
Thom polynomials for Lagrange, Legendre,and ritial point funtion singularitiesMaxim Kazarian�Steklov Mathematial InstituteIndependent Mosow Universitykazarian�mme.ruAbstratWe de�ne Thom polynomials for Lagrange, Legendre and ritial point funtion singu-larities. Our approah is based on the notion of lassifying spae of singularities. This ap-proah provides a universal method of omputing Thom polynomials. Charateristi lassesof omplex Lagrange and Legendre singularities of small odimensions are omputed. Theseexpressions redued modulo 2 agree with those obtained by Vassiliev for the real ase.1 IntrodutionThe natural way to study the global properties of isolated hypersurfae singularities is to inludethe hypersurfae into a generi family. Formally this an be desribed as follows. Consider asmooth embedded hypersurfae in the total spae of a smooth loally trivial omplex analyti�bration: H ,! W# �B(The ase when � is the trivial bundle is already interesting enough.) We onsider H as a familyof (possibly singular) hypersurfaes Hb �Wb, Wb = ��1(b), Hb = H \Wb, b 2 B. Let M � Hbe the union of all singular points of Hb's. Generially M is smooth and has the odimensionn = dimW � dimB in H. It an be identi�ed with the zero lous of a ertain setion of somevetor bundle. Namely, the bundle is Hom(V; I), where V � TW is the subbundle of vetorstangent to the �bres of � and I is the normal bundle of H. The setion is given by the naturalprojetion V � THW ! THW=TH = I. The generiity ondition means that this setionis transversal to the zero setion of the same bundle. This ondition is open but in omplexsituation it is not neessary dense. Similarly below by generiity for some smooth map we meanthe transversality of its jet extension to a ertain strati�ation on the jet spae.Let 
 be any lass of isolated hypersurfae singularities (an algebrai subvariety in some jetspae of funtion germs C n ; 0 ! C ; 0 whih is invariant with respet to the group of left-righthanges of variables). De�ne the lous 
(H) �M as the lous onsisting of the points at whih�Partially supported by the grants RFBR 98-01-00612 and NWO-047.008.0051



the hypersurfae Hb belongs to the given singularity lass 
. Aording to the general prinipleof Thom the ohomology lass Poinar�e dual to the lous 
(H) is independent on H (providedH is generi) and an be expressed as a universal polynomial in Chern lasses of W;B;H. Welaim that this polynomial an be expressed in terms of some partiular ombinations of theselasses. Namely, let u = 1(I) = 1(TW �TH) be the restrition to M of the lass of the divisorH. Denote i = i(V ) = i(TW ���TB), and de�ne lasses ai = i(V �
I�V ) as homogeneousomponents in the expansion1 + a1 + a2 + : : : = (1 + u)n � (1 + u)n�11 + (1 + u)n�22 � : : :� n1 + 1 + 2 + : : :+ n : (1)These lasses satisfy relations(1 + a1 + a2 + : : :)�1� a11 + u + a2(1 + u)2 � : : :� = 1; (2)(following from the identity U + U�
I = 0, where U is the formal di�erene U = V �
I � V ).These relations allow to expand the squares of lasses ai and hene any polynomial in u; a1; a2; : : :an be expressed as a linear ombination of monomials ui0ai11 ai22 : : : with i0 � 0, ik 2 f0; 1g(k > 0).Theorem 1. For any isolated hypersurfae singularity lass 
 the ohomology lass inH�(M) Poinar�e dual to the lous 
(H) an be expressed as a universal polynomial P
 inu; a1; a2; : : :. This polynomial (alled Thom polynomial) is independent on n (we use the sameletter 
 for the lass of funtion germs C n0 ; 0! C ; 0, n0 6= n, stably equivalent to the funtionsfrom 
).For the singularity lasses of odimension not greater than 6 the Thom polynomials arerepresented in Table 1.To determine the ohomology lass dual to the lous 
(H) in H or in W we apply thepush-forward formula i�(i�a b) = a i�(b) to the embeddings M i,! H j,! W and the lassesa = P
, b = 1. For instane, sine i�(1) = [M ℄ = n(Hom(V; I)) = un � un�11 + : : : � n, weget that the dual of 
(H) onsidered as a lous in H is equal to[
(H)℄ = (un � un�11 + : : :� n) P
 2 H�(H):Similarly, the homomorphism j� : H�(H) ! H�(W ) on the lass above is given by the multi-pliation by u.To prove Theorem 1 we relate the problem to the theory of Lagrange and Legendre singular-ities and their harateristi lasses. Namely, we onsider the hypersurfae H as the `generatingfamily' for the Legendre immersion M ! PT �B.In the simplest ase when the bundle I is trivial (and hene u = 0) the problem is reduedto the study of Lagrange singularities. Lagrange singularities are those of the projetion of aLagrange submanifold to the base of the otangent bundle. Singularity loi of this projetionould de�ne ohomology lasses on this manifold. The simplest example is Arnold-Maslov lasswhih is dual to the total ritial set of the projetion. The theory of harateristi lassesrelated to the real Lagrange singularities was developed by V.Vassiliev. In his book [18℄ aohain omplex (so alled Vassiliev universal omplex of singularity lasses) was onstrutedwhose generators orrespond to the singularity lasses. The ohomology groups of this omplexare well de�ned harateristi lasses. Vassiliev has omputed the ohomology of this omplex2



