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1 Main resultsConsider vetor bundles L � E over some manifold M and another ag F of subbundlesFk1 � Fk2 � : : : � E; rkFk = n+ 1� k; where n = rkE � rkL:Di�erent degeneray loi are de�ned as the subsets of the baseM with the presribed dimensionsfor the intersetions of the orresponding �bers of the bundles Fi and L. Namely, for a givendereasing sequene of integers �1 > �2 > : : : > �r > 0 we onsider the degeneray lousS�1;:::;�r �M as the set of points x 2M suh thatdimF�ix \ Lx � i (1)for all i = 1; : : : ; r (assuming that the bundles F�i are present in the ag F .)Assume that the �bers of E are equipped with a linear sympleti struture, i.e. we aregiven a nowhere degenerating setion of the bundle �2E�. Assume also that the subbundles Fiand L are isotrope i.e. the �bers of Fki and L are isotrope subspaes in the �bers of E. Thisassumption implies additional restritions on the degeneray loi whih hange, in partiular,their expeted odimensions. We present a formula for the ohomology lasses dual to theseloi in terms of the Chern lasses of the bundles E; V; Fi.Remark. Denote by �(k) the largest number k+j suh that �k = �k+1+1 = : : : = �k+j+j.The index k is alled redundant if �(k) 6= k. Otherwise it is alled essential. The onditions (1)for redundant indies follow from those for the essential ones. They an be dropped in thede�nition of the degeneray lous S�1;:::;�r .For any olletion of formal series (i) = 1 + (i)1 + (i)2 : : :, i = 1; : : : ; r, and any sequene(not neessary dereasing) of integers �1; : : : ; �r we de�ne the generalized Shur Q-polynomialsQ�1;:::;�r((1); : : : ; (r)) as follows:� for r = 1 we set Qk() = k;� for r = 2 we setQk;l((1); (2)) = (1)k (2)l � 2(1)k+1(2)l�1 + 2(1)k+2(2)l�2 � 2(1)k+3(2)l�3 + : : : ;� for any even r � 4 we setQ�1;:::;�r((1); : : : ; (r)) = Pf jQ�i;�j ((i); (j))j1�i;j�r; (2)� for any odd r � 3 we setQ�1;:::;�r((1); :::; (r)) = rXk=1(�1)k�1(k)�k Q�1;:::;�k;:::�r((1); :::;d(k); :::; (r)): (3)Here Pf is the PfaÆan of a skew-symmetri matrix (see Appendix C). This de�nition makessense only if Q�i;�j ((i); (j)) +Q�j ;�i((j); (i)) = 0 for all 1 � i; j � r: (4)If this ondition holds, then the polynomial Q�1;:::;�r((1); :::; (r)) depends skew-symmetriallywith respet to the permutations of indies �i and simultaneous permutations of (i),Q�s(1);:::;�s(r)((s(1)); :::; (s(r))) = (�1)jsjQ�1;:::;�r((1); :::; (r));2



where s is a permutation and jsj is its sign. This follows from the fat that the PfaÆan isskew-symmetri with respet to simultaneous permutations of rows and olumns of the matrix.In partiular, Q�1;:::;�r((1); :::; (r)) vanishes if for some i 6= j one has �i = �j and (i) = (j).Remark. The distintion between the ases of even and odd r is apparent. For instane,the following redution formula holds for any r > 1 with positive �1; : : : ; �rQ�1;:::;�r;0((1); :::; (r+1)) = Q�1;:::;�r((1); :::; (r))(whenever these lasses are de�ned). For r = 2 this evidently follows from the de�nition. Forgreater r it an be easily derived from (2) and (3) by indution in r.Let �1 > : : : > �r > 0. If the ag F ontains the bundles F�i for all essential indies i thenthe degeneray lous S�1;:::;�r �M is well de�ned.Theorem 1.1. Generially the ohomology lass dual to S�1;:::;�r is given by[S�1;:::;�r ℄ = Q�1;:::;�r ;where Q�1;:::;�r = Q�1;:::;�r(E�L�F��(1) ; : : : ; E�L�F��(r)):If the ag F ontains the bundles F�i for all redundant indies i then we have alsoQ�1;:::;�r = Q�1;:::;�r(E�L�F�1 ; : : : ; E�L�F�r):First verify that the lasses entering these formulas are de�ned, that is the ondition (4) issatis�ed. Indeed, denoting Xk = E � L� Fk, we getQk;l((Xk0); (Xl0)) +Ql;k((Xl0); (Xk0)) = 2 1Xi=�1(�1)ik+i(Xk0) l�i(Xl0)= �2 k+l(X�k0 �Xl0) = �2 k+l((L?=L)� � F?k0 =Fl0):Here we used the isomorphisms E=L? �= L�, E=F?k0 �= F �k0 provided by the sympleti struture(the orthogonal omplement is onsidered with respet to the sympleti form). The bundle inthe brakets has the rank(rkE � 2 rkL) + (rkE � rkFk0 � rkFl0) = k0 + l0 � 2:The (k + l)th Chern lass of this bundle vanishes if, for example, k0 � k, l0 � l. Thereforeall lasses of the form Q�1;:::;�r((E�L�F�01); : : : ; (E�L�F�0r )) with �0i � �i are always wellde�ned. �Remark. The generiity ondition of Theorem is formulated as follows. Consider theloally trivial bundle Y !M of `geometrial on�gurations' whose �bers are formed by produtsFx � �x where Fx and �x are manifolds of isotrope ags and isotrope planes in Ex of thedimensions orresponding to the ranks of the bundles Fk, L. The anonial bundles over Yde�ne degeneray loi on Y and the generiity ondition in this ase is, by de�nition, satis�ed.The given ag of bundles F and the bundle L de�ne a setion s : M ! Y . The generiityondition means that this setion is transversal to every singularity lous on Y . In this ase theequality for M is indued by s� from the orresponding equality for Y . Remark that the lasss�[S�1;:::;�r ℄ is well de�ned on M and the equality of Theorem holds for this lass even if the3



