \sup\{v.n : n \in B^{\perp}, ||n|| = 1\}.$$

La distance de v à $A \cap B$ s'écrit donc

$$\eta(v, A \cap B) = \sup\{v.n : n \in A^{\perp} + B^{\perp}, ||n|| = 1\}.$$

Décomposons $A^{\perp} + B^{\perp}$ en I + U + V où $I = A^{\perp} \cap B^{\perp}$, et U (resp. V) est le complémentaire orthogonal de I dans A^{\perp} (resp. B^{\perp}). Alors

$$\eta(v, A \cap B) = \sup\{v.(\sum_{i=1}^{3} n_i) : n_1 \in I, n_2 \in U, n_3 \in V, \|\sum_{i=1}^{3} n_i\| = 1\}.$$

Soient maintenant Σ et Σ' deux stratifications transverses. Supposons que Σ et Σ' vérifient une condition de régularité du type $d(T_xS, T_yT) \leq \phi(x, y)$ pour une certaine fonction ϕ donnée - S et T étant deux strates adjacentes de la stratification considérée, x un point de S et y un point de T.

Prenons deux strates X, Y de Σ , deux strates X', Y' de Σ' telles que Y < X et Y' < X', un point x de $X \cap X'$, et un point y de $Y \cap Y'$.

En utilisant ce qui précède pour $A = T_x X$ et $B = T_x X'$, si $v \in T_y Y \cap T_y Y'$ nous avons que

$$\eta(v, A \cap B) \le \sup\{(\sum_{i=1}^3 ||n_i||) : n_1 \in I, n_2 \in U, n_3 \in V, ||\sum_{i=1}^3 n_i|| = 1\}\phi(x, y).$$

Comme

$$\left\|\sum_{i=1}^{3} n_{i}\right\|^{2} = \left\|n_{1}\right\|^{2} + \left\|n_{2}\right\|^{2} + \left\|n_{3}\right\|^{2} + 2\cos(n_{2}, n_{3})\left\|n_{2}\right\|\left\|n_{3}\right\| = 1,$$

et $\{\sum_{i=1}^{3} ||x_i||^2 + 2a||x_2|| ||x_3|| = 1\}$ est compact pour $||a|| \neq 1$, nous avons que

$$d(T_yY \cap T_yY', A \cap B) = \sup\{\eta(v, A \cap B) : v \in T_yY \cap T_yY', ||v|| = 1\} \le C\phi(x, y),$$

où $C = \sup\{(\Sigma_{i=1}^3 \|x_i\|) : \Sigma_{i=1}^3 \|x_i\|^2 + 2a\|x_2\| \|x_3\| = 1, \|a\| < 1 - \epsilon\}$, et ϵ est donné par l'angle minimal de T_xX et $T_{x'}X'$ sur un voisinage de y; ϵ étant non-nul par la (a) régularité de (X,Y) et de (X',Y') en y et la transversalité de Y et Y' en y. Ceci montre le résultat.

LEMME 2.4. — Si (a) est vérifiée, et (r^e) a lieu pour un certain $e \in [0,1]$, alors (r) est vérifiée.

 $\begin{array}{l} \textit{D\'{e}monstration.} \ -\ \text{De}\ (r^e) \ \text{il r\'{e}sulte que}\ \frac{\|\pi(x)\|\alpha(x)}{\|x\pi(x)\|} \leq C\|\pi(x)\|^{1-e}, \ \text{et donc que} \\ R(x) = \frac{\|\pi(x)\|\alpha(x)}{\|x\pi(x)\|} \frac{\|x\|}{\|\pi(x)\|} \to 0 \ \text{parce que}\ e < 1, \ \text{sauf \'{e}ventuellement si}\ \frac{\|\pi(x)\|}{\|x\|} \to 0. \\ \text{Mais dans ce cas } (r) \ \text{r\'{e}sulte de la condition } (a). \end{array}$

PROPOSITION 2.5. — Pour des strates sous-analytiques, (r) implique (a) et l'existence de $e \in]0,1[$ tel que (r^e) soit vérifiée. Ainsi (r) devient équivalente à $(a+r^e)$ pour un certain e, 0 < e < 1.