Table 1: Thom polynomials of isolated hypersurfae singularities of odim � 6A2 = a1A3 = 3a2 + ua1A4 = 3a1a2 + 6a3 + 4ua2 + u2a1D4 = a1a2 � 2a3 � ua2A5 = 27a1a3 + 6a4 + u(16a1a2 � 12a3)� 4u2a2 + u3a1D5 = 6a1a3 � 12a4 + u(4a1a2 � 14a43� 4u2a2A6 = 87a2a3 + 54a1a4 + 78a5+u(127a1a3 � 53a4) + u2(59a1a2 � 126a3)� 41u3a2 + u4a1D6 = 12a2a3 � 24a5 + u(14a1a3 � 40a4) + u2(8a1a2 � 30a3)� 8u3a2E6 = 9a2a3 � 12a1a4 + 6a5 + 3ua4 + u2(3a1a2 � 6a3)� 3u3a2A7 = 135a1a2a3 + 465a2a4 + 264a1a5 + 522a6 + u(516a2a3 � 16a1a4 + 485a5)+u2(305a1a3 � 70a4) + u3(190a1a2 � 440a3)� 165u4a2 + u5a1D7 = 24a1a2a3 � 24a2a4 + 48a1a5 � 144a6 + u(8a2a3 + 44a1a4 � 224a5)+u2(48a1a3 � 172a4) + u3(20a1a2 � 88a3)� 20u4a2E7 = 9a1a2a3 + 6a2a4 � 42a1a5 + 36a6 + u(21a2a3 � 61a1a4 + 80a5)+u2(43a4 � 6a1a3) + u3(7a1a2 � 8a3)� 7u4a2P8 = a1a2a3 � 6a2a4 + 6a1a5 � 4a6+u(7a1a4 � 4a2a3 � 10a5) + u2(2a1a3 � 8a4)� 2u3a3in the odimension not exeeded 6 and found the expressions for all these lasses (exept A7)in terms of Stiefel-Whitney lasses.In the paper [9℄ we suggested an approah to this problem based on the study of lassifyingspae of Lagrange singularities. This has led to understanding the geometrial meaning ofVassiliev omplex and to introduing new harateristi lasses. In this paper we develop thisapproah. In partiular, we omplete omputing harateristi lasses dual to singularity lassesin terms of multipliative generators the ring of harateristi lasses (i.e. Thom polynomials)and desribe also the omplex version of the theory.Any lassi�ation problem in singularity theory an be onsidered as a problem of lassifyingorbits for an ation of some Lie group G on some vetor spae V . For instane, for left-right equivalene of maps V is the spae of map germs (Rn ; 0) ! (Rm ; 0) (or jets of mapsof �xed order) and G is the group of the left-right hanges whih is homotopy equivalent toGL(n;R) � GL(m;R). The theory of harateristi lasses of this lassi�ation problem istherefore the theory of harateristi lasses of the given Lie group G. The lassifying spaeBV of this lassi�ation problem is de�ned using standard Borel's onstrution, BV = V �GBE = (V � BE)=G, where BE ! BG is the lassifying priniple G-bundle. The lassifyingspae BV is homotopy equivalent to BG (sine the bundle BV ! BG has ontratible �bres).Any invariant algebrai subset � � V gives rise to a subset B� = � �G BE � V of thesame odimension. With this approah the `Theorem about existene of Thom polynomials'is evident; Thom polynomial of � � V is just the element represented by the fundamentalyle of � in the equivariant ohomology group H�G(V ) �= H�G(pt) �= H�(BG), or, whih is3



equivalent, the element, represented by the fundamental yle of B� in the usual ohomologygroup H�(BV ) �= H�(BG).The lassifying spaes BG and BV have in�nite dimensions, but they always have verynie �nite dimensional approximations that an be used as well for `stable' problems, wherethe maps of manifolds of di�erent dimensions are onsidered. For example, for the theory ofsingularities of (R� ; 0) ! (R�+k ; 0) the lassifying spae is the spae of germs (or jets of highorder) of n-manifolds in (RN ; 0), N � n � 0. This spae is homotopy equivalent to theusual Grassmannian Gn;N and strati�ed aording to singularities of the projetion to the �xedoordinate (n+k)-subspae. In a similar way, for the lassifying spae of Lagrange singularitiesone an take the spae of all germs (or jets of high order) of Lagrange submanifolds in thesympleti spae (R2n ; 0), n � 0. The same onstrutions an be used for studying omplexspaes and holomorphi maps.Note that if � � V is an orbit then B� = ��G EG �= BG� is the lassifying spae of the`symmetry group' G� of the singularity � (the stationary subgroup of any point x 2 �). Asimilar desription of B� exists even if � onsists of many orbits.In [13℄ Sz�us and Rim�anyi used an alternative approah to the de�nition of the lassify-ing spae of singularities based on Sz�us's idea of gluing the lassifying spaes of symmetrygroups of singularities. They onsidered only simple singularities, and very lear topology ofthe lassifying spae does not follow from their onstrution. It should be notied neverthelessthat their onstrution works as well for the ase of multisingularities, see [14, 11, 12℄ for someappliations. It is an interesting problem to �nd an a priori onstrution for the lassifyingspae of multisingularities and to desribe its topology (the work [13℄ implies that it should berelated to obordism theory).The group of Lagrange harateristi lasses is the ohomology group of Lagrange Grass-mannian �R (or its omplex analogue �C ). The ohomologial information about adjaenies ofsingularities is translated into properties of the spetral sequene onstruted by the �ltrationon the lassifying spae by the odimension of singularities [8℄. Let us desribe this spetralsequene for the lassi�ation of (omplex) Lagrange singularities [9℄. The initial term of thissequene is E�;�2 =L�H�(BG�), where G� is the symmetry group of the singularity �. Thesymmetry groups of all singularities of small odimensions are well known. They are all �nite(some extension of S3 for the singularity D4 and yli groups for all other singularities). Infat, Vassiliev proved reently that the symmetry group of any ritial point singularity of �nitemultipliity is �nite, see the Russian translation of [18℄. This gives the omplete desriptionof the groups Ep;q2 �= Ep;q1 for small p. They are all torsion groups for q > 0 and the freegenerators of the raw E�;02 orrespond to the fundamental yles of singularity lasses. Henewe immediately arrive without any alulation to the following onlusion.Theorem. The lasses of omplex Lagrange singularities A2; A3; : : : ; E7; P8 form a basis inthe group of Lagrange harateristi lasses H�12(�C ;Q). In ase of integer oeÆients theselasses generate freely subgroups of �nite indies 1; 3; 12; 360; : : : respetively in H2d(�C ;Z),d � 6.Of ourse, this result follows also from the expliit form of these lasses represented inTable 1 (one should set u = 0; the orresponding terms are marked in boldfae). The presentsof even numbers in the sequene 1; 3; 12; 360; ::: implies that in ase of real singularities thereare some relations between these lasses. These relations have been found by Vassiliev in [18℄:A4 �D4 = D5 = D6 = A6 �E6 = D7 = E7 � P8 = 0 (mod 2).We desribe two methods for omputing Thom polynomials, both based on the oneptof the lassifying spae. The idea of the �rst method is the following. Consider a ellular4



