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me.ruThe study of topology of the real Lagrange Grassmannians has various important appli-
ations in the theory of Hamiltonian systems, symple
ti
 and 
onta
t geometry, and others�elds of mathemati
s. The notion of the Lagrange Grassmannian 
an be 
omplexi�ed in sev-eral ways (
f. [A, MSS℄) and the 
orresponding obje
ts of 
omplex geometry also have manyimportant appli
ations. In this paper we study the most straightforward 
omplex version ofthe isotrope and the Lagrange Grassmannians, namely, the manifold of all 
omplex subspa
esof a �xed dimension in C 2n , whi
h are isotrope with respe
t to a �xed non-degenerate bilinearskew-symmetri
 form.The main result of the paper are various formulas for 
ohomology 
lasses dual to di�erentkinds of Lagrange and orthogonal degenera
y lo
i: S
hubert 
ells in isotrope Grassmann and
ag varieties, interse
tions of isotrope subbundles of symple
ti
 and orthogonal bundles, degen-erations of symmetri
 and skew-symmetri
 maps of bundles et
. This subje
t was intensivelystudied last years, here is a non-
omplete list of referen
es: [HT, JLP, F2, P1, P2, P3, PR,FP, LP1, LP2℄. A part of results presented here 
an be found in these papers. Nevertheless,I de
ided to write this note essentially for two reasons. First, to the best of my knowledge,the main results of this paper, namely the formulas of Theorems 1.1 and 2.1 are not known.Their parti
ular 
ase solves J. Harris' problem. I used these formulas in the 
omputations of the
hara
teristi
 
lasses dual to Lagrange, Legendre, and 
riti
al point fun
tion singularities [K3℄.Two di�erent proofs are presented here. The analogues of these formulas for orthogonal 
ase areformulated in Appendix D. The se
ond, and perhaps, more important reason was an attemptto present a brief review of basi
 ideas and methods of the theory whi
h would be self-
ontainedand 
lear for non-spe
ialists in interse
tion theory. I dare hope that the respe
t to the theorywill not be lost if it would be shown to be mu
h simpler then it is sometimes presented. Iam 
ertainly sure that the intension `to make things 
lear' will always be a strong tradition ofMos
ow Mathemati
al Journal.I am extremely grateful to V. Kryukov for 
areful reading the initial version of the paperand many essential remarks. He pointed my attention to the identities of Appendix C. The �nalform of the statement of the main Theorem 1.1 is in mu
h extent due to him. I appre
iate thehospitality of the I. Newton Institute, Cambridge, where the work on the paper was 
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1 Main resultsConsider ve
tor bundles L � E over some manifold M and another 
ag F of subbundlesFk1 � Fk2 � : : : � E; rkFk = n+ 1� k; where n = rkE � rkL:Di�erent degenera
y lo
i are de�ned as the subsets of the baseM with the pres
ribed dimensionsfor the interse
tions of the 
orresponding �bers of the bundles Fi and L. Namely, for a givende
reasing sequen
e of integers �1 > �2 > : : : > �r > 0 we 
onsider the degenera
y lo
usS�1;:::;�r �M as the set of points x 2M su
h thatdimF�ix \ Lx � i (1)for all i = 1; : : : ; r (assuming that the bundles F�i are present in the 
ag F .)Assume that the �bers of E are equipped with a linear symple
ti
 stru
ture, i.e. we aregiven a nowhere degenerating se
tion of the bundle �2E�. Assume also that the subbundles Fiand L are isotrope i.e. the �bers of Fki and L are isotrope subspa
es in the �bers of E. Thisassumption implies additional restri
tions on the degenera
y lo
i whi
h 
hange, in parti
ular,their expe
ted 
odimensions. We present a formula for the 
ohomology 
lasses dual to theselo
i in terms of the Chern 
lasses of the bundles E; V; Fi.Remark. Denote by �(k) the largest number k+j su
h that �k = �k+1+1 = : : : = �k+j+j.The index k is 
alled redundant if �(k) 6= k. Otherwise it is 
alled essential. The 
onditions (1)for redundant indi
es follow from those for the essential ones. They 
an be dropped in thede�nition of the degenera
y lo
us S�1;:::;�r .For any 
olle
tion of formal series 
(i) = 1 + 
(i)1 + 
(i)2 : : :, i = 1; : : : ; r, and any sequen
e(not ne
essary de
reasing) of integers �1; : : : ; �r we de�ne the generalized S
hur Q-polynomialsQ�1;:::;�r(
(1); : : : ; 
(r)) as follows:� for r = 1 we set Qk(
) = 
k;� for r = 2 we setQk;l(
(1); 
(2)) = 
(1)k 
(2)l � 2
(1)k+1
(2)l�1 + 2
(1)k+2
(2)l�2 � 2
(1)k+3
(2)l�3 + : : : ;� for any even r � 4 we setQ�1;:::;�r(
(1); : : : ; 
(r)) = Pf jQ�i;�j (
(i); 
(j))j1�i;j�r; (2)� for any odd r � 3 we setQ�1;:::;�r(
(1); :::; 
(r)) = rXk=1(�1)k�1
(k)�k Q�1;:::;
�k;:::�r(
(1); :::;d
(k); :::; 
(r)): (3)Here Pf is the PfaÆan of a skew-symmetri
 matrix (see Appendix C). This de�nition makessense only if Q�i;�j (
(i); 
(j)) +Q�j ;�i(
(j); 
(i)) = 0 for all 1 � i; j � r: (4)If this 
ondition holds, then the polynomial Q�1;:::;�r(
(1); :::; 
(r)) depends skew-symmetri
allywith respe
t to the permutations of indi
es �i and simultaneous permutations of 
(i),Q�s(1);:::;�s(r)(
(s(1)); :::; 
(s(r))) = (�1)jsjQ�1;:::;�r(
(1); :::; 
(r));2



where s is a permutation and jsj is its sign. This follows from the fa
t that the PfaÆan isskew-symmetri
 with respe
t to simultaneous permutations of rows and 
olumns of the matrix.In parti
ular, Q�1;:::;�r(
(1); :::; 
(r)) vanishes if for some i 6= j one has �i = �j and 
(i) = 
(j).Remark. The distin
tion between the 
ases of even and odd r is apparent. For instan
e,the following redu
tion formula holds for any r > 1 with positive �1; : : : ; �rQ�1;:::;�r;0(
(1); :::; 
(r+1)) = Q�1;:::;�r(
(1); :::; 
(r))(whenever these 
lasses are de�ned). For r = 2 this evidently follows from the de�nition. Forgreater r it 
an be easily derived from (2) and (3) by indu
tion in r.Let �1 > : : : > �r > 0. If the 
ag F 
ontains the bundles F�i for all essential indi
es i thenthe degenera
y lo
us S�1;:::;�r �M is well de�ned.Theorem 1.1. Generi
ally the 
ohomology 
lass dual to S�1;:::;�r is given by[S�1;:::;�r ℄ = Q�1;:::;�r ;where Q�1;:::;�r = Q�1;:::;�r(E�L�F��(1) ; : : : ; E�L�F��(r)):If the 
ag F 
ontains the bundles F�i for all redundant indi
es i then we have alsoQ�1;:::;�r = Q�1;:::;�r(E�L�F�1 ; : : : ; E�L�F�r):First verify that the 
lasses entering these formulas are de�ned, that is the 
ondition (4) issatis�ed. Indeed, denoting Xk = E � L� Fk, we getQk;l(
(Xk0); 
(Xl0)) +Ql;k(
(Xl0); 
(Xk0)) = 2 1Xi=�1(�1)i
k+i(Xk0) 
l�i(Xl0)= �2 
k+l(X�k0 �Xl0) = �2 
k+l((L?=L)� � F?k0 =Fl0):Here we used the isomorphisms E=L? �= L�, E=F?k0 �= F �k0 provided by the symple
ti
 stru
ture(the orthogonal 
omplement is 
onsidered with respe
t to the symple
ti
 form). The bundle inthe bra
kets has the rank(rkE � 2 rkL) + (rkE � rkFk0 � rkFl0) = k0 + l0 � 2:The (k + l)th Chern 
lass of this bundle vanishes if, for example, k0 � k, l0 � l. Thereforeall 
lasses of the form Q�1;:::;�r(
(E�L�F�01); : : : ; 
(E�L�F�0r )) with �0i � �i are always wellde�ned. �Remark. The generi
ity 
ondition of Theorem is formulated as follows. Consider thelo
ally trivial bundle Y !M of `geometri
al 
on�gurations' whose �bers are formed by produ
tsFx � �x where Fx and �x are manifolds of isotrope 
ags and isotrope planes in Ex of thedimensions 
orresponding to the ranks of the bundles Fk, L. The 
anoni
al bundles over Yde�ne degenera
y lo
i on Y and the generi
ity 
ondition in this 
ase is, by de�nition, satis�ed.The given 
ag of bundles F and the bundle L de�ne a se
tion s : M ! Y . The generi
ity
ondition means that this se
tion is transversal to every singularity lo
us on Y . In this 
ase theequality for M is indu
ed by s� from the 
orresponding equality for Y . Remark that the 
lasss�[S�1;:::;�r ℄ is well de�ned on M and the equality of Theorem holds for this 
lass even if the3