Démonstration. — Supposons que $R(x) \to 0$. On constate déjà que (a) est vérifiée, parce que

$$\frac{\|x\|}{\|x\pi(x)\|} \ge 1.$$

Par inégalité de Lojasiewicz, il existe $\lambda > 0$ tel que $R(x) \leq C \|x\|^{\lambda}$ et on peut évidemment supposer que $0 < \lambda < 1$. Puisque $\frac{\|\pi(x)\|}{\|x\|}$ est borné par 1, on déduit

facilement que

$$R_{1-\lambda}(x) = \frac{\|\pi(x)\|^{1-\lambda} R(x)}{\|x\|^{1-\lambda} \|x\|^{\lambda}} \le C$$

et donc (r^e) est vérifiée, avec $e = 1 - \lambda$.

REMARQUE 2.6. — Clairement, (r^e) implique que $R_f(x)$ tend vers 0 pour tout e < f < 1, et aussi que $\|\pi(x)\|\alpha(x)/\|x\pi(x)\|$ tend vers 0. Dans le cas sous-analytique il est facile de voir, utilisant une inégalité de Lojasiewicz, que (r^e) est équivalente à ce que $R_f(x)$ tend vers 0 pour un certain e < f < 1.

3. La fibre du cône normal

Dans cette section nous démontrons le résultat suivant:

THÉORÈME 3.1. — Soit Z un fermé stratifié de manière $(a + r^e)$ -régulière relativement à une strate Y. Alors $C_y(Z_y) = (C_Y Z)_y$, pour tout point y de Y, c'est-à-dire que (n) est vérifiée.

On déduit immédiatement le corollaire suivant, et on déduit aussi le théorème de [9], que (b) implique (n) pour des stratifications sous-analytiques, en remarquant que (r) est équivalente à (b) en dimension 1 pour des strates sous-analytiques [12], et en appliquant la Proposition 2.5 ci-dessus (cf. [9], [16]).

COROLLAIRE 3.2. — Si \mathbb{Z} possède une stratification $(a+r^e)$ -régulière de classe C^k , $k \geq 2$, alors $C_y(\mathbb{Z}_y) = (C_Y \mathbb{Z})_y$, pour toute strate Y et pour tout point y de Y.

Le corollaire 3.2 améliore le théorème 2.1 de [16], où nous avons obtenu la même conclusion utilisant une hypothèse plus forte : que la stratification soit $(w + \delta)$ -régulière. Rappelons que (w) entraı̂ne (a) et (r^e) , $\forall e \geq 0$.

Démonstration du théorème. — L'inclusion $C_y(\mathcal{Z}_y) \subset (C_Y\mathcal{Z})_y$ est évidente.

Soit v un élément de $(C_Y Z)_y$. Il existe une suite de points $x_i \in Z$ telle que la limite de $\mu(x_i\pi(x_i))$ soit égale à v. Soit y_i le point $\pi(x_i)$. La suite de points x_i que l'on peut supposer se trouver sur une strate fixe X est telle que $\mu(x_i\pi(x_i))$ tend vers v. On peut aussi supposer, quitte à extraire une sous-suite, que les y_i sont tracés sur γ , arc C^1 et C^k en dehors de y (par le théorème d'extension C^1 de Whitney comme dans [19]). Les tangentes à γ déterminent un champ de vecteurs C^{k-1} unité, noté δ . Désignons par Z_{γ} l'ensemble $Z \cap \pi^{-1}(\gamma)$ et par p_x la projection sur l'espace tangent à la strate de Z_{γ} passant par x. Nous noterons κ la restriction de π à Z_{γ} . Posant $w_Z(x) = p_x(\delta_{\kappa(x)}) \in T_x Z_{\gamma}$, en particulier $w_Z(x) = \delta_x$ pour x dans Y, on définit un champ de vecteurs C^{k-1} sur les strates de $Z_{\gamma} - \kappa^{-1}(y)$, vérifiant