partition of the lassifying spae suh that both Shubert yles and singularity lasses are someombinations of ells. Then the problem is redued to linear algebra in some �nitely generatedohain omplex. To obtain suh a partition one an onsider a lassi�ation of ritial pointsingularities with respet to a smaller group of equivalene onsisting of di�eomorphism germswith idential linear terms. Suh lassi�ation has no simple singularities but the number ofmodules is always �nite. The main property of this lassi�ation is that the symmetry groupof every its singularity lass is trivial, and hene, the indued partition of the lassifying spaeis a ellular partition.A realization of the program above is possible though it requires a great deal of omputa-tions. To redue the amount of omputations we use as a kind of ompromise another detailedlassi�ation of singularities with smaller but not trivial symmetry groups. The orrespondinglasses are alled marked singularity lasses. A number of relations between these marked sin-gularities is suÆient to redue the problem of �nding Thom polynomials to those singularitylasses for whih this problem an be solved by lassial methods like resolutions of singularities.To desribe these relations we introdue the notion of adjaeny exponent for a pair of singu-larities of (omplex) neighbour odimensions whih is an analogue of the inidene oeÆientin real ase, see [18℄.For the simpliity we present the omputations of Thom polynomials for the lasses offuntion singularities. All steps of our omputations an easily be reformulated in terms ofLagrange (or Legendre) singularities.Another method of �nding Thom polynomials uses basially the idea of R.Rim�anyi. Anyexample when both Chern lasses and the lass represented by singularity lous an be om-puted produes some relations between the oeÆients of Thom polynomial. When the numberof omputed examples is high enough these relations ould be suÆient to determine Thompolynomial ompletely. Rim�anyi notied that a lot of examples an be produed by onsideringtubular neighbourhoods of singularity loi in the lassifying spae. To see when this ould givethe result let us look again at the harateristi spetral sequene onverging to the group ofharateristi lasses. Its seond term is E�;�2 =L�H�(BG�). In omplex ase all topology isoften onentrated in even dimensions and the spetral sequene onverges in the seond term.This means that any harateristi lass is ompletely determined by the olletion of its imagesin the groups H�(BG�). In fat, these images belong not to the group H�(BG�) = H�(B�)itself but to the (isomorphi to it) ohomology group H�(T�) of Thom spae T� of the normalbundle to the submanifold B� of the lassifying spae of singularities. Therefore, to applyRim�anyi's method we need that the homomorphisms ' : H�(T�)! H�(B�) indued by inlu-sion of the zero setion of the normal bundle to its Thom spae would be monomorphi.If G� is trivial then the homomorphism ' (given by the multipliation by the top Chernlass of the bundle) is trivial. In a similar way ' is trivial if G� is �nite and we onsider theohomology with oeÆients in a �eld of harateristi zero. Therefore Rim�anyi's method of�nding Thom polynomials an be applied only when every singularity has a ontinuous groupof symmetry. This is not the ase for Lagrange singularities. Nevertheless this is true in aseof Legendre or twisted Lagrange singularities. In the lassi�ation of Legendre singularitiesthe right equivalene of funtions is replaed by V - (or K- depending on the terminology)lassi�ation when one allows to multiply a funtion by another nowhere vanishing funtion. Inthis lassi�ation any quasihomogeneous singularity has an obvious U(1)-symmetry. Thus theRim�anyi's method gives Thom polynomials of all Legendre singularities in small odimensionsand as a partiular ase Thom polynomials of Lagrange singularities.Reduing the oeÆients modulo two we get real Legendre harateristi lasses (Thompolynomials for them were not omputed in [18℄).5