se
tion s is not transversal. Similar tri
k 
an be applied for other situations in order to avoidproblems with non-transversality. In parti
ular it is implied in the de�nition of the manifoldsZk in the next se
tion. �Remark. Similar tri
k is used also to show that it is suÆ
ient to prove Theorem 1.1only for the 
ase when the 
ag F 
ontains subbundles F�i for all redundant indi
es i. Indeed,
onsider the 
ag bundle Y ! M the �bers of whi
h are formed by 
omplete isotrope 
agsF 0nx � F 0(n�1)x � : : : � Ex su
h that F 0�ix = F�ix for all essential indi
es i. Then the validity ofthe assertion of Theorem 1.1 for Y implies its validity for M sin
e the indu
ed homomorphismof the 
ohomology H�(M)! H�(Y ) is inje
tive, see Appendix A. �Proo f o f the s e 
ond equa l i ty o f Theorem 1.1 ,Q�1;:::;�r(
(X1); :::; 
(Xr)) = Q�1;:::;�r(
(X�(1)); :::; 
(X�(r))); Xk = E�L�F�k : (5)By de�nition, the 
lasses Q�1;:::;�r(
(X1); :::; 
(Xr)) are polilinear with respe
t to the total Chern
lasses 
(Xk). Suppose that the index k is redundant. Then from the equality
�(Xk) = 
�(F��(k)=F�k +X�(k)) = �(k)�kXj=0 
j(F��(k)=F�k ) 
��j(X�(k))we get Q:::;�k;:::(: : : ;Xk; : : :) = �(k)�kXj=0 
j(F��(k)=F�k) Q:::;�k�j;:::(: : : ;X�(k); : : :):When we apply similar expansion to other redundant indi
es we obtain a linear 
ombinationof di�erent 
lasses of the form Q�0(
(X�(1)); : : : ; 
(X�(r))). In this 
ombination all terms ex
eptone with �0 = � will have repeating indi
es and so they vanish. �Two di�erent proofs of the �rst equality of Theorem 1.1 are presented in two subsequentse
tions. In this Se
tion we dis
uss some appli
ations of Theorem.In parti
ular 
ase when the 
ag F 
onsists of only one plane L0 = Fk the formula ofTheorem 1.1 answers the problem of J. Harris about the 
lass dual to the lo
us given by theinterse
tion ranks for the �bers of two isotrope bundles L and L0 (see [PR℄, where the answerfor the 
ase when both L and L0 are Lagrangian is given in mu
h more 
ompli
ated form).Proposition. Let L;L0 be isotrope subbundles in a symple
ti
 bundle E. Then the 
oho-mology 
lass dual to the lo
us 
r = fx 2M j dimLx \ dimL0x � rg is given by[
r℄ = Qm+r;m+r�1;:::;m+1(
(E�L�L0); : : : ; 
(E�L�L0));where m = rkE � rkL� rkL0. �In parti
ular, the last formula for the 
ase r = rkL = rkL0 des
ribes the 
ohomology 
lassdual to the diagonal in the produ
t of two isotrope Grassmannians (or, more general, to thediagonal bundle in the �ber produ
t of two isotrope Grassmannian bundles asso
iated withthe given symple
ti
 ve
tor bundle E ! M (
f. [P2℄ where this 
lass for the 
ase of LagrangeGrassmannians is presented in mu
h more 
ompli
ated form),[�℄ = Qm+r;m+r�1;:::;m+1(
(E�L�L0); : : : ; 
(E�L�L0)); (6)where r = rkL = rkL0, m = rkE � 2r, and L1; L2 are the tautologi
al bundles over theGrassmannians. 4



The simplest examples of degenera
y lo
i are provided by S
hubert varieties on Grassman-nians and 
ag manifolds of isotrope subspa
es in C 2n . In parti
ular, this gives the followingformula (for the 
ase of Lagrange Grassmannians it was proved in [P2℄).Proposition. On any Grassmannian of isotrope subspa
es in symple
ti
 ve
tor spa
e the
ohomology 
lass dual to the S
hubert 
y
le S� de�ned by dimensions of interse
tions with a�xed isotrope 
ag is given by[S�1;:::;�r ℄ = Q�1;:::;�r(
(�L); : : : ; 
(�L)): (7)More examples are provided by symmetri
 degenera
y lo
i. Consider some ve
tor bundleV ! M and a symmetri
 bundle map f : V ! V � (it 
an be thought as the se
tion of thebundle Sym2V �). Denote by 
r �M the lo
us of points x 2M for whi
h the kernel ker fx hasdimension at least r. Then we have (
f. [HT, JLP, P1℄)[
r℄ = Qr;r�1;:::;1(
(V � � V ); : : : ; 
(V � � V )):Indeed, the sum V �V � 
arries the natural symple
ti
 stru
ture (due to the natural isomorphismVx � V �x �= T �Vx). The 
ondition that the map fx is symmetri
 is equivalent to the 
onditionthat the graph Lx � Vx� V �x of this map is Lagrangian (in fa
t, the graphs of symmetri
 mapsVx ! V �x form an open 
ell in the Grassmannian of Lagrange subspa
es in Vx�V �x ). Hen
e thelo
us 
r is the degenera
y lo
us Sr;r�1;:::;1 de�ned with respe
t to the Lagrange subbundles Land V � 0 in V � V � and we 
an apply the formula of Theorem 1.1. �In fa
t, all assertions about Lagrange degenera
y lo
i 
an be reformulated in terms of the
orresponding symmetri
 degenera
ies. (The inverse is also true, see Remark at the end ofAppendix A.) The following assertions are the dire
t reformulations of Theorem 1.1 for the 
aseof symmetri
 degenera
y lo
i in the same way as explained above.Proposition. Consider a 
ag of ve
tor bundles Fn � : : : � F1 = V !M , rkFk = n+1�k,and a symmetri
 bundle map f : V ! V �. Denote by 
�1;:::;�r � M the lo
us of points x 2 Msu
h that dimF�ix \ ker fx � i. Then generi
ally[
�1;:::;�r ℄ = Q�1;:::;�r(
(V � � F��(1)); : : : ; 
(V � � F��(r))): �A parti
ular 
ase of the last Proposition is the following simpli�
ation of the formulasfrom [LP2℄ for degenera
ies of symmetri
 maps. Let F � E be ve
tor bundles over some baseM . The bundle map f : F ! E� is 
alled symmetri
 if the bilinear form (u; v) 7! hfx(u); vi onFx�Ex is symmetri
 when restri
ted to Fx�Fx for all x 2M . One 
an easily see that the linearmap fx : Fx ! E�x is symmetri
 if and only if its graph L(fx) = fy�(fx(y)) 2 Ex
E�x j y 2 Fxgis an isotrope subspa
e in Ex � E�x. The kernel of fx is identi�ed with the interse
tion of theisotrope subspa
es L(fx) and E � 0. Hen
e,Proposition. Let F ! E� be a symmetri
 map. Then the 
ohomology 
lass Poin
ar�e dualto the lo
us 
r �M of points x 2M su
h that dimker fx � r is given by[
r℄ = Qn+r;n+r�1;:::;n+1(
(E� � F ); : : : ; 
(E� � F )); n = rkE � rkF: �The following interpretation of Theorem 2.1 of the next Se
tion was used in [K3℄. For agiven ve
tor bundle V ! M denote by Dr(V ) ! M the asso
iated lo
ally trivial 
ag bundlewhose �bers are formed by all 
ags D1; : : : ;Dr � Vx, dimDi = i. If f : V ! V � is a generi
symmetri
 bundle map de�ne the submanifold Zr � Dr(V ) by the 
ondition Dr � ker fx.Denote ti = �
1(Di=Di�1). Let p : Zr !M be the natural proje
tion.5



