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me.ruAbstra
tWe de�ne Thom polynomials for Lagrange, Legendre and 
riti
al point fun
tion singu-larities. Our approa
h is based on the notion of 
lassifying spa
e of singularities. This ap-proa
h provides a universal method of 
omputing Thom polynomials. Chara
teristi
 
lassesof 
omplex Lagrange and Legendre singularities of small 
odimensions are 
omputed. Theseexpressions redu
ed modulo 2 agree with those obtained by Vassiliev for the real 
ase.1 Introdu
tionThe natural way to study the global properties of isolated hypersurfa
e singularities is to in
ludethe hypersurfa
e into a generi
 family. Formally this 
an be des
ribed as follows. Consider asmooth embedded hypersurfa
e in the total spa
e of a smooth lo
ally trivial 
omplex analyti
�bration: H ,! W# �B(The 
ase when � is the trivial bundle is already interesting enough.) We 
onsider H as a familyof (possibly singular) hypersurfa
es Hb �Wb, Wb = ��1(b), Hb = H \Wb, b 2 B. Let M � Hbe the union of all singular points of Hb's. Generi
ally M is smooth and has the 
odimensionn = dimW � dimB in H. It 
an be identi�ed with the zero lo
us of a 
ertain se
tion of someve
tor bundle. Namely, the bundle is Hom(V; I), where V � TW is the subbundle of ve
torstangent to the �bres of � and I is the normal bundle of H. The se
tion is given by the naturalproje
tion V � THW ! THW=TH = I. The generi
ity 
ondition means that this se
tionis transversal to the zero se
tion of the same bundle. This 
ondition is open but in 
omplexsituation it is not ne
essary dense. Similarly below by generi
ity for some smooth map we meanthe transversality of its jet extension to a 
ertain strati�
ation on the jet spa
e.Let 
 be any 
lass of isolated hypersurfa
e singularities (an algebrai
 subvariety in some jetspa
e of fun
tion germs C n ; 0 ! C ; 0 whi
h is invariant with respe
t to the group of left-right
hanges of variables). De�ne the lo
us 
(H) �M as the lo
us 
onsisting of the points at whi
h�Partially supported by the grants RFBR 98-01-00612 and NWO-047.008.0051



the hypersurfa
e Hb belongs to the given singularity 
lass 
. A

ording to the general prin
ipleof Thom the 
ohomology 
lass Poin
ar�e dual to the lo
us 
(H) is independent on H (providedH is generi
) and 
an be expressed as a universal polynomial in Chern 
lasses of W;B;H. We
laim that this polynomial 
an be expressed in terms of some parti
ular 
ombinations of these
lasses. Namely, let u = 
1(I) = 
1(TW �TH) be the restri
tion to M of the 
lass of the divisorH. Denote 
i = 
i(V ) = 
i(TW ���TB), and de�ne 
lasses ai = 
i(V �
I�V ) as homogeneous
omponents in the expansion1 + a1 + a2 + : : : = (1 + u)n � (1 + u)n�1
1 + (1 + u)n�2
2 � : : :� 
n1 + 
1 + 
2 + : : :+ 
n : (1)These 
lasses satisfy relations(1 + a1 + a2 + : : :)�1� a11 + u + a2(1 + u)2 � : : :� = 1; (2)(following from the identity U + U�
I = 0, where U is the formal di�eren
e U = V �
I � V ).These relations allow to expand the squares of 
lasses ai and hen
e any polynomial in u; a1; a2; : : :
an be expressed as a linear 
ombination of monomials ui0ai11 ai22 : : : with i0 � 0, ik 2 f0; 1g(k > 0).Theorem 1. For any isolated hypersurfa
e singularity 
lass 
 the 
ohomology 
lass inH�(M) Poin
ar�e dual to the lo
us 
(H) 
an be expressed as a universal polynomial P
 inu; a1; a2; : : :. This polynomial (
alled Thom polynomial) is independent on n (we use the sameletter 
 for the 
lass of fun
tion germs C n0 ; 0! C ; 0, n0 6= n, stably equivalent to the fun
tionsfrom 
).For the singularity 
lasses of 
odimension not greater than 6 the Thom polynomials arerepresented in Table 1.To determine the 
ohomology 
lass dual to the lo
us 
(H) in H or in W we apply thepush-forward formula i�(i�a b) = a i�(b) to the embeddings M i,! H j,! W and the 
lassesa = P
, b = 1. For instan
e, sin
e i�(1) = [M ℄ = 
n(Hom(V; I)) = un � un�1
1 + : : : � 
n, weget that the dual of 
(H) 
onsidered as a lo
us in H is equal to[
(H)℄ = (un � un�1
1 + : : :� 
n) P
 2 H�(H):Similarly, the homomorphism j� : H�(H) ! H�(W ) on the 
lass above is given by the multi-pli
ation by u.To prove Theorem 1 we relate the problem to the theory of Lagrange and Legendre singular-ities and their 
hara
teristi
 
lasses. Namely, we 
onsider the hypersurfa
e H as the `generatingfamily' for the Legendre immersion M ! PT �B.In the simplest 
ase when the bundle I is trivial (and hen
e u = 0) the problem is redu
edto the study of Lagrange singularities. Lagrange singularities are those of the proje
tion of aLagrange submanifold to the base of the 
otangent bundle. Singularity lo
i of this proje
tion
ould de�ne 
ohomology 
lasses on this manifold. The simplest example is Arnold-Maslov 
lasswhi
h is dual to the total 
riti
al set of the proje
tion. The theory of 
hara
teristi
 
lassesrelated to the real Lagrange singularities was developed by V.Vassiliev. In his book [18℄ a
o
hain 
omplex (so 
alled Vassiliev universal 
omplex of singularity 
lasses) was 
onstru
tedwhose generators 
orrespond to the singularity 
lasses. The 
ohomology groups of this 
omplexare well de�ned 
hara
teristi
 
lasses. Vassiliev has 
omputed the 
ohomology of this 
omplex2



Table 1: Thom polynomials of isolated hypersurfa
e singularities of 
odim � 6A2 = a1A3 = 3a2 + ua1A4 = 3a1a2 + 6a3 + 4ua2 + u2a1D4 = a1a2 � 2a3 � ua2A5 = 27a1a3 + 6a4 + u(16a1a2 � 12a3)� 4u2a2 + u3a1D5 = 6a1a3 � 12a4 + u(4a1a2 � 14a43� 4u2a2A6 = 87a2a3 + 54a1a4 + 78a5+u(127a1a3 � 53a4) + u2(59a1a2 � 126a3)� 41u3a2 + u4a1D6 = 12a2a3 � 24a5 + u(14a1a3 � 40a4) + u2(8a1a2 � 30a3)� 8u3a2E6 = 9a2a3 � 12a1a4 + 6a5 + 3ua4 + u2(3a1a2 � 6a3)� 3u3a2A7 = 135a1a2a3 + 465a2a4 + 264a1a5 + 522a6 + u(516a2a3 � 16a1a4 + 485a5)+u2(305a1a3 � 70a4) + u3(190a1a2 � 440a3)� 165u4a2 + u5a1D7 = 24a1a2a3 � 24a2a4 + 48a1a5 � 144a6 + u(8a2a3 + 44a1a4 � 224a5)+u2(48a1a3 � 172a4) + u3(20a1a2 � 88a3)� 20u4a2E7 = 9a1a2a3 + 6a2a4 � 42a1a5 + 36a6 + u(21a2a3 � 61a1a4 + 80a5)+u2(43a4 � 6a1a3) + u3(7a1a2 � 8a3)� 7u4a2P8 = a1a2a3 � 6a2a4 + 6a1a5 � 4a6+u(7a1a4 � 4a2a3 � 10a5) + u2(2a1a3 � 8a4)� 2u3a3in the 
odimension not ex
eeded 6 and found the expressions for all these 
lasses (ex
ept A7)in terms of Stiefel-Whitney 
lasses.In the paper [9℄ we suggested an approa
h to this problem based on the study of 
lassifyingspa
e of Lagrange singularities. This has led to understanding the geometri
al meaning ofVassiliev 
omplex and to introdu
ing new 
hara
teristi
 
lasses. In this paper we develop thisapproa
h. In parti
ular, we 
omplete 
omputing 
hara
teristi
 
lasses dual to singularity 
lassesin terms of multipli
ative generators the ring of 
hara
teristi
 
lasses (i.e. Thom polynomials)and des
ribe also the 
omplex version of the theory.Any 
lassi�
ation problem in singularity theory 
an be 
onsidered as a problem of 
lassifyingorbits for an a
tion of some Lie group G on some ve
tor spa
e V . For instan
e, for left-right equivalen
e of maps V is the spa
e of map germs (Rn ; 0) ! (Rm ; 0) (or jets of mapsof �xed order) and G is the group of the left-right 
hanges whi
h is homotopy equivalent toGL(n;R) � GL(m;R). The theory of 
hara
teristi
 
lasses of this 
lassi�
ation problem istherefore the theory of 
hara
teristi
 
lasses of the given Lie group G. The 
lassifying spa
eBV of this 
lassi�
ation problem is de�ned using standard Borel's 
onstru
tion, BV = V �GBE = (V � BE)=G, where BE ! BG is the 
lassifying prin
iple G-bundle. The 
lassifyingspa
e BV is homotopy equivalent to BG (sin
e the bundle BV ! BG has 
ontra
tible �bres).Any invariant algebrai
 subset � � V gives rise to a subset B� = � �G BE � V of thesame 
odimension. With this approa
h the `Theorem about existen
e of Thom polynomials'is evident; Thom polynomial of � � V is just the element represented by the fundamental
y
le of � in the equivariant 
ohomology group H�G(V ) �= H�G(pt) �= H�(BG), or, whi
h is3