The paper is organised as follows. In Setion 2 we present two independent methods ofomputing Thom polynomials of Table 1. Their existene is proved in Setion 3 where theharateristi lasses of Lagrange and Legendre singularities are studied.I appreiate the hospitality of the I. Newton Institute, Cambridge, where the work on thepaper was ompleted.2 Resolutions and adjaenies of funtion singularitiesIn this setion we ompute the Thom polynomials listed in Theorem 1 for the ase of bundle mapproblem onsidered here. The proof of their existene is postponed until Setion 3.2. Everywherein this setion we use the same notations for the singularity loi and for the ohomology lassesrepresented by these loi.2.1 Bundle map problemBefore omputing Thom polynomials of Theorem 1 we formulate a slightly di�erent but, in fat,an equivalent problem. Consider two omplex vetor bundles V; I of ranks rkV = n, rk I = 1over a smooth base M . We do not assume any omplex struture on the base M . Consider asmooth bundle map V f�! I& .Mwhose restrition fw : Vw ! Iw, w 2 M to eah �bre is a omplex polynomial of some �xeddegree N � 0 with a ritial point at the origin. We may think of f as a generi setionf = f(2)+f(3)+ : : : of the vetor bundle S2V �
I�S3V �
I�� � �. With any funtion singularitylass 
 we assoiate the lous 
(f) �M onsisting of the points w 2M suh that the polynomialfw has the presribed singularity type 
 at the origin. Theorem 1 is a partiular ases of thefollowing more general one.Theorem 2. For any generi f the ohomology lass Poinar�e dual to the lous 
(f) anbe expressed as a universal polynomial P
 in lasses u = 1(I) and ai = i(V �
I � V ). Forsingularity lasses of odimension � 6 these polynomials are those listed in Theorem 1.Proo f o f Theorem 1 . Let as explain how the problem of studying the hypersurfaesingularities disussed at the introdution an be redued to a bundle map problem onsideredhere. Let the diagram H � W �! B and the ritial set M � H be as in the introdution.Assume that the divisor H is given loally by the equation g = 0 where g is some funtiongiven in a neighbourhood of the given point w 2M . Denote by fw the N -jet of the restritionof g to the �bre of � through w. These funtion jets fw form together a setion in the bundleJ whose struture group is the Lie group formed by the N -jets of right hanges in C n ; 0 andmultipliations by the N -jets of non-vanishing funtions. This group is ontratible to thesubgroup GL(n; C ) � GL(1; C ) of linear hanges. Hene, the struture group of J an beredued to this subgroup. The possibility of suh redution means the possibility of introduingthe omplex linear strutures `up to the order N ' on the germs Ww, C1-smoothly dependingon the point w 2M . After suh redution the N -jets fw an be onsidered as polynomial mapsfw : Vw ! Iw, where Vw = TwWw, Iw = TwW=TwH. By Tugeron's �nite determinay theoremthe singularity type of the hypersurfae Hw is that of the funtion germ fw. Therefore the6



partition on M by di�erent singularity loi of Hw oinides with that of the polynomial bundlemap f : V ! I. �2.2 The Gysin homomorphismSome part of Thom polynomials of Theorem 1 is omputed using the method of resolutionsof singularities. The omputations of this method use a formula for the Gysin homomorphismproved in [10℄. Consider vetor bundles V; I ! M of ranks n; 1 respetively and a quadratibundle map f(2) : V ! I. The map f(2) is onsidered as a setion of the bundle S2V � 
 I oras a linear self-adjoined bundle map f(2) : V ! V �
I. Denote by Fr = Fr(V ), r � n the agbundle over M whose total spae is formed by all possible agsF 1w � F 2w � : : : F rw � Vw; dimF iw = i; w 2M;in the �bres of V . The ohomology ring of Fr is generated by the ohomology of M and bythe lasses ti = �1(F i=F i�1) = 1((F i=F i�1)�), where F i are the orresponding tautologialvetor bundles. Denote by Zr � Fr the lous de�ned by the ondition F rw � ker f(2)w, w 2M .Generially Zr is smooth and dimC Zr = dimC M � r. We study the Gysin (or push-forward ortransfer) homomorphism pr� : H�(Zr)! H�+2r(M)orresponding to the natural projetion pr : Zr !M .Theorem ([10℄). Assume that the bundle I is trivial. Then for any monomial ts11 � � � tsrrwe have pr�(ts11 � � � tsrr ) = Qs1+1;:::;sr+1 2 H2P(si+1)(M);where Q�1;:::;�r = Q�1;:::;�r(a1; a2; : : :) are polynomials in lasses ak = k(V � � V ) de�ned asfollows:� for r = 1 we have Qk = ak;� for r = 2 we set Qk;l = �Ql;k = 1Xi=1(�1)i ������ ak+i ak�ial+i al�i ������ ;� for any even r � 4 we set Q�1;:::;�r = Pf jQ�i;�j j1�i;j�r;� for any odd r � 3 we setQ�1;:::;�r = rXk=1(�1)k�1a�kQ�1;:::;�k�1;�k+1;:::�r :Here Pf is the PfaÆans of a skew-symmetri matrix. Remark that in the in�nite sum forQk;l only �rst max(k; l) terms may be di�erent from zero.The omputation of the homomorphism pr� in generi ase an be redued to the aseonsidered above.
7



Corollary. The formula of previous Theorem holds true in the generi ase if it is appliedto the lasses t̂i = �1(F i=F i�1) + u=2 instead of ti and to the lasses âk instead of ak, whereu = 1(I) and 1 + â1 + â2 + : : : = 1� 11+u=2 + 2(1+u=2)2 � : : :1 + 11�u=2 + 2(1�u=2)2 + : : : ; i = i(V ):Proo f . We use the following trik borrowed from [7℄. Consider �rst the ase when I = J
2,where J is another line bundle with 1(J) = 1(I)=2 = u=2. Then S2V �
I = S2(V
J�)�so f(2) an be treated as a self-adjoined bundle map V 
 J� ! (V 
 J�)� and we an applyprevious Theorem to the lasses t̂i = �1((F i=F i�1)
J�) = �1(F i=F i�1) + u=2 and âk =k((V
J�)� � V
J�). The formulas obtained in this way an be applied to any line bundle Isine they are universal, f. [7, 10℄.Remark. The lasses âi are related to the integer lasses ai = i(V � � V
I) via1 + â1 + â2 + : : : = 1 + a11� u=2 + a2(1� u=2)2 + : : : :The formula of Corollary above uses the division by powers of 2. Of ourse the diret imageunder pr� of any monomial in ti = 1(Fi=Fi�1) is an integer lass and so it an be expressedas a universal polynomial with integer oeÆients in u; a1; a2; : : :. The Corollary allows to �ndthese polynomials for any partiular monomial but these expressions have no nie losed formsimilar to that in ase I = C .Example. The image p1(Z1) �M is the losure of the lous A2(f). Therefore,A2 = p1�(1) = Q1 = a1:This is the �rst formula of Table 1.2.3 Marked singularities and their resolutionsIn this setion we ompute the Thom polynomials for the lasses A2, A3, D4, D5, E6, P8 usingtheir resolutions. The other lasses from the list of Theorem 1 have no good resolutions but thepartial resolution of these lasses simpli�es the omputation of Thom polynomials for them aswell.Let f : V ! I be a polynomial bundle map suh that the restritions fw : Vw ! Iwhave a ritial point at the origin for any w 2 M as in Setion 2.1. The seond di�erentialf(2)w = d2fw : Vw ! Iw is a well de�ned at any point w 2 M . We onsider f(2) as a twistedself-adjoined map of vetor bundles f(2) : V ! V �
I on M .Let F1 = P (V ) be the projetivisation of the vetor bundle V ! M . Consider the sub-manifold Z1 � F1 formed by the pairs of the form (a point w 2 M , a line l � Kw, whereKw = ker f(2)w is the kernel of the seond di�erential of fw. We would like to represent theyles of �bre singularities of f as the diret images of ertain yles on Z1 under the naturalprojetion p1 : Z1 !M:De�nition. Let g : C n ; 0 ! C ; 0 be a germ of a ritial point singularity and K =ker d2g � T0C n be the kernel of its seond di�erential. The line l � K is alled distinguishedif the ubi form g(3) given by the third-order terms in the Taylor expansion of g vanishes on8