Theorem. For any monomial ts11 � � � tsrr 2 H�(Zr), we havep�(ts11 � � � tsrr ) = Qs1+1;:::;sr+1(
(V � � V ); : : : ; 
(V � � V )): �The analogues for the orthogonal 
ase of the formulas of this Se
tion are formulated inAppendix D.2 The push-forward formulaIn this se
tion we prove Theorem 1.1 by means of resolutions of degenera
y lo
i. Let L � E andFk1 � Fk2 � � � � � E, rkFk = n+1� k, n = rkE � rkL, be as in previous Se
tion. For a givende
reasing (not ne
essary stri
tly) sequen
e of integers �1 � : : : � �r su
h that the planes F�iare present in the 
ag F , we 
onsider the 
ag bundle spa
e Dr ! M , whose �bers are formedby all isotrope 
ags D1x � D2x � : : : Drx � Ex; dimDi = i;su
h that Dix � F�ix for i = 1; : : : ; r. Denote by Zr � Dr the submanifold given by the 
onditionDrx � Lx, where Drx is the largest plane of the 
ag. Generi
ally Zr is a smooth manifold of(
omplex) dimension dimZr = dimM �P�i. We study the push-forward homomorphismp� : H�(Zr)! H�(M)
orresponding to the natural proje
tion p : Zr ! M . We shall use the same notations Di; Lfor the 
orresponding tautologi
al bundles on Dr, and Zr. Denote ti = �
1(Di=Di�1) =
1((Di=Di�1)�).Theorem 2.1. For any monomial ts11 � � � tsrr 2 H�(Zr) we havep�(ts11 � � � tsrr ) = Qs1+�1;:::;sr+�r(
(E�L�F�1); : : : ; 
(E�L�F�r)) 2 H�(M):Theorem 1.1 is a 
orollary of Theorem 2.1. Indeed, suppose that �1 > �2 > : : : > �r > 0.Then the image p(Zr) 
oin
ides with S�1;:::;�r . Moreover, the restri
tion of p to Zr is one-to-oneover an open dense set in S�1;:::;�r . Therefore, applying Theorem 2.1 to the 
ase s1 = : : : = sr = 0we get the formula of Theorem 1.1:[S�1;:::;�r ℄ = p�(1) = Q�1;:::;�r(
(E�L�F�1); : : : ; 
(E�L�F�r)): �To prove Theorem 2.1 we represent the map p as the 
omposition of the following 
hain ofbundles and embeddingsP (Er�1) P (E1) P (E)% # % # % #Zr pr�! Zr�1 pr�1�! � � � p3�! Z2 p2�! Z1 p1�! M (8)where Ek is the restri
tion to Zk of the bundle F�k=Dk. At the points y 2 Zk we should haveDky � Ly � Dk?y . The proje
tive planes of the bundle P (Ek) are formed by all possible positionsof the line Dk+1y =Dky in F�ky=Dky . The submanifold Zk+1 � P (Ek) is given by 
ondition: theplane Ly=Dky � Dk?y =Dky 
ontains the line Dk+1y =Dky . This explains the diagram (8).6



For the 
omputation of the homomorphism pr� : H�(Zr) ! H�(Zr�1) we remark that the
lasses t1; : : : ; tr�1 
ome from Zr�1 and so the multipli
ation by these 
lasses 
ommutes withpr�. Hen
e, it is suÆ
ient to 
ompute pr�(tsr).Lemma. The homomorphism pr� : H�(Zr)! H�(Zr�1) is given bypr�(tsr) = R(r)0 a(r)s+�r +R(r)1 a(r)s+�r�1 +R(r)2 a(r)s+�r�2 + : : : ;where a(r)i = 
i(E�L�F�r) and R(r)i = 
i(Dr�1�D(r�1)�) are polynomials of degree i int1; : : : ; tr�1 that are independent of s; � and given by the expansionR(r)0 +R(r)1 +R(r)2 + : : : = r�1Yi=1 1� ti1 + ti = r�1Yi=1 �1� 2ti + 2t2i � 2t3i + : : :� :Proo f o f Theorem 2.1 . Iterating this Lemma we 
an 
ompute the dire
t image p� =p1� : : : pr� of any parti
ular monomial. This solves, in prin
iple, the problem of �nding the
ohomology 
lass dual to any degenera
y lo
us. It follows without further 
omputations thatp�(ts11 � � � tsrr ) is expressed as a universal polynomial (depending only on �i, si, i = 1; : : : ; r) in
lasses a(k)i = 
i(E�L�F�k). It is a matter of algebra to show that the result has the ni
e formof Theorem 2.1. This algebrai
 proof is given in Appendix C. �Example. For r = 2 applying Lemma twi
e we get[Sk;l℄ = p1�p2�(1) = p1� �a(2)l � 2t1a(2)l�1 + 2t21a(2)l�2 � : : :� 2tl1�= p1�(1) a(2)l � 2p1�(t1) a(2)l�1 + 2p1�(t21) a(2)l�2 � : : : � 2p1�(tl1)= a(1)k a(2)l � 2a(1)k+1a(2)l�1 + 2a(1)k+2a(2)l�2 � : : : � 2a(1)k+l = Qk;l(a(1); a(2));where a(1) = 
(E � L� Fk), a(2) = 
(E � L� Fl). �Proo f o f Lemma. Represent pr as the 
omposition Zr i�! P (Er�1) q�! Zr�1 a

ordingto the diagram (8). The homomorphism i� is given by the multipli
ation by the fundamental
y
le of Zr � P (Er�1). The submanifold Zr � P (Er�1) is given, as explained above, by the
ondition that the line Dry=Dr�1y � D(r�1)?y =Dr�1y is 
ontained in the plane Ly=Dr�1y . Thismay be reformulated as vanishing of the se
tion for the bundle Hom(Dr=Dr�1;D(r�1)?=L).Therefore i�(tsr) = tsr 
n�r+1(Hom(Dr=Dr�1;D(r�1)?=L))= tsr Xi+j=n�r+1 
i(D(r�1)?=L) tjr= Xi+j=n+s�r+1 
i(D(r�1)?=L) tjr= 
n+s�r+1(D(r�1)?=L�Dr=Dr�1)= 
n+s�r+1(Dr�1�D(r�1)�+E�L�F�r + F�r=Dr)= Xi+j=n+s�r+1 
j(Dr�1�D(r�1)�+E�L�F�r) 
i(F�r=Dr)Now we apply q�. The 
lasses 
j(Dr�1�D(r�1)� + E�L�F�r) 
ommute with this homo-morphism as they 
ome from Zk�1. The bundle F�r=Dr is the 
anoni
al quotient bundle7