setion s is not transversal. Similar trik an be applied for other situations in order to avoidproblems with non-transversality. In partiular it is implied in the de�nition of the manifoldsZk in the next setion. �Remark. Similar trik is used also to show that it is suÆient to prove Theorem 1.1only for the ase when the ag F ontains subbundles F�i for all redundant indies i. Indeed,onsider the ag bundle Y ! M the �bers of whih are formed by omplete isotrope agsF 0nx � F 0(n�1)x � : : : � Ex suh that F 0�ix = F�ix for all essential indies i. Then the validity ofthe assertion of Theorem 1.1 for Y implies its validity for M sine the indued homomorphismof the ohomology H�(M)! H�(Y ) is injetive, see Appendix A. �Proo f o f the s e ond equa l i ty o f Theorem 1.1 ,Q�1;:::;�r((X1); :::; (Xr)) = Q�1;:::;�r((X�(1)); :::; (X�(r))); Xk = E�L�F�k : (5)By de�nition, the lasses Q�1;:::;�r((X1); :::; (Xr)) are polilinear with respet to the total Chernlasses (Xk). Suppose that the index k is redundant. Then from the equality�(Xk) = �(F��(k)=F�k +X�(k)) = �(k)�kXj=0 j(F��(k)=F�k ) ��j(X�(k))we get Q:::;�k;:::(: : : ;Xk; : : :) = �(k)�kXj=0 j(F��(k)=F�k) Q:::;�k�j;:::(: : : ;X�(k); : : :):When we apply similar expansion to other redundant indies we obtain a linear ombinationof di�erent lasses of the form Q�0((X�(1)); : : : ; (X�(r))). In this ombination all terms exeptone with �0 = � will have repeating indies and so they vanish. �Two di�erent proofs of the �rst equality of Theorem 1.1 are presented in two subsequentsetions. In this Setion we disuss some appliations of Theorem.In partiular ase when the ag F onsists of only one plane L0 = Fk the formula ofTheorem 1.1 answers the problem of J. Harris about the lass dual to the lous given by theintersetion ranks for the �bers of two isotrope bundles L and L0 (see [PR℄, where the answerfor the ase when both L and L0 are Lagrangian is given in muh more ompliated form).Proposition. Let L;L0 be isotrope subbundles in a sympleti bundle E. Then the oho-mology lass dual to the lous 
r = fx 2M j dimLx \ dimL0x � rg is given by[
r℄ = Qm+r;m+r�1;:::;m+1((E�L�L0); : : : ; (E�L�L0));where m = rkE � rkL� rkL0. �In partiular, the last formula for the ase r = rkL = rkL0 desribes the ohomology lassdual to the diagonal in the produt of two isotrope Grassmannians (or, more general, to thediagonal bundle in the �ber produt of two isotrope Grassmannian bundles assoiated withthe given sympleti vetor bundle E ! M (f. [P2℄ where this lass for the ase of LagrangeGrassmannians is presented in muh more ompliated form),[�℄ = Qm+r;m+r�1;:::;m+1((E�L�L0); : : : ; (E�L�L0)); (6)where r = rkL = rkL0, m = rkE � 2r, and L1; L2 are the tautologial bundles over theGrassmannians. 4



The simplest examples of degeneray loi are provided by Shubert varieties on Grassman-nians and ag manifolds of isotrope subspaes in C 2n . In partiular, this gives the followingformula (for the ase of Lagrange Grassmannians it was proved in [P2℄).Proposition. On any Grassmannian of isotrope subspaes in sympleti vetor spae theohomology lass dual to the Shubert yle S� de�ned by dimensions of intersetions with a�xed isotrope ag is given by[S�1;:::;�r ℄ = Q�1;:::;�r((�L); : : : ; (�L)): (7)More examples are provided by symmetri degeneray loi. Consider some vetor bundleV ! M and a symmetri bundle map f : V ! V � (it an be thought as the setion of thebundle Sym2V �). Denote by 
r �M the lous of points x 2M for whih the kernel ker fx hasdimension at least r. Then we have (f. [HT, JLP, P1℄)[
r℄ = Qr;r�1;:::;1((V � � V ); : : : ; (V � � V )):Indeed, the sum V �V � arries the natural sympleti struture (due to the natural isomorphismVx � V �x �= T �Vx). The ondition that the map fx is symmetri is equivalent to the onditionthat the graph Lx � Vx� V �x of this map is Lagrangian (in fat, the graphs of symmetri mapsVx ! V �x form an open ell in the Grassmannian of Lagrange subspaes in Vx�V �x ). Hene thelous 
r is the degeneray lous Sr;r�1;:::;1 de�ned with respet to the Lagrange subbundles Land V � 0 in V � V � and we an apply the formula of Theorem 1.1. �In fat, all assertions about Lagrange degeneray loi an be reformulated in terms of theorresponding symmetri degeneraies. (The inverse is also true, see Remark at the end ofAppendix A.) The following assertions are the diret reformulations of Theorem 1.1 for the aseof symmetri degeneray loi in the same way as explained above.Proposition. Consider a ag of vetor bundles Fn � : : : � F1 = V !M , rkFk = n+1�k,and a symmetri bundle map f : V ! V �. Denote by 
�1;:::;�r � M the lous of points x 2 Msuh that dimF�ix \ ker fx � i. Then generially[
�1;:::;�r ℄ = Q�1;:::;�r((V � � F��(1)); : : : ; (V � � F��(r))): �A partiular ase of the last Proposition is the following simpli�ation of the formulasfrom [LP2℄ for degeneraies of symmetri maps. Let F � E be vetor bundles over some baseM . The bundle map f : F ! E� is alled symmetri if the bilinear form (u; v) 7! hfx(u); vi onFx�Ex is symmetri when restrited to Fx�Fx for all x 2M . One an easily see that the linearmap fx : Fx ! E�x is symmetri if and only if its graph L(fx) = fy�(fx(y)) 2 Ex
E�x j y 2 Fxgis an isotrope subspae in Ex � E�x. The kernel of fx is identi�ed with the intersetion of theisotrope subspaes L(fx) and E � 0. Hene,Proposition. Let F ! E� be a symmetri map. Then the ohomology lass Poinar�e dualto the lous 
r �M of points x 2M suh that dimker fx � r is given by[
r℄ = Qn+r;n+r�1;:::;n+1((E� � F ); : : : ; (E� � F )); n = rkE � rkF: �The following interpretation of Theorem 2.1 of the next Setion was used in [K3℄. For agiven vetor bundle V ! M denote by Dr(V ) ! M the assoiated loally trivial ag bundlewhose �bers are formed by all ags D1; : : : ;Dr � Vx, dimDi = i. If f : V ! V � is a generisymmetri bundle map de�ne the submanifold Zr � Dr(V ) by the ondition Dr � ker fx.Denote ti = �1(Di=Di�1). Let p : Zr !M be the natural projetion.5