l. A marked ritial point singularity is a pair (g; l), where g is a funtion germ and l is adistinguished diretion.Remark that the ubi form g(3) is well de�ned on K (in a sense that it is independent on thehoie of oordinates on C n ; 0). Consider the lassi�ation of marked ritial point singularities.If g has a singularity of type Ak, k � 3, or Ek, k = 6; 7; 8, then the distinguished diretionis unique. The orresponding marked singularity is denoted by eAk, eEk respetively.In ase of singularity Dk, the distinguished diretion may be either a simple or a doublezero of the ubi form g(3)jK . We denote the two ases by eD0k and eD00k respetively. So for k = 4there are 3 diretions of eD04-type and for k > 4 there are two distinguished diretions, one eD0kand one eD00k.In ase of singularity P8 the distinguished diretions form a ubi urve in C P 2 = P (K). Weuse the notation eP 08 if this is a generi point of the ubi and eP 008 if this is one of the 9 inetionpoints on it.We get the following lassi�ation of marked funtion singularities.odimeA3 1eA4; eD04 2eA5; eD05; eD005 3eA6; eD06; eD006 ; eE6; eP 08 4eA7; eD07; eD007 ; eE7; eP 008 5: : :The odimension is ounted in the spae of funtion germs g : C n ; 0 ! C ; 0 suh thatdg(0) = 0 and ker d2g ontains some �xed diretion l0 � T0C n .The lassi�ation of marked singularities produes the orresponding lassi�ation of thepoints on the manifold Z1. Namely, we say that the point (w; l) 2 Z1 � P (V ) has markedsingularity e
 if the funtion germ fw has singularity type 
 and the line l � ker f(2)w isdistinguished.Lemma. The ohomology lasses on M dual to the singularity loi of odimension � 6an be determined as the diret images of the following yles on Z1:Ak = p1� eAk; (k � 3);D4 = 13p1�eD04; Dk = p1�eD0k = p1�eD00k; (k � 5);Ek = p1�eEk; (k = 6; 7; 8);P8 = 19p1�eP 008 = 13p1�t1eP 08:Proo f . Just note that every point w 2 M suh that the singularity type of fw is Ak, Ek,or D>4 has a unique preimage in the orresponding yle on Z1. For the singularity D4 thereare 3 suh preimages (orresponding to three zero lines of f(3)w on Kw) and for the singularityP8 there are 9 preimages on eP 008 (orresponding to 9 inetion points of the ubi f(3)w = 0 onP (K)). The restrition of t1 = �1(F 1) to any �bre of P (V )!M is the lass of a hyperplane.Hene the three preimages of a generi point w 2 P8 on a yle representing t1eP 08 orrespond to3 points of the intersetion of the ubi f(3)w = 0 with a generi projetive line in P (Kw). �9



Sine the homomorphism p1� is known by results of Setion 2.2, the last lemma redues theproblem to the omputation of ohomology lasses represented by ertain yles on Z1.Example. The third di�erential d3fw = f(3)w : F 1 ! I is a setion of the line bundle(F 1)�
3 
 I on Z1, where F1 is the tautologial line bundle on Z1 � P (V ). The losure of theyle eA3 is the zero lous of this setion. Therefore, eA3 = 1((F 1)�
3 
 I) = 3t1 + u andA3 = p1�(3t1 + u); t1 = �1(F1); u = 1(I):whih gives after applying the formulas of Setion 2.2 the Thom polynomial for A3.Similar arguments an be used for some other marked singularity lasses if we onstrutresolutions with help of ags instead of projetive spaes. The following Lemma uses notationsof Setion 2.2.Lemma. The following relations hold for the Gysin homomorphism p1� : H�(Z1)!M�+2.p1�( eA3) = p1�(3t1 + u)p1�(eD04) = p2�(3t1 + u)p1�(eD005) = p2�((3t1 + u)(2t1 + t2 + u))p1�(eD05) = p2�((3t1 + u)2(t1 + 2t2 + u))p1�(eE6) = p2�((3t1 + u)(2t1 + t2 + u)(t1 + 2t2 + u))p1�(eP 08) = p3�((3t1 + u)(2t1 + t2 + u))p1�(eP 008) = p3�((3t1 + u)(2t1 + t2 + u)(t1 + 2t2 + u)) (3)
Applying formulas for the homomorphisms pr� : H�(Zr) ! M desribed in Setion 2.2 weomplete the omputations of the Thom polynomials for singularities A3;D4;D5; E6; P8.P roo f . The ase of eA3 is onsidered above. In the ase of singularities eD04; : : : ; eE6 the kernelKw = ker f(2)w has dimension 2. We an assoiate with any of these yles the orrespondingyles eeD04; : : : ; eeE6 � Z2 � F2 by letting F 2w to be the kernel Kw. Then we get p1�eD04 = p2�eeD04and the same for eD05; eD005 ; eE6. The third di�erential f(3)w an be written asf(3)w = a0x3 + a1x2y + a2xy2 + a3y3with an appropriate hoie of oordinates (x; y) on F 2 suh that the line F 1 is given by y = 0.The oeÆients ai are globally de�ned setions of the bundles (F 1)�
(3�i) 
 (F 2=F 1)�
i 
 Iwith the �rst Chern lasses (3 � i)t1 + it2 + u, i = 0; 1; 2; 3; 4 (every setion in this sequene isde�ned only on the zero lous of the previous one). The losures of the onsidered yles aregiven by the equations eeD04 : a0 = 0;eeD005 : a0 = a1 = 0;eeE6 : a0 = a1 = a2 = 0;eeD05 : a0 = a22 � 4a1a3 = 0respetively whih gives the formulas of Lemma (the expression a22 � 4a1a3 is a well de�nedsetion of ((F 1)� 
 (F 2=F 1)�
2 
 I)
2 on the zero lous of a1).The singularities eP 08; eP 008 are resolved in a similar way using ags F 1w � F 2w � F 3w, whereF 3w = Kw, PF 2w is the tangent line to the ubi f(3)wjF 3w = 0. The tangeny ondition is10