$$||w_{\mathcal{Z}}(x) - w_{\mathcal{Z}}(\kappa(x))|| \le C \frac{||x\kappa(x)||}{||\kappa(x)||^e} (**),$$

par invariance de (r^e) par intersection transverse (théorème 2.3). Grâce à la (a)-régularité, $w_{\mathcal{Z}}$ et $\kappa_*(w_{\mathcal{Z}})$ ne s'annulent pas sur un voisinage de y. En posant $v_{\mathcal{Z}} = \frac{w_{\mathcal{Z}}}{\|\kappa_*(w_{\mathcal{Z}})\|}$ on obtient un champ vérifiant encore (**) et $\kappa_*(v_{\mathcal{Z}}) = \delta$. Ce champ de vecteurs n'est peut-être pas continu, mais il est intégrable sur chaque strate au dessus de $\gamma - \{y\}$:

LEMME 3.3. — Chaque courbe intégrale du champ $v_{\mathbf{Z}}$ atteint $\pi^{-1}(y) = \kappa^{-1}(y)$ sans arriver à y.

 $D\acute{e}monstration.$ — Soit ϕ une courbe intégrale de v_Z . Notons tout d'abord que le rapport $\frac{\kappa(\phi(s))}{s}$ est borné, ce qui nous permet, quitte à modifier certaines constantes, de remplacer $\kappa(\phi(s))$ par s dans les calculs qui suivent. La longueur d'une courbe intégrale de w_Z , sur un intervalle [a,b], est majorée par $\int_a^b (1+C\|\kappa(\phi(s))\|^{-e})ds$, puisque

$$\|\delta - v_{\mathcal{Z}}\| \le C \|\phi\kappa(\phi)\| \|\kappa(\phi)\|^{-e},$$

et donc, est aussi majorée par $(b-a)+C'(b^{1-e}-a^{1-e})$. Ceci montre que les courbes intégrales atteignent $\kappa^{-1}(y)$. Pour montrer qu'elles n'atteignent pas y, posons $f(t)=\|\phi(t)\kappa(\phi(t))\|$. Alors

$$f' = \frac{(\kappa(\phi') - \phi', \phi\kappa(\phi))}{\|\phi\kappa(\phi)\|}.$$

Comme

$$\|\kappa(\phi') - \phi'\| = \|\delta - v_{\mathcal{Z}}\| \le C\|\phi\kappa(\phi)\| \|\kappa(\phi)\|^{-e}$$

on obtient que $\left|\frac{f'}{f}\right| \leq C \|\kappa(\phi)\|^{-e}$ et, sur un intervalle [a,b],

$$f(t) \ge \exp(-C'b^{1-e} + \log(f(a))).$$

Puisque ϕ atteint $\kappa^{-1}(y)$ en un temps fini on a le résultat.

LEMME 3.4. — Le mouvement latéral des sécantes tend vers 0.

Démonstration. — La valeur absolue de la variation $\Delta(t_1, t_2)$ de la sécante sur l'intervalle de temps $[t_1, t_2]$ est

$$\|\Delta(t_1, t_2)\| = \left| \int_{t_1}^{t_2} \frac{d}{ds} (\mu(\phi(s)\kappa(\phi(s)))) ds \right| \le \int_{t_1}^{t_2} 2 \frac{\|\kappa(\phi') - \phi'\|}{\|\phi\kappa(\phi)\|}.$$

Dans le lemme précédent on a vu que $\|\kappa(\phi') - \phi'\| \le C \|\phi\kappa(\phi)\| \|\kappa(\phi)\|^{-e}$, et donc

$$\|\Delta(t_1, t_2)\| \le 2C \int_{t_1}^{t_2} \frac{ds}{s^e} = 2C(t_2^{1-e} - t_1^{1-e})$$

qui tend vers 0 avec t_1, t_2 .

