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The study of topology of the real Lagrange Grassmannians has various important appli-
cations in the theory of Hamiltonian systems, symplectic and contact geometry, and others
fields of mathematics. The notion of the Lagrange Grassmannian can be complexified in sev-
eral ways (cf. [A, MSS]) and the corresponding objects of complex geometry also have many
important applications. In this paper we study the most straightforward complex version of
the isotrope and the Lagrange Grassmannians, namely, the manifold of all complex subspaces
of a fixed dimension in C?", which are isotrope with respect to a fixed non-degenerate bilinear
skew-symmetric form.

The main result of the paper are various formulas for cohomology classes dual to different
kinds of Lagrange and orthogonal degeneracy loci: Schubert cells in isotrope Grassmann and
flag varieties, intersections of isotrope subbundles of symplectic and orthogonal bundles, degen-
erations of symmetric and skew-symmetric maps of bundles etc. This subject was intensively
studied last years, here is a non-complete list of references: [HT, JLP, F2, P1, P2, P3, PR,
FP, LP1, LP2]. A part of results presented here can be found in these papers. Nevertheless,
I decided to write this note essentially for two reasons. First, to the best of my knowledge,
the main results of this paper, namely the formulas of Theorems 1.1 and 2.1 are not known.
Their particular case solves J. Harris’ problem. I used these formulas in the computations of the
characteristic classes dual to Lagrange, Legendre, and critical point function singularities [K3].
Two different proofs are presented here. The analogues of these formulas for orthogonal case are
formulated in Appendix D. The second, and perhaps, more important reason was an attempt
to present a brief review of basic ideas and methods of the theory which would be self-contained
and clear for non-specialists in intersection theory. I dare hope that the respect to the theory
will not be lost if it would be shown to be much simpler then it is sometimes presented. I
am certainly sure that the intension ‘to make things clear’ will always be a strong tradition of
Moscow Mathematical Journal.
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1 Main results

Consider vector bundles L C E over some manifold M and another flag F' of subbundles
Fy,, CF, C...CE, rkFp,=n+1-k, where n=rkE —rkL.

Different degeneracy loci are defined as the subsets of the base M with the prescribed dimensions
for the intersections of the corresponding fibers of the bundles F; and L. Namely, for a given
decreasing sequence of integers A\; > Ao > ... > A, > 0 we consider the degeneracy locus
Sa,...n, C© M as the set of points x € M such that

dimFy o N Ly > i (1)

for alli =1,...,r (assuming that the bundles F), are present in the flag F.)

Assume that the fibers of E are equipped with a linear symplectic structure, i.e. we are
given a nowhere degenerating section of the bundle A2 E*. Assume also that the subbundles F;
and L are isotrope i.e. the fibers of Fj, and L are isotrope subspaces in the fibers of E. This
assumption implies additional restrictions on the degeneracy loci which change, in particular,
their expected codimensions. We present a formula for the cohomology classes dual to these
loci in terms of the Chern classes of the bundles E, V, F;.

Remark. Denote by p(k) the largest number k+-j such that A\, = A1 +1 = ... = A\gyj+7.
The index k is called redundant if p(k) # k. Otherwise it is called essential. The conditions (1)
for redundant indices follow from those for the essential ones. They can be dropped in the
definition of the degeneracy locus Sy, . A

e

For any collection of formal series W =1+ ng‘) + ng‘) ..., =1,...,r, and any sequence
(not necessary decreasing) of integers A1, ..., A, we define the generalized Schur Q-polynomials
Qi (M), ... ¢eM) as follows:

o for r =1 we set Qx(c) = cx;
o for r = 2 we set

kal(c(l),c(z)) = cg)c?) — 2c§clllc§3)1 + 205;)20;3)2 — 205;)361(3)3 + ...

e for any even r > 4 we set

Qny,on (e, c™)y = PEIQA, A, (P, e 1<i j<rs (2)

e for any odd r > 3 we set

r
—

r —-1 (k r
QM,---,M (C(l)a "':c( )) = Z(il)k 165\13 Q)q,...,;\;,.../\r (C(l)’ ""c(k)’ ...,C( )) (3)

k=1

Here Pf is the Pfaffian of a skew-symmetric matrix (see Appendix C). This definition makes
sense only if o o
Q)\i,)\j (C(Z)a C(])) + Q)\j,)\i(c(]); C(Z)) =0 forall 1<i,j<m (4)

If this condition holds, then the polynomial @y, . x, (c(l), o c(T)) depends skew-symmetrically
with respect to the permutations of indices \; and simultaneous permutations of ¢,

Qg hn (D) ey = (1) Qi (e e™),
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where s is a permutation and [s| is its sign. This follows from the fact that the Pfaffian is
skew-symmetric with respect to simultaneous permutations of rows and columns of the matrix.
In particular, Qh,---,)\r(c(l)a ...,c(r)) vanishes if for some i # j one has A; = A; and ) = ),

Remark. The distinction between the cases of even and odd r is apparent. For instance,
the following reduction formula holds for any r > 1 with positive Aj,... , A,

QAI,...,,\T,O(C(”,- )y = Qxi,.. 2 (e

(whenever these classes are defined). For r = 2 this evidently follows from the definition. For
greater r it can be easily derived from (2) and (3) by induction in 7.

Let Ay > ... > X, > 0. If the flag F' contains the bundles F); for all essential indices ¢ then
the degeneracy locus Sy, . A, C M is well defined.

Theorem 1.1. Generically the cohomology class dual to Sy, .. », is given by

[S)\l, HA ] Q)\ly A

T

where
@,y = @\ (BE—L=Fy ,...,E=L=F) ).

If the flag F' contains the bundles F; for all redundant indices i then we have also
Qxi,ny = @y (E—L=Fy,,...,E—L—F),).