equivalent to the ondition that f(3)wjF 2w has a double zero on F 1w and the ondition that thetangent line is a point of inetion is equivalent to the ondition that f(3)wjF 2w has a triple zeroon F 1w. Arguing as above we arrive to the expressions for the diret images of eeP 08; eeP 008 . �2.4 Adjaeny exponentsThe Thom polynomials for lasses not onsidered in previous Setion are omputed using rela-tions between them. These relations are applied not to the lasses themselves but to the lassesof their partial resolutions.Lemma (basi relations). The ohomology lasses of yles eA3; eA4; : : : eP 008 � Z1 aresubjet to the following relations.(4t1 + u) eA3 = eA4 � eD04(5t1 + u) eA4 = eA5 � 2eD005(6t1 + 2u) eD04 = �eD05 + 4eD005(6t1 + u) eA5 = eA6 � 2eD006 � 3eE6(8t1 + 3u) eD05 = �eD06 + 12eE6 + 4eP 08(4t1 + u) eD005 = eD006 � eP 08(7t1 + u) eA6 = eA7 � 2eD007 � 5eE7(10t1 + 4u) eD06 = �eD07 + 16eE7(5t1 + u) eD006 = eD007 � eE7(4t1 + u) eE6 = eE7 � eP 008
(4)

F ina l omputa t i ons o f po lynomia l s o f Theorem 1 . A part of Thom polynomialare omputed in previous setion. Using relations (3) and (4) we get subsequentlyeA4 = (4t1 + u) eA3 + eD04;p1�( eA4) = p1�((4t1 + u)(3t1 + u)) + p2�(3t1 + u);eA5 = (5t1 + u) eA4 + 2eD005;p1�( eA5) = p1�((5t1 + u)(4t1 + u)(3t1 + u)) + p2�((9t1 + 2t2 + 3u)(3t1 + u));and so on. Continuing this way we get expressions for the diret images of all yles on Z1of odimension less or equal to 5. Applying formulas for the Gysin homomorphisms fromSetion 2.2 we obtain all Thom polynomials of Theorem 1. Note that the expressions forp1�(eD0k) are not neessary for omputing Thom polynomials. We use these expressions only toverify our omputations. �The reason for the basi relations is as follows. Consider a germ of some marked singularity,say eAk. In some oordinate system it an be written asz = xk+1 +Q;where Q is a nondegenerate quadrati form in the remaining variables. Suh a oordinate systemis not unique. Another hoie of the oordinate system results in the multipliation of thetangent vetor �=�x to the distinguished line by some omplex number  and the simultaneousmultipliation of the tangent vetor �=�z to the target spae by k+1. Therefore the tensor11



s = dx
(k+1)
�=�z is invariantly de�ned. We obtain that the bundle (F 1)�
(k+1)
I restritedto the yle eAk � Z1 admits a anonial nowhere vanishing setion s.Lemma. The restritions of the line bundles listed in the table below to the orrespondingsingularity loi in Z1 are trivial.f bundle Y 1(Y )eAk xk+1 (F 1)�
k+1 
 I (k + 1)t1 + ueD0k yk�1 + yx2 (F 1)�
(2k�2) 
 I
(k�2) (2k � 2)t1 + (k � 2)ueD00k xk�1 + xy2 (F 1)�
(k�1) 
 I (k � 1)t1 + ueE6 x4 + y3 (F 1)�
4 
 I 4t1 + ueE7 x3y + y3 (F 1)�
9 
 I
2 9t1 + 2ueE8 x5 + y3 (F 1)�
5 
 I 5t1 + uThe anonial setions for the bundles from this lemma are hosen so that for the (marked)funtions in the normal form above the oordinate of this setion is equal to 1 (the distinguishedline is the x-axis).The proof for all ases is the same as for the ase of singularity eAk. The symmetry group ofall these singularities ats on the lines F 1 and I by quasi-homogeneous homoteties. Therefore,the required bundle an be hosen in the form (F 1)�
�
I
�, where �=� is equal to the quotientof quasi-homogeneous weights of the funtion and of the variable x respetively. �Let 
 � Z1 be a yle of some marked singularity from the last Lemma, Y ! Z1 be theorresponding line bundle whose restrition to 
 is trivialised. This trivialisation of Y an not beextended to the losure of 
 sine the bundle Y is not trivial. Let � � Z1 be a singularity lassof neighbouring omplex odimension, odim� = odim
 + 1. Choose some point w 2 � anda (odim�)-dimensional transversal slie T to � at this point. The singularity lous 
 ut outa number of urves 1; 2; ::: on T . Let (C ; 0) ! (T;w) be a normalisation (= parameterisation)of one of these urves i. Then the anonial setion s of Y on i � 
 an be written (usingsome loal trivialisation of Y near w) in the form s = �kihi where � is a parameter on the urveand hi is a germ of a holomorphi non-vanishing funtion.De�nition. The adjaeny exponent [
;�℄ is the sum of the exponents ki over all urvesi of singularity 
 in the transversal to the singularity �.Lemma. The following equality holds in the ohomology of Z1,1(Y )
 =X[
;�℄ �;where the sum is taken over all lasses of marked singularities � � Z1 with odim� = odim
+1. Proo f . Let Q � Z1 be a test ompat yle of real dimension 2(odimC 
 + 1). Withoutloss of generality we assume that Q intersets 
 transversally so that D = Q\
 is a real surfaewithout some �nite set SingD of points orresponding to intersetions of Q with singularitylasses of (omplex) odimension odimC 
+ 1. Then(1(Y ) 
; Q) = (1(Y );D):The last number an be omputed using the restrition of the setion s to the yle D. It isequal to the sum of indies indx(s) of this setion over all points of SingD. But every suh index12