equivalent, the element, represented by the fundamental 
y
le of B� in the usual 
ohomologygroup H�(BV ) �= H�(BG).The 
lassifying spa
es BG and BV have in�nite dimensions, but they always have veryni
e �nite dimensional approximations that 
an be used as well for `stable' problems, wherethe maps of manifolds of di�erent dimensions are 
onsidered. For example, for the theory ofsingularities of (R� ; 0) ! (R�+k ; 0) the 
lassifying spa
e is the spa
e of germs (or jets of highorder) of n-manifolds in (RN ; 0), N � n � 0. This spa
e is homotopy equivalent to theusual Grassmannian Gn;N and strati�ed a

ording to singularities of the proje
tion to the �xed
oordinate (n+k)-subspa
e. In a similar way, for the 
lassifying spa
e of Lagrange singularitiesone 
an take the spa
e of all germs (or jets of high order) of Lagrange submanifolds in thesymple
ti
 spa
e (R2n ; 0), n � 0. The same 
onstru
tions 
an be used for studying 
omplexspa
es and holomorphi
 maps.Note that if � � V is an orbit then B� = ��G EG �= BG� is the 
lassifying spa
e of the`symmetry group' G� of the singularity � (the stationary subgroup of any point x 2 �). Asimilar des
ription of B� exists even if � 
onsists of many orbits.In [13℄ Sz�u
s and Rim�anyi used an alternative approa
h to the de�nition of the 
lassify-ing spa
e of singularities based on Sz�u
s's idea of gluing the 
lassifying spa
es of symmetrygroups of singularities. They 
onsidered only simple singularities, and very 
lear topology ofthe 
lassifying spa
e does not follow from their 
onstru
tion. It should be noti
ed neverthelessthat their 
onstru
tion works as well for the 
ase of multisingularities, see [14, 11, 12℄ for someappli
ations. It is an interesting problem to �nd an a priori 
onstru
tion for the 
lassifyingspa
e of multisingularities and to des
ribe its topology (the work [13℄ implies that it should berelated to 
obordism theory).The group of Lagrange 
hara
teristi
 
lasses is the 
ohomology group of Lagrange Grass-mannian �R (or its 
omplex analogue �C ). The 
ohomologi
al information about adja
en
ies ofsingularities is translated into properties of the spe
tral sequen
e 
onstru
ted by the �ltrationon the 
lassifying spa
e by the 
odimension of singularities [8℄. Let us des
ribe this spe
tralsequen
e for the 
lassi�
ation of (
omplex) Lagrange singularities [9℄. The initial term of thissequen
e is E�;�2 =L�H�(BG�), where G� is the symmetry group of the singularity �. Thesymmetry groups of all singularities of small 
odimensions are well known. They are all �nite(some extension of S3 for the singularity D4 and 
y
li
 groups for all other singularities). Infa
t, Vassiliev proved re
ently that the symmetry group of any 
riti
al point singularity of �nitemultipli
ity is �nite, see the Russian translation of [18℄. This gives the 
omplete des
riptionof the groups Ep;q2 �= Ep;q1 for small p. They are all torsion groups for q > 0 and the freegenerators of the raw E�;02 
orrespond to the fundamental 
y
les of singularity 
lasses. Hen
ewe immediately arrive without any 
al
ulation to the following 
on
lusion.Theorem. The 
lasses of 
omplex Lagrange singularities A2; A3; : : : ; E7; P8 form a basis inthe group of Lagrange 
hara
teristi
 
lasses H�12(�C ;Q). In 
ase of integer 
oeÆ
ients these
lasses generate freely subgroups of �nite indi
es 1; 3; 12; 360; : : : respe
tively in H2d(�C ;Z),d � 6.Of 
ourse, this result follows also from the expli
it form of these 
lasses represented inTable 1 (one should set u = 0; the 
orresponding terms are marked in boldfa
e). The presentsof even numbers in the sequen
e 1; 3; 12; 360; ::: implies that in 
ase of real singularities thereare some relations between these 
lasses. These relations have been found by Vassiliev in [18℄:A4 �D4 = D5 = D6 = A6 �E6 = D7 = E7 � P8 = 0 (mod 2).We des
ribe two methods for 
omputing Thom polynomials, both based on the 
on
eptof the 
lassifying spa
e. The idea of the �rst method is the following. Consider a 
ellular4



partition of the 
lassifying spa
e su
h that both S
hubert 
y
les and singularity 
lasses are some
ombinations of 
ells. Then the problem is redu
ed to linear algebra in some �nitely generated
o
hain 
omplex. To obtain su
h a partition one 
an 
onsider a 
lassi�
ation of 
riti
al pointsingularities with respe
t to a smaller group of equivalen
e 
onsisting of di�eomorphism germswith identi
al linear terms. Su
h 
lassi�
ation has no simple singularities but the number ofmodules is always �nite. The main property of this 
lassi�
ation is that the symmetry groupof every its singularity 
lass is trivial, and hen
e, the indu
ed partition of the 
lassifying spa
eis a 
ellular partition.A realization of the program above is possible though it requires a great deal of 
omputa-tions. To redu
e the amount of 
omputations we use as a kind of 
ompromise another detailed
lassi�
ation of singularities with smaller but not trivial symmetry groups. The 
orresponding
lasses are 
alled marked singularity 
lasses. A number of relations between these marked sin-gularities is suÆ
ient to redu
e the problem of �nding Thom polynomials to those singularity
lasses for whi
h this problem 
an be solved by 
lassi
al methods like resolutions of singularities.To des
ribe these relations we introdu
e the notion of adja
en
y exponent for a pair of singu-larities of (
omplex) neighbour 
odimensions whi
h is an analogue of the in
iden
e 
oeÆ
ientin real 
ase, see [18℄.For the simpli
ity we present the 
omputations of Thom polynomials for the 
lasses offun
tion singularities. All steps of our 
omputations 
an easily be reformulated in terms ofLagrange (or Legendre) singularities.Another method of �nding Thom polynomials uses basi
ally the idea of R.Rim�anyi. Anyexample when both Chern 
lasses and the 
lass represented by singularity lo
us 
an be 
om-puted produ
es some relations between the 
oeÆ
ients of Thom polynomial. When the numberof 
omputed examples is high enough these relations 
ould be suÆ
ient to determine Thompolynomial 
ompletely. Rim�anyi noti
ed that a lot of examples 
an be produ
ed by 
onsideringtubular neighbourhoods of singularity lo
i in the 
lassifying spa
e. To see when this 
ould givethe result let us look again at the 
hara
teristi
 spe
tral sequen
e 
onverging to the group of
hara
teristi
 
lasses. Its se
ond term is E�;�2 =L�H�(BG�). In 
omplex 
ase all topology isoften 
on
entrated in even dimensions and the spe
tral sequen
e 
onverges in the se
ond term.This means that any 
hara
teristi
 
lass is 
ompletely determined by the 
olle
tion of its imagesin the groups H�(BG�). In fa
t, these images belong not to the group H�(BG�) = H�(B�)itself but to the (isomorphi
 to it) 
ohomology group H�(T�) of Thom spa
e T� of the normalbundle to the submanifold B� of the 
lassifying spa
e of singularities. Therefore, to applyRim�anyi's method we need that the homomorphisms ' : H�(T�)! H�(B�) indu
ed by in
lu-sion of the zero se
tion of the normal bundle to its Thom spa
e would be monomorphi
.If G� is trivial then the homomorphism ' (given by the multipli
ation by the top Chern
lass of the bundle) is trivial. In a similar way ' is trivial if G� is �nite and we 
onsider the
ohomology with 
oeÆ
ients in a �eld of 
hara
teristi
 zero. Therefore Rim�anyi's method of�nding Thom polynomials 
an be applied only when every singularity has a 
ontinuous groupof symmetry. This is not the 
ase for Lagrange singularities. Nevertheless this is true in 
aseof Legendre or twisted Lagrange singularities. In the 
lassi�
ation of Legendre singularitiesthe right equivalen
e of fun
tions is repla
ed by V - (or K- depending on the terminology)
lassi�
ation when one allows to multiply a fun
tion by another nowhere vanishing fun
tion. Inthis 
lassi�
ation any quasihomogeneous singularity has an obvious U(1)-symmetry. Thus theRim�anyi's method gives Thom polynomials of all Legendre singularities in small 
odimensionsand as a parti
ular 
ase Thom polynomials of Lagrange singularities.Redu
ing the 
oeÆ
ients modulo two we get real Legendre 
hara
teristi
 
lasses (Thompolynomials for them were not 
omputed in [18℄).5



The paper is organised as follows. In Se
tion 2 we present two independent methods of
omputing Thom polynomials of Table 1. Their existen
e is proved in Se
tion 3 where the
hara
teristi
 