First verify that the classes entering these formulas are defined, that is the condition (4) is
satisfied. Indeed, denoting X, = E — L — F}, we get

Qr,i(e(Xy), e(Xur)) + Quile(Xy), c( X)) = 2 Z ) erri(Xn) e i(Xn)

i=—o0

=+£2 Ck+l(X,:/ - Xll) =+£2 Ck+l((LL/L)* ) F,CJT/EI)

Here we used the isomorphisms E/L+ = L*, E/ ij,- = F}, provided by the symplectic structure
(the orthogonal complement is considered with respect to the symplectic form). The bundle in
the brackets has the rank

(tkE —21k L)+ (tkE — 1k Fy —vk Ep) =k +1' —2

The (k + [)th Chern class of this bundle vanishes if, for example, ¥’ < k, I' < [. Therefore
all classes of the form Qy, ., (c(E—L—Fy,),...,c(E—L—Fy)) with A} < A; are always well
defined. O

Remark. The genericity condition of Theorem is formulated as follows. Consider the
locally trivial bundle Y — M of ‘geometrical configurations’ whose fibers are formed by products
F, x A, where F, and A, are manifolds of isotrope flags and isotrope planes in E, of the
dimensions corresponding to the ranks of the bundles Fj, L. The canonical bundles over Y
define degeneracy loci on Y and the genericity condition in this case is, by definition, satisfied.
The given flag of bundles F' and the bundle L define a section s : M — Y. The genericity
condition means that this section is transversal to every singularity locus on Y. In this case the
equality for M is induced by s* from the corresponding equality for Y. Remark that the class
5*[S,,..a,] is well defined on M and the equality of Theorem holds for this class even if the



section s is not transversal. Similar trick can be applied for other situations in order to avoid
problems with non-transversality. In particular it is implied in the definition of the manifolds
Zy, in the next section. O

Remark. Similar trick is used also to show that it is sufficient to prove Theorem 1.1
only for the case when the flag F' contains subbundles F; for all redundant indices i. Indeed,
consider the flag bundle Y — M the fibers of which are formed by complete isotrope flags
F). C F('nil)gc C ... C E, such that F)’\Z_w = F),, for all essential indices i. Then the validity of
the assertion of Theorem 1.1 for Y implies its validity for M since the induced homomorphism
of the cohomology H*(M) — H*(Y) is injective, see Appendix A. O

Proof of the second equality of Theorem 1.1,

QAl,---)\r (C(Xl)a e C(XT)) = Q)\l,...,)\r (C(Xp(l))a ey C(Xp(r)))a Xy = EiLiF)\k' (5)

By definition, the classes Q, ...z, (c(X1), ..., (X)) are polilinear with respect to the total Chern
classes ¢(X}). Suppose that the index k is redundant. Then from the equality

p(k)—k
Cx(Xk) = (B / Fxy, + Xpr)) = Z &5 (P Eo) e (K p(r))
j:
we get
p(k)—k
Qs X ) = 3 (P /Fr) Qoo ey Xp(ays o).
j=0

When we apply similar expansion to other redundant indices we obtain a linear combination
of different classes of the form Qx (c(X (1)), --,¢(Xr)))- In this combination all terms except
one with \' = X will have repeating indices and so they vanish. O

Two different proofs of the first equality of Theorem 1.1 are presented in two subsequent
sections. In this Section we discuss some applications of Theorem.

In particular case when the flag F' consists of only one plane L' = F} the formula of
Theorem 1.1 answers the problem of J. Harris about the class dual to the locus given by the
intersection ranks for the fibers of two isotrope bundles L and L' (see [PR|, where the answer
for the case when both L and L' are Lagrangian is given in much more complicated form).

Proposition. Let L, L' be isotrope subbundles in a symplectic bundle E. Then the coho-
mology class dual to the locus Q, = {z € M | dim L, Ndim L), > r} is given by

[QT] = Qm+r,m+r71,...,m+1 (C(EfoL,)a e aC(E*LfLI))a
where m =1k E —rk L —rk L. O

In particular, the last formula for the case r = rk L = rk L' describes the cohomology class
dual to the diagonal in the product of two isotrope Grassmannians (or, more general, to the
diagonal bundle in the fiber product of two isotrope Grassmannian bundles associated with
the given symplectic vector bundle E — M (cf. [P2] where this class for the case of Lagrange
Grassmannians is presented in much more complicated form),

[A] = Qmtrmtr1,.m+1(c(E—L—L"),...,¢(E—L-L")), (6)

where r = tkL = rk L', m = 1k E — 2r, and Ly, Ly are the tautological bundles over the
Grassmannians.



The simplest examples of degeneracy loci are provided by Schubert varieties on Grassman-
nians and flag manifolds of isotrope subspaces in C?". In particular, this gives the following
formula (for the case of Lagrange Grassmannians it was proved in [P2]).

Proposition. On any Grassmannian of isotrope subspaces in symplectic vector space the
cohomology class dual to the Schubert cycle Sy defined by dimensions of intersections with a
fized isotrope flag is given by

[Sxion] = Qapn (e(—L), ... c(—L)). (7)

More examples are provided by symmetric degeneracy loci. Consider some vector bundle
V — M and a symmetric bundle map f : V — V* (it can be thought as the section of the
bundle Sym?V*). Denote by Q, C M the locus of points z € M for which the kernel ker f, has
dimension at least r. Then we have (cf. [HT, JLP, P1])

[Qr] = Qr,rfl,...,l(C(V* - V)a s aC(V* - V))

Indeed, the sum V@ V™ carries the natural symplectic structure (due to the natural isomorphism
Ve ® V) = T*V,). The condition that the map f, is symmetric is equivalent to the condition
that the graph L, C V, @ V;* of this map is Lagrangian (in fact, the graphs of symmetric maps
Vy — VF form an open cell in the Grassmannian of Lagrange subspaces in V, & V*). Hence the
locus €2, is the degeneracy locus S, ,_1,. 1 defined with respect to the Lagrange subbundles L
and V@0 in V & V* and we can apply the formula of Theorem 1.1. ]

In fact, all assertions about Lagrange degeneracy loci can be reformulated in terms of the
corresponding symmetric degeneracies. (The inverse is also true, see Remark at the end of
Appendix A.) The following assertions are the direct reformulations of Theorem 1.1 for the case
of symmetric degeneracy loci in the same way as explained above.