indx(s) is equal, by de�nition, to the adjaeny exponent of singularities 
 and � 3 x. Hene,the sum of the indies is equal to the intersetion number of Q with the linear ombination ofyles P[
;�℄ � over all lasses � � Z1 with odim� = odim
 + 1.Thus both sides of the equality of Lemma take the same values on the elements of homologygroup of the omplement dimension. This proves the equality of Lemma modulo torsion. Infat, this equality holds for any group of oeÆients sine the group of harateristi lasses ofomplex vetor bundles is torsion free. �To omplete the proof of basi relations (4) we need to ompute the adjaeny exponentsfor marked singularity lasses. Finding adjaeny exponents is a part of the proof whih reallyrequires a lot of omputations. One should �nd all possible adjaenies of lasses of neighbourodimensions and to ompute the adjaeny exponents. In these omputations the methodsand results from [1, 18, 15℄ are used.Lemma. The following lists and the omments below exhaust all possible adjaenies ofmarked singularity lasses of odim � 6. (The distinguished diretion in the lists below is thedietion of the x-axis. The funtions of the family orresponding to the adjaeny �! 
 havesingularity 
 at the origin for all parameter values � 6= 0 and � for � = 0. In the table below sis the anonial setion,  2 C is a onstant.)�! 
 f s [
 : �℄ noteseAk+1 ! eAk xk+2 + �xk+1 � 1eD0k+1 ! eD0k yk + x2y + �yk�1 ��1 �1eD00k+1 ! eD00k xk + xy2 + �xk�1 � 1eD04 ! eA3 y3 + x2y + �y2 ��1 �1eD005 ! eD04 x4 + xy2 + �x2y �4 4eD005 ! eA4 (x2 + �y)2 + xy2 ��2 �2eD006 ! eA5 x5 � xy2 + �(y � x2)2 ��1 �2 (i)eE6 ! eA5 y3 + (x2 + �y)2 ��3 �3eE6 ! eD05 x4 + y(y + �x)2 �12 12eE6 ! eD005 x4 + (y + �x)y2  0eP 08 ! eD05 x2y + z3 � zy2 + �z2 � 4 (ii; iii)eP 08 ! eD005 y2x+ z3 � zx2 + �z2 ��1 �1 (iii)eD007 ! eA6 x6 + xy2 � �2x5 + (�2x2 + �y)2 ��2 �2eE7 ! eA6 y3 + (x2 � 4�y)(xy + �x2 � 4�2y) ��5 �5eE7 ! eD06 x3y + (y + �x)2y + �x4 �16 16eE7 ! eD006 x3y + (y + �x)y2 ��1 �1eE7 ! eE6 x3y + �y4 + y3 � 1eP 008 ! eE6 y3 + x2z + xz2 + �z2 ��1 11 (iii)Comments. (i) There are 2 urves realizing the adjaeny eD006 ! eA5 orresponding to thetwo possible signs of �. For both of them we have s = ��1 so [ eA5 : eD006℄ = �2.13



(ii) There are 4 urves realizing the adjaeny eP 08 ! eD05 (see below). For all of them we have� = � so [eD05 : eP 08℄ = 4.(iii) The singularity eP 008 has a module (of a plane ubi). Similarly eP 08 has two modules (aplane ubi and a point on it). In the formulas above we used some partiular values of modules.The adjaeny exponent does not depend on the hoie of modules.(iv) The ritial point funtion singularity P8 is not adjaent neither to D6, nor to A6,see [15℄.(v) There are no adjaenies eD0k+1 ! eAk (k > 3), eD00k+1 ! eD0k (k > 4), eD0k+1 ! eD00k .(vi) There is no adjaeny eP 08 ! eA5.P roo f . The method of �nding the adjaenies is desribed in details in [18℄. The ondi-tion that a funtion has a singularity of ertain type is reformulated as a system of algebraiequations on the oeÆients of the Taylor expansion of the funtion. These equations may beexpliitly solved whih gives the formulas above. Most of these formulas (exept those relatedto adjaenies of `new' singularity type P 08, see below) are taken from [1, 18, 15℄ (sometimeswith a minor hange of variables).Essentially new part of our alulations is �nding the adjaeny exponents. As an examplewe show the omputation of the asymptoti s = ��5 for the adjaeny eE7 ! eA6 above.Consider the family of funtion germsf(x; y; �) = y3 + (x2 � 4�y)(xy + �x2 � 4�2y):For � 6= 0 the partial derivativefy = 32�3y � 8�2x2 � 8�xy + 3y2 + x3has no ritial point at the origin. Therefore by parametri Morse Lemma this funtion is stablyequivalent to its restrition to the smooth urve fy = 0. This equation de�nes impliitly y as afuntion in x y = x24� + x332�3 + x4512�5 � x51024�7 + o(x5):After substitution to f we get f jfy=0 = x7512�5 + o(x7):This means that the singularity type of f is A6 for � 6= 0 ands = 1512�5 ; [ eA6 : eE7℄ = �5:The ases of other singularities are treated in a similar way.Let us desribe in more details adjaenies of the singularity eP 08. The funtion f0 realizingthis singularity is a ubi form in three variables x; y; z. The distinguished diretion P 2 CP 2of the x-axis belongs to the ubi C 2 CP 2 given by f0 = 0. The odimension of the lass eP 08 is3. A possible transversal is given by the family f0 +Q where Q = �1y2 + 2�2yz + �3z2 is thefamily of quadrati forms having the diretion �=�x in the kernel. By homogeneity all funtionsof the family f = f0 + �Q0are right equivalent to eah other for � 6= 0 for any �xed quadrati form Q0. Hene anyadjaeny is realized by a family of this type. The funtion f has the singularity D5 i� Q0 = l214