lasses of Lagrange and Legendre singularities are studied.I appre
iate the hospitality of the I. Newton Institute, Cambridge, where the work on thepaper was 
ompleted.2 Resolutions and adja
en
ies of fun
tion singularitiesIn this se
tion we 
ompute the Thom polynomials listed in Theorem 1 for the 
ase of bundle mapproblem 
onsidered here. The proof of their existen
e is postponed until Se
tion 3.2. Everywherein this se
tion we use the same notations for the singularity lo
i and for the 
ohomology 
lassesrepresented by these lo
i.2.1 Bundle map problemBefore 
omputing Thom polynomials of Theorem 1 we formulate a slightly di�erent but, in fa
t,an equivalent problem. Consider two 
omplex ve
tor bundles V; I of ranks rkV = n, rk I = 1over a smooth base M . We do not assume any 
omplex stru
ture on the base M . Consider asmooth bundle map V f�! I& .Mwhose restri
tion fw : Vw ! Iw, w 2 M to ea
h �bre is a 
omplex polynomial of some �xeddegree N � 0 with a 
riti
al point at the origin. We may think of f as a generi
 se
tionf = f(2)+f(3)+ : : : of the ve
tor bundle S2V �
I�S3V �
I�� � �. With any fun
tion singularity
lass 
 we asso
iate the lo
us 
(f) �M 
onsisting of the points w 2M su
h that the polynomialfw has the pres
ribed singularity type 
 at the origin. Theorem 1 is a parti
ular 
ases of thefollowing more general one.Theorem 2. For any generi
 f the 
ohomology 
lass Poin
ar�e dual to the lo
us 
(f) 
anbe expressed as a universal polynomial P
 in 
lasses u = 
1(I) and ai = 
i(V �
I � V ). Forsingularity 
lasses of 
odimension � 6 these polynomials are those listed in Theorem 1.Proo f o f Theorem 1 . Let as explain how the problem of studying the hypersurfa
esingularities dis
ussed at the introdu
tion 
an be redu
ed to a bundle map problem 
onsideredhere. Let the diagram H � W �! B and the 
riti
al set M � H be as in the introdu
tion.Assume that the divisor H is given lo
ally by the equation g = 0 where g is some fun
tiongiven in a neighbourhood of the given point w 2M . Denote by fw the N -jet of the restri
tionof g to the �bre of � through w. These fun
tion jets fw form together a se
tion in the bundleJ whose stru
ture group is the Lie group formed by the N -jets of right 
hanges in C n ; 0 andmultipli
ations by the N -jets of non-vanishing fun
tions. This group is 
ontra
tible to thesubgroup GL(n; C ) � GL(1; C ) of linear 
hanges. Hen
e, the stru
ture group of J 
an beredu
ed to this subgroup. The possibility of su
h redu
tion means the possibility of introdu
ingthe 
omplex linear stru
tures `up to the order N ' on the germs Ww, C1-smoothly dependingon the point w 2M . After su
h redu
tion the N -jets fw 
an be 
onsidered as polynomial mapsfw : Vw ! Iw, where Vw = TwWw, Iw = TwW=TwH. By Tugeron's �nite determina
y theoremthe singularity type of the hypersurfa
e Hw is that of the fun
tion germ fw. Therefore the6



partition on M by di�erent singularity lo
i of Hw 
oin
ides with that of the polynomial bundlemap f : V ! I. �2.2 The Gysin homomorphismSome part of Thom polynomials of Theorem 1 is 
omputed using the method of resolutionsof singularities. The 
omputations of this method use a formula for the Gysin homomorphismproved in [10℄. Consider ve
tor bundles V; I ! M of ranks n; 1 respe
tively and a quadrati
bundle map f(2) : V ! I. The map f(2) is 
onsidered as a se
tion of the bundle S2V � 
 I oras a linear self-adjoined bundle map f(2) : V ! V �
I. Denote by Fr = Fr(V ), r � n the 
agbundle over M whose total spa
e is formed by all possible 
agsF 1w � F 2w � : : : F rw � Vw; dimF iw = i; w 2M;in the �bres of V . The 
ohomology ring of Fr is generated by the 
ohomology of M and bythe 
lasses ti = �
1(F i=F i�1) = 
1((F i=F i�1)�), where F i are the 
orresponding tautologi
alve
tor bundles. Denote by Zr � Fr the lo
us de�ned by the 
ondition F rw � ker f(2)w, w 2M .Generi
ally Zr is smooth and dimC Zr = dimC M � r. We study the Gysin (or push-forward ortransfer) homomorphism pr� : H�(Zr)! H�+2r(M)
orresponding to the natural proje
tion pr : Zr !M .Theorem ([10℄). Assume that the bundle I is trivial. Then for any monomial ts11 � � � tsrrwe have pr�(ts11 � � � tsrr ) = Qs1+1;:::;sr+1 2 H2P(si+1)(M);where Q�1;:::;�r = Q�1;:::;�r(a1; a2; : : :) are polynomials in 
lasses ak = 
k(V � � V ) de�ned asfollows:� for r = 1 we have Qk = ak;� for r = 2 we set Qk;l = �Ql;k = 1Xi=1(�1)i ������ ak+i ak�ial+i al�i ������ ;� for any even r � 4 we set Q�1;:::;�r = Pf jQ�i;�j j1�i;j�r;� for any odd r � 3 we setQ�1;:::;�r = rXk=1(�1)k�1a�kQ�1;:::;�k�1;�k+1;:::�r :Here Pf is the PfaÆans of a skew-symmetri
 matrix. Remark that in the in�nite sum forQk;l only �rst max(k; l) terms may be di�erent from zero.The 
omputation of the homomorphism pr� in generi
 
ase 
an be redu
ed to the 
ase
onsidered above.
7



Corollary. The formula of previous Theorem holds true in the generi
 
ase if it is appliedto the 
lasses t̂i = �
1(F i=F i�1) + u=2 instead of ti and to the 
lasses âk instead of ak, whereu = 
1(I) and 1 + â1 + â2 + : : : = 1� 
11+u=2 + 
2(1+u=2)2 � : : :1 + 
11�u=2 + 
2(1�u=2)2 + : : : ; 
i = 
i(V ):Proo f . We use the following tri
k borrowed from [7℄. Consider �rst the 
ase when I = J
2,where J is another line bundle with 
1(J) = 
1(I)=2 = u=2. Then S2V �
I = S2(V
J�)�so f(2) 
an be treated as a self-adjoined bundle map V 
 J� ! (V 
 J�)� and we 
an applyprevious Theorem to the 
lasses t̂i = �
1((F i=F i�1)
J�) = �
1(F i=F i�1) + u=2 and âk =
k((V
J�)� � V
J�). The formulas obtained in this way 
an be applied to any line bundle Isin
e they are universal, 
f. [7, 10℄.Remark. The 
lasses âi are related to the integer 
lasses ai = 
i(V � � V
I) via1 + â1 + â2 + : : : = 1 + a11� u=2 + a2(1� u=2)2 + : : : :The formula of Corollary above uses the division by powers of 2. Of 
ourse the dire
t imageunder pr� of any monomial in ti = 
1(Fi=Fi�1) is an integer 
lass and so it 
an be expressedas a universal polynomial with integer 
oeÆ
ients in u; a1; a2; : : :. The Corollary allows to �ndthese polynomials for any parti
ular monomial but these expressions have no ni
e 
losed formsimilar to that in 
ase I = C .Example. The image p1(Z1) �M is the 
losure of the lo
us A2(f). Therefore,A2 = p1�(1) = Q1 = a1:This is the �rst formula of Table 1.2.3 Marked singularities and their resolutionsIn this se
tion we 
ompute the Thom polynomials for the 
lasses A2, A3, D4, D5, E6, P8 usingtheir resolutions. The other 
lasses from the list of Theorem 1 have no good resolutions but thepartial resolution of these 
lasses simpli�es the 
omputation of Thom polynomials for them aswell.Let f : V ! I be a polynomial bundle map su
h that the restri
tions fw : Vw ! Iwhave a 
riti
al point at the origin for any w 2 M as in Se
tion 2.1. The se
ond di�erentialf(2)w = d2fw : Vw ! Iw is a well de�ned at any point w 2 M . We 
onsider f(2) as a twistedself-adjoined map of ve
tor bundles f(2) : V ! V �
I on M .Let F1 = P (V ) be the proje
tivisation of the ve
tor bundle V ! M . Consider the sub-manifold Z1 � F1 formed by the pairs of the form (a point w 2 M , a line l � Kw, whereKw = ker f(2)w is the kernel of the se
ond di�erential of fw. We would like to represent the
y
les of �bre singularities of f as the dire
t images of 
ertain 
y
les on Z1 under the naturalproje
tion p1 : Z1 !M:De�nition. Let g : C n ; 0 ! C ; 0 be a germ of a 
riti
al point singularity and K =ker d2g � T0C n be the kernel of its se
ond di�erential. The line l � K is 
alled distinguishedif the 
ubi
 form g(3) given by the third-order terms in the Taylor expansion of g vanishes on8



l. A marked 
riti
al point singularity is a pair (g; l), where g is a fun
tion germ and l is adistinguished dire
tion.Remark that the 
ubi
 form g(3) is well de�ned on K (in a sense that it is independent on the
hoi
e of 
oordinates on C n ; 0). Consider the 
lassi�
ation of marked 
riti
al point singularities.If g has a singularity of type Ak, k � 3, or Ek, k = 6; 7; 8, then the distinguished dire
tionis unique. The 
orresponding marked singularity is denoted by eAk, eEk respe
tively.In 
ase of singularity Dk, the distinguished dire
tion may be either a simple or a doublezero of the 
ubi
 form g(3)jK . We denote the two 
ases by eD0k and eD00k respe
tively. So for k = 4there are 3 dire
tions of eD04-type and for k > 4 there are two distinguished dire
tions, one eD0kand one eD00k.In 
ase of singularity P8 the distinguished dire
tions form a 
ubi
 
urve in C P 2 = P (K). Weuse the notation eP 08 if this is a generi
 point of the 
ubi
 and eP 008 if this is one of the 9 in
e
tionpoints on it.We get the following 
lassi�
ation of marked fun
tion singularities.
odimeA3 1eA4; eD04 2eA5; eD05; eD005 3eA6; eD06; eD006 ; eE6; eP 08 4eA7; eD07; eD007 ; eE7; eP 008 5: : :The 
odimension is 
ounted in the spa
e of fun
tion germs g : C n ; 0 ! C ; 0 su
h thatdg(0) = 0 and ker d2g 
ontains some �xed dire
tion l0 � T0C n .The 
lassi�
ation of marked singularities produ
es the 
orresponding 
lassi�
ation of thepoints on the manifold Z1. Namely, we say that the point (w; l) 2 Z1 � P (V ) has markedsingularity e
 if the fun
tion germ fw has singularity type 
 and the line l � ker f(2)w isdistinguished.Lemma. The 
ohomology 
lasses on M dual to the singularity lo
i of 
odimension � 6
an be determined as the dire
t images of the following 
y
les on Z1:Ak = p1� eAk; (k � 3);D4 = 13p1�eD04; Dk = p1�eD0k = p1�eD00k; (k � 5);Ek = p1�eEk; (k = 6; 7; 8);P8 = 19p1�eP 008 = 13p1�t1eP 08:Proo f . Just note that every point w 2 M su
h that the singularity type of fw is Ak, Ek,or D>4 has a unique preimage in the 
orresponding 
y
le on Z1. For the singularity D4 thereare 3 su
h preimages (
orresponding to three zero lines of f(3)w on Kw) and for the singularityP8 there are 9 preimages on eP 008 (
orresponding to 9 in
e
tion points of the 
ubi
 f(3)w = 0 onP (K)). The restri
tion of t1 = �
1(F 1) to any �bre of P (V )!M is the 
lass of a hyperplane.Hen
e the three preimages of a generi
 point w 2 P8 on a 
y
le representing t1eP 08 
orrespond to3 points of the interse
tion of the 
ubi
 f(3)w = 0 with a generi
 proje
tive line in P (Kw). �9