Fin de la démonstration du théorème 3.1:

Désignant par z_i le point d'intersection de la courbe intégrale passant par x_i avec $\kappa^{-1}(y)$,

$$\|\mu(z_i\kappa(z_i)) - v\| \le \|\mu(z_i\kappa(z_i)) - \mu(x_i\kappa(x_i))\| + \|\mu(x_i\kappa(x_i)) - v\|.$$

Chacune des quantités $\|\mu(z_i\kappa(z_i)) - \mu(x_i\kappa(x_i))\|$ et $\|\mu(x_i\kappa(x_i)) - v\|$ tend vers 0 d'après ce qui précède, d'où le théorème.

4. Exemples et remarques

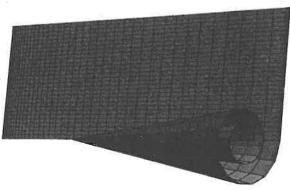
REMARQUE 4.1. — La condition $(a+r^e)$ n'est pas nécessaire pour avoir la trivialité du cône normal. Pour un produit direct $A \times \mathbb{R}$, le cône normal est trivial le long de \mathbb{R} , sans que A ait de régularité particulière. Pire, il est possible que A vérifie $(a+r^e)$ sans que $A \times \mathbb{R}$ la vérifie [3]!

EXEMPLE 4.2. — Un escargot de Kuo, cf. [15].

Soit $\mathcal{Z} \subset \mathbb{R}^3$ le sous-ensemble suivant:

$$\mathcal{Z} = \{(r, \theta, z) : r = e^{-\theta^2/z^3} \text{ pour } z > 0, \quad y = 0, x \in [0, 1[\text{ pour } z \le 0]\}.$$

La stratification donnée par $Y=\mathbb{R}z$ et $X=\mathcal{Z}-Y$ est (b)-régulière, et donc vérifie (δ) , pour tout $\delta>0$. Le long de l'axe des z, le cône normal est S^1 pour z>0, un point pour $z\leq 0$. Ainsi le résultat du théorème 3.1 n'est pas valable dans ce cas. Bien entendu l'exemple n'est pas sous-analytique. On peut noter aussi que le rapport $\frac{d(T_xX,Y)}{d(x,Y)}$ est de l'ordre de $\frac{1}{z^4}$ ce qui montre que l'on n'a pas (w) en 0. On constate enfin que la projection du cône normal de $\mathcal Z$ le long de Y n'est pas ouverte au-dessus de O.



Un escargot de Kuo

EXEMPLE 4.3. — Soient m et r deux réels strictement positif. Un tumulus ([11], [14]) de paramètres m et r centré en 0, est la surface de \mathbb{R}^3 , notée $T_{m,r}$ et donnée par

$$\{(x_1, x_2, x_3) : m^7 r^3 x_3 = (x_1^2 - m^2 r^2)^2 (x_2^2 - m^2)^2, |x_1| \le mr, |x_2| \le m\}.$$

Une propriété remarquable de ces tumuli est que lorsque m,r tendent vers 0 la structure normale tend vers

$$\{(-4\xi(\xi^2-1)(\xi^2-1)^2,0,1): \xi \in [-1,1]\}.$$

Si l'on affaiblit (w) en $(w_{\beta}), \beta < 1$, c'est-à-dire si on suppose que le rapport $\frac{d(T_xX,T_zY)}{\|x\kappa(x)\|^{\beta}}$ est borné près de y pour x dans X et z dans Y, alors le résultat du corollaire 3.2 n'est pas conservé.

Considérons pour cela le demi-plan $x_3=0, x_1>0$ dans \mathbb{R}^3 , et notons C_α le morceau de courbe $\{x_1=x_2^{\frac{2+\alpha}{\alpha}},x_1>0\}$, qui est tangent à $(0x_2)$. Centrons aux points $(x_1^i,x_2^i,0)=(r_i^{1+\alpha},r_i^{\frac{\alpha(1+\alpha)}{2+\alpha}},0)$ des tumuli $T_{r_i^\alpha,r_i}$, avec une suite r_i qui tend vers 0 de sorte que les tumuli soient disjoints.