Theorem. For any monomial ts11 � � � tsrr 2 H�(Zr), we havep�(ts11 � � � tsrr ) = Qs1+1;:::;sr+1((V � � V ); : : : ; (V � � V )): �The analogues for the orthogonal ase of the formulas of this Setion are formulated inAppendix D.2 The push-forward formulaIn this setion we prove Theorem 1.1 by means of resolutions of degeneray loi. Let L � E andFk1 � Fk2 � � � � � E, rkFk = n+1� k, n = rkE � rkL, be as in previous Setion. For a givendereasing (not neessary stritly) sequene of integers �1 � : : : � �r suh that the planes F�iare present in the ag F , we onsider the ag bundle spae Dr ! M , whose �bers are formedby all isotrope ags D1x � D2x � : : : Drx � Ex; dimDi = i;suh that Dix � F�ix for i = 1; : : : ; r. Denote by Zr � Dr the submanifold given by the onditionDrx � Lx, where Drx is the largest plane of the ag. Generially Zr is a smooth manifold of(omplex) dimension dimZr = dimM �P�i. We study the push-forward homomorphismp� : H�(Zr)! H�(M)orresponding to the natural projetion p : Zr ! M . We shall use the same notations Di; Lfor the orresponding tautologial bundles on Dr, and Zr. Denote ti = �1(Di=Di�1) =1((Di=Di�1)�).Theorem 2.1. For any monomial ts11 � � � tsrr 2 H�(Zr) we havep�(ts11 � � � tsrr ) = Qs1+�1;:::;sr+�r((E�L�F�1); : : : ; (E�L�F�r)) 2 H�(M):Theorem 1.1 is a orollary of Theorem 2.1. Indeed, suppose that �1 > �2 > : : : > �r > 0.Then the image p(Zr) oinides with S�1;:::;�r . Moreover, the restrition of p to Zr is one-to-oneover an open dense set in S�1;:::;�r . Therefore, applying Theorem 2.1 to the ase s1 = : : : = sr = 0we get the formula of Theorem 1.1:[S�1;:::;�r ℄ = p�(1) = Q�1;:::;�r((E�L�F�1); : : : ; (E�L�F�r)): �To prove Theorem 2.1 we represent the map p as the omposition of the following hain ofbundles and embeddingsP (Er�1) P (E1) P (E)% # % # % #Zr pr�! Zr�1 pr�1�! � � � p3�! Z2 p2�! Z1 p1�! M (8)where Ek is the restrition to Zk of the bundle F�k=Dk. At the points y 2 Zk we should haveDky � Ly � Dk?y . The projetive planes of the bundle P (Ek) are formed by all possible positionsof the line Dk+1y =Dky in F�ky=Dky . The submanifold Zk+1 � P (Ek) is given by ondition: theplane Ly=Dky � Dk?y =Dky ontains the line Dk+1y =Dky . This explains the diagram (8).6



For the omputation of the homomorphism pr� : H�(Zr) ! H�(Zr�1) we remark that thelasses t1; : : : ; tr�1 ome from Zr�1 and so the multipliation by these lasses ommutes withpr�. Hene, it is suÆient to ompute pr�(tsr).Lemma. The homomorphism pr� : H�(Zr)! H�(Zr�1) is given bypr�(tsr) = R(r)0 a(r)s+�r +R(r)1 a(r)s+�r�1 +R(r)2 a(r)s+�r�2 + : : : ;where a(r)i = i(E�L�F�r) and R(r)i = i(Dr�1�D(r�1)�) are polynomials of degree i int1; : : : ; tr�1 that are independent of s; � and given by the expansionR(r)0 +R(r)1 +R(r)2 + : : : = r�1Yi=1 1� ti1 + ti = r�1Yi=1 �1� 2ti + 2t2i � 2t3i + : : :� :Proo f o f Theorem 2.1 . Iterating this Lemma we an ompute the diret image p� =p1� : : : pr� of any partiular monomial. This solves, in priniple, the problem of �nding theohomology lass dual to any degeneray lous. It follows without further omputations thatp�(ts11 � � � tsrr ) is expressed as a universal polynomial (depending only on �i, si, i = 1; : : : ; r) inlasses a(k)i = i(E�L�F�k). It is a matter of algebra to show that the result has the nie formof Theorem 2.1. This algebrai proof is given in Appendix C. �Example. For r = 2 applying Lemma twie we get[Sk;l℄ = p1�p2�(1) = p1� �a(2)l � 2t1a(2)l�1 + 2t21a(2)l�2 � : : :� 2tl1�= p1�(1) a(2)l � 2p1�(t1) a(2)l�1 + 2p1�(t21) a(2)l�2 � : : : � 2p1�(tl1)= a(1)k a(2)l � 2a(1)k+1a(2)l�1 + 2a(1)k+2a(2)l�2 � : : : � 2a(1)k+l = Qk;l(a(1); a(2));where a(1) = (E � L� Fk), a(2) = (E � L� Fl). �Proo f o f Lemma. Represent pr as the omposition Zr i�! P (Er�1) q�! Zr�1 aordingto the diagram (8). The homomorphism i� is given by the multipliation by the fundamentalyle of Zr � P (Er�1). The submanifold Zr � P (Er�1) is given, as explained above, by theondition that the line Dry=Dr�1y � D(r�1)?y =Dr�1y is ontained in the plane Ly=Dr�1y . Thismay be reformulated as vanishing of the setion for the bundle Hom(Dr=Dr�1;D(r�1)?=L).Therefore i�(tsr) = tsr n�r+1(Hom(Dr=Dr�1;D(r�1)?=L))= tsr Xi+j=n�r+1 i(D(r�1)?=L) tjr= Xi+j=n+s�r+1 i(D(r�1)?=L) tjr= n+s�r+1(D(r�1)?=L�Dr=Dr�1)= n+s�r+1(Dr�1�D(r�1)�+E�L�F�r + F�r=Dr)= Xi+j=n+s�r+1 j(Dr�1�D(r�1)�+E�L�F�r) i(F�r=Dr)Now we apply q�. The lasses j(Dr�1�D(r�1)� + E�L�F�r) ommute with this homo-morphism as they ome from Zk�1. The bundle F�r=Dr is the anonial quotient bundle7