Proposition. Consider a flag of vector bundles F, C ... C Fy =V — M, rk F}, = n+1—k,
and a symmetric bundle map f : V — V*. Denote by 2y, ., C M the locus of points x € M
such that dim F);, Nker f, > i. Then generically

[Dy,0,] = Qayon, (e(VF = Fa 1)) -5 e(VF = Fy,)))- O

A particular case of the last Proposition is the following simplification of the formulas
from [LP2] for degeneracies of symmetric maps. Let F' C E be vector bundles over some base
M. The bundle map f: F — E* is called symmetric if the bilinear form (u,v) — (fz(u),v) on
F, x E, is symmetric when restricted to F, x F, for all z € M. One can easily see that the linear
map f, : Fp — E} is symmetric if and only if its graph L(f;) = {y®(fz(y)) € E,QE% | y € F,}
is an isotrope subspace in E; @ E}. The kernel of f, is identified with the intersection of the
isotrope subspaces L(f,) and E & 0. Hence,

Proposition. Let F' — E* be a symmetric map. Then the cohomology class Poincaré dual
to the locus Q. C M of points x € M such that dimker f, > r is given by

Q] = Quirntr—1,.ny1(c(EB* = F),...,c(E* = F)), n=rkE —rkF. ]

The following interpretation of Theorem 2.1 of the next Section was used in [K3]. For a
given vector bundle V' — M denote by D, (V) — M the associated locally trivial flag bundle
whose fibers are formed by all flags D',..., D" C V,, dimD? = i. If f : V — V* is a generic
symmetric bundle map define the submanifold Z, C D,(V) by the condition D" C ker f,.
Denote t; = —c;(D?/D*1). Let p : Z, — M be the natural projection.



Theorem. For any monomial ti* ---tir € H*(Z,), we have

p*(t“ljl T tir) = QS1+1,-..,ST+1(C(V* - V)a s aC(V* - V)) 0

The analogues for the orthogonal case of the formulas of this Section are formulated in
Appendix D.

2 The push-forward formula

In this section we prove Theorem 1.1 by means of resolutions of degeneracy loci. Let L C E and
F, CFy, C---CE, tkFy=n+1—-k,n=rkE —rkL, be as in previous Section. For a given
decreasing (not necessary strictly) sequence of integers A; > ... > A, such that the planes F},
are present in the flag F', we consider the flag bundle space D, — M, whose fibers are formed
by all isotrope flags

DicD?c..DiCE,  dimD'=j,

such that D? C F),zfori=1,...,r. Denote by Z, C D, the submanifold given by the condition
D} C L,, where D] is the largest plane of the flag. Generically Z, is a smooth manifold of
(complex) dimension dim Z, = dim M — > \;. We study the push-forward homomorphism

ps : H(Z,) - H* (M)

corresponding to the natural projection p : Z, — M. We shall use the same notations D?, L
for the corresponding tautological bundles on D,, and Z,. Denote t; = —c;(D*/D" 1) =
c1((D'/ D)%)

Theorem 2.1. For any monomial tj' -- -t € H*(Z,) we have
p*(til e tir) = QS1+)\1,~~~,ST+)\T (C(E_L_F)q)a s aC(E_L_F)\r)) € H*(M)

Theorem 1.1 is a corollary of Theorem 2.1. Indeed, suppose that Ay > Ag > ... > A, > 0.
Then the image p(Z,) coincides with SA1,.. A+ Moreover, the restriction of p to Z, is one-to-one
over an open dense set in Sy, . \,. Therefore, applying Theorem 2.1 to the case s; = ... =5, =0
we get the formula of Theorem 1.1:

[Sar,a] = Px(1) = Qay ., (c(E—L—F)y,),...,c(E—L—F),)). O

To prove Theorem 2.1 we represent the map p as the composition of the following chain of
bundles and embeddings

P(Ey-1) P(E1) P(E)
/ 1 S N (8)
Ze 2 oz, P2 Bz 2oz B

where Ej, is the restriction to Zj of the bundle F), /Dk. At the points y € Z; we should have
DS CLyC DL“. The projective planes of the bundle P(E}) are formed by all possible positions
of the line DZ’JH'l/DIyc in F)‘ky/D’;. The submanifold Zy 1 C P(FE}) is given by condition: the
plane Ly/DS C DZ’/”/DZ’/C contains the line D;“/ng. This explains the diagram (8).



For the computation of the homomorphism p,, : H*(Z,) — H*(Z, 1) we remark that the
classes t1,...,t._1 come from Z, ; and so the multiplication by these classes commutes with
pr«. Hence, it is sufficient to compute p,..(¢).

Lemma. The homomorphism py. : H*(Z,) — H*(Z,_1) is given by

pr*(tﬁ) = R(()r)agxr + Rgr)agl))\ﬁl + Rér)ag)\rﬁ +.

where a\”) = ¢i(E—L—F),) and Rz(r) = (D" '=DU=D%) are polynomials of degree i in

i

t1,...,ty_1 that are independent of s, \ and given by the expansion
(1), R, pr) i t_Tq
r r r - — bl ) 2 943
Ry’ +R{’"+Ry +... _i||1 T _i||1 (1—2t;+2t; — 2t7 +...).

Proof of Theorem 2.1. Iterating this Lemma we can compute the direct image p, =
Pix - - - Prx Of any particular monomial. This solves, in principle, the problem of finding the
cohomology class dual to any degeneracy locus. It follows without further computations that
ps(t]' -+ -t57) is expressed as a universal polynomial (depending only on A;, s;, 4 = 1,...,r) in
classes az(k) = ¢;(E—L—F),). It is a matter of algebra to show that the result has the nice form
of Theorem 2.1. This algebraic proof is given in Appendix C. U

Example. For r = 2 applying Lemma twice we get

Sk = prepa(1) = pra (of) = 20107, + 263, — 24}
= pr(1) af? =21 (t1) o, + 2p1(2) 0lP, — £ 2p1(E))
— agcl)af) _ Qagllag)l + 2a§cll2a§3)2 _ 4 QGSJL = Qri(aM,a?),
where al!) = ¢(E — L — Fy), al®) = ¢(E — L — F). O

Proof of Lemma. Represent p, as the composition Z, LN P(E, 1) 2 Z. according
to the diagram (8). The homomorphism i, is given by the multiplication by the fundamental

cycle of Z, C P(E,_1). The submanifold Z, C P(E,_1) is given, as explained above, by the
condition that the line D}/D;' ¢ DY "' /Dr-1 is contained in the plane L,/D; . This
may be reformulated as vanishing of the section for the bundle Hom(D" /D' D("—1L/L).