Alors, si l'on note X le demi-plan perturbé le long de C_{α} et $Y=(0x_2)$, on obtient une stratification $(w_{\frac{1}{1+\alpha}})$ -régulière, pour laquelle le cône normal n'est pas obtenu dans la fibre. En effet, en notant π la projection sur Y, et en notant

$$\xi = \frac{x_1 - x_1^i}{r^{1+\alpha}} \quad \text{et} \quad \chi = \frac{x_2 - x_2^i}{r^{\alpha}}$$

sur les tumuli, nous avons que

$$||x - \pi(x)|| \equiv \frac{3}{2}r^{1+\alpha}$$
, et $d(T_xX, Y) \equiv -4\chi(\chi^2 - 1)(\xi^2 - 1)^2 r$,

de sorte que

$$\frac{d(T_x X, Y)}{\|x - \pi(x)\|^{\beta}} \le \text{Cte}, \quad \text{avec} \quad \beta = \frac{1}{1 + \alpha},$$

c'est-à-dire que la stratification obtenue est (w_{β}) -régulière. De plus les fibres du cône tangent le long de Y sont des points, sauf en 0 où l'on a une courbe, étant donné que l'angle des sécantes passant par le sommet des tumuli a une ouverture constante (la tangente de cet angle est $\frac{2}{3}$). Il est clair par la construction que les limites des sécantes en 0 ne sont pas obtenues dans la fibre de π , c'est-à-dire que la condition (n) n'est pas vérifiée.

Dans les deux exemples précédents, les strates telles qu'elles sont données sont de classe C^1 , mais elles peuvent être lissées sans difficulté de manière à obtenir des stratifications C^2 ayant les mêmes propriétés.

5. Ouverture de la projection

Ce qui précède permet de montrer aussi l'ouverture de la projection du cône normal sur Y. Pour voir cela montrons tout d'abord le résultat suivant $(\overline{\mathbb{N}} = \mathbb{N} \cup \infty \text{ avec sa topologie usuelle})$.

LEMME 5.1. — Soient M et Y deux variétés différentielles, $\mathcal Z$ un sous-ensemble de M et f une application continue de M dans Y. Les assertions suivantes sont équivalentes :

(i) $f: \mathcal{Z} \to Y$ est ouverte,

(ii) pour tout chemin continu $h: \overline{\mathbb{N}} \to Y$, le produit fibré $\mathcal{Z}_h = \overline{\mathbb{N}} \times_h \mathcal{Z}$ est égal à l'adhérence de $f_h^{-1}(\overline{\mathbb{N}} - \{\infty\})$, où f_h est l'image réciproque de f par h,

et dans le cas sous-analytique (M, Y analytiques, f, Z sous-analytiques, f propre), (ii') pour tout chemin analytique $h : \mathbb{R} \to Y$, le produit fibré $\mathcal{Z}_h = \mathbb{R} \times_h \mathcal{Z}$ est égal à l'adhérence de $f_h^{-1}(\mathbb{R} - \{0\})$.

Démonstration. — Montrons que (i) implique (ii). Supposons f ouverte. Soit $\overline{\mathbb{N}} \xrightarrow{h} Y$ une suite dans Y. Si (ii) n'est pas satisfaite, alors il existe $(\infty, z) \in \mathcal{Z}_h - f_h^{-1}(\overline{\mathbb{N}} - \{\infty\})$, et un voisinage ouvert V de (∞, z) , de la forme $[n, \infty] \times V_1$, tel que $V \cap f_h^{-1}(\overline{\mathbb{N}} - \{\infty\})$ soit vide. Comme f est ouverte, $f(V_1)$ est un voisinage de $f(z) = h(\infty)$ et rencontre $h(\mathbb{N})$, ce qui signifie que V rencontre $f_h^{-1}(\overline{\mathbb{N}} - \{\infty\})$, donnant une contradiction.