over P (Er�1). Therefore q�d(F�r=Dr) = 1, where d = rk(F�r=Dr) = n + 1 � r � �r andq�i(F�r=Dr) = 0 for i 6= d. Therefore,pr�(tsr) = q�i�(ts) = s+�r(Dr�1�D(r�1)� +E�L�F�r)= 1Xi=0 i(Dr�1�D(r�1)�) a(r)s+�r�i: �3 Inverse indutionIn this setion we present an alternative proof of Theorem 1.1. Namely, we �rst establish theequality of Theorem in one partiular ase when M = FN is the ag manifold of ompleteisotrope subspaes in C 2N , the bundle E = C 2N is trivial, F is the tautologial ag of bundlesand L � C 2N is a �xed Lagrange subspae. This spae FN for suÆiently large N togetherwith the indued Shubert partition on it is onsidered as the lassifying spae for our problem.It means that under ondition of Theorem 1.1 there is a lassifying map � : M ! FN whihindues both the partition of M into the degeneray loi and the harateristi lasses. So theequality of Theorem 1.1 forM is indued from the orresponding equality for FN . Remark thatin general we an not avoid the onsideration of C1-manifolds and maps. The reader who doesnot like this kind of arguments may onsider the proof as a motivation for �nding new formulas(whih an be applied as well in other problems).Let F = Fn be the spae of omplete isotrope ags Fn � : : : � F1 � C 2n , dimFk = n+1�k.For a stritly dereasing sequene of integers n � �1 > : : : > �r > 0 we de�ne the Shubertyle S�1;:::;�r � F by onditions dim(F�1 \ L) � i, i = 1; : : : ; r, where L � C 2n is a �xedLagrange subspae.Theorem 3.1. The ohomology lass dual to the Shubert yle in F is given by[S�1;:::;�r ℄ = Q�1;:::;�r((�F�1); : : : ; (�F�r )):In the proof we use the method of `divided di�erenes', see [BGG, D, F1, F2, P3℄. Namely,we introdue operations �k : H�(Fn) ! H��2(Fn), k = 1; : : : ; n, that derease by 1 the om-plex odimension of the yles representing the ohomology lasses. Then we ompute theseoperations in terms of degeneray loi and in terms of the Chern lasses. Then from the validityof Theorem for the `deepest' lous we an establish the validity of Theorem for other loi byreverse indution over the indies �.The operations �k are de�ned as follows. Denote by F(k) the manifold of isotrope agsFn � � � �Fk+1 � Fk�1 � � � � � F1 (with the kth subspae of rank n + 1 � k omitted). Thenatural projetion pk : F! F(k)is a smooth loally trivial bundle with the �bers isomorphi to C P 1 . The total spae F of thisbundle an be identi�ed with the projetivization on the bundle Fk�1=Fk+1 of rank 2 over F(k).This desription is valid for all k = 1; 2; : : : ; n if we set Fn+1 = 0, F0 = F?2 . Indeed, sine theplane F1 is Lagrangian, the ondition F2 � F1 implies F1 � F?2 .De�nition. �k = p�k pk� : H�(F)! H��2(F).Lemma S. Let k � 2. Then�k[S�1;:::;k;:::;�r ℄ = [S�1;:::;k�1;:::;�r ℄8



if k 2 � and k�1 62 �; otherwise �k[S�1;:::;�r ℄ = 0.For k = 1 we have �1[S�1;:::;�r�1;1℄ = [S�1;:::;�r�1 ℄and �1[S�1;:::;�r ℄ = 0 if �r > 1.Lemma C. In order to obtain the ation of �k in terms of Chern lasses one should to re-plae the lasses of [S�1;:::℄ in the statement of previous Lemma by the orresponding polynomialsQ�1;:::((�F�1); : : :).Proo f o f Theorem 3.1 . Every Shubert yle in F an be obtained from the yleSn;n�1;:::;1 by a sequene of operations �k for di�erent k. If we would prove the equality ofTheorem 3.1 for this yle Sn;n�1;:::;1 then by Lemmas S and C we get that similar equality holdsfor the other Shubert yles. In the multi-index (n; n� 1; : : : ; 1) all entries exept the last oneare redundant. Therefore, Qn;n�1;:::;1((�Fn); : : : ; (�F1)) = Qn;n�1;:::;1((�F1); : : : ; (�F1)).It follows that it is suÆient to verify the required equality on the Lagrange Grassmannian �n.But in this ase the degree of the lass Qn;n�1;:::;1((�F1); : : : ; (�F1)) is equal to the dimensionof �n and Sn;n�1;:::;1 is a point. Therefore,Qn;n�1;:::;1((�F1); : : : ; (�F1)) = b [pt℄ = b [Sn;n�1;:::;1℄ 2 H2n(n+1)2 (�n) �= H0(�n);where the onstant b 2 Z is equal to the value of the harateristi lassQn;n�1;:::;1((�F1); : : : ; (�F1)) on the fundamental yle of �n. Assume that b 6= 1. Thenagain by inverse indution we get that for all Shubert yles on Fn we should haveQ�((�F�1); : : : ; (�F�r )) = b [S�℄ and to �nd the onstant b it is suÆient to ompute [S�℄ forany partiular �.Set � = (n). Then Sn � Fn is given by the ondition F1 � L. This is equivalent to thevanishing of the setion of the bundle Hom(F1; C 2n=L). Therefore,[Sn℄ = n(Hom(F1; C 2n=L)) = n(�F1) = Qn((�F1)):This proves that, in fat, b = 1. Theorem is proved. �Proo f o f Lemma S . If k 62 � then the planes of the bundle Fk are not used in thede�nition of the yle S�. Therefore, this yle is the inverse image of the orresponding yleS0� � F(k). Hene pk�[S�℄ = pk�pk�[S0�℄ = [S0�℄ pk�pk�(1) = 0;and so �k[S�℄ = 0. If k = �i for some number i but �i+1 = k � 1 then the index i is redundantand we an apply the same arguments.Assume now that k = �i and that the index i is not redundant. Geometrially the homo-morphism �k an be desribed as follows. Suppose that a ohomology lass in the total spaeof the bundle pk is represented by a yle C whih meets every �ber at at most one point.Then the lass �k[C℄ is represented by the union of all �bers through the points of C. It fol-lows from this desription that the yle representing the lass �k[S�℄ is de�ned by onditionsdimF�j \ L � j for j 6= i and the orresponding ondition for the index i is replaed by thefollowing one: there exist a plane F 0k of dimension n + 1 � k suh that F(k+1) � F 0k � F(k�1)and dimF 0k \ L � i. Clearly, this ondition is equivalent to the ondition dimF(k�1) \ L � i,that is �k[S�℄ is represented by the yle S�1;:::;�i�1;k�1;�i+1;:::;�r . �
9



Proo f o f Lemma C. Observe that �k ommutes with the multipliation by harateristilasses of bundles that are de�ned on F(k). In partiular, if k 62 � then the lass Q� is the pullbak of the orresponding lass on F(k). Therefore,�kQ� = Q��k(1) = 0:Assume now that k = �i > 1 for some (unique) i. Then the equality(�Fk) = (Fk�1=Fk � Fk�1) = (1 + t) (�Fk�1);where t = 1(Fk�1=Fk) impliesQ:::;k;:::(: : : ; (�Fk); : : :) = A+ t B;where A = Q:::;k;:::(: : : ; (�Fk�1); : : :) and B = Q:::;k�1;:::(: : : ; (�Fk�1); : : :) are lasses that arede�ned on F(k). Therefore,�kQ�(: : :) = �k(A+ t B) = A�k(1) +B�k(t):�k(1) vanishes by dimensional reason and the lass t = 1(Fk�1=Fk) is the top Chern lassof the anonial quotient bundle for the �ber bundle P (Fk�1=Fk+1) over F(k). Therefore,�k(t) = p�kp�k(t) = 1. We get �nally�kQ:::;k;:::(: : : ; (�Fk); : : :) = B = Q:::;k�1;:::(: : : ; (�Fk�1); : : :):Observe that if k�1 2 � = (: : : ; k; : : :) then �0 = (: : : ; k � 1; : : :) has repeating indies andso B = 0 in this ase. This proves Lemma in ase when k > 1.In the ase k = 1 = �r the omputation above an be applied as well if we denote F0 = F?2and gives �1Q:::;�r�1;1(: : : ; (�F�r�1); (�F1)) = Q:::;�r�1;0(: : : ; (�F�r�1); (�F0)):By Remark before Theorem 1.1, the lass on the right hand side is equal toQ:::;�r�1(: : : ; (�F�r�1)). Lemma is proved. �Proo f o f Theorem 2.1 . Assume we are given vetor bundles V � E !M , Fk1 � : : : �E ! M , E is sympleti, L, Fi are isotrope. Without loss of generality we an assume thatE splits into the sum E = L � L� � K, where K is sympleti and the sympleti struture!E on E is the sum of the orresponding sympleti strutures !L�L� on L � L� and !K onK. Indeed, the �ber L0x of the bundle L0 �= L� is hosen among the isotrope subspaes in Extransversal to L?x and having the omplementary dimension. The spae of possible hoies isontratible (it is homeomorphi to a ell). Hene suh subbundle L0 exists (in general, it is aomplex C1-bundle). Then we set Kx = L?x \ L0?x .Now hoose the bundle U ! M suh that L �K � U = C N is a trivial bundle (again, ingeneral, U is a omplex C1-bundle). De�ne the bundles eE; eL; eFi and the sympleti struture! eE on eE aording to the following tableeE = L � L� � K � K � U � U�! eE = !L�L� � !K � �!K � !U�U�eL = L � 0 � � � U � 0eFk = Fk � 0 � 0 � U�10