over P (Er�1). Therefore q�
d(F�r=Dr) = 1, where d = rk(F�r=Dr) = n + 1 � r � �r andq�
i(F�r=Dr) = 0 for i 6= d. Therefore,pr�(tsr) = q�i�(ts) = 
s+�r(Dr�1�D(r�1)� +E�L�F�r)= 1Xi=0 
i(Dr�1�D(r�1)�) a(r)s+�r�i: �3 Inverse indu
tionIn this se
tion we present an alternative proof of Theorem 1.1. Namely, we �rst establish theequality of Theorem in one parti
ular 
ase when M = FN is the 
ag manifold of 
ompleteisotrope subspa
es in C 2N , the bundle E = C 2N is trivial, F is the tautologi
al 
ag of bundlesand L � C 2N is a �xed Lagrange subspa
e. This spa
e FN for suÆ
iently large N togetherwith the indu
ed S
hubert partition on it is 
onsidered as the 
lassifying spa
e for our problem.It means that under 
ondition of Theorem 1.1 there is a 
lassifying map � : M ! FN whi
hindu
es both the partition of M into the degenera
y lo
i and the 
hara
teristi
 
lasses. So theequality of Theorem 1.1 forM is indu
ed from the 
orresponding equality for FN . Remark thatin general we 
an not avoid the 
onsideration of C1-manifolds and maps. The reader who doesnot like this kind of arguments may 
onsider the proof as a motivation for �nding new formulas(whi
h 
an be applied as well in other problems).Let F = Fn be the spa
e of 
omplete isotrope 
ags Fn � : : : � F1 � C 2n , dimFk = n+1�k.For a stri
tly de
reasing sequen
e of integers n � �1 > : : : > �r > 0 we de�ne the S
hubert
y
le S�1;:::;�r � F by 
onditions dim(F�1 \ L) � i, i = 1; : : : ; r, where L � C 2n is a �xedLagrange subspa
e.Theorem 3.1. The 
ohomology 
lass dual to the S
hubert 
y
le in F is given by[S�1;:::;�r ℄ = Q�1;:::;�r(
(�F�1); : : : ; 
(�F�r )):In the proof we use the method of `divided di�eren
es', see [BGG, D, F1, F2, P3℄. Namely,we introdu
e operations �k : H�(Fn) ! H��2(Fn), k = 1; : : : ; n, that de
rease by 1 the 
om-plex 
odimension of the 
y
les representing the 
ohomology 
lasses. Then we 
ompute theseoperations in terms of degenera
y lo
i and in terms of the Chern 
lasses. Then from the validityof Theorem for the `deepest' lo
us we 
an establish the validity of Theorem for other lo
i byreverse indu
tion over the indi
es �.The operations �k are de�ned as follows. Denote by F(k) the manifold of isotrope 
agsFn � � � �Fk+1 � Fk�1 � � � � � F1 (with the kth subspa
e of rank n + 1 � k omitted). Thenatural proje
tion pk : F! F(k)is a smooth lo
ally trivial bundle with the �bers isomorphi
 to C P 1 . The total spa
e F of thisbundle 
an be identi�ed with the proje
tivization on the bundle Fk�1=Fk+1 of rank 2 over F(k).This des
ription is valid for all k = 1; 2; : : : ; n if we set Fn+1 = 0, F0 = F?2 . Indeed, sin
e theplane F1 is Lagrangian, the 
ondition F2 � F1 implies F1 � F?2 .De�nition. �k = p�k pk� : H�(F)! H��2(F).Lemma S. Let k � 2. Then�k[S�1;:::;k;:::;�r ℄ = [S�1;:::;k�1;:::;�r ℄8



if k 2 � and k�1 62 �; otherwise �k[S�1;:::;�r ℄ = 0.For k = 1 we have �1[S�1;:::;�r�1;1℄ = [S�1;:::;�r�1 ℄and �1[S�1;:::;�r ℄ = 0 if �r > 1.Lemma C. In order to obtain the a
tion of �k in terms of Chern 
lasses one should to re-pla
e the 
lasses of [S�1;:::℄ in the statement of previous Lemma by the 
orresponding polynomialsQ�1;:::(
(�F�1); : : :).Proo f o f Theorem 3.1 . Every S
hubert 
y
le in F 
an be obtained from the 
y
leSn;n�1;:::;1 by a sequen
e of operations �k for di�erent k. If we would prove the equality ofTheorem 3.1 for this 
y
le Sn;n�1;:::;1 then by Lemmas S and C we get that similar equality holdsfor the other S
hubert 
y
les. In the multi-index (n; n� 1; : : : ; 1) all entries ex
ept the last oneare redundant. Therefore, Qn;n�1;:::;1(
(�Fn); : : : ; 
(�F1)) = Qn;n�1;:::;1(
(�F1); : : : ; 
(�F1)).It follows that it is suÆ
ient to verify the required equality on the Lagrange Grassmannian �n.But in this 
ase the degree of the 
lass Qn;n�1;:::;1(
(�F1); : : : ; 
(�F1)) is equal to the dimensionof �n and Sn;n�1;:::;1 is a point. Therefore,Qn;n�1;:::;1(
(�F1); : : : ; 
(�F1)) = b [pt℄ = b [Sn;n�1;:::;1℄ 2 H2n(n+1)2 (�n) �= H0(�n);where the 
onstant b 2 Z is equal to the value of the 
hara
teristi
 
lassQn;n�1;:::;1(
(�F1); : : : ; 
(�F1)) on the fundamental 
y
le of �n. Assume that b 6= 1. Thenagain by inverse indu
tion we get that for all S
hubert 
y
les on Fn we should haveQ�(
(�F�1); : : : ; 
(�F�r )) = b [S�℄ and to �nd the 
onstant b it is suÆ
ient to 
ompute [S�℄ forany parti
ular �.Set � = (n). Then Sn � Fn is given by the 
ondition F1 � L. This is equivalent to thevanishing of the se
tion of the bundle Hom(F1; C 2n=L). Therefore,[Sn℄ = 
n(Hom(F1; C 2n=L)) = 
n(�F1) = Qn(
(�F1)):This proves that, in fa
t, b = 1. Theorem is proved. �Proo f o f Lemma S . If k 62 � then the planes of the bundle Fk are not used in thede�nition of the 
y
le S�. Therefore, this 
y
le is the inverse image of the 
orresponding 
y
leS0� � F(k). Hen
e pk�[S�℄ = pk�pk�[S0�℄ = [S0�℄ pk�pk�(1) = 0;and so �k[S�℄ = 0. If k = �i for some number i but �i+1 = k � 1 then the index i is redundantand we 
an apply the same arguments.Assume now that k = �i and that the index i is not redundant. Geometri
ally the homo-morphism �k 
an be des
ribed as follows. Suppose that a 
ohomology 
lass in the total spa
eof the bundle pk is represented by a 
y
le C whi
h meets every �ber at at most one point.Then the 
lass �k[C℄ is represented by the union of all �bers through the points of C. It fol-lows from this des
ription that the 
y
le representing the 
lass �k[S�℄ is de�ned by 
onditionsdimF�j \ L � j for j 6= i and the 
orresponding 
ondition for the index i is repla
ed by thefollowing one: there exist a plane F 0k of dimension n + 1 � k su
h that F(k+1) � F 0k � F(k�1)and dimF 0k \ L � i. Clearly, this 
ondition is equivalent to the 
ondition dimF(k�1) \ L � i,that is �k[S�℄ is represented by the 
y
le S�1;:::;�i�1;k�1;�i+1;:::;�r . �
9