Montrons que (ii) implique (i). Supposons f non ouverte : il existerait un ouvert U de \mathcal{Z} tel que f(U) ne soit pas ouvert. Soit h_n une suite de $Y \setminus f(U)$ telle que $h_n \to y \in f(U)$, $f_h^{-1}(t)$ ne rencontre pas $\overline{\mathbb{N}} \times U$ pour $t \neq \infty$, ce qui implique que l'adhérence de $f_h^{-1}(\overline{\mathbb{N}} - \{0\})$ ne rencontre pas $\overline{\mathbb{N}} \times U$. Mais $y = h(\infty) \in f(U)$, et donc $(\infty, y) \in (\overline{\mathbb{N}} \times U) \cap \mathcal{Z}_h$, contredisant (ii).

Dans le cas sous-analytique, (i) implique (ii') avec la même démonstration. Pour l'implication inverse, il suffit de prendre U sous-analytique. Alors f(U) est sous-analytique, et on peut appliquer le lemme du chemin à son complémentaire pour trouver un chemin analytique $h: \mathbb{R} \to Y$, tel que h(0) = y et $h(\mathbb{R} - \{0\}) \cap f(U) = \emptyset$, et on termine de la même façon.

PROPOSITION 5.2. — Sous les hypothèses du théorème 3.1, la projection de C_YZ dans Y est ouverte, i.e. Z est normalement pseudo-plate le long de Y.

Démonstration. — Soit y_n une suite de points de Y, convergeant vers $y \in Y$. Et soit γ un chemin de classe C^1 passant par les y_n et $y = \gamma(0)$, de classe C^k sur $\gamma - \{0\}$. On peut supposer que $Im(\gamma)$, que l'on notera aussi γ , est une sous-variété de Y. Soit $v \in C_y(\mathcal{Z}_y)$, $v = \lim_{i \to \infty} (\mu(x_i'y))$ avec $x_i' \in \pi^{-1}(y)$. En suivant les courbes intégrales données par le théorème 3.1 dans l'autre sens à partir de chaque x_i' on construit une double suite x_n^i de \mathcal{Z}_{γ} , telle que $y_n = \pi(x_n^i)$. Soit $v_n^i = \mu(x_n^i\pi(x_n^i))$. En extrayant des sous-suites des v_n^i successivement pour n croissant, on peut supposer que pour chaque n, v_n^i tende vers $c_n \in (C_Y\mathcal{Z})_{y_n} = C_{y_n}(\mathcal{Z}_{y_n})$ par le théorème 3.1. Par l'inégalité triangulaire,

$$||c_n - v|| \le ||c_n - v_n^i|| + ||v_n^i - \mu(x_i'y)|| + ||\mu(x_i'y) - v||.$$

Fixons $\epsilon > 0$, et soit i_0 tel que $\|\mu(x'_{i_0}y) - v\| \le \frac{\epsilon}{3}$. La preuve du lemme 3.4 montre que $\|v_n^i - \mu(x'_iy)\| \le C(\|y_n\|^{1-e} - \|y\|^{1-e})$, uniformément en i, et il est alors facile de

trouver n_0 tel que, pour $n \ge n_0$, $||c_n - v_n^{i_0}|| < \frac{\epsilon}{3}$ et $||v_n^{i_0} - \mu(x_{i_0}'y)|| < \frac{\epsilon}{3}$. On en déduit le résultat en utilisant la caractérisation (ii) du lemme précédent.

EXEMPLE 5.3. — Reprenons l'exemple 4.3. Les stratifications obtenues sont (w_{β}) -régulières (donc (a)-régulières) et telles que la projection du cône normal n'est pas ouverte : comme nous l'avons vu les fibres du cône tangent le long de Y = (0y) sont des points sauf en 0, où la fibre est de dimension 1, et donc la projection ne peut pas être ouverte.

Remarque 5.4. — (a+n) n'implique pas (ppn).