Here � 2 K�K is the diagonal bundle. Reall that the natural sympleti struture on the sumKx�Kx of two sympleti spaes is de�ned as the di�erene of the sympleti strutures induedfrom the two summands. If it is de�ned this way then the diagonal �x = fz�z j z 2 Kxg aswell as the anti-diagonal �0x �= ��x = fz�(�z) j z 2 Kxg are Lagrange subspaes. In partiular,they de�ne the anonial isomorphism K �K = ����.By onstrution, the degeneray loi for this new problem are the same. But now the bundleseL �= L�K�U �= C N and eE = eL� eL� �= C 2N are trivial and the �bers of the bundles eFk belongto the same sympleti spae C 2N . Therefore, they de�ne the map� :M ! F0N ;where F0N is the the manifold of (inomplete) ags of isotrope subspaes in C 2N of dimensionsN � n+ 1; N � n+ 2; : : : ; N .The formula of Theorem 3.1 an be applied to the lasses of Shubert yles on F0N sinethe projetion FN ! F0N indues an injetive homomorphism of ohomology, see Appendix A.The degeneray lous S�(M) � M is the inverse image of the Shubert yle S�(F0N ) � F0N .The harateristi lasses indued by � are ��( eFk) = (Fk + U�) = (Fk + L�E). Therefore,[S�(M)℄ = ��[S�(F0N )℄ = ��Q�((� eF�1); : : : ; (� eF�r )= Q�((E � L� F�1); : : : ; (E � L� F�r)Theorem 1.1 is proved. �Remark. The map � is holomorphi in ase when the degeneray lous is the diagonalin the produt of two isotrope Grassmannians or it is a Shubert ell on the Grassmannian ofisotrope subspaes in C 2N . Therefore the proof of formulas (6) (for the ase E = C 2N ) and (7)of Setion 1 by the method of this Setion does not require onsiderations of C1-maps andbundles.Remark. Lemmas C and S remain valid if FN is replaed by the bundle of isotropeags assoiated with some sympleti vetor bundle, sf. [F2℄. It follows that the formula ofTheorem 1.1 an be derived from the formula (8) of Setion 1 for the lass of the diagonal inthe �ber produt of two Lagrange Grassmann bundles. The diret proof of (8) would imply theproof of Theorem 1.1 by divided di�erenes method without using C1-maps and bundles.Appendix A. Complex Lagrange GrassmannianIt was shown in previous Setion that the Lagrange Grassmannian �N , N ! 1 plays therole of a lassifying spae for many geometrial problems. The limit ohomology grouplimN!1H�(�N ) is alled the ring of Lagrange harateristi lasses. In this setion we de-sribe the topology of �N . All results of this setion are proved in [P2℄ but our presentation ismore elementary.Consider an even-dimensional vetor spae C 2n and a �xed skew-symmetri bilinear form(the sympleti form) P dpi ^ dqi on it, where dpi; dqi are elements of some �xed basis on thedual spae C �2n .De�nition. An n-dimensional subspae is alled Lagrangian if the restrition of thesympleti form to it vanishes. The omplex Lagrange Grassmannian �Cn is the manifold of allLagrange subspaes in C 2n . 11



The topology of the real Lagrange Grassmannian �Rn �= U(n)=O(n) is well known. Its Z2-ohomology is H�(�R;Z2) �= �Z2(�1; : : : ; �n). The (integer) ohomology of omplex LagrangeGrassmannian �Cn �= Sp(2n)=U(n) has a similar desription.Theorem ([P2℄). The ring H�(�Cn) is isomorphi to the quotient of the polynomial ringin variables a1; a2; : : : ; an of degrees 2; 4; : : : ; 2n over the ideal generated by elementsa2i � 2ai+1ai�1 + 2ai+2ai�2 � 2ai+3ai�3 + : : : : (9)The group H�(�Cn) is torsion free and the monomials ai11 : : : ainn , ik 2 f0; 1g form a free additivebasis.In the relations above we assume a0 = 1 and ai = 0 for i < 0 or for i > n. The lassesai 2 H2i(�Cn) are Chern lasses of the tautologial bundle L! �Cn (or inverse images of Chernlasses of the usual Grassmannian GCn;2n under the embedding �Cn � GCn;2n.The seond assertion of Theorem follows from the �rst one. To express an element of thisring in terms of this basis one should apply repeatedly relation of Theorem to every mono-mial whih ontains squares of generators. This will require �nite number of steps sine everynewly appeared monomial has degree stritly less than the original one if one uses the `strange'�ltration with the degree of ai equal i2.The relations (9) an be rewritten in the form(1 + a1 + a2 + : : :+ an)(1� a1 + a2 � : : : � an) = 1:In this form they follow from the fat that the sympleti form indues an isomorphism C 2n=L �=L�. In the proof of Theorem we use the following well-known lemma. Let E !M be a omplexvetor bundle of rank d over some manifold M . Let P = P (E) be the projetivization of thebundle E, i.e. the bundle spae over M whose �bers are projetive spaes formed by lines in�bers of E. Consider H�(P ) as a module over the ring A = H�(M). Let L ! P be thetautologial line bundle and t = 1(L�) = �1(L).Lemma. Additively the group H�(P ) is isomorphi to H�(M � C P d�1) independently ofthe bundle E. Moreover, it is freely generated by elements 1; t; : : : ; td�1 as an A-module. As aring H�(P ) is isomorphi to the quotient ring of A[t℄ over the ideal generated bytd + 1(E)td�1 + 2(E)td�2 + : : :+ d(E) 2 A[t℄:The Gysin homomorphism �� : H�(P )! H�(M) maps the element u0+ u1t+ : : :+ ud�1td�1 2H�(P ) to ud�1 2 H�(M).Reall that the Gysin or push-forward homomorphism or transfer �� assoiated with aproper map � : P ! M of smooth manifolds is the omposition of Poinar�e duality in P ,usual homomorphism of homology, and Poinar�e duality in M . The main property of Gysinhomomorphism is the identity ��(��a b) = a��(b) for any elements a 2 H�(M), b 2 H�(P ). Inother words, �� is the homomorphism of H�(M)-modules.The proof of Lemma is simple. First note that ��ti = 0 for i < d�1 (by dimensional reason)and ��td�1 = 1 2 H0(M) (this means that d� 1 hyperplanes in CP d�1 interset at one point).Therefore,��(u0 + u1t+ : : :+ ud�1td�1) = u0��(1) + u1��(t) + : : :+ ud�1��(td�1) = ud�1:12