Sin
e the homomorphism p1� is known by results of Se
tion 2.2, the last lemma redu
es theproblem to the 
omputation of 
ohomology 
lasses represented by 
ertain 
y
les on Z1.Example. The third di�erential d3fw = f(3)w : F 1 ! I is a se
tion of the line bundle(F 1)�
3 
 I on Z1, where F1 is the tautologi
al line bundle on Z1 � P (V ). The 
losure of the
y
le eA3 is the zero lo
us of this se
tion. Therefore, eA3 = 
1((F 1)�
3 
 I) = 3t1 + u andA3 = p1�(3t1 + u); t1 = �
1(F1); u = 
1(I):whi
h gives after applying the formulas of Se
tion 2.2 the Thom polynomial for A3.Similar arguments 
an be used for some other marked singularity 
lasses if we 
onstru
tresolutions with help of 
ags instead of proje
tive spa
es. The following Lemma uses notationsof Se
tion 2.2.Lemma. The following relations hold for the Gysin homomorphism p1� : H�(Z1)!M�+2.p1�( eA3) = p1�(3t1 + u)p1�(eD04) = p2�(3t1 + u)p1�(eD005) = p2�((3t1 + u)(2t1 + t2 + u))p1�(eD05) = p2�((3t1 + u)2(t1 + 2t2 + u))p1�(eE6) = p2�((3t1 + u)(2t1 + t2 + u)(t1 + 2t2 + u))p1�(eP 08) = p3�((3t1 + u)(2t1 + t2 + u))p1�(eP 008) = p3�((3t1 + u)(2t1 + t2 + u)(t1 + 2t2 + u)) (3)
Applying formulas for the homomorphisms pr� : H�(Zr) ! M des
ribed in Se
tion 2.2 we
omplete the 
omputations of the Thom polynomials for singularities A3;D4;D5; E6; P8.P roo f . The 
ase of eA3 is 
onsidered above. In the 
ase of singularities eD04; : : : ; eE6 the kernelKw = ker f(2)w has dimension 2. We 
an asso
iate with any of these 
y
les the 
orresponding
y
les eeD04; : : : ; eeE6 � Z2 � F2 by letting F 2w to be the kernel Kw. Then we get p1�eD04 = p2�eeD04and the same for eD05; eD005 ; eE6. The third di�erential f(3)w 
an be written asf(3)w = a0x3 + a1x2y + a2xy2 + a3y3with an appropriate 
hoi
e of 
oordinates (x; y) on F 2 su
h that the line F 1 is given by y = 0.The 
oeÆ
ients ai are globally de�ned se
tions of the bundles (F 1)�
(3�i) 
 (F 2=F 1)�
i 
 Iwith the �rst Chern 
lasses (3 � i)t1 + it2 + u, i = 0; 1; 2; 3; 4 (every se
tion in this sequen
e isde�ned only on the zero lo
us of the previous one). The 
losures of the 
onsidered 
y
les aregiven by the equations eeD04 : a0 = 0;eeD005 : a0 = a1 = 0;eeE6 : a0 = a1 = a2 = 0;eeD05 : a0 = a22 � 4a1a3 = 0respe
tively whi
h gives the formulas of Lemma (the expression a22 � 4a1a3 is a well de�nedse
tion of ((F 1)� 
 (F 2=F 1)�
2 
 I)
2 on the zero lo
us of a1).The singularities eP 08; eP 008 are resolved in a similar way using 
ags F 1w � F 2w � F 3w, whereF 3w = Kw, PF 2w is the tangent line to the 
ubi
 f(3)wjF 3w = 0. The tangen
y 
ondition is10



equivalent to the 
ondition that f(3)wjF 2w has a double zero on F 1w and the 
ondition that thetangent line is a point of in
e
tion is equivalent to the 
ondition that f(3)wjF 2w has a triple zeroon F 1w. Arguing as above we arrive to the expressions for the dire
t images of eeP 08; eeP 008 . �2.4 Adja
en
y exponentsThe Thom polynomials for 
lasses not 
onsidered in previous Se
tion are 
omputed using rela-tions between them. These relations are applied not to the 
lasses themselves but to the 
lassesof their partial resolutions.Lemma (basi
 relations). The 
ohomology 
lasses of 
y
les eA3; eA4; : : : eP 008 � Z1 aresubje
t to the following relations.(4t1 + u) eA3 = eA4 � eD04(5t1 + u) eA4 = eA5 � 2eD005(6t1 + 2u) eD04 = �eD05 + 4eD005(6t1 + u) eA5 = eA6 � 2eD006 � 3eE6(8t1 + 3u) eD05 = �eD06 + 12eE6 + 4eP 08(4t1 + u) eD005 = eD006 � eP 08(7t1 + u) eA6 = eA7 � 2eD007 � 5eE7(10t1 + 4u) eD06 = �eD07 + 16eE7(5t1 + u) eD006 = eD007 � eE7(4t1 + u) eE6 = eE7 � eP 008
(4)

F ina l 
omputa t i ons o f po lynomia l s o f Theorem 1 . A part of Thom polynomialare 
omputed in previous se
tion. Using relations (3) and (4) we get subsequentlyeA4 = (4t1 + u) eA3 + eD04;p1�( eA4) = p1�((4t1 + u)(3t1 + u)) + p2�(3t1 + u);eA5 = (5t1 + u) eA4 + 2eD005;p1�( eA5) = p1�((5t1 + u)(4t1 + u)(3t1 + u)) + p2�((9t1 + 2t2 + 3u)(3t1 + u));and so on. Continuing this way we get expressions for the dire
t images of all 
y
les on Z1of 
odimension less or equal to 5. Applying formulas for the Gysin homomorphisms fromSe
tion 2.2 we obtain all Thom polynomials of Theorem 1. Note that the expressions forp1�(eD0k) are not ne
essary for 
omputing Thom polynomials. We use these expressions only toverify our 
omputations. �The reason for the basi
 relations is as follows. Consider a germ of some marked singularity,say eAk. In some 
oordinate system it 
an be written asz = xk+1 +Q;where Q is a nondegenerate quadrati
 form in the remaining variables. Su
h a 
oordinate systemis not unique. Another 
hoi
e of the 
oordinate system results in the multipli
ation of thetangent ve
tor �=�x to the distinguished line by some 
omplex number 
 and the simultaneousmultipli
ation of the tangent ve
tor �=�z to the target spa
e by 
k+1. Therefore the tensor11



s = dx
(k+1)
�=�z is invariantly de�ned. We obtain that the bundle (F 1)�
(k+1)
I restri
tedto the 
y
le eAk � Z1 admits a 
anoni
al nowhere vanishing se
tion s.Lemma. The restri
tions of the line bundles listed in the table below to the 
orrespondingsingularity lo
i in Z1 are trivial.f bundle Y 
1(Y )eAk xk+1 (F 1)�
k+1 
 I (k + 1)t1 + ueD0k yk�1 + yx2 (F 1)�
(2k�2) 
 I
(k�2) (2k � 2)t1 + (k � 2)ueD00k xk�1 + xy2 (F 1)�
(k�1) 
 I (k � 1)t1 + ueE6 x4 + y3 (F 1)�
4 
 I 4t1 + ueE7 x3y + y3 (F 1)�
9 
 I
2 9t1 + 2ueE8 x5 + y3 (F 1)�
5 
 I 5t1 + uThe 
anoni
al se
tions for the bundles from this lemma are 
hosen so that for the (marked)fun
tions in the normal form above the 
oordinate of this se
tion is equal to 1 (the distinguishedline is the x-axis).The proof for all 
ases is the same as for the 
ase of singularity eAk. The symmetry group ofall these singularities a
ts on the lines F 1 and I by quasi-homogeneous homoteties. Therefore,the required bundle 
an be 
hosen in the form (F 1)�
�
I
�, where �=� is equal to the quotientof quasi-homogeneous weights of the fun
tion and of the variable x respe
tively. �Let 
 � Z1 be a 
y
le of some marked singularity from the last Lemma, Y ! Z1 be the
orresponding line bundle whose restri
tion to 
 is trivialised. This trivialisation of Y 
an not beextended to the 
losure of 
 sin
e the bundle Y is not trivial. Let � � Z1 be a singularity 
lassof neighbouring 
omplex 
odimension, 
odim� = 
odim
 + 1. Choose some point w 2 � anda (
odim�)-dimensional transversal sli
e T to � at this point. The singularity lo
us 
 
ut outa number of 
urves 
1; 
2; ::: on T . Let (C ; 0) ! (T;w) be a normalisation (= parameterisation)of one of these 
urves 
i. Then the 
anoni
al se
tion s of Y on 
i � 
 
an be written (usingsome lo
al trivialisation of Y near w) in the form s = �kihi where � is a parameter on the 
urveand hi is a germ of a holomorphi
 non-vanishing fun
tion.De�nition. The adja
en
y exponent [
;�℄ is the sum of the exponents ki over all 
urves
i of singularity 
 in the transversal to the singularity �.Lemma. The following equality holds in the 
ohomology of Z1,
1(Y )
 =X[
;�℄ �;where the sum is taken over all 
lasses of marked singularities � � Z1 with 
odim� = 
odim
+1. Proo f . Let Q � Z1 be a test 
ompa
t 
y
le of real dimension 2(
odimC 
 + 1). Withoutloss of generality we assume that Q interse
ts 
 transversally so that D = Q\
 is a real surfa
ewithout some �nite set SingD of points 
orresponding to interse
tions of Q with singularity
lasses of (
omplex) 
odimension 
odimC 
+ 1. Then(
1(Y ) 
; Q) = (
1(Y );D):The last number 
an be 
omputed using the restri
tion of the se
tion s to the 
y
le D. It isequal to the sum of indi
es indx(s) of this se
tion over all points of SingD. But every su
h index12