L'exemple précédent peut être modifié de sorte que la stratification obtenue soit (a)-régulière et que le cône normal soit obtenu dans la fibre en 0 de la projection sur Y.

En effet, centrons une suite de tumuli T_{m_i,m_i} aux points $(m_i^2,0)$ de l'axe (0x), où $m_i \to 0$ et les m_i soient tels que les tumuli ne se rencontrent pas. Notons encore X la surface obtenue, et Y = (0y). Les tumuli donnent naissance à un cône tangent limite en 0 de dimension 1, provenant de suites de points situés sur l'axe (0x). Les fibres du cône tangent le long de Y = (0y) sont encore des points sauf en 0, où la fibre est de dimension 1, et la projection n'est donc pas ouverte. La condition (a) est vérifiée - il suffit de constater que les normales limites en 0 sont dans le plan (0xz).

G. Valette a observé comment construire un exemple semi-algébrique de stratification (a+n)-régulière ne vérifiant pas (ppn). La surface, représentée dans sa partie $z \ge 0$, a l'aspect suivant :

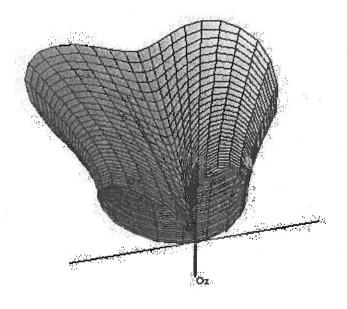


Figure 1

REMARQUE 5.5. — (a+ppn) n'implique pas (n). On peut également se demander si (n) implique (ppn) pour une stratification semi-algébrique. La réponse est non on obtient un exemple semi-algébrique \mathcal{Z} en pliant un demi-plan $\{x=0,z\geq 0\}$ dans une région cuspidale $\{y^2\leq z^3\}$ orthogonal à Y=(0y), tel que $C_0\mathcal{Z}_0$ soit un segment et pour $y\neq 0$ la fibre de $C_Y\mathcal{Z}$ en (0,y,0) soit un point. Cet exemple n'est pas (a)-régulier. G. Valette nous a communiqué l'exemple algébrique réel suivant, vérifiant (a+n) sans vérifier (ppn): il suffit de poser $\mathcal{Z}=\{y^2=z^2x^2+x^3\}$ et Y=(Oz)!

Références

- [1] K. Bekka, Sur les propriétés topologiques des espaces stratifiés, Thèse, Université de Paris-Sud, Orsay (1988).
- [2] K. Bekka et D. Trotman, Weakly Whitney stratified sets, Real and Complex singularities (eds. J. W. Bruce, F. Tari), Chapman and Hall Research Notes in Math, 412 (2000), 1–15.
- [3] H. Brodersen et D. Trotman, Whitney (b)-regularity is strictly weaker than Kuo's ratio test for real algebraic stratifications, Math. Scand., 45 (1979), 27–34.
- [4] G. Comte, Densité et images polaires en géométrie sous-analytique, Thèse, Université de Provence (1998).
- [5] G. Comte, Equisingularité réelle: nombres de Lelong et images polaires, Annales Scientifiques de l'Ecole Normale Supérieure de Paris, à paraître.
- [6] M. Ferrarotti, E. Fortuna et L. Wilson, Real algebraic varieties with prescribed tangent cones, Pacific J. of Math., 194 (2000), 315–323.
- [7] C. G. Gibson, Construction of canonical stratifications, Topological stability of smooth mappings, Lecture Notes in Math., Springer-Verlag, New York, 552 (1976), 9–34.
- [8] J.-P. Henry et M. Merle, Limites de normales, conditions de Whitney et éclatement d'Hironaka, Singularities, Part 1 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. Amer. Math. Soc. 40 (1983), 575–584.
- [9] J.-P. Henry et M. Merle, Stratifications de Whitney d'un ensemble sousanalytique, Comptes Rendus de l'Académie des Sciences de Paris, Série I 308 (1989), 357–360.
- [10] H. Hironaka, Normal cones in analytic Whitney stratifications, Publ. Math. I.H.E.S., 36 (1969), 127–138.
- [11] A. Kambouchner et D. Trotman, Whitney (a)-faults which are hard to detect, Annales de l'Ecole Normale Supérieure, 4ème série, 12 (1979), 465–471.
- [12] T.-C. Kuo, *The ratio test for analytic Whitney stratifications*, Proc. of Liverpool Singularities Symposium I (C.T.C. Wall, ed.), Lecture Notes in Math., Springer-Verlag, New York, **192** (1971), 141–149.
- [13] M. Kwiecinski et D. Trotman, Scribbling continua in \mathbb{R}^n and constructing singularities with prescribed Nash fibre and tangent cone, Topology and its Applications, 64 (1995), 177–189.