Therefore
iw(t)) = 18 ca_pp1(Hom(D"/D" 1, DO VL /L))
=t Y @UIL)d
i+j=n—r+1

= > ad L)
i+j=n+s—r+1

= Cn+sfr+1(D(r71)J—/L - Dr/Dril)

= Cppsr1 (D7D VLB L—F, +F\, /D"

= > (D '-DU VL E-L-F, ) ¢i(Fy, /D7)
i+j=n+s—r+1

Now we apply ¢,. The classes cj(DT’lfD(r’l)* + E—L—F),) commute with this homo-
morphism as they come from Zy ;. The bundle F) /D" is the canonical quotient bundle



over P(E,_1). Therefore q.cq(F»,/D") = 1, where d = rk(F),/D") = n+1—7r — A, and
g«ci(Fy,/D") = 0 for i # d. Therefore,

Pre(t) = @uis(t) = copr, (D" 1=DO D 4 E_L—F )
o0
= Y (D t-pUY Gl O
1=0

3 Inverse induction

In this section we present an alternative proof of Theorem 1.1. Namely, we first establish the
equality of Theorem in one particular case when M = Fpy is the flag manifold of complete
isotrope subspaces in C?V | the bundle E = C?V is trivial, F is the tautological flag of bundles
and L C C?V is a fixed Lagrange subspace. This space Fy for sufficiently large N together
with the induced Schubert partition on it is considered as the classifying space for our problem.
It means that under condition of Theorem 1.1 there is a classifying map x : M — Fpy which
induces both the partition of M into the degeneracy loci and the characteristic classes. So the
equality of Theorem 1.1 for M is induced from the corresponding equality for F. Remark that
in general we can not avoid the consideration of C'*°-manifolds and maps. The reader who does
not like this kind of arguments may consider the proof as a motivation for finding new formulas
(which can be applied as well in other problems).

Let F = F,, be the space of complete isotrope flags F,, C ... C F; C C?", dimF}, = n+1—k.
For a strictly decreasing sequence of integers n > A1 > ... > A, > 0 we define the Schubert
cycle Sy,...x, C F by conditions dim(F\, N L) > 4, ¢ = 1,...,r, where L C C?" is a fixed
Lagrange subspace.

Theorem 3.1. The cohomology class dual to the Schubert cycle in F is given by

[S)\l,...,)\r] = Q)q,---,)\r (C(iF)\l)a s 70(*F)\r))'

In the proof we use the method of ‘divided differences’, see [BGG, D, F1, F2, P3]|. Namely,
we introduce operations 8y, : H*(F,) — H* %(F,), k = 1,...,n, that decrease by 1 the com-
plex codimension of the cycles representing the cohomology classes. Then we compute these
operations in terms of degeneracy loci and in terms of the Chern classes. Then from the validity
of Theorem for the ‘deepest’ locus we can establish the validity of Theorem for other loci by
reverse induction over the indices A.

The operations dj are defined as follows. Denote by F(*) the manifold of isotrope flags
F, C ---Fypy1 C F_ 1 C --- C Fy (with the kth subspace of rank n + 1 — k omitted). The
natural projection

pi: F— Fk)

is a smooth locally trivial bundle with the fibers isomorphic to CP!. The total space F of this
bundle can be identified with the projectivization on the bundle Fj,_;/Fy,; of rank 2 over F(¥),
This description is valid for all k = 1,2,... ,n if we set Fj,11 =0, Fy = F2l Indeed, since the
plane Fj is Lagrangian, the condition Fy C Fy implies F} C F2L

Definition. 08y = p} pi« : H*(F) — H* %(F).
Lemma S. Let k > 2. Then

Ok[Sn, k] = S0, k1,0,]



if k € X and k—1 & \; otherwise O[Sy, A ] = 0.
For k =1 we have
O [Sai, e 1,1 = [Sx,0, 4]

and 61[5)\17.“7%] =0 Zf A > 1.

Lemma C. In order to obtain the action of O in terms of Chern classes one should to re-
place the classes of [Sy, .| in the statement of previous Lemma by the corresponding polynomials

Qxy,...(e(—Fxn)s )

Proof of Theorem 3.1. Every Schubert cycle in F can be obtained from the cycle
Snn—1,.,1 by a sequence of operations 9 for different k. If we would prove the equality of
Theorem 3.1 for this cycle Sy, ,,—1,..1 then by Lemmas S and C we get that similar equality holds
for the other Schubert cycles. In the multi-index (n,n —1,...,1) all entries except the last one
are redundant. Therefore, Qppn—1.. 1(c(—Fp),...,c(=F1)) = Qnn-1,.1(c(=F1),...,c(—F1)).
It follows that it is sufficient to verify the required equality on the Lagrange Grassmannian A,,.
But in this case the degree of the class Qpn—1,..1(c(—F1),...,c(—F1)) is equal to the dimension
of Ay, and Sy, ,—1,..1 is a point. Therefore,

n(n+1)
2 2

Qnn-1,.1(c(=F1),...,c(=F1)) =b[pt] = b[Shpn-1,.1] € H (An) = Ho(An),
where the constant b € Z is equal to the wvalue of the characteristic class
Qnn-1,..1(c(=F1),...,c(—F1)) on the fundamental cycle of A,. Assume that b # 1. Then
again by inverse induction we get that for all Schubert cycles on F, we should have
Qxr(c(=Fy,),--.,c(—F,)) = b [S)] and to find the constant b it is sufficient to compute [S,] for
any particular .

Set A = (n). Then S, C F, is given by the condition F; C L. This is equivalent to the
vanishing of the section of the bundle Hom(F;,C?" /L). Therefore,

[Sn] = ea(Hom(Fy, C*" /L)) = co(—F1) = Qn(c(—F1)).

This proves that, in fact, b = 1. Theorem is proved. O

Proof of Lemma S. If k& ¢ A then the planes of the bundle Fj are not used in the
definition of the cycle Sy. Therefore, this cycle is the inverse image of the corresponding cycle
S, c F(¥). Hence

Pre[S2] = prap®™[S4] = [S4] prep™ (1) = 0,

and so Og[S\] = 0. If k = \; for some number i but \;;; = k — 1 then the index ¢ is redundant
and we can apply the same arguments.

Assume now that £k = A; and that the index ¢ is not redundant. Geometrically the homo-
morphism J;, can be described as follows. Suppose that a cohomology class in the total space
of the bundle p;, is represented by a cycle C' which meets every fiber at at most one point.
Then the class 9[C] is represented by the union of all fibers through the points of C. It fol-
lows from this description that the cycle representing the class dx[S)] is defined by conditions
dimFy; N L > j for j # i and the corresponding condition for the index : is replaced by the
following one: there exist a plane Fy of dimension n + 1 —k such that Fir11) C F, C Fig_1
and dim F;, N L > i. Clearly, this condition is equivalent to the condition dim Fr-yNL =>4,
that is 9;[S)] is represented by the cycle Sx; . A 1 k-1 X102 O

] r”



Proof of Lemma C. Observe that 95 commutes with the multiplication by characteristic
classes of bundles that are defined on F(*). In particular, if k ¢ X then the class Qy is the pull
back of the corresponding class on F*). Therefore,

IkQx = Qk(1) = 0.
Assume now that k = A\; > 1 for some (unique) 7. Then the equality
o(—Fy) = c(Fy1/Fyx — Fi-1) = (1 +t) e(—Fy-1),
where t = ¢;(Fy_1/F}) implies
Q. k.. (.,c(=F),...) =A+1tB,

where A=Q 1 (...,c(—Fg_1),...)and B=Q -1, .(...,¢(—Fp_1),...) are classes that are
defined on F(*). Therefore,

OkQr(...) = Ox(A+t B)= A0k(1) + Bo(t).