indx(s) is equal, by de�nition, to the adja
en
y exponent of singularities 
 and � 3 x. Hen
e,the sum of the indi
es is equal to the interse
tion number of Q with the linear 
ombination of
y
les P[
;�℄ � over all 
lasses � � Z1 with 
odim� = 
odim
 + 1.Thus both sides of the equality of Lemma take the same values on the elements of homologygroup of the 
omplement dimension. This proves the equality of Lemma modulo torsion. Infa
t, this equality holds for any group of 
oeÆ
ients sin
e the group of 
hara
teristi
 
lasses of
omplex ve
tor bundles is torsion free. �To 
omplete the proof of basi
 relations (4) we need to 
ompute the adja
en
y exponentsfor marked singularity 
lasses. Finding adja
en
y exponents is a part of the proof whi
h reallyrequires a lot of 
omputations. One should �nd all possible adja
en
ies of 
lasses of neighbour
odimensions and to 
ompute the adja
en
y exponents. In these 
omputations the methodsand results from [1, 18, 15℄ are used.Lemma. The following lists and the 
omments below exhaust all possible adja
en
ies ofmarked singularity 
lasses of 
odim � 6. (The distinguished dire
tion in the lists below is thedie
tion of the x-axis. The fun
tions of the family 
orresponding to the adja
en
y �! 
 havesingularity 
 at the origin for all parameter values � 6= 0 and � for � = 0. In the table below sis the 
anoni
al se
tion, 
 2 C is a 
onstant.)�! 
 f s [
 : �℄ noteseAk+1 ! eAk xk+2 + �xk+1 
� 1eD0k+1 ! eD0k yk + x2y + �yk�1 
��1 �1eD00k+1 ! eD00k xk + xy2 + �xk�1 
� 1eD04 ! eA3 y3 + x2y + �y2 
��1 �1eD005 ! eD04 x4 + xy2 + �x2y 
�4 4eD005 ! eA4 (x2 + �y)2 + xy2 
��2 �2eD006 ! eA5 x5 � xy2 + �(y � x2)2 
��1 �2 (i)eE6 ! eA5 y3 + (x2 + �y)2 
��3 �3eE6 ! eD05 x4 + y(y + �x)2 
�12 12eE6 ! eD005 x4 + (y + �x)y2 
 0eP 08 ! eD05 x2y + z3 � zy2 + �z2 
� 4 (ii; iii)eP 08 ! eD005 y2x+ z3 � zx2 + �z2 
��1 �1 (iii)eD007 ! eA6 x6 + xy2 � �2x5 + (�2x2 + �y)2 
��2 �2eE7 ! eA6 y3 + (x2 � 4�y)(xy + �x2 � 4�2y) 
��5 �5eE7 ! eD06 x3y + (y + �x)2y + �x4 
�16 16eE7 ! eD006 x3y + (y + �x)y2 
��1 �1eE7 ! eE6 x3y + �y4 + y3 
� 1eP 008 ! eE6 y3 + x2z + xz2 + �z2 
��1 11 (iii)Comments. (i) There are 2 
urves realizing the adja
en
y eD006 ! eA5 
orresponding to thetwo possible signs of �. For both of them we have s = 
��1 so [ eA5 : eD006℄ = �2.13



(ii) There are 4 
urves realizing the adja
en
y eP 08 ! eD05 (see below). For all of them we have� = 
� so [eD05 : eP 08℄ = 4.(iii) The singularity eP 008 has a module (of a plane 
ubi
). Similarly eP 08 has two modules (aplane 
ubi
 and a point on it). In the formulas above we used some parti
ular values of modules.The adja
en
y exponent does not depend on the 
hoi
e of modules.(iv) The 
riti
al point fun
tion singularity P8 is not adja
ent neither to D6, nor to A6,see [15℄.(v) There are no adja
en
ies eD0k+1 ! eAk (k > 3), eD00k+1 ! eD0k (k > 4), eD0k+1 ! eD00k .(vi) There is no adja
en
y eP 08 ! eA5.P roo f . The method of �nding the adja
en
ies is des
ribed in details in [18℄. The 
ondi-tion that a fun
tion has a singularity of 
ertain type is reformulated as a system of algebrai
equations on the 
oeÆ
ients of the Taylor expansion of the fun
tion. These equations may beexpli
itly solved whi
h gives the formulas above. Most of these formulas (ex
ept those relatedto adja
en
ies of `new' singularity type P 08, see below) are taken from [1, 18, 15℄ (sometimeswith a minor 
hange of variables).Essentially new part of our 
al
ulations is �nding the adja
en
y exponents. As an examplewe show the 
omputation of the asymptoti
 s = 
��5 for the adja
en
y eE7 ! eA6 above.Consider the family of fun
tion germsf(x; y; �) = y3 + (x2 � 4�y)(xy + �x2 � 4�2y):For � 6= 0 the partial derivativefy = 32�3y � 8�2x2 � 8�xy + 3y2 + x3has no 
riti
al point at the origin. Therefore by parametri
 Morse Lemma this fun
tion is stablyequivalent to its restri
tion to the smooth 
urve fy = 0. This equation de�nes impli
itly y as afun
tion in x y = x24� + x332�3 + x4512�5 � x51024�7 + o(x5):After substitution to f we get f jfy=0 = x7512�5 + o(x7):This means that the singularity type of f is A6 for � 6= 0 ands = 1512�5 ; [ eA6 : eE7℄ = �5:The 
ases of other singularities are treated in a similar way.Let us des
ribe in more details adja
en
ies of the singularity eP 08. The fun
tion f0 realizingthis singularity is a 
ubi
 form in three variables x; y; z. The distinguished dire
tion P 2 CP 2of the x-axis belongs to the 
ubi
 C 2 CP 2 given by f0 = 0. The 
odimension of the 
lass eP 08 is3. A possible transversal is given by the family f0 +Q where Q = �1y2 + 2�2yz + �3z2 is thefamily of quadrati
 forms having the dire
tion �=�x in the kernel. By homogeneity all fun
tionsof the family f = f0 + �Q0are right equivalent to ea
h other for � 6= 0 for any �xed quadrati
 form Q0. Hen
e anyadja
en
y is realized by a family of this type. The fun
tion f has the singularity D5 i� Q0 = l214



where l = 0 is the equation of the tangent to the 
ubi
 C. If the tangen
y point is P thenthe distinguished dire
tion P is of eD005 type in our 
lassi�
ation. It is possible also that the linel = 0 passes through P and is tangent to C at another point. Then the distinguished dire
tionP has eD05 type. Generi
ally there are 4 su
h lines. So there are 4 
urves of singularity eD05 in thetransversal to eP 08.Now let us prove the equality [ eA5 : eP 008℄ = 0. It is suÆ
ient to show that f0 = xy2+ z3� zx2is not adja
ent to eA5. This would imply that no singularity of type eP 08 
lose to f0 is adja
ent toeA5 and neither are eP 08-singularities from a Zarisski open set in the spa
e of modules and hen
e[ eA5 : eP 008 ℄ = 0. So assume that a fun
tion of the form f0 +Q0 with Q0 = �1y2 + 2�2yz + �3z2has singularity A5 at the origin. Then the form Q0 is non-degenerate and f is stably equivalentto its restri
tion f jfy=fz=0. Resolving the system fy = fz = 0 we getf jfy=fz=0 = 
4x4 + 
5x5 + o(x5); 
4 = �14(�22 � �1�3) ; 
5 = �224(�22 � �1�3)2 :It is 
lear that the system 
4 = 
5 = 0 has no solution that is the fun
tion f0 + Q0 
annot beof A5-type. �Combining two last Lemmas we 
omplete the proof of the basi
 relations Lemma formulatedat the beginning of this Se
tion. �2.5 Symmetries and Thom polynomialsIn this se
tion we des
ribe a method of 
omputing Thom polynomials whi
h is based onRim�anyi's idea of using symmetries. Unlike the dire
t method for 
omputing Thom polynomialsdes
ribed in previous se
tions this method uses an a priori Theorem 1 about the existen
e ofthese polynomials. This method is less geometri
 but it uses less 
omputations. The idea isthe following. We know that the 
lass dual to some singularity lo
us 
 is given by a 
ertainpolynomial P
 in Chern 
lasses so we need to 
ompute the 
oeÆ
ients of this polynomial. Everyexample where both the 
ohomology 
lass dual to the singularity lo
us of 
 �M and the 
lassesu; ai 
an be 
omputed expli
itly gives rise to a number of linear relations on the 
oeÆ
ientsof this polynomial P
. If the number of examples is high enough then these relations 
oulddetermine the polynomial 
ompletely. A number of examples are produ
ed in the followingway. Consider some quasihomogeneous family of fun
tion germs realizing a transversal to somesingularity 
lass, sayf(x; y; a1; : : : ; b2) = y5 + x2y + a1y4 + a2y3 + a3y2 + b1x2 + b2xy:Consider some line bundle � ! B with the �rst Chern 
lass t = 
1(�) 2 H2(B). With anyvariable x; y; a1; : : : ; b2 we asso
iate a line bundle �
l where l is the quasihomogeneous weightof the variable. Then the family f may be interpreted as a quasihomogeneous bundle mapf : �
2 � � � � � � � � � �
2 ! �
5; x� y � a1 � � � � � b2 7! f(x; y; a1; : : : ; b2):Now de�ne M to be the total spa
e of the bundle � : � � � � � � �
2 ! B 
orresponding tothe parameters a1; : : : ; b2 of the family f ; V !M to be the rank 2 bundle ���
2� ��� over M
orresponding to variables x; y; and I = ���
5. So we 
onstru
ted ve
tor bundles V; I !M anda smooth bundle map f : V ! I as in Se
tion 2.1. The 
hara
teristi
 
lasses in this exampleare u = 
1(I) = 5t; a = 
(V � 
 I � V ) = (1 + (5� 1)t)(1 + (5� 2)t)(1 + t)(1 + 2t) = 1 + 4t� 2t2 + : : : :15