- [14] P. Orro et D. Trotman, Sur les fibres de Nash de surfaces à singularités isolées, Comptes Rendus de l'Académie des Sciences de Paris, 299 (1984), 397–399.
- [15] P. Orro et D. Trotman, On the regular stratifications and conormal structure of subanalytic sets, Bulletin of the London Mathematical Society, 18 (1986), 185–191.
- [16] P. Orro et D. Trotman, *Cône normal à une stratification régulière*, Seminari Geometria 1998-99, Università degli Studi Bologna, **12** (2000), 169–175.
- [17] B. Teissier, Variétés polaires II: Multiplicités polaires, sections planes, et conditions de Whitney, in Algebraic Geometry, Proc., La Rabida 1981, Lect. Notes in Math. Springer-Verlag, New York, 961 (1982), 314–491.
- [18] D. Trotman, Counterexamples in stratification theory: two discordant horns, Real and Complex Singularities (Proc. 9th Nordic Summer School, Oslo 1976, ed. P. Holm), Sijthoff and Noordhoff, Alphen aan den Rijn, (1977), 679–686.
- [19] D. Trotman, Transverse transversals and homeomorphic transversals, Topology, 24 (1985), 25–39.
- [20] J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math., 36 (1976), 295–312.

Recent Newton Institute Preprints

NI00010-SCE	V Zlatić and J Freericks Theory of valence transitions in Ytterbium-based compounds
NI00011-ERN	A Iozzi and D Witte Cartan-decomposition subgroups of $SU(2,n)$
NI00012-ERN	D Witte and L Lifschitz On automorophisms of arithmetic subgroups of unipotent groups in positive characteristic
NI00013-ERN	D Witte Homogeneous Lorentz manifold with simple isometry group
NI00014-SGT	R Uribe-Vargas Global theorems on vertices and flattenings of closed curves
NI00015-SGT	EA Bartolo, P Cassou-Nogués, I Luengo et al Monodromy conjecture for some surface singularities
NI00016-SGT	IG Scherbak Boundary singularities and non-crystallographic Coxeter groups
NI00017-SGT	K Houston On the classification and topology of complex map-germs of corank one and A_e -codimension one
NI00018-SGT	PJ Topalov and VS Matveev Geodesic equivalence via integrability
NI00019-GTF	S Friedlander On vortex tube stretching and instabilities in an inviscid fluid
NI00020-SGT	VD Sedykh Some invariants of admissible homotopies of space curves
NI00021-SGT	IA Bogaevsky Singularities of linear waves in plane and space
NI00022-SGT	S Izumiya Generating families of developable surfaces in \mathbb{R}^3
NI00023-SGT	S Izumiya and N Takeuchi Special curves and ruled surfaces
NI00024-GTF	S Friedlander and A Shnirelman Instability of steady flows of an ideal incompressible fluid
NI00025-SGT	M Saito, T Takebe and H Terajima Deformation of Okamoto-Painlevé pairs and Painlevé equations
NI00026-GTF	AA Himonas and G Misiolek A'priori estimates for higher order multipliers on a circle
NI00027-SGT	P Orro and D Trotman Cône normal et régularités de Kuo-Verdier