Ok (1) vanishes by dimensional reason and the class ¢t = ¢1(Fy_1/F}) is the top Chern class
of the canonical quotient bundle for the fiber bundle P(F}y_1/Fj41) over F*). Therefore,
O (t) = p**p,p(t) = 1. We get finally

Q. k(o sc(—Fi),...) =B=Q. k-1,.(-. ,c(—Fr_1),...)

Observe that if k—1 € A= (...,k,...) then X = (..., k —1,...) has repeating indices and
so B = 0 in this case. This proves Lemma in case when & > 1.

In the case k =1 = )\, the computation above can be applied as well if we denote Fy = F2l
and gives

NnQ. . x 11(se(—Fx_y),e(—F1) =Q._x _,0(-se(—Fx,_,),c(—Fp)).

By Remark before Theorem 1.1, the class on the right hand side is equal to
Q.. (- s¢(—Fy _,)). Lemma is proved. O

Proof of Theorem 2.1. Assume we are given vector bundles V C E — M, Fj, C ... C
E — M, FE is symplectic, L, F; are isotrope. Without loss of generality we can assume that
E splits into the sum £ = L & L* & K, where K is symplectic and the symplectic structure
wg on F is the sum of the corresponding symplectic structures wrgr« on L & L* and wgk on
K. Indeed, the fiber L of the bundle L' = L* is chosen among the isotrope subspaces in E,
transversal to L. and having the complementary dimension. The space of possible choices is
contractible (it is homeomorphic to a cell). Hence such subbundle L' exists (in general, it is a
complex C*-bundle). Then we set K, = L, N L.-.

Now choose the bundle U — M such that L ® K @ U = CV is a trivial bundle (again, in
general, U is a complex C*°-bundle). Define the bundles E, E, ﬁz and the symplectic structure

wg on E according to the following table

E=Leol*a Ko K oUe U
wg = wrerr ® wk ©® —wg @& wygur
L=L® 0 & A ®U @ 0
E, = Fy, ® 0 @ 0@ U

10



Here A € K@ K is the diagonal bundle. Recall that the natural symplectic structure on the sum
K, ® K, of two symplectic spaces is defined as the difference of the symplectic structures induced
from the two summands. If it is defined this way then the diagonal A, = {z®z | z € K,} as
well as the anti-diagonal A, = A* = {z@(—z) | z € K} are Lagrange subspaces. In particular,
they define the canonical isomorphism K & K = A & A*.

By construction, the degeneracy loci for this new problem are the same. But now the bundles
L2LeKaU= (CN and E = L@ L* = C2V are trivial and the fibers of the bundles Fj, belong
to the same symplectic space C?/V. Therefore, they define the map

k:M — Fy

where F'y is the the manifold of (incomplete) flags of isotrope subspaces in C2V of dimensions
N—-—n+1,N—m+2,...,N.

The formula of Theorem 3.1 can be applied to the classes of Schubert cycles on F'y, since
the projection Fy — F'y induces an injective homomorphism of cohomology, see Appendix A.
The degeneracy locus S\(M) C M is the inverse image of the Schubert cycle S)(F') C Fy.
The characteristic classes induced by & are k*c(Fy) = ¢(Fy + U*) = ¢(Fy, + L — E). Therefore,

[SA(M)] = K*[SA(Fiy)] = 6" Qa(c(—F),), -, e(—Fy,)
= Q)‘(C(E—L—F)‘l),...,C(E—L—F)\r)

Theorem 1.1 is proved. U

Remark. The map « is holomorphic in case when the degeneracy locus is the diagonal
in the product of two isotrope Grassmannians or it is a Schubert cell on the Grassmannian of
isotrope subspaces in C*V. Therefore the proof of formulas (6) (for the case E = C*V) and (7)
of Section 1 by the method of this Section does not require considerations of C'*°-maps and
bundles.

Remark. Lemmas C and S remain valid if Fy is replaced by the bundle of isotrope
flags associated with some symplectic vector bundle, sf. [F2]. It follows that the formula of
Theorem 1.1 can be derived from the formula (8) of Section 1 for the class of the diagonal in
the fiber product of two Lagrange Grassmann bundles. The direct proof of (8) would imply the
proof of Theorem 1.1 by divided differences method without using C'**°-maps and bundles.

Appendix A. Complex Lagrange Grassmannian

It was shown in previous Section that the Lagrange Grassmannian Ay, N — oo plays the
role of a classifying space for many geometrical problems. The limit cohomology group
limy_ 00 H*(Apn) is called the ring of Lagrange characteristic classes. In this section we de-
scribe the topology of Ay. All results of this section are proved in [P2] but our presentation is
more elementary.

Consider an even-dimensional vector space C2" and a fixed skew-symmetric bilinear form
(the symplectic form) > dp; A dg; on it, where dp;, dg; are elements of some fixed basis on the
dual space C*2".

Definition. An n-dimensional subspace is called Lagrangian if the restriction of the
symplectic form to it vanishes. The complex Lagrange Grassmannian A% is the manifold of all
Lagrange subspaces in C?".

11



The topology of the real Lagrange Grassmannian AE = U(n)/O(n) is well known. Its Zo-
cohomology is H*(A®,7Zs) = Az,(cu,...,a,). The (integer) cohomology of complex Lagrange
Grassmannian AS = Sp(2n)/U(n) has a similar description.

Theorem ([P2]). The ring H*(AYS) is isomorphic to the quotient of the polynomial ring
in variables ay,as,...,ay of degrees 2,4,...,2n over the ideal generated by elements

2
a; — 20;410;—1 + 2a;420;—2 — 2a;43a;—3 + .... (9)

The group H*(Ag) is torsion free and the monomials a’f ...ain iy € {0,1} form a free additive

basis.