On the other hand we may 
ompute the 
lasses dual to the singularity lo
i. This gives thefollowing relations on the 
oeÆ
ients of the Thom polynomials P
(u; a1; a2; : : :):� If 
 = D6 then 
(f) is the zero se
tion of the bundle M ! B and its dual 
ohomology
lass is the top Chern 
lass e = 
5(M ! B) of this bundle, soPD6(5t; 4t;�2t2; : : :) = t � 2t � 3t � t � 2t = 12t5:� If 
 = A6; E6 or 
 is any singularity 
lass of greater 
odimension then 
(f) = ? and soP
(5t; 4t;�2t2; : : :) = 0.(We may 
ompute the 
lasses PDk(5t; 4t;�2t2; : : :), k < 6 in a similar way but these extrarelations are redundant.) The 
hara
teristi
 
lasses for quasihomogeneous deformations of othersingularities of 
odimension � 6 are given in the following table.
 u a = 1 + a1 + a2 + : : : eAk (k+1) t 1 + kt1 + t (k�1)! tk�1Dk 2(k�1) t (1 + 2(k�2)t)(1 + kt)(1 + 2t)(1 + (k�2)t) (k�2)!! tk�1E6 12 t (1 + 9t)(1 + 8t)(1 + 3t)(1 + 4t) 6! t5E7 9 t (1 + 7t)(1 + 6t)(1 + 2t)(1 + 3t) 3 � 5! t6P8 3 t (1 + 2t)3(1 + t)3 t6Relations arising from these examples are suÆ
ient to 
ompute all Thom polynomials ofTheorem 1. �3 Chara
teristi
 
lasses of Lagrangeand Legendre singularitiesThe 
orresponden
e between Lagrange (Legendre) singularities and 
riti
al point singularitiesdes
ribed in this se
tion is valid for both real and 
omplex 
ases. We assume some familiarity ofthe reader with the theory of Lagrange and Legendre singularities, see, eg. [4, 2℄. Our de�nitionsshould not be 
onsidered for the introdu
tion to symple
ti
 or 
onta
t geometry.3.1 Lagrange singularities and 
hara
teristi
 
lassesA Lagrange singularity is a proje
tion singularity of a Lagrange submanifold in the spa
e of
otangent bundle to the base of the bundle.De�nition. A submanifold M � T �B, dimM = dimB is 
alled Lagrangian, if thestandard symple
ti
 2-form ! =P dpi ^ dqi vanishes on L, where qi are some lo
al 
oordinateson the base B, and pi a the 
orresponding 
oordinates on the �bres of the 
otangent bundleT �B ! B. 16



With any germ of Lagrange submanifold in the 
otangent bundle one 
an asso
iate a 
riti
alpoint fun
tion singularity. Namely, any Lagrange germ M � T �C n may be given by a germ ofits generating family of fun
tions F (x; q) a

ording to the rule (
f. [4, 2℄)L = n(p; q) 2 T �C n ��� 9x; �F=�x = 0; p = �F=�qo:Here x is the 
oordinate on the �bres of an auxiliary bundle (C n+m ; 0)! (C n ; 0). We asso
iatewith the Lagrange germ M the the initial fun
tion germ of its generating family f(x) = F (x; 0).The generating family is not unique but another 
hoi
e of the family or of the 
oordinates onthe base lead to Rst-equivalent fun
tion germs. (Re
all that two fun
tion germs in spa
es ofpossibly di�erent dimensions are 
alled Rst-equivalent (stably right equivalent) if after addingsuitable non-degenerate quadrati
 forms in new variables ea
h of these fun
tions 
an be broughtinto another by a 
hange of variables.)Example. Let V be a ve
tor spa
e. With any fun
tion germ f : V; 0 ! C ; 0 we asso
iatea Lagrange germ L(f) � T �V , the graph of the di�erential �df (it is 
onvenient to put the sign`�' here). The natural isomorphisms T �V �= V � V � �= TV � allows to 
onsider Lw(f) also as asubmanifold in T �V �. The symple
ti
 stru
tures indu
ed on V �V � by this isomorphisms di�erby sign. Hen
e, L(f) is also Lagrange as a submanifold in T �V �. The 
riti
al point fun
tionsingularity 
orresponding to the germ L(f) � T �V � is the singularity of the fun
tion f itself.Indeed, L(f) � T �V � may be given by the following generating familyF (x; q) = hx; qi+ f(x); q 2 V �; x 2 V:Here x is 
onsidered as an additional variable and h�; �i : V � V � ! C is the natural 
oupling.De�nition. The 
lassifying spa
e of Lagrange singularities L = LCN is the spa
e ofall K-jets of Lagrange germs M � (T �C N ; 0) = (C 2N ; 0), where K;N � 0 are some largeintegers. This spa
e is homotopy equivalent to the Lagrange Grassmannian � = �CN 
onsistingof Lagrange planes in C 2N sin
e the natural proje
tion L ! � sending a Lagrange germ to itstangent plane have 
ontra
tible �bres. The ring of Lagrange 
hara
teristi
 
lasses is the limit
ohomology ring limN!1H�(�CN ).The topology of real Lagrange Grassmannian is well studied (see [6℄). Its Z2-
ohomology ringH�(�RN ) is generated by Stiefel-Whitney 
lasses �i of the tautologi
al bundle, the generators�i satisfy relations �2i=0. Similar des
ription exists for the (integer) 
ohomology ring of the
omplex Lagrange Grassmannian.Theorem ([17, 10℄). The ring of Lagrange 
hara
teristi
 
lasses is isomorphi
 to thequotient of polynomial ring in variables a1; a2; : : : of degrees 2; 4; : : : over the ideal generated byelements a2i � 2ai+1ai�1 + 2ai+2ai�2 � 2ai+3ai�3 + : : : : (5)The group of Lagrange 
hara
teristi
 
lasses is torsion free and the monomials ai11 : : : ainn , ik 2f0; 1g form a free additive basis.For the generators we 
hoose the 
lasses ai = 
i(C 2N =L) = 
i(L�) = (�1)i
i(L) 2 H2i(�CN ),where L is the tautologi
al bundle L ! �CN . To express an element of this ring in terms ofthe additive basis one should apply repeatedly relation (5) to every monomial whi
h 
ontainssquares of generators. This will require a �nite number of steps sin
e every newly appearedmonomial has the degree stri
tly less than the original one if one uses the `strange' �ltrationwith the degree of ai equal i2. 17



The meaning of the relations is the following. The symple
ti
 form indu
es the 
anoni
alisomorphism C 2N =L �= L�. By Whitney formula we have 
(L)
(L�) = 1 or(1 + a1 + a2 + : : :)(1� a1 + a2 � : : :) = 1whi
h is equivalent to (5).By 
onstru
tion above the points of L are 
lassi�ed a

ording to the Rst-
lassi�
ation offun
tion germs. With any singularity 
lass 
 (given as an R-invariant algebrai
 subset in somejet spa
e of fun
tion germs) we asso
iate the 
orresponding subvariety 
(L) � L.De�nition. The Thom polynomial asso
iated with an Rst-
lass 
 of 
riti
al point singu-larity is the universal Lagrange 
hara
teristi
 
lass P
 2 H�(�) (expressed in terms of multi-pli
ative generators ai) represented by the interse
tion with the variety 
(L) � LN .This de�nition is independent on K;N provided these numbers are large enough (N mustbe larger than the 
odimension of the singularity and K is 
hosen so that the K-jet of thesingularity is suÆ
ient, see [4, 3℄).Proo f o f Theorem 2 fo r the t r i v i a l bund l e I . Consider ve
tor bundles V; I !Mand a �bre bundle map f : V ! I as in Se
tion 2.1. Assume that the bundle I is trivial, I = C .For ea
h point w 2 W we de�ne the Lagrange germ Lw(f) � T �Vx as above. We wouldlike to extend this 
orresponden
e between the 
riti
al point singularities and the Lagrangesingularities and to 
onstru
t a 
lassifying map M ! L whi
h preserves the Lagrange (or
riti
al point) singularity type at 
onsidered points.The 
onstru
tion is as follows. Consider a bundle U ! M su
h that V � U is the trivialbundle C N . Then V�V � � U�U� �= C 2n is also trivial. Hen
e all Lagrange germs �(w) =Lw(f) � 0�U�w � Vw�V �w � Uw�U�w = T �(V �w � U�w) = T �C N belong to the same symple
ti
spa
e C 2N . One 
an see that the 
riti
al point singularity 
orresponding to �(w) is the same asfor Lw(f), i.e. fw. Thus 
onstru
ted map� :M ! LN ; w 7! Lw(f)� 0�U�;indu
es both the 
lasses dual to the lo
i of Lagrange singularities and the 
hara
teristi
 
lassesai 2 H�(LN ). By de�nition, ��ai = 
i((V � U�)�) = 
i(V � � V ).We have proved, therefore, that the 
ohomology 
lass on M Poin
ar�e dual to the lo
us
(f) �M is equal to the de�ned above polynomial P
 evaluated on the 
lasses ai = 
i(V ��V ).This proves Theorem 2 of Se
tion 2.1 in 
ase when the bundle I is trivial. �Theorem. The Thom polynomials of Rst-singularities of fun
tion of 
odimension � 6 areobtained from the polynomials of the list of Table 1 by setting u = 0.Proo f . There are two possible proofs of this theorem. First we observe simply that thehomomorphismZ[a1; a2; : : :℄! Z[
1; 
2; : : :℄ whi
h sends the generator ai to the ith homogeneousterm of the expansion (1� 
1+ 
2� : : :)(1+ 
1+ 
2+ : : :)�1 indu
es an inje
tive homomorphismof the ring of Lagrange 
hara
teristi
 
lasses to the polynomial ring Z[
1; 
2; : : :℄ (see [10℄). Itfollows that the formulas for the 
hara
teristi
 
lasses found for the 
ase of �ber singularities
an be applied to the 
ase of Lagrange singularities.In another proof we oserve that all steps of our 
omputations made in Se
tions 2.2{2.4(in
luding resolutions, the formula for the Gysin homomorphism, markings, adja
ensy expo-nents and basi
 relations) 
an be 
arried out dire
tly for the 
ase of Lagrange singularities.For instan
e, the kernel of the se
ond di�erential f(2) of a fun
tion germ 
orresponds to theinterse
tion of the thangent plane of a Lagrange germ L � C 2N with the �xed Lagrange plane18