Proo f o f Lemma C. Observe that �k 
ommutes with the multipli
ation by 
hara
teristi

lasses of bundles that are de�ned on F(k). In parti
ular, if k 62 � then the 
lass Q� is the pullba
k of the 
orresponding 
lass on F(k). Therefore,�kQ� = Q��k(1) = 0:Assume now that k = �i > 1 for some (unique) i. Then the equality
(�Fk) = 
(Fk�1=Fk � Fk�1) = (1 + t) 
(�Fk�1);where t = 
1(Fk�1=Fk) impliesQ:::;k;:::(: : : ; 
(�Fk); : : :) = A+ t B;where A = Q:::;k;:::(: : : ; 
(�Fk�1); : : :) and B = Q:::;k�1;:::(: : : ; 
(�Fk�1); : : :) are 
lasses that arede�ned on F(k). Therefore,�kQ�(: : :) = �k(A+ t B) = A�k(1) +B�k(t):�k(1) vanishes by dimensional reason and the 
lass t = 
1(Fk�1=Fk) is the top Chern 
lassof the 
anoni
al quotient bundle for the �ber bundle P (Fk�1=Fk+1) over F(k). Therefore,�k(t) = p�kp�k(t) = 1. We get �nally�kQ:::;k;:::(: : : ; 
(�Fk); : : :) = B = Q:::;k�1;:::(: : : ; 
(�Fk�1); : : :):Observe that if k�1 2 � = (: : : ; k; : : :) then �0 = (: : : ; k � 1; : : :) has repeating indi
es andso B = 0 in this 
ase. This proves Lemma in 
ase when k > 1.In the 
ase k = 1 = �r the 
omputation above 
an be applied as well if we denote F0 = F?2and gives �1Q:::;�r�1;1(: : : ; 
(�F�r�1); 
(�F1)) = Q:::;�r�1;0(: : : ; 
(�F�r�1); 
(�F0)):By Remark before Theorem 1.1, the 
lass on the right hand side is equal toQ:::;�r�1(: : : ; 
(�F�r�1)). Lemma is proved. �Proo f o f Theorem 2.1 . Assume we are given ve
tor bundles V � E !M , Fk1 � : : : �E ! M , E is symple
ti
, L, Fi are isotrope. Without loss of generality we 
an assume thatE splits into the sum E = L � L� � K, where K is symple
ti
 and the symple
ti
 stru
ture!E on E is the sum of the 
orresponding symple
ti
 stru
tures !L�L� on L � L� and !K onK. Indeed, the �ber L0x of the bundle L0 �= L� is 
hosen among the isotrope subspa
es in Extransversal to L?x and having the 
omplementary dimension. The spa
e of possible 
hoi
es is
ontra
tible (it is homeomorphi
 to a 
ell). Hen
e su
h subbundle L0 exists (in general, it is a
omplex C1-bundle). Then we set Kx = L?x \ L0?x .Now 
hoose the bundle U ! M su
h that L �K � U = C N is a trivial bundle (again, ingeneral, U is a 
omplex C1-bundle). De�ne the bundles eE; eL; eFi and the symple
ti
 stru
ture! eE on eE a

ording to the following tableeE = L � L� � K � K � U � U�! eE = !L�L� � !K � �!K � !U�U�eL = L � 0 � � � U � 0eFk = Fk � 0 � 0 � U�10



Here � 2 K�K is the diagonal bundle. Re
all that the natural symple
ti
 stru
ture on the sumKx�Kx of two symple
ti
 spa
es is de�ned as the di�eren
e of the symple
ti
 stru
tures indu
edfrom the two summands. If it is de�ned this way then the diagonal �x = fz�z j z 2 Kxg aswell as the anti-diagonal �0x �= ��x = fz�(�z) j z 2 Kxg are Lagrange subspa
es. In parti
ular,they de�ne the 
anoni
al isomorphism K �K = ����.By 
onstru
tion, the degenera
y lo
i for this new problem are the same. But now the bundleseL �= L�K�U �= C N and eE = eL� eL� �= C 2N are trivial and the �bers of the bundles eFk belongto the same symple
ti
 spa
e C 2N . Therefore, they de�ne the map� :M ! F0N ;where F0N is the the manifold of (in
omplete) 
ags of isotrope subspa
es in C 2N of dimensionsN � n+ 1; N � n+ 2; : : : ; N .The formula of Theorem 3.1 
an be applied to the 
lasses of S
hubert 
y
les on F0N sin
ethe proje
tion FN ! F0N indu
es an inje
tive homomorphism of 
ohomology, see Appendix A.The degenera
y lo
us S�(M) � M is the inverse image of the S
hubert 
y
le S�(F0N ) � F0N .The 
hara
teristi
 
lasses indu
ed by � are ��
( eFk) = 
(Fk + U�) = 
(Fk + L�E). Therefore,[S�(M)℄ = ��[S�(F0N )℄ = ��Q�(
(� eF�1); : : : ; 
(� eF�r )= Q�(
(E � L� F�1); : : : ; 
(E � L� F�r)Theorem 1.1 is proved. �Remark. The map � is holomorphi
 in 
ase when the degenera
y lo
us is the diagonalin the produ
t of two isotrope Grassmannians or it is a S
hubert 
ell on the Grassmannian ofisotrope subspa
es in C 2N . Therefore the proof of formulas (6) (for the 
ase E = C 2N ) and (7)of Se
tion 1 by the method of this Se
tion does not require 
onsiderations of C1-maps andbundles.Remark. Lemmas C and S remain valid if FN is repla
ed by the bundle of isotrope
ags asso
iated with some symple
ti
 ve
tor bundle, sf. [F2℄. It follows that the formula ofTheorem 1.1 
an be derived from the formula (8) of Se
tion 1 for the 
lass of the diagonal inthe �ber produ
t of two Lagrange Grassmann bundles. The dire
t proof of (8) would imply theproof of Theorem 1.1 by divided di�eren
es method without using C1-maps and bundles.Appendix A. Complex Lagrange GrassmannianIt was shown in previous Se
tion that the Lagrange Grassmannian �N , N ! 1 plays therole of a 
lassifying spa
e for many geometri
al problems. The limit 
ohomology grouplimN!1H�(�N ) is 
alled the ring of Lagrange 
hara
teristi
 
lasses. In this se
tion we de-s
ribe the topology of �N . All results of this se
tion are proved in [P2℄ but our presentation ismore elementary.Consider an even-dimensional ve
tor spa
e C 2n and a �xed skew-symmetri
 bilinear form(the symple
ti
 form) P dpi ^ dqi on it, where dpi; dqi are elements of some �xed basis on thedual spa
e C �2n .De�nition. An n-dimensional subspa
e is 
alled Lagrangian if the restri
tion of thesymple
ti
 form to it vanishes. The 
omplex Lagrange Grassmannian �Cn is the manifold of allLagrange subspa
es in C 2n . 11