Therefore the elements 1; t; : : : ; td�1 are independent over A in H�(P ) sine any relation ofthe form u0 + : : :+ uktk = 0 with uk 6= 0 would imply 0 = ��(td�k�1(u0 + : : :+ uktk)) = uk. Itfollows from the spetral sequene of the bundle that the elements of the form u0+: : :+ud�1td�1exhaust all ohomology of P . This proves Lemma. Note that td+ 1(E)td�1+ 2(E)td�2+ : : :+d(E) is equal to zero sine it is the dth Chern lass of the (d�1)-dimensional quotient bundle��E=L. �The lemma is applied as follows. Denote by Fi1;:::;ir the spae of ags onsisting of isotropesubspaes Ui1 � : : : � Uir , dimC Ul = l. Consider the following diagram of projetionsC P 2n�1 = F1  F1;2  : : : F1;2;:::;n ! F2;:::;n ! � � � ! Fn = �Cn :All arrows in this diagram are projetivizations of ertain vetor bundles. This allows us toompute indutively the ohomology groups of all spaes in this diagram. It follows withoutany alulation that all these ohomology groups are torsion free. Minimal alulations givethe total rank of H�(�Cn). Comparing this diagram with a similar diagram for usual ags andGrassmannian we see that the Chern lasses a1; : : : ; an generate all ohomology ring of �Cn . Weknow already some set of relations, and, omparing dimensions we see that there are no otherrelations. �Exerise. Find generators and relations for the ohomology ring of any ag manifold ofisotrope subspaes on C 2n . Present a free additive basis for eah ase.The orrespondene between symmetri and Lagrange degeneray loi is formalized as fol-lows. Consider the homomorphism : Z[a1; a2; : : :℄! Z[1; 2 : : :℄; 1 + a1 + a2 + : : : 7! 1 + 1 + 2 + : : :1� 1 + 2 � : : : :Proposition. The homomorphism  indues an embedding of the ring of Lagrange har-ateristi lasses to the polynomial ring Z[1; 2; : : :℄.Proo f . Sine both Z[1; 2; : : :℄ and the ring of Lagrange harateristi lasses are torsionfree it is suÆient to prove this assertion over Q . Introdue a new system of generators ~ai, ~iin the polynomial rings by setting~1 + ~2 + : : : = log(1 + 1 + 2 + : : :)and similarly for ~ai (the lasses ~k, ~ak oinide up to �1=(k�1)! with the homogeneous ompo-nents of the orresponding Chern haraters). In terms of these generators the homomorphism : Q [~a1 ; ~a2; : : :℄ �! Q [~1 ; ~2; : : :℄is given by ~a2k�1 7! 2~2k�1, ~a2k 7! 0. The ideal (9) of de�ning relations in the ring of Lagrangeharateristi lasses is generated by 2~a2; 2~a4; : : :. Proposition follows. �Remark. This proposition implies that all identities valid in the ase of symmetridegeneraies are satis�ed also in the ring of Lagrange harateristi lasses. Therefore, The-orems 1.1 and 2.1 are equivalent to the orresponding statements about symmetri degenera-ies formulated at the end of Setion 1. Remark that in partiular, the solution to J. Har-ris' problem (see Setion 1) is ontained impliitly already in [HT℄! (That is the polynomialQm+r;:::;m+1((E�L�L0); : : : ; (E�L�L0)) in lasses ai = i(E�L�L0) is uniquely determinedby the ondition that the image of this polynomial under  oinides with the lass foundin [HT℄.) I would laim even more, that some papers on symmetri (or skew-symmetri) degen-eray loi and those on isotrope degeneray loi are in muh extent dupliates of eah others.13



Appendix B. Twisted degeneray loiAssume that the sympleti form on the �bers of vetor bundle E ! M takes values not inC but in �bers of some line bundle I ! M . In other words, this twisted sympleti strutureon the �bers is given by nowhere degenerating setion of �2E� 
 I. The degeneray loi forisotrope subbundles L � E and Fk1 � Fk2 � : : : � E, ki = rkE � rkL� rkFki + 1, are de�nedin the same way as in Setion 1. The ohomology lasses dual to these loi an be obtained inthe following way.Assume �rst that the bundle I is a tensor square of another line bundle: I = J
2. Then�2E�
I = �2(E
J�)� and we an apply Theorem 1.1 to the bundles eE = E
J�, eL = L
J� �eE, eFk = Fk
J� � eE:[S�1;:::;�r ℄ = Q�1;:::;�r(( eE�eL� eF�1); : : : ; ( eE�eL� eF�1)): (10)Then we substitute( eE�eL� eFk) = (1� u=2)k�1 �1 + 1(E�L�Fk)1� u=2 + 2(E�L�Fk)(1� u=2)2 + : : :� ; (11)where u = 1(I) = 21(J). The expression for [S�℄ in terms of i(E�L�Fk) and u = 1(I)obtained in this way an be applied for general ase sine it is universal (the existene of universalpolynomial expressing [S�℄ in terms of 1(I); i(E�L�Fk) follows from either of the two methodsof the proof of Theorem 1.1 presented in this paper, f. also [HT℄). Moreover, though we useddivision by 2 to obtain it, this polynomial expression for [S�℄ has integer oeÆients and so itan be applied for any oeÆient ring. This (algebrai) assertion has the following topologialproof.Fix some integer N � 0 and de�ne the manifold Y = YN as the total spae of the bundle overC PN with the �bers formed by all isotrope ags in the twisted sympleti spaes C N �(C N
Ix),x 2 CPN , where I ! CPN is the tautologial line bundle (the twisted sympleti form onC N � (C N
Ix) = (T �C N )
Ix with values in Ix is the obvious generalization of the standardsympleti form on C 2N = T �C N ). It is not diÆult to ompute expliitly the ohomology ringof Y (using the same arguments as in Appendix A). This ring is generated by lasses u = 1(I)and by the Chern (or Segre) lasses a(k)i = i(�F 0k) of the tautologial bundles F 0k ! Y .Now, we de�ne the polynomial Q�1;:::;�r 2 H�(Y ) as the ohomology lass (expressed interms of the generators u; a(k)i ) dual to the twisted Shubert yle S�1;:::;�r � Y de�ned withrespet to the Lagrange subbundle C N � 0 � C N � (C N
I). By de�nition, this is a polynomialwith integer oeÆients. SineH�(Y ) is torsion free, this polynomial oinides with that de�nedby (10){(11) (with a(k)i in plae of i(E�L�Fk)).For general ase it is not diÆult to verify that the lasses i(E�L�Fk) satisfy all relationsfor the lasses a(k)i , provided that N is suÆiently large. In other words the harateristihomomorphism �� : H�(Y )! H�(M); a(k)i 7! i(E�L�Fk)is well de�ned though it is not neessary indued by a map � : M ! Y . This proves that thelass de�ned by (10){(11) is integer. �Appendix C. Identities in PfaÆansReall that the PfaÆan of a skew-symmetri matrix ! = k!i;jk of even order 2n is, by de�nition,Pf k!i;jk =X�!i1;i2 � � �!i2n�1;i2n ;14