C N � C 2N , zeroes of the third-order terms f(3) on ker f(2) 
orrespond to the lines of higher orderof tangen
y of Lagrange submanifolds e
t. In fa
t, our original 
omputation of Thom polyno-mials of Theorem 1 was performed on the languaue of Lagrange (or Legendre) singularities andonly later we translated it to the language of �ber singularities of fun
tions. �Example (
hara
teristi
 
lasses of Lagrange submanifolds in T �B). LetM ! T �Bbe a Lagrange immersion. A similar 
onstru
tion exists for the map � : M ! �N whi
hpreserves 
riti
al point singularity types asso
iated with Lagrange germs (see also [5℄). The
hara
teristi
 
lasses indu
ed by this map are ai = 
i(TMB � TM). Again, the 
lasses dual todi�erent singularity lo
i of Lagrange proje
tion M ! T �B ! B are given by universal Thompolynomials evaluated on the 
lasses 
i(TMB � TM).Remark. The most general situation where Lagrange 
hara
teristi
 
lasses appear is thefollowing. Let E !M be a ve
tor bundle of even rank equipped with symple
ti
 bilinear formson its �bers (given as a nowhere degenerating se
tion of �2E�). Let L1; L2 � E be two Lagrangesubbundles (in a sense that the �bers of L1; L2 are Lagrange planes in the �bers of E. Thenthe relative Chern 
lasses (
f. [16℄) of the triple (E;L1; L2) are de�ned as ai = 
i(L�2�L1). Theequalities 
(L1 + L�1) = 
(L2 + L�2) = 
(E) imply the identity 5 for these 
lasses.The situations 
onsidered above �t into this pattern. In 
ase of �ber bundle map f : V ! Cwe take E = V � V �, L1 = V � 0, and L2 �= L1 is the bundle of Lagrange planes tangent to thegerms of Lw(f) � Vw � V �w .In 
ase of Lagrange immersion M ! T �B we set E = TM (T �B), L1 = TM , and L2 �=(T �B)jM is the bundle of `verti
al' tangent ve
tors to T �B, 
orresponding to the kernel of thedi�erential of the proje
tion T �B ! B. �3.2 Legendre singularities and 
hara
teristi
 
lassesThe theory of Legendre 
hara
teristi
 
lasses is a twisted version of the theory of Lagrangeones. Consider ve
tor spa
es V; I su
h that dim I = 1. The spa
e V � V �
I has the naturalnondegenerate skew-symmetri
 bilinear form with values in I. After any isomorphism I �= Cthis form turns into the standard symple
ti
 form on V � V � �= T �V . The Grassmannian ofLagrange planes in V � V �
I with respe
t to this form is isomorphi
 to the usual LagrangeGrassmannian �n, where n = dimV .De�nition. The Legendre Grassmannian e� = e�CN is the total spa
e over BU(1) whose�bers are formed by the Grassmannians of Lagrange subspa
es in the twisted symple
ti
 �bersof the bundle C N � C N
�, where BU(1) �= CP1 is the 
lassifying spa
e of one-dimensionalve
tor bundles (or some its �nite-dimensional approximation C PN 0 , N 0 � 0), and � ! BU(1)is the 
anoni
al line bundle. The ring of Legendre 
hara
teristi
 
lasses is the 
ohomology ringof the stable Legendre Grassmannian H�(e�) = limn!1H�(e�N ).Theorem (
f. [10℄). The ring of Legendre 
hara
teristi
 
lasses is given by generatorsu; a1; a2; : : :, and relations whi
h are homogeneous 
omponents of the equality(1 + a1 + a2 + a3 + : : :)�1� a11 + u + a2(1 + u)2 � a3(1 + u)3 + : : :� = 1: (6)The 
lass u = 
1(�) is the standard generator of H�(BU(1)) and the 
lasses ai are de�nedas ai = 
i(�L), where L is the tautologi
al bundle over the Grassmannian. The relation above
omes from the isomorphism (C N � C N
�)=L �= L�
�, or, formally, L+ (L� � C N )
� = 0.19



Remark. The des
ription above is valid for both 
omplex 
ase and integer 
oeÆ
ients(with deg ai = 2i) and real 
ase and Z2-
oeÆ
ients (with deg ai = i). Note also that themonomials ui0ai11 ai22 , i0 � 0, ik 2 f0; 1g for k > 0, form a free additive basis. Nevertheless evenfor the 
ase of Z2-
oeÆ
ients it is not isomorphi
 to Z2[u℄
�Z2(a1; a2; : : :) (The multipli
ativestru
ture in the ring of Legendre 
hara
teristi
 Z2-
lasses is wrongly 
omputed in [9℄.) Indeed,the relation of degree 2 is a1u+ a21 = 0 (mod 2) and so the square of none element of degree1 vanishes. On the other hand one 
an show that for the 
ohomology with 
oeÆ
ients in any�eld K of 
hara
teristi
 di�erent from 2 there is an isomorphism H�(e�;K) �= K[u℄
H�(�;K).Proo f . The 
lass u generates the 
ohomology of the base and the 
lasses a1; a2; : : : generatethe 
ohomology of ea
h �bre. It follows that the spe
tral sequen
e of the bundle e� ! BU(1)degenerate at the se
ond term and the 
lasses u; a1; a2; : : : generate the whole 
ohomology ringof e�. We know already some set of relations and 
omparing the dimensions we see that thereare no other relations between the generators. �Now we explain the relationship between the de�nition above and the theory of Legendresingularities. Let V; I be smooth manifolds (not ne
essary ve
tor spa
es) of dimensions n; 1respe
tively. The spa
e J1(V; I) of 1-jets of maps V ! I is the total spa
e of the bundleT �V
TI over V�I. This spa
e 
arries the natural 
onta
t stru
ture (a 
odimension 1 subbundlein the tangent bundle). If z : I ! C is a lo
al 
oordinate on I then we get J1(V; C ) �= T �V � C .The 
onta
t stru
ture on J1(V; C ) = T �V � C is given by the �eld of kernels of the 1-form� = dz � �;where � is the Liouville form on T �V (written as � =P pi dqi in 
anoni
al 
oordinates). Another
hoi
e of the 
oordinate z leads to a multipli
ation of � by a nonzero fun
tion so the �eld ofkernels of � is invariantly de�ned.De�nition. A submanifold M � J1(V; I), is 
alled Legendrean, if it is tangent to the
onta
t �eld at every point.With any germ of Legendre submanifold L � J1(V; I) one 
an asso
iate a 
riti
al pointfun
tion singularity. To do that, we 
hoose a lo
al 
oordinate z on I. Observe that the image ofL under the natural proje
tion J1(V; C ) = T �V � C ! T �V is Lagrangian. Then we apply the
onstru
tion of previous se
tion. Another 
hoi
e of the 
oordinate on C may lead to anotherfun
tion but the 
lass of Vst-equivalen
e of the 
riti
al point fun
tion singularity is well de�ned(see [4, 2℄). Re
all that two fun
tion germs in spa
es of possibly di�erent dimensions are 
alledVst-equivalent1 if after adding suitable non-degenerate quadrati
 forms in new variables andmultipli
ation by non-vanishing fun
tions they 
an be brought on into another by a 
hange ofvariables.Remark that the 
orresponden
e between Lagrange germs in (T �C n ; 0) and Legendre germsin (J1(C n ; C ) = T �C n � C ; 0) is bije
tive. Indeed, the z-
oordinate is uniquely determined bythe 
ondition dz = p dq sin
e the restri
tion of the form p dq to a Lagrange germ is 
losed (andhen
e, exa
t).Example. Let V and I be ve
tor spa
es. Then we have the following bije
tionsLegendre Lagrange Lagrange Legendregerms in 1 ! germs in 2 ! germs in 3 ! germs in(J1(V; I); 0) (T �V; 0) (T �V �; 0) (J1(V �
I; I); 0)1Sometimes in the literature this equivalen
e is 
alled 
onta
t equivalen
e. We prefer following [4, 2℄ to keepthe notion of 
onta
t equivalen
e for 
onta
t di�eomorphisms of the ambient spa
e.20



where 2 is indu
ed by the isomorphism T �V = V � V � = T �V �. The 
orresponden
es 1 and3 depend on the 
hoi
e of 
oordinate on I �= C . Nevertheless the resulting 
orresponden
ebetween Legendre submanifolds in J1(V; I) and J1(V �
I; I) is invariantly de�ned. Moreover,this 
orresponden
e is given by the global (nonlinear) 
onta
tomorphism of these spa
es. This
onta
tomorphism h : J1(V; I) �! J1(V �
I; I)is 
alled the hodograph transform. It is given byh : (v; u; z) 7�! (v; u; hv; ui � z); v 2 V; u 2 V �
I; z 2 Iwhere we identify J1(V; I) = V � V �
I � I = J1(V �
I; I). (Remark that the two 
onta
tstru
tures indu
ed on V � V �
I � I are di�erent.)It is easy to verify that if L(f) � J1(V; I) is a germ of Legendre submanifold given asthe 1-jet extension of the fun
tion f : V; 0 ! I; 0 then the 
lass of V -equivalen
e of fun
tionsingularities asso
iated with h(L(f)) � J1(V �
I; I) is represented by the fun
tion germ f itself.De�nition. The 
lassifying spa
e of Legendre singularities eL = eLCN is the total spa
e ofthe bundle over (a �nite dimensional approximation of) BU(1) with the �bre over x 2 BU(1)
onsisting of all K-jets of Legendre germs in (J1(C N ; �x); 0) �= (J1(C N
�x; �x); 0), where �is the 
anoni
al line bundle over BU(1). This spa
e is homotopy equivalent to the LegendreGrassmannian e� = e�CNAs it is explained above, the points of eL are 
lassi�ed a