The topology of the real Lagrange Grassmannian �Rn �= U(n)=O(n) is well known. Its Z2-
ohomology is H�(�R;Z2) �= �Z2(�1; : : : ; �n). The (integer) 
ohomology of 
omplex LagrangeGrassmannian �Cn �= Sp(2n)=U(n) has a similar des
ription.Theorem ([P2℄). The ring H�(�Cn) is isomorphi
 to the quotient of the polynomial ringin variables a1; a2; : : : ; an of degrees 2; 4; : : : ; 2n over the ideal generated by elementsa2i � 2ai+1ai�1 + 2ai+2ai�2 � 2ai+3ai�3 + : : : : (9)The group H�(�Cn) is torsion free and the monomials ai11 : : : ainn , ik 2 f0; 1g form a free additivebasis.In the relations above we assume a0 = 1 and ai = 0 for i < 0 or for i > n. The 
lassesai 2 H2i(�Cn) are Chern 
lasses of the tautologi
al bundle L! �Cn (or inverse images of Chern
lasses of the usual Grassmannian GCn;2n under the embedding �Cn � GCn;2n.The se
ond assertion of Theorem follows from the �rst one. To express an element of thisring in terms of this basis one should apply repeatedly relation of Theorem to every mono-mial whi
h 
ontains squares of generators. This will require �nite number of steps sin
e everynewly appeared monomial has degree stri
tly less than the original one if one uses the `strange'�ltration with the degree of ai equal i2.The relations (9) 
an be rewritten in the form(1 + a1 + a2 + : : :+ an)(1� a1 + a2 � : : : � an) = 1:In this form they follow from the fa
t that the symple
ti
 form indu
es an isomorphism C 2n=L �=L�. In the proof of Theorem we use the following well-known lemma. Let E !M be a 
omplexve
tor bundle of rank d over some manifold M . Let P = P (E) be the proje
tivization of thebundle E, i.e. the bundle spa
e over M whose �bers are proje
tive spa
es formed by lines in�bers of E. Consider H�(P ) as a module over the ring A = H�(M). Let L ! P be thetautologi
al line bundle and t = 
1(L�) = �
1(L).Lemma. Additively the group H�(P ) is isomorphi
 to H�(M � C P d�1) independently ofthe bundle E. Moreover, it is freely generated by elements 1; t; : : : ; td�1 as an A-module. As aring H�(P ) is isomorphi
 to the quotient ring of A[t℄ over the ideal generated bytd + 
1(E)td�1 + 
2(E)td�2 + : : :+ 
d(E) 2 A[t℄:The Gysin homomorphism �� : H�(P )! H�(M) maps the element u0+ u1t+ : : :+ ud�1td�1 2H�(P ) to ud�1 2 H�(M).Re
all that the Gysin or push-forward homomorphism or transfer �� asso
iated with aproper map � : P ! M of smooth manifolds is the 
omposition of Poin
ar�e duality in P ,usual homomorphism of homology, and Poin
ar�e duality in M . The main property of Gysinhomomorphism is the identity ��(��a b) = a��(b) for any elements a 2 H�(M), b 2 H�(P ). Inother words, �� is the homomorphism of H�(M)-modules.The proof of Lemma is simple. First note that ��ti = 0 for i < d�1 (by dimensional reason)and ��td�1 = 1 2 H0(M) (this means that d� 1 hyperplanes in CP d�1 interse
t at one point).Therefore,��(u0 + u1t+ : : :+ ud�1td�1) = u0��(1) + u1��(t) + : : :+ ud�1��(td�1) = ud�1:12



Therefore the elements 1; t; : : : ; td�1 are independent over A in H�(P ) sin
e any relation ofthe form u0 + : : :+ uktk = 0 with uk 6= 0 would imply 0 = ��(td�k�1(u0 + : : :+ uktk)) = uk. Itfollows from the spe
tral sequen
e of the bundle that the elements of the form u0+: : :+ud�1td�1exhaust all 
ohomology of P . This proves Lemma. Note that td+ 
1(E)td�1+ 
2(E)td�2+ : : :+
d(E) is equal to zero sin
e it is the dth Chern 
lass of the (d�1)-dimensional quotient bundle��E=L. �The lemma is applied as follows. Denote by Fi1;:::;ir the spa
e of 
ags 
onsisting of isotropesubspa
es Ui1 � : : : � Uir , dimC Ul = l. Consider the following diagram of proje
tionsC P 2n�1 = F1  F1;2  : : : F1;2;:::;n ! F2;:::;n ! � � � ! Fn = �Cn :All arrows in this diagram are proje
tivizations of 
ertain ve
tor bundles. This allows us to
ompute indu
tively the 
ohomology groups of all spa
es in this diagram. It follows withoutany 
al
ulation that all these 
ohomology groups are torsion free. Minimal 
al
ulations givethe total rank of H�(�Cn). Comparing this diagram with a similar diagram for usual 
ags andGrassmannian we see that the Chern 
lasses a1; : : : ; an generate all 
ohomology ring of �Cn . Weknow already some set of relations, and, 
omparing dimensions we see that there are no otherrelations. �Exer
ise. Find generators and relations for the 
ohomology ring of any 
ag manifold ofisotrope subspa
es on C 2n . Present a free additive basis for ea
h 
ase.The 
orresponden
e between symmetri
 and Lagrange degenera
y lo
i is formalized as fol-lows. Consider the homomorphism : Z[a1; a2; : : :℄! Z[
1; 
2 : : :℄; 1 + a1 + a2 + : : : 7! 1 + 
1 + 
2 + : : :1� 
1 + 
2 � : : : :Proposition. The homomorphism  indu
es an embedding of the ring of Lagrange 
har-a
teristi
 
lasses to the polynomial ring Z[
1; 
2; : : :℄.Proo f . Sin
e both Z[
1; 
2; : : :℄ and the ring of Lagrange 
hara
teristi
 
lasses are torsionfree it is suÆ
ient to prove this assertion over Q . Introdu
e a new system of generators ~ai, ~
iin the polynomial rings by setting~
1 + ~
2 + : : : = log(1 + 
1 + 
2 + : : :)and similarly for ~ai (the 
lasses ~
k, ~ak 
oin
ide up to �1=(k�1)! with the homogeneous 
ompo-nents of the 
orresponding Chern 
hara
ters). In terms of these generators the homomorphism : Q [~a1 ; ~a2; : : :℄ �! Q [~
1 ; ~
2; : : :℄is given by ~a2k�1 7! 2~
2k�1, ~a2k 7! 0. The ideal (9) of de�ning relations in the ring of Lagrange
hara
teristi
 
lasses is generated by 2~a2; 2~a4; : : :. Proposition follows. �Remark. This proposition implies that all identities valid in the 
ase of symmetri
degenera
ies are satis�ed also in the ring of Lagrange 
hara
teristi
 
lasses. Therefore, The-orems 1.1 and 2.1 are equivalent to the 
orresponding statements about symmetri
 degenera-
ies formulated at the end of Se
tion 1. Remark that in parti
ular, the solution to J. Har-ris' problem (see Se
tion 1) is 
ontained impli
itly already in [HT℄! (That is the polynomialQm+r;:::;m+1(
(E�L�L0); : : : ; 
(E�L�L0)) in 
lasses ai = 
i(E�L�L0) is uniquely determinedby the 
ondition that the image of this polynomial under  
oin
ides with the 
lass foundin [HT℄.) I would 
laim even more, that some papers on symmetri
 (or skew-symmetri
) degen-era
y lo
i and those on isotrope degenera
y lo
i are in mu
h extent dupli
ates of ea
h others.13