In the relations above we assume ag = 1 and a; = 0 for 4 < 0 or for ¢ > n. The classes
a; € H*(A%Y) are Chern classes of the tautological bundle L — A% (or inverse images of Chern
classes of the usual Grassmannian GS,Zn under the embedding A5 C GS,2n~

The second assertion of Theorem follows from the first one. To express an element of this
ring in terms of this basis one should apply repeatedly relation of Theorem to every mono-
mial which contains squares of generators. This will require finite number of steps since every
newly appeared monomial has degree strictly less than the original one if one uses the ‘strange’
filtration with the degree of a; equal i2.

The relations (9) can be rewritten in the form
(I14+a1+ar+...4ap)(l—a1+azy—...£ap) =1

In this form they follow from the fact that the symplectic form induces an isomorphism C?" /I, =
L*.

In the proof of Theorem we use the following well-known lemma. Let £ — M be a complex
vector bundle of rank d over some manifold M. Let P = P(E) be the projectivization of the
bundle E, i.e. the bundle space over M whose fibers are projective spaces formed by lines in
fibers of E. Consider H*(P) as a module over the ring A = H*(M). Let L — P be the
tautological line bundle and ¢t = ¢;(L*) = —¢1(L).

Lemma. Additively the group H*(P) is isomorphic to H*(M x CP?1) independently of
the bundle E. Moreover, it is freely generated by elements 1,t,...,t% 1 as an A-module. As a
ring H*(P) is isomorphic to the quotient ring of A[t] over the ideal generated by

t 4 er (BNt 4 eo(B)tY 2 + ...+ ca(E) € Alt].

The Gysin homomorphism m, : H*(P) — H*(M) maps the element ug 4+ uit + ... +ug_1t31 €
H*(P) to uq—1 € H*(M).

Recall that the Gysin or push-forward homomorphism or transfer m, associated with a
proper map w : P — M of smooth manifolds is the composition of Poincaré duality in P,
usual homomorphism of homology, and Poincaré duality in M. The main property of Gysin
homomorphism is the identity 7.(7*a b) = am,(b) for any elements a € H*(M), b € H*(P). In
other words, 7, is the homomorphism of H*(M )-modules.

The proof of Lemma is simple. First note that m,t* = 0 for i < d—1 (by dimensional reason)
and m,t¥"1 =1 € H°(M) (this means that d — 1 hyperplanes in CP%~! intersect at one point).
Therefore,

Te(ug +urt + ...+ ug_1t4 1) = ueme(1) + urme(t) + ...+ ug1m (8 = ug_q.

12



Therefore the elements 1,¢,...,t% ! are independent over A in H*(P) since any relation of

the form ug + ... + upt® = 0 with uy # 0 would imply 0 = 7, (t¥ % T(ug + ... + ugt?)) = up. It
follows from the spectral sequence of the bundle that the elements of the form ug+. ..+ug_1t% !
exhaust all cohomology of P. This proves Lemma. Note that t? 4 c; (E)t? ! 4 co(E)t 2 4. .. +
cq(E) is equal to zero since it is the dth Chern class of the (d—1)-dimensional quotient bundle
7 E/L. O

The lemma is applied as follows. Denote by F;, _; the space of flags consisting of isotrope
subspaces U;, C ... C U;,, dimc U; = [. Consider the following diagram of projections

CP2n71 :F1<—F1,2(—...(—F12

ghiyiiny

C
n—>Fo n—=--=Fy=A,.

All arrows in this diagram are projectivizations of certain vector bundles. This allows us to
compute inductively the cohomology groups of all spaces in this diagram. It follows without
any calculation that all these cohomology groups are torsion free. Minimal calculations give
the total rank of H*(AY). Comparing this diagram with a similar diagram for usual flags and

Grassmannian we see that the Chern classes a1, ..., a, generate all cohomology ring of AS. We
know already some set of relations, and, comparing dimensions we see that there are no other
relations. O

Exercise. Find generators and relations for the cohomology ring of any flag manifold of
isotrope subspaces on C?". Present a free additive basis for each case.

The correspondence between symmetric and Lagrange degeneracy loci is formalized as fol-
lows. Consider the homomorphism
l14+ci+ea+...
1—ci+e—...

¢:Z[a1,a2,...]—)Z[Cl,CQ...], l+a1+as+...—

Proposition. The homomorphism 1 induces an embedding of the ring of Lagrange char-
acteristic classes to the polynomial ring Z[ci, ca, . . .].

Proof. Since both Z[ecy, ¢, ...] and the ring of Lagrange characteristic classes are torsion
free it is sufficient to prove this assertion over Q. Introduce a new system of generators a;, ¢;
in the polynomial rings by setting

51+52+...:log(1+01+62+...)

and similarly for a; (the classes ¢, aj coincide up to £1/(k — 1)! with the homogeneous compo-
nents of the corresponding Chern characters). In terms of these generators the homomorphism

Q,b : Q[&l,dg,...] —)Q[61,62,...]

is given by agg 1+ 2¢o_1, asx — 0. The ideal (9) of defining relations in the ring of Lagrange
characteristic classes is generated by 2as, 2dy, . ... Proposition follows. O

Remark. This proposition implies that all identities valid in the case of symmetric
degeneracies are satisfied also in the ring of Lagrange characteristic classes. Therefore, The-
orems 1.1 and 2.1 are equivalent to the corresponding statements about symmetric degenera-
cies formulated at the end of Section 1. Remark that in particular, the solution to J. Har-
ris’ problem (see Section 1) is contained implicitly already in [HT]! (That is the polynomial
Qm+r,..m+1(c(E—L—=L"),...,¢(E—L—L")) in classes a; = ¢;(E—L—L') is uniquely determined
by the condition that the image of this polynomial under ¢ coincides with the class found
in [HT].) I would claim even more, that some papers on symmetric (or skew-symmetric) degen-
eracy loci and those on isotrope degeneracy loci are in much extent duplicates of each others.

13



Appendix B. Twisted degeneracy loci

Assume that the symplectic form on the fibers of vector bundle £ — M takes values not in
C but in fibers of some line bundle I — M. In other words, this twisted symplectic structure
on the fibers is given by nowhere degenerating section of A2E* @ I. The degeneracy loci for
isotrope subbundles L C E and Fy, C Fy,, C ... C E, k; =1k E — 1k L —rk F},, + 1, are defined
in the same way as in Section 1. The cohomology classes dual to these loci can be obtained in
the following way.