where the sum is over all (2n � 1)!! ways to represent f1; 2; : : : ; 2ng as a union of n pairsfi1; i2g [ : : :[ fi2n�1; i2ng and � is the sign of the permutation (1; 2; : : : ; 2n) 7! (i1; i2; : : : ; i2n).Consider a skew-symmetri funtion f [k; l℄ = �f [l; k℄ with values in some ommutative ringand de�ned on some disrete set I. For any ordered olletion (�1; : : : ; �r), �i 2 I, we set� f [�1; : : : ; �r℄ = Pf kf [�i; �j ℄k, r even;� f [�1; : : : ; �r℄ = f [�1; : : : ; �r; 0℄ =Pri=1(�1)i�1f [�1; : : : ; b�i; : : : ; �r℄, r odd,where for 0 62 I we put formally f [k; 0℄ = �f [0; k℄ = 1.Proposition. The funtion f satis�es the identityf [�1; : : : ; �r℄ = Y1�i<j�r f [�i; �j ℄if and only if it satis�es this identity for r = 3.Proo f . This proposition generalizes similar statement from [Kn℄, where the identity foreven r was proved under assumption that it is satis�ed for r = 4. Observe that adding 0 doesnot spoil the identity for r = 3. Then, it is easily veri�ed for r = 4, and so the result followsform Knuth's theorem. Remark that the diret proof of Proposition is a little simpler than theoriginal proof of Knuth's theorem. �Example. The identity is satis�ed for the funtion g[x; y℄ = y � xx+ y .Example (V. Kryukov). Denote by L the ompletion of the ring of Laurent polynomialsZ[t1; t�11 ; : : : ; tr; t�1r ℄ with help of in�nite formal series in t1=t2; t2=t3; : : : ; tr�1=tr (the variables tian enter in monomials with arbitrary large positive or negative exponents but every monomialof the produt R1R2 of two suh series is determined by only �nite number of monomials in R1and R2). For i < j setf [i; j℄ = �f [j; i℄ = 1� ti=tj1 + ti=tj = 1� 2 titj + 2 t2it2j � 2 t3it3j + : : : 2 LThis funtion also satis�es the ondition of Proposition. Indeed, if for i < j < k we set a = ti=tj,b = tj=tk, then the identity we should verify redues to the orret identity1� a1 + a � 1� ab1 + ab + 1� b1 + b = (1� a)(1 � ab)(1 � b)(1 + a)(1 + ab)(1 + b) : �Comple t i on o f the proo f o f Theorem 2.1 . Denote by A the polynomial ring invariables a(i)k . Consider the homomorphismpk� : A[t1; : : : ; tk℄! A[t1; : : : ; tk�1℄;that ommutes with t1; : : : ; tk�1 andpk�tsk = 1Xi=0 R(k)i a(k)s+�r�i; where R(k)0 +R(k)1 +R(k)2 + : : : = k�1Yi=1 1� ti1 + ti :Our goal is to ompute p1� : : : pr�ts11 � � �tsrr . Let Lk � L denote the subring of series that do notontain negative exponents of variables t1; : : : ; tk. Consider the Z[t1; : : : ; tk℄-linear homomor-phism Lk '�! A[t1; : : : ; tk℄; tm11 � � � tmrr 7! tm11 � � � tmkk a(k+1)mk+1 � � � a(r)mr :15



In terms of this homomorphism the image pk�tsk is given bypk�tsk = ' 1Xi=0 R(k)i ts+�k�ik = ' t�k+sk 1Xi=0 R(k)i t�sk = ' t�k+sk k�1Yi=1 1� ti=tk1 + ti=tk :In other words, in terms of ' the homomorphism pk� is just the multipliation byt�kk Qk�1i=1 1�ti=tk1+ti=tk . After r steps we obtainp1� : : : pr�ts11 � � � tsrr = ' ts1+�11 � � � tsr+�rr Y1�i<j�r 1� ti=tj1 + ti=tj :Now we use the identity for the funtion f of Example above. Assume r is even. Denoting~f [i; j℄ = tsi+�ii tsj+�jj f [i; j℄, we havep1�:::pr�ts11 :::tsrr = ' ts1+�11 � � � tsr+�rr f [1; 2; : : : ; r℄= ' X� ~f [i1; i2℄ ~f [i3; i4℄ � � �= X�'( ~f [i1; i2℄) '( ~f [i3; i4℄) � � �= X�Q�i1+si1 ;�i2+si2 (a(i1); a(i2)) Q�i3+si3 ;�i4+si4 (a(i3); a(i4)) � � �= Q�1+s1;:::;�n+sn(a(1); : : : ; a(r)):The ase of odd r is onsidered in a similar way or we an simply redue the problem to theprevious ase by setting �r+1 = 0. �Appendix D. Orthogonal degeneray loiIn this setion we state the analogue of Theorem 1.1 for the ase when the bundleE is orthogonali.e. it is equipped with a nondegenerate symmetri bilinear form given as a nowhere degeneratingsetion of the bundle Sym2E�. The proofs will appear elsewhere.The main diÆulty arising in the orthogonal ase is that the isotrope bundles have har-ateristi lasses that are not expressed in terms of their Chern lasses. In other words, theohomology rings of the isotrope Grassmann and ag manifolds are not generated by the Chernlasses of the tautologial bundles. Almost all suh lasses still an be expressed via the Chernlasses if the division by 2 is allowed. Therefore in this Appendix we assume that the oeÆientring of all ohomology groups ontains 1=2.There are still extra harateristi lasses in the ase when rkE = 2n is even. For in-stane the Grassmannian of maximal (i.e. n-dimensional) isotrope subspaes in C 2n has twoomponents. Namely, the dimension of the intersetion dim(L1 \ L2) of two maximal isotropesubspaes L1; L2 � C 2n may jump only by even numbers when L1 and L2 are hanging ontin-uously. These two planes belong to the same omponent i� dim(L1 \ L2) � n (mod 2). Foran isotrope subbundle L � E the missed harateristi lass is de�ned as follows. Assume thatthe bundle L is a subbundle of some maximal isotrope bundle bL. Then the top Chern lassm(bL=L), m = n� rkL, is independent on bL up to a sign. More preisely,Lemma. If bL; bL0 � E, rkE = 2n, are two maximal isotrope subbundles ontaining L, thenm(bL=L) = �m(bL0=L), where the sign � is positive (negative) if dim(bLx \ bL0x) � n (mod 2)(resp. dim(bLx \ bL0x) � n� 1 (mod 2)) for any point x 2M .16