Appendix B. Twisted degenera
y lo
iAssume that the symple
ti
 form on the �bers of ve
tor bundle E ! M takes values not inC but in �bers of some line bundle I ! M . In other words, this twisted symple
ti
 stru
tureon the �bers is given by nowhere degenerating se
tion of �2E� 
 I. The degenera
y lo
i forisotrope subbundles L � E and Fk1 � Fk2 � : : : � E, ki = rkE � rkL� rkFki + 1, are de�nedin the same way as in Se
tion 1. The 
ohomology 
lasses dual to these lo
i 
an be obtained inthe following way.Assume �rst that the bundle I is a tensor square of another line bundle: I = J
2. Then�2E�
I = �2(E
J�)� and we 
an apply Theorem 1.1 to the bundles eE = E
J�, eL = L
J� �eE, eFk = Fk
J� � eE:[S�1;:::;�r ℄ = Q�1;:::;�r(
( eE�eL� eF�1); : : : ; 
( eE�eL� eF�1)): (10)Then we substitute
( eE�eL� eFk) = (1� u=2)k�1 �1 + 
1(E�L�Fk)1� u=2 + 
2(E�L�Fk)(1� u=2)2 + : : :� ; (11)where u = 
1(I) = 2
1(J). The expression for [S�℄ in terms of 
i(E�L�Fk) and u = 
1(I)obtained in this way 
an be applied for general 
ase sin
e it is universal (the existen
e of universalpolynomial expressing [S�℄ in terms of 
1(I); 
i(E�L�Fk) follows from either of the two methodsof the proof of Theorem 1.1 presented in this paper, 
f. also [HT℄). Moreover, though we useddivision by 2 to obtain it, this polynomial expression for [S�℄ has integer 
oeÆ
ients and so it
an be applied for any 
oeÆ
ient ring. This (algebrai
) assertion has the following topologi
alproof.Fix some integer N � 0 and de�ne the manifold Y = YN as the total spa
e of the bundle overC PN with the �bers formed by all isotrope 
ags in the twisted symple
ti
 spa
es C N �(C N
Ix),x 2 CPN , where I ! CPN is the tautologi
al line bundle (the twisted symple
ti
 form onC N � (C N
Ix) = (T �C N )
Ix with values in Ix is the obvious generalization of the standardsymple
ti
 form on C 2N = T �C N ). It is not diÆ
ult to 
ompute expli
itly the 
ohomology ringof Y (using the same arguments as in Appendix A). This ring is generated by 
lasses u = 
1(I)and by the Chern (or Segre) 
lasses a(k)i = 
i(�F 0k) of the tautologi
al bundles F 0k ! Y .Now, we de�ne the polynomial Q�1;:::;�r 2 H�(Y ) as the 
ohomology 
lass (expressed interms of the generators u; a(k)i ) dual to the twisted S
hubert 
y
le S�1;:::;�r � Y de�ned withrespe
t to the Lagrange subbundle C N � 0 � C N � (C N
I). By de�nition, this is a polynomialwith integer 
oeÆ
ients. Sin
eH�(Y ) is torsion free, this polynomial 
oin
ides with that de�nedby (10){(11) (with a(k)i in pla
e of 
i(E�L�Fk)).For general 
ase it is not diÆ
ult to verify that the 
lasses 
i(E�L�Fk) satisfy all relationsfor the 
lasses a(k)i , provided that N is suÆ
iently large. In other words the 
hara
teristi
homomorphism �� : H�(Y )! H�(M); a(k)i 7! 
i(E�L�Fk)is well de�ned though it is not ne
essary indu
ed by a map � : M ! Y . This proves that the
lass de�ned by (10){(11) is integer. �Appendix C. Identities in PfaÆansRe
all that the PfaÆan of a skew-symmetri
 matrix ! = k!i;jk of even order 2n is, by de�nition,Pf k!i;jk =X�!i1;i2 � � �!i2n�1;i2n ;14



where the sum is over all (2n � 1)!! ways to represent f1; 2; : : : ; 2ng as a union of n pairsfi1; i2g [ : : :[ fi2n�1; i2ng and � is the sign of the permutation (1; 2; : : : ; 2n) 7! (i1; i2; : : : ; i2n).Consider a skew-symmetri
 fun
tion f [k; l℄ = �f [l; k℄ with values in some 
ommutative ringand de�ned on some dis
rete set I. For any ordered 
olle
tion (�1; : : : ; �r), �i 2 I, we set� f [�1; : : : ; �r℄ = Pf kf [�i; �j ℄k, r even;� f [�1; : : : ; �r℄ = f [�1; : : : ; �r; 0℄ =Pri=1(�1)i�1f [�1; : : : ; b�i; : : : ; �r℄, r odd,where for 0 62 I we put formally f [k; 0℄ = �f [0; k℄ = 1.Proposition. The fun
tion f satis�es the identityf [�1; : : : ; �r℄ = Y1�i<j�r f [�i; �j ℄if and only if it satis�es this identity for r = 3.Proo f . This proposition generalizes similar statement from [Kn℄, where the identity foreven r was proved under assumption that it is satis�ed for r = 4. Observe that adding 0 doesnot spoil the identity for r = 3. Then, it is easily veri�ed for r = 4, and so the result followsform Knuth's theorem. Remark that the dire
t proof of Proposition is a little simpler than theoriginal proof of Knuth's theorem. �Example. The identity is satis�ed for the fun
tion g[x; y℄ = y � xx+ y .Example (V. Kryukov). Denote by L the 
ompletion of the ring of Laurent polynomialsZ[t1; t�11 ; : : : ; tr; t�1r ℄ with help of in�nite formal series in t1=t2; t2=t3; : : : ; tr�1=tr (the variables ti
an enter in monomials with arbitrary large positive or negative exponents but every monomialof the produ
t R1R2 of two su
h series is determined by only �nite number of monomials in R1and R2). For i < j setf [i; j℄ = �f [j; i℄ = 1� ti=tj1 + ti=tj = 1� 2 titj + 2 t2it2j � 2 t3it3j + : : : 2 LThis fun
tion also satis�es the 
ondition of Proposition. Indeed, if for i < j < k we set a = ti=tj,b = tj=tk, then the identity we should verify redu
es to the 
orre
t identity1� a1 + a � 1� ab1 + ab + 1� b1 + b = (1� a)(1 � ab)(1 � b)(1 + a)(1 + ab)(1 + b) : �Comple t i on o f the proo f o f Theorem 2.1 . Denote by A the polynomial ring invariables a(i)k . Consider the homomorphismpk� : A[t1; : : : ; tk℄! A[t1; : : : ; tk�1℄;that 
ommutes with t1; : : : ; tk�1 andpk�tsk = 1Xi=0 R(k)i a(k)s+�r�i; where R(k)0 +R(k)1 +R(k)2 + : : : = k�1Yi=1 1� ti1 + ti :Our goal is to 
ompute p1� : : : pr�ts11 � � �tsrr . Let Lk � L denote the subring of series that do not
ontain negative exponents of variables t1; : : : ; tk. Consider the Z[t1; : : : ; tk℄-linear homomor-phism Lk '�! A[t1; : : : ; tk℄; tm11 � � � tmrr 7! tm11 � � � tmkk a(k+1)mk+1 � � � a(r)mr :15