Assume first that the bundle I is a tensor square of another line bundle: I = J®2. Then
A?E*®I = A2(E®J*)* and we can apply Theorem 1.1 to the bundles E=E®J* L=LoJ" C
E, ﬁk = FL,eJ* C E:

[Saion] = Qo ((E—L—Fy)),...,c(E~L—Fy,)). (10)

Then we substitute

(E—L—Fp) = (1 —u/2)k (1 . ci(E—L—Fy) co(E—L—Fy) ) |

1—u/2 (1—u/2)? (11)

where u = ¢1(I) = 2¢1(J). The expression for [S)] in terms of ¢;(E—L—F}) and u = ¢1(I)
obtained in this way can be applied for general case since it is universal (the existence of universal
polynomial expressing [S)] in terms of ¢1 (1), ¢; (E—L—F},) follows from either of the two methods
of the proof of Theorem 1.1 presented in this paper, cf. also [HT]). Moreover, though we used
division by 2 to obtain it, this polynomial expression for [S\] has integer coefficients and so it
can be applied for any coefficient ring. This (algebraic) assertion has the following topological
proof.

Fix some integer N > 0 and define the manifold Y = Yy as the total space of the bundle over
CPN with the fibers formed by all isotrope flags in the twisted symplectic spaces CN @ (CN ®1,),
x € CPYN | where I — CPY is the tautological line bundle (the twisted symplectic form on
CN g (CN®I,) = (T*CN)®I, with values in I, is the obvious generalization of the standard
symplectic form on C*V = T*CN). It is not difficult to compute explicitly the cohomology ring
of Y (using the same arguments as in Appendix A). This ring is generated by classes u = ¢1([)

and by the Chern (or Segre) classes alt) = ci(—Fy) of the tautological bundles Fj — Y.

i
Now, we define the polynomial Qy,, .., € H*(Y) as the cohomology class (expressed in

terms of the generators u,az(-k)) dual to the twisted Schubert cycle Sy, .\, C Y defined with
respect to the Lagrange subbundle C¥ @0 c CN @ (CN®I). By definition, this is a polynomial
with integer coefficients. Since H*(Y') is torsion free, this polynomial coincides with that defined
by (10)-(11) (with a{*) in place of ¢;(E—L—Fy)).

For general case it is not difficult to verify that the classes ¢;(E—L—F},) satisfy all relations
(k)

for the classes a;

homomorphism

, provided that NV is sufficiently large. In other words the characteristic

K HY(Y) = H' (M), o) = cj(E—L—Fy)

is well defined though it is not necessary induced by a map « : M — Y. This proves that the
class defined by (10)—(11) is integer. O

Appendix C. Identities in Pfaffians
Recall that the Pfaffian of a skew-symmetric matrix w = ||w; ;|| of even order 2n is, by definition,

Pf Hwi,]'H = Z FWiy g+ Winy_1 iz
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where the sum is over all (2n — 1)!! ways to represent {1,2,...,2n} as a union of n pairs
{i1,i2} U...U{ian_1,%2,} and =+ is the sign of the permutation (1,2,...,2n) — (i1,da,...,%2,)-

Consider a skew-symmetric function f[k, ] = — f[l, k] with values in some commutative ring
and defined on some discrete set I. For any ordered collection (A1,...,A;), A; € I, we set

b f[)‘la s a)‘T] = Pf”f[)‘la)‘]]Ha r even;

o fIML A = A A0l = 0 (D AL A, A, 7 odd,
where for 0 € I we put formally f[k,0] = —f[0,k] = 1.

Proposition. The function f satisfies the identity

s ad= T fe Al

1<i<j<r
if and only if it satisfies this identity for r = 3.

Proof. This proposition generalizes similar statement from [Kn], where the identity for
even 7 was proved under assumption that it is satisfied for » = 4. Observe that adding 0 does
not spoil the identity for r = 3. Then, it is easily verified for r = 4, and so the result follows
form Knuth’s theorem. Remark that the direct proof of Proposition is a little simpler than the
original proof of Knuth’s theorem. U
y—x
r+y

Example. The identity is satisfied for the function g[z,y] =

Example (V. Kryukov). Denote by £ the completion of the ring of Laurent polynomials
Zlt1,t;", ... st ] with help of infinite formal series in t1 /t2, t2/t3, ..., t,_1/t, (the variables t;
can enter in monomials with arbitrary large positive or negative exponents but every monomial
of the product R; Rs of two such series is determined by only finite number of monomials in R;
and Ry). For i < j set

.. . L=t/ t; t7 3
i) = —fli] = ol 9% 9%y e

This function also satisfies the condition of Proposition. Indeed, if for i < j < k we set a = t;/t;,

b =t;/ty, then the identity we should verify reduces to the correct identity
l-a 1-ab 1-b (1-a)(l—ab)(1-0)
l+a 14+ab 14+b (1+a)(14+ab)(1+0b)

O

Completion of the proof of Theorem 2.1. Denote by A the polynomial ring in
(4)

variables a;,’. Consider the homomorphism

Phx A[tla v 7tk] - A[tla v 7tk71]a

that commutes with ¢q,...,%;_1 and
(k) () () | pk) . plk) it
k) (k k k k — U
pk*tZ:ZRZ- Qgiy s Where Ry” + Ry’ + R, +...:H1+ti.
=0 i=1
Our goal is to compute piy ... ppt7"- - -t57. Let £, C £ denote the subring of series that do not
contain negative exponents of variables ¢1,...,t;. Consider the Z[ty,. .., t;]-linear homomor-
phism
Ly =5 Alty, o te), 7t st (B g
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In terms of this homomorphism the image py.t; is given by
1)t
5= R ts+/\k i_ t)\k—l—s R t/\k+s —Zk
Praly = 9012; Z r[11+ti/tk

In other words, in terms of ¢ the homomorphism pg, is just the multiplication by

£ Hf;ll }3:%: After r steps we obtain

1—t;/t;
Pre- - Dratit oo tyr = p Mgt T L=tifty.
LL 144/t

1<i<y<r

Now we use the identity for the function f of Example above. Assume r is even. Denoting
fli,jl = tfi+/\it;j+)‘jf[i,j], we have

Ple.-Drslittir = @ tsl+)‘1 N S 1) B R
= Zif 7'1a7’2 7'3al4]
= > +p(flir,da]) o(flis,ia]) - -
= Z :‘:Q)\il +8i1,Xip +8iy (a(i1)’ a(iz)) Q)\i3+5i3a)‘i4+5i4 (a(ig)’ a(i4)) T

Q}\1+81,...,)\n+sn (a(l), - ,a(r)),

The case of odd r is considered in a similar way or we can simply reduce the problem to the
previous case by setting A1 = 0. O

Appendix D. Orthogonal degeneracy loci

In this section we state the analogue of Theorem 1.1 for the case when the bundle E is orthogonal
i.e. it is equipped with a nondegenerate symmetric bilinear form given as a nowhere degenerating
section of the bundle Sym2E*. The proofs will appear elsewhere.