De�nition. Let F;L � E be two isotrope subbundles. If the rank rkE = 2n is even weset e(L;F ) = (�1)dim(bLx\ bFx)k(bL=L� bF=F ); k = 2n� rkL� rkF;where bL; bF are some maximal isotrope subbundles ontaining L and F respetively.If rkE = 2n+ 1 is odd we set e(L;F ) = 0.Remark. The Lemma implies that the lass e(L;F ) depends neither on the bundles bL; bFnor on the hoie of the point x 2 M . Moreover this lass is well de�ned even if the maximalisotrope bundles bL; bF do not exist. Indeed, we an pass fromM to the total spae of the bundleG ! M whose �bers are formed by pairs of maximal isotrope subspaes in Ex ontaining Lxand Fx respetively, x 2M ; it is suÆient to de�ne the orresponding harateristi lass on Gsine the indued homomorphism of the ohomology H�(M)! H�(G) is injetive (over Z[12℄).Consider an isotrope subbundle L � E and a ag of isotrope subbundlesFk1 � Fk2 � : : : � E; rkFk = rkE � rkV � k:(Remark the shift by 1 in the numeration of the planes Fk omparing with the sympleti ase.)The degeneray loi S�1;:::;�r � M , �1 > : : : > �r are de�ned similarly to the sympleti aseby onditions dimF�ix \ Lx � i; i = 1; : : : ; r:We may always assume that �r > 0. Indeed, if rkE is even and both F0 and L are maximalthen the fat that dim(F0x\Lx) = onst (mod 2) implies that the ondition on the dimensionof the intersetion F0x \ Lx is equivalent to the orresponding ondition on the dimension ofthe intersetion F1x \ Lx.Theorem. Generially the ohomology lass dual to the lous S�1;:::;�r is given by[S�1;:::;�r ℄ = P�1;:::;�r ;where the harateristi lass P�1;:::;�r 2 H2P�i(M) is de�ned as follows:� if r = 1 then 2Pk = a(k)k � e(L;Fk), where a(k)i = i(E�L�Fk);� if r = 2 then 4Pk;l = �a(k)k �e(L;Fk)��a(l)l +e(L;Fl)�+ 2 lXi=1(�1)ia(k)k+ia(l)l�i;� if r > 3 is even then P�1;:::;�r = Pf jP�i;�j j1�i;j�r;� if r > 2 is odd then P�1;:::;�r = rXi=1(�1)i�1P�iP�1;:::; b�i;:::;�r :The generiity ondition is formulated in the same way as in the remark after Theorem 1.1.All orollaries of Theorem 1.1 listed in Setion 1 and Appendix B have the orrespondingreformulations for the ase of orthogonal degeneray loi (getting rid of redundant indiies,Shubert lasses on isotrope ag and Grassmann manifolds, degeneray of skew-symmetrimaps of bundles, lasses of twisted degeneray loi et.). We present just two examples; theinterested reader an easily formulate the others. The formulas of the statements below simplifythe orresponding formulas from [PR, LP2℄.Let L;L0 � E be two isotrope subbundles in an orthogonal bundle E. For any integerr > 0 onsider the lous 
r = fx 2 M j dim(Lx \ L0x) � rg. Denote a = (E � L � L0),17



m = rkE � rkL � rkL0. Then m is stritly positive unless rkE is even and both L;L0 aremaximal.Theorem (f. [PR℄). Assume that m > 0. Then generially[
r℄ = 12r �Qm+r�1;:::;m+1;m(a; : : : ; a) + (�1)re(L;L0)Qm+r�1;:::;m+1(a; : : : ; a)� :If m = 0 (i.e. rkE = 2n is even and the isotrope sbbundles L;L0 are maximal) we assume thatdim(Lx \ L0x) � r (mod 2). Then generially[
r℄ = 12r�1Qr�1;:::;1(a; : : : ; a):Let F � E be vetor bundles over some base M . The bundle map f : F ! E� is alledskew-symmetri if the bilinear form hfx(u); vi on Fx�Ex is skew-symmetri when restrited toFx � Fx for all x 2M . Denote m = rkE � rkF , a = (E� � F ).Corollary (f. [LP2℄). Let F ! E� be a skew-symmetri map of vetor bundles F � E.If F 6= E (i.e. m > 0) then the Poinar�e dual to the lous 
r � M of points x 2 M suh thatdimker fx � r is given by[
r℄ = 12r �Qm+r�1;:::;m(a; : : : ; a) + (�1)rm(E=F )Qm+r�1;:::;m+1(a; : : : ; a)� :If F = E then generially [
r℄ = 12r�1Qr�1;:::;1(a; : : : ; a):Referenes[A℄ V . I . Arno ld , Complex Lagrange Grassmannian, preprint Paris-IX (2000).[AG℄ V. I . Arno ld , A .B . Giventa l , Sympleti Geometry, Dynamial Systems. IV. Sym-pleti geometry and its appliations, Enyl. Math. Si. 4, 1-136 (1990);[Au℄ M. Aud in , Classes arat�eristique d'immersions lagrangiennes d�e�nies par desvari�et�es de austiques (d'apr�es V.A. Vassiliev), S�eminare Sud-Rhodanien de G�eom�etry,travaux en ours, 1, Paris: Hermann, 1984.[BGG℄ I .N . Berns t e in , I .M. Ge l f and , S . I . Ge l f and , Shubert ells, and the ohomol-ogy of the spaes G=P . (Russian) Uspehi Mat. Nauk 28 (1973), no. 3(171), 3{26.[D℄ M. Demazure , D�esingularisation des vari�et�es de Shubert generalis�ees, Ann. Si.�Eole Norm. Sup. 7 (1974), 53{88.[F1℄ W. Fu l ton , Flags, Shubert polynomials, degeneray loi, and determinantal formulas,Duke Math. J. 65 (1992), 381{420.[F2℄ W. Fu l ton , Determinantl formulas for orthogonal and sympleti degeneray loi, J.Di�. Geom., 43 (1996), 276{290.[FP℄ W. Fu l ton , P . Pragaz , Shubert Varieties and Degeneray loi, Let. Notes inMath., Vol. 1689 (1998). 18
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