ording to the Vst-
lassi�
ation offun
tion germs. With any singularity 
lass 
 (given as a V -invariant algebrai
 subset in somejet spa
e of fun
tion germs) we asso
iate the 
orresponding subvariety 
( eL) � eL.De�nition. The Thom polynomial asso
iated with a V -
lass 
 of 
riti
al point singu-larity is the universal Legendre 
hara
teristi
 
lass P
 2 H�( eL) (expressed in terms of themultipli
ative generators u; ai) represented by the interse
tion with the variety 
( eL) � eLN .Similar to the Lagrange 
ase, this de�nition is independent on K;N provided these numbersare large enough.Proo f o f Theorem 2 . Consider ve
tor bundles V; I ! M and a �bre bundle mapf : V ! I as in Se
tion 2.1.With ea
h point w 2 W we asso
iate the Legendre germ Lw(f) � J1(V; I) given as the1-graph of fw : Vw ! Iw. Using the hodograph transform we may 
onsider this germ as a germLw(f) � J1(V �w
Iw; Iw). The V -singularity 
lass asso
iated with this germ is the 
lass of thegerm fw. We would like to extend this 
orresponden
e between the 
riti
al point singularitiesand the Legendre singularities and to 
onstru
t a 
lassifying map M ! eL whi
h preserves theLegendre singularity type at 
onsidered points.The 
onstru
tion is similar to that 
onsidered for Lagrange 
ase in previous se
tion. Considera ve
tor bundle U !M su
h that V �U is the trivial bundle C N . Then for ea
h w 2M the germLw(f) de�nes the germ Lw(f) � 0 � U�w
Iw � J1(V �w
Iw � U�w
Iw; Iw) = J1(C N
Iw; Iw). Itremains to observe that the spa
es J1(C N
Iw; Iw) form a U(1)-bundle that 
an be indu
ed fromthe universal one. The universal bundle is, by de�nition, the spa
e eLN . The 
orresponden
eused in this 
onstru
tion preserves the V -singularity 
lass asso
iated to Legendre germs. The
hara
teristi
 
lasses indu
ed by this 
onstru
tion are u = 
1(I) and ai = 
i(�(V � U�
I)) =
i(V �
I � V ). �Theorem. The Thom polynomials of Vst-singularities of fun
tions of 
odimension � 6 arethose from the list of Theorem 1. 21



Proo f repeats the arguments used for the proof(s) of similar theorem in Lagrange 
ase ofprevious se
tion. �Example (
hara
teristi
 
lasses of Legendre submanifolds in PT �B). The spa
ePT �B of proje
tivised 
otangent bundle is formed by pairs (a point b 2 B, a hyperplaneh � TbB). Su
h pairs are 
alled 
onta
t elements. The spa
e PT �B 
arries the natural 
onta
tstru
ture that 
an be de�ned as follows. Represent (lo
ally) the base B as B =M � I. Denoteby P0 � PT �B the open set formed by 
onta
t elements that are transversal to the linesfptg� I �M � I. Every su
h 
onta
t element h 2 Tw;z(M�I) = TwM �TzI 
an be 
onsideredas a linear map h : TwM ! TzI. This allows to identify P0 �= J1(M; I). The 
onta
t stru
tureon PT �B is independent on the presentation B =M � I.With every germ of Legendre submanifold L � J1(M; I) = P0 � PT �B we 
an asso
iatethe 
lass of Vst-equivalen
e of fun
tion singularities. This 
lass is also independent of the lo
alrepresentation B = M � I. It is not diÆ
ult to 
onstru
t a map � : L ! �N whi
h preservesVst-singularity types asso
iated with Legendre germs. The 
hara
teristi
 
lasses indu
ed by thismap are the following: u = 
1(I), where I is the 
onjugate of the tautologi
al line bundle onPT �B (it 
an be also de�ned as the normal line bundle of the 
onta
t stru
ture); for the 
lassesai we have ai = 
i(TMB � TM � I) (see below). Similar to the Lagrange 
ase, the 
lasses dualto di�erent singularity lo
i of Legendre proje
tionM ! T �B ! B are given by universal Thompolynomials evaluated on the 
lasses 
1(I), 
i(TMB � TM � I).Remark. The most general situation where Legendre 
hara
teristi
 
lasses appear is thefollowing. Let E ! M be a ve
tor bundle of even rank. Assume that the �bres of this bundleare equipped with symple
ti
 bilinear forms that take values in the �bres of some line bundle I(i.e. we are given a nowhere degenerating se
tion of �2E�
I). Let L1; L2 � E be two Lagrangesubbundles with respe
t to this twisted symple
ti
 form. Then the relative Chern 
lasses ofthe quadruple (E; I; L1; L2) are de�ned as u = 
1(I), ai = 
i(L�2
I � L1). The equalities
(L1 + L�1
I) = 
(L2 + L�2
I) = 
(E) imply the identity (6) for these 
lasses.The situations 
onsidered above �t into this pattern. In 
ase of �bre bundle map f : V ! Iwe take E = V � V �
I, L1 = V � 0, and L2 �= L1 is the bundle of the tangent planes to thegraphs of the di�erentials of the maps fw : Vw ! Iw, w 2M .In 
ase of Legendre immersion M ! PT �B we set E � TM (PT �B) to be the bundle of
onta
t planes, I = TM (PT �B)=E to be the normal bundle of the 
onta
t stru
ture. Thesymple
ti
 form is given by (�; �) 7! [�; �℄ (mod E), where �; � are ve
tor �elds tangent toE and [�; �℄ is the 
ommutator of ve
tor �elds. (This is the invariant de�nition of the linearsymple
ti
 stru
ture on 
onta
t planes given by d�jE , where the 
onta
t stru
ture E is the �eldof kernels of the 1-form �.)The subbundles L1; L2 are TM , and the bundle of `verti
al' tangent ve
tors to PT �B,
orresponding to the kernel of the di�erential of the proje
tion PT �B ! B. Sin
e Ew=L2w isthe hyperplane of the 
onta
t element w 2 M � PT �B, we have L�2
I = E � L2 = TMB � I,i.e. ai = 
i(L�2
I � L2) = 
i(TMB � TM � I): �3.3 Real Lagrange and Legendre singularities and 
hara
teristi
 
lassesThe theorems on 
omplex 
hara
teristi
 
lasses have usually a real analogue where the 
om-plex manifolds, maps and bundles are repla
ed by the real ones, integer 
ohomology by Z2-
ohomology, Chern 
lasses by Stiefel-Whitney 
lasses et
. This prin
iple 
an be applied to the22



problems studied in this paper as well. The notions of Lagrange and Legendre 
hara
teristi

lasses, the 
orresponden
e between singularities of fun
tions and Lagrange (Legendre) singu-larities, the de�nitions of 
lassifying spa
es and Thom polynomials repeat word-by-word the
orresponding notions de�ned in this paper for 
omplex 
ase. The main di�eren
e is that thehomomorphism (1) of the ring of Legendre 
hara
teristi
 
lasses to the polynomial ring in vari-ables u; 
1; 
2; : : : (whi
h is inje
tive over Z) has a big kernel over Z2. For instan
e, it is trivialin Lagrange 
ase when u = 0 (indeed, the total Stiefel-Whitney 
lass !(V � � V ) is trivial forany real bundle V ). It follows that the 
hara
teristi
 
lasses of �bre singularities of real-valuedfun
tions are trivial, see [8℄. Nevertheless these 
hara
teristi
 
lasses are not trivial if theyare applied dire
tly to the 
y
les of Lagrange singularities on Lagrange submanifolds in T �B(respe
tively, Legendre singularities of Legendre submanifolds in PT �B).Theorem. The Thom polynomials of real Legendre singularities of real 
odimension � 6are obtained from the list of Theorem 1 by repla
ing the Chern 
lasses ai by the 
orrespondingStiefel-Whitney 
lasses �i and redu
ing the 
oeÆ
ients modulo 2,A2 = �1A3 = �2 + u�1A4 = �1�2 + u2�1D4 = �1�2 + u�2A5 = �1�3 + u3�1D5 = 0A6 = �2�3 + u(�1�3 + �4) + u2�1�2 + u3�2 + u4�1D6 = 0E6 = �2�3 + u�4 + u2�1�2 + u3�2A7 = �1�2�3 + �2�4 + u�5 + u2�1�3 + u4�2 + u5�1D7 = 0E7 = �1�2�3 + u(�2�3 + �1�4) + u2�4 + u3�1�2 + u4�2P8 = �1�2�3 + u�1�4In parti
ular, let M � PT �B be a real Legendre immersion. Then the Z2-
ohomology 
lassdual to some 
y
le of Legendre singularities of 
odim � 6 is equal to the 
orresponding Thompolynomial evaluated on the 
lasses u = !1(I) and �i = !i(TMB � TM � I), where I is thenormal line bundle of 
onta
t stru
ture on PT �B.Theorem (
f. [18℄). The Thom polynomials of real Lagrange singularities of real 
odimen-sion � 6 are obtained from the list of previous theorem by setting u = 0.In parti
ular, let M � T �B be a real Lagrange immersion. Then the Z2-
ohomology 
lassdual to some 
y
le of Legendre singularities of 
odim � 6 is equal to the 
orresponding Thompolynomial evaluated on the 
lasses �i = !i(TMB � TM).These theorems 
an be proved applying step by step the real versions of all 
onstru
tionsused in Se
tion 2 in the proof of the 
orresponding formulas for 
omplex 
ase. �Remark. The formulas for 
lasses of real Lagrange singularities of 
odim � 6 (ex
ept A7)were obtained in [18℄ by a di�erent method. The expression A7 = �1�2�3 + �2�4 as well as all
lasses of real Legendre singularities are new. 23
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