The main difficulty arising in the orthogonal case is that the isotrope bundles have char-
acteristic classes that are not expressed in terms of their Chern classes. In other words, the
cohomology rings of the isotrope Grassmann and flag manifolds are not generated by the Chern
classes of the tautological bundles. Almost all such classes still can be expressed via the Chern
classes if the division by 2 is allowed. Therefore in this Appendix we assume that the coefficient
ring of all cohomology groups contains 1/2.

There are still extra characteristic classes in the case when rk E = 2n is even. For in-
stance the Grassmannian of mazimal (i.e. n-dimensional) isotrope subspaces in C?" has two
components. Namely, the dimension of the intersection dim(L; N Ls) of two maximal isotrope
subspaces Li, Ly C C?" may jump only by even numbers when L; and L are changing contin-
uously. These two planes belong to the same component iff dim(L; N Ly) =n (mod 2). For
an isotrope subbundle L C E the missed characteristic class is deﬁned as follows. Assume that
the bundle L is a subbundle of some maximal isotrope bundle L. Then the top Chern class
cm(L/L) —=n—r1kL, is independent on L up to a sign. More precisely,

Lemma. If 2;\, L'cC E, tk E = 2n, are two mazimal isotrope subbundles containing L, then
em(L/L) = £ep(L'/L), where the sign & is positive (negative) if dim(Ly N Ly) =n  (mod 2)
(resp. dim(L, N L)) =n—1 (mod 2)) for any point v € M.
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Definition. Let F,L C E be two isotrope subbundles. If the rank rk F = 2n is even we

set
e(L,F) = (—1)dm(fe) e (L)L @ F/F), k=2n—1kL —1kF,

where E, F are some maximal isotrope subbundles containing L and F' respectively.
If rk E =2n+1 is odd we set e(L, F) = 0.

Remark. The Lemma implies that the class e(L, F') depends neither on the bundles E, F
nor on the choice of the point x € M. Moreover this class is well defined even if the maximal
isotrope bundles E, F do not exist. Indeed, we can pass from M to the total space of the bundle
G — M whose fibers are formed by pairs of maximal isotrope subspaces in E, containing L,
and F,, respectively, x € M; it is sufficient to define the corresponding characteristic class on G
since the induced homomorphism of the cohomology H*(M) — H*(G) is injective (over Z[3]).

Consider an isotrope subbundle L C E and a flag of isotrope subbundles
F,, CFy, C...CE, rkF,=1rkE-1kV — k.

(Remark the shift by 1 in the numeration of the planes F}, comparing with the symplectic case.)
The degeneracy loci Sy,,..x, C M, Ay > ... > A, are defined similarly to the symplectic case
by conditions

dimFy\,;, N Ly >4, 1=1,...,r

We may always assume that A, > 0. Indeed, if rk F is even and both Fj and L are maximal
then the fact that dim(Fp, N L,) = const (mod 2) implies that the condition on the dimension
of the intersection Fy, N L, is equivalent to the corresponding condition on the dimension of
the intersection Fi, N L.

Theorem. Generically the cohomology class dual to the locus Sy, . », is given by

r
[S)m---,)\r] = P)\lv---v)\r7

where the characteristic class Py, € H2Z)‘i(M) 18 defined as follows:

o if r =1 then 2P, = aik) —e(L, Fy,), where alt) = ¢i(E—L—Fy);

7
I
o if =2 then 4P = (o) —e(L, Fy)) (af +e(L, B)) + 23" (- 1)af 0,
i=1

. ifT‘ > 3 is even then P)\ly---,)\r = Pf|P)\i,)\j‘1§i,j§r;

r

o if r > 2 45 odd then Py, ), = 2:(—1)"71P)\2.P/\1 VR
i=1

The genericity condition is formulated in the same way as in the remark after Theorem 1.1.
All corollaries of Theorem 1.1 listed in Section 1 and Appendix B have the corresponding
reformulations for the case of orthogonal degeneracy loci (getting rid of redundant indicies,
Schubert classes on isotrope flag and Grassmann manifolds, degeneracy of skew-symmetric
maps of bundles, classes of twisted degeneracy loci etc.). We present just two examples; the
interested reader can easily formulate the others. The formulas of the statements below simplify
the corresponding formulas from [PR, LP2].

Let L,L' C E be two isotrope subbundles in an orthogonal bundle E. For any integer
r > 0 consider the locus Q, = {z € M | dim(L, N L)) > r}. Denote a = ¢(E — L — L'),

17



m =tk E —rk L —rk L'. Then m is strictly positive unless tk F is even and both L, L’ are
maximal.

Theorem (cf. [PR]). Assume that m > 0. Then generically

1
[QT] = or (Qm+r71,...,m+1,m(aa cee aa) + (_1)T6(La LI) Qm+r71,...,m+1(aa <. aa)) .

If m =0 (i.e. tk E = 2n is even and the isotrope sbbundles L, L' are mazimal) we assume that
dim(L; N L)) =r (mod 2). Then generically

1
Q] = FQ,_L“.’l(a, coeya).

Let F C E be vector bundles over some base M. The bundle map f : F — E* is called
skew-symmetric if the bilinear form (f,(u),v) on F, x E, is skew-symmetric when restricted to
F, x Fy for all # € M. Denote m =1k E —rtk F, a = ¢(E* — F).

Corollary (cf. [LP2]). Let F — E* be a skew-symmetric map of vector bundles F C E.
If F # E (i.e. m > 0) then the Poincaré dual to the locus Q, C M of points x € M such that
dimker f, > r is given by

1 r
Q,] = o (Qm+T,17___’m(a, cosa) + (=1)"cn(E/F) Qmir-1,. . m+i(a, ... ,a)) )
If F = E then generically
1
[Qr] = ﬁQrfl,...,l(aa ,CL)
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