In terms of this homomorphism the image pk�tsk is given bypk�tsk = ' 1Xi=0 R(k)i ts+�k�ik = ' t�k+sk 1Xi=0 R(k)i t�sk = ' t�k+sk k�1Yi=1 1� ti=tk1 + ti=tk :In other words, in terms of ' the homomorphism pk� is just the multipli
ation byt�kk Qk�1i=1 1�ti=tk1+ti=tk . After r steps we obtainp1� : : : pr�ts11 � � � tsrr = ' ts1+�11 � � � tsr+�rr Y1�i<j�r 1� ti=tj1 + ti=tj :Now we use the identity for the fun
tion f of Example above. Assume r is even. Denoting~f [i; j℄ = tsi+�ii tsj+�jj f [i; j℄, we havep1�:::pr�ts11 :::tsrr = ' ts1+�11 � � � tsr+�rr f [1; 2; : : : ; r℄= ' X� ~f [i1; i2℄ ~f [i3; i4℄ � � �= X�'( ~f [i1; i2℄) '( ~f [i3; i4℄) � � �= X�Q�i1+si1 ;�i2+si2 (a(i1); a(i2)) Q�i3+si3 ;�i4+si4 (a(i3); a(i4)) � � �= Q�1+s1;:::;�n+sn(a(1); : : : ; a(r)):The 
ase of odd r is 
onsidered in a similar way or we 
an simply redu
e the problem to theprevious 
ase by setting �r+1 = 0. �Appendix D. Orthogonal degenera
y lo
iIn this se
tion we state the analogue of Theorem 1.1 for the 
ase when the bundleE is orthogonali.e. it is equipped with a nondegenerate symmetri
 bilinear form given as a nowhere degeneratingse
tion of the bundle Sym2E�. The proofs will appear elsewhere.The main diÆ
ulty arising in the orthogonal 
ase is that the isotrope bundles have 
har-a
teristi
 
lasses that are not expressed in terms of their Chern 
lasses. In other words, the
ohomology rings of the isotrope Grassmann and 
ag manifolds are not generated by the Chern
lasses of the tautologi
al bundles. Almost all su
h 
lasses still 
an be expressed via the Chern
lasses if the division by 2 is allowed. Therefore in this Appendix we assume that the 
oeÆ
ientring of all 
ohomology groups 
ontains 1=2.There are still extra 
hara
teristi
 
lasses in the 
ase when rkE = 2n is even. For in-stan
e the Grassmannian of maximal (i.e. n-dimensional) isotrope subspa
es in C 2n has two
omponents. Namely, the dimension of the interse
tion dim(L1 \ L2) of two maximal isotropesubspa
es L1; L2 � C 2n may jump only by even numbers when L1 and L2 are 
hanging 
ontin-uously. These two planes belong to the same 
omponent i� dim(L1 \ L2) � n (mod 2). Foran isotrope subbundle L � E the missed 
hara
teristi
 
lass is de�ned as follows. Assume thatthe bundle L is a subbundle of some maximal isotrope bundle bL. Then the top Chern 
lass
m(bL=L), m = n� rkL, is independent on bL up to a sign. More pre
isely,Lemma. If bL; bL0 � E, rkE = 2n, are two maximal isotrope subbundles 
ontaining L, then
m(bL=L) = �
m(bL0=L), where the sign � is positive (negative) if dim(bLx \ bL0x) � n (mod 2)(resp. dim(bLx \ bL0x) � n� 1 (mod 2)) for any point x 2M .16



De�nition. Let F;L � E be two isotrope subbundles. If the rank rkE = 2n is even weset e(L;F ) = (�1)dim(bLx\ bFx)
k(bL=L� bF=F ); k = 2n� rkL� rkF;where bL; bF are some maximal isotrope subbundles 
ontaining L and F respe
tively.If rkE = 2n+ 1 is odd we set e(L;F ) = 0.Remark. The Lemma implies that the 
lass e(L;F ) depends neither on the bundles bL; bFnor on the 
hoi
e of the point x 2 M . Moreover this 
lass is well de�ned even if the maximalisotrope bundles bL; bF do not exist. Indeed, we 
an pass fromM to the total spa
e of the bundleG ! M whose �bers are formed by pairs of maximal isotrope subspa
es in Ex 
ontaining Lxand Fx respe
tively, x 2M ; it is suÆ
ient to de�ne the 
orresponding 
hara
teristi
 
lass on Gsin
e the indu
ed homomorphism of the 
ohomology H�(M)! H�(G) is inje
tive (over Z[12℄).Consider an isotrope subbundle L � E and a 
ag of isotrope subbundlesFk1 � Fk2 � : : : � E; rkFk = rkE � rkV � k:(Remark the shift by 1 in the numeration of the planes Fk 
omparing with the symple
ti
 
ase.)The degenera
y lo
i S�1;:::;�r � M , �1 > : : : > �r are de�ned similarly to the symple
ti
 
aseby 
onditions dimF�ix \ Lx � i; i = 1; : : : ; r:We may always assume that �r > 0. Indeed, if rkE is even and both F0 and L are maximalthen the fa
t that dim(F0x\Lx) = 
onst (mod 2) implies that the 
ondition on the dimensionof the interse
tion F0x \ Lx is equivalent to the 
orresponding 
ondition on the dimension ofthe interse
tion F1x \ Lx.Theorem. Generi
ally the 
ohomology 
lass dual to the lo
us S�1;:::;�r is given by[S�1;:::;�r ℄ = P�1;:::;�r ;where the 
hara
teristi
 
lass P�1;:::;�r 2 H2P�i(M) is de�ned as follows:� if r = 1 then 2Pk = a(k)k � e(L;Fk), where a(k)i = 
i(E�L�Fk);� if r = 2 then 4Pk;l = �a(k)k �e(L;Fk)��a(l)l +e(L;Fl)�+ 2 lXi=1(�1)ia(k)k+ia(l)l�i;� if r > 3 is even then P�1;:::;�r = Pf jP�i;�j j1�i;j�r;� if r > 2 is odd then P�1;:::;�r = rXi=1(�1)i�1P�iP�1;:::; b�i;:::;�r :The generi
ity 
ondition is formulated in the same way as in the remark after Theorem 1.1.All 
orollaries of Theorem 1.1 listed in Se
tion 1 and Appendix B have the 
orrespondingreformulations for the 
ase of orthogonal degenera
y lo
i (getting rid of redundant indi
ies,S
hubert 
lasses on isotrope 
ag and Grassmann manifolds, degenera
y of skew-symmetri
maps of bundles, 
lasses of twisted degenera
y lo
i et
.). We present just two examples; theinterested reader 
an easily formulate the others. The formulas of the statements below simplifythe 
orresponding formulas from [PR, LP2℄.Let L;L0 � E be two isotrope subbundles in an orthogonal bundle E. For any integerr > 0 
onsider the lo
us 
r = fx 2 M j dim(Lx \ L0x) � rg. Denote a = 
(E � L � L0),17



m = rkE � rkL � rkL0. Then m is stri
tly positive unless rkE is even and both L;L0 aremaximal.Theorem (
f. [PR℄). Assume that m > 0. Then generi
ally[
r℄ = 12r �Qm+r�1;:::;m+1;m(a; : : : ; a) + (�1)re(L;L0)Qm+r�1;:::;m+1(a; : : : ; a)� :If m = 0 (i.e. rkE = 2n is even and the isotrope sbbundles L;L0 are maximal) we assume thatdim(Lx \ L0x) � r (mod 2). Then generi
ally[
r℄ = 12r�1Qr�1;:::;1(a; : : : ; a):Let F � E be ve
tor bundles over some base M . The bundle map f : F ! E� is 
alledskew-symmetri
 if the bilinear form hfx(u); vi on Fx�Ex is skew-symmetri
 when restri
ted toFx � Fx for all x 2M . Denote m = rkE � rkF , a = 
(E� � F ).Corollary (
f. [LP2℄). Let F ! E� be a skew-symmetri
 map of ve
tor bundles F � E.If F 6= E (i.e. m > 0) then the Poin
ar�e dual to the lo
us 
r � M of points x 2 M su
h thatdimker fx � r is given by[
r℄ = 12r �Qm+r�1;:::;m(a; : : : ; a) + (�1)r
m(E=F )Qm+r�1;:::;m+1(a; : : : ; a)� :If F = E then generi
ally [
r℄ = 12r�1Qr�1;:::;1(a; : : : ; a):Referen
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