where l = 0 is the equation of the tangent to the ubi C. If the tangeny point is P thenthe distinguished diretion P is of eD005 type in our lassi�ation. It is possible also that the linel = 0 passes through P and is tangent to C at another point. Then the distinguished diretionP has eD05 type. Generially there are 4 suh lines. So there are 4 urves of singularity eD05 in thetransversal to eP 08.Now let us prove the equality [ eA5 : eP 008℄ = 0. It is suÆient to show that f0 = xy2+ z3� zx2is not adjaent to eA5. This would imply that no singularity of type eP 08 lose to f0 is adjaent toeA5 and neither are eP 08-singularities from a Zarisski open set in the spae of modules and hene[ eA5 : eP 008 ℄ = 0. So assume that a funtion of the form f0 +Q0 with Q0 = �1y2 + 2�2yz + �3z2has singularity A5 at the origin. Then the form Q0 is non-degenerate and f is stably equivalentto its restrition f jfy=fz=0. Resolving the system fy = fz = 0 we getf jfy=fz=0 = 4x4 + 5x5 + o(x5); 4 = �14(�22 � �1�3) ; 5 = �224(�22 � �1�3)2 :It is lear that the system 4 = 5 = 0 has no solution that is the funtion f0 + Q0 annot beof A5-type. �Combining two last Lemmas we omplete the proof of the basi relations Lemma formulatedat the beginning of this Setion. �2.5 Symmetries and Thom polynomialsIn this setion we desribe a method of omputing Thom polynomials whih is based onRim�anyi's idea of using symmetries. Unlike the diret method for omputing Thom polynomialsdesribed in previous setions this method uses an a priori Theorem 1 about the existene ofthese polynomials. This method is less geometri but it uses less omputations. The idea isthe following. We know that the lass dual to some singularity lous 
 is given by a ertainpolynomial P
 in Chern lasses so we need to ompute the oeÆients of this polynomial. Everyexample where both the ohomology lass dual to the singularity lous of 
 �M and the lassesu; ai an be omputed expliitly gives rise to a number of linear relations on the oeÆientsof this polynomial P
. If the number of examples is high enough then these relations oulddetermine the polynomial ompletely. A number of examples are produed in the followingway. Consider some quasihomogeneous family of funtion germs realizing a transversal to somesingularity lass, sayf(x; y; a1; : : : ; b2) = y5 + x2y + a1y4 + a2y3 + a3y2 + b1x2 + b2xy:Consider some line bundle � ! B with the �rst Chern lass t = 1(�) 2 H2(B). With anyvariable x; y; a1; : : : ; b2 we assoiate a line bundle �
l where l is the quasihomogeneous weightof the variable. Then the family f may be interpreted as a quasihomogeneous bundle mapf : �
2 � � � � � � � � � �
2 ! �
5; x� y � a1 � � � � � b2 7! f(x; y; a1; : : : ; b2):Now de�ne M to be the total spae of the bundle � : � � � � � � �
2 ! B orresponding tothe parameters a1; : : : ; b2 of the family f ; V !M to be the rank 2 bundle ���
2� ��� over Morresponding to variables x; y; and I = ���
5. So we onstruted vetor bundles V; I !M anda smooth bundle map f : V ! I as in Setion 2.1. The harateristi lasses in this exampleare u = 1(I) = 5t; a = (V � 
 I � V ) = (1 + (5� 1)t)(1 + (5� 2)t)(1 + t)(1 + 2t) = 1 + 4t� 2t2 + : : : :15



On the other hand we may ompute the lasses dual to the singularity loi. This gives thefollowing relations on the oeÆients of the Thom polynomials P
(u; a1; a2; : : :):� If 
 = D6 then 
(f) is the zero setion of the bundle M ! B and its dual ohomologylass is the top Chern lass e = 5(M ! B) of this bundle, soPD6(5t; 4t;�2t2; : : :) = t � 2t � 3t � t � 2t = 12t5:� If 
 = A6; E6 or 
 is any singularity lass of greater odimension then 
(f) = ? and soP
(5t; 4t;�2t2; : : :) = 0.(We may ompute the lasses PDk(5t; 4t;�2t2; : : :), k < 6 in a similar way but these extrarelations are redundant.) The harateristi lasses for quasihomogeneous deformations of othersingularities of odimension � 6 are given in the following table.
 u a = 1 + a1 + a2 + : : : eAk (k+1) t 1 + kt1 + t (k�1)! tk�1Dk 2(k�1) t (1 + 2(k�2)t)(1 + kt)(1 + 2t)(1 + (k�2)t) (k�2)!! tk�1E6 12 t (1 + 9t)(1 + 8t)(1 + 3t)(1 + 4t) 6! t5E7 9 t (1 + 7t)(1 + 6t)(1 + 2t)(1 + 3t) 3 � 5! t6P8 3 t (1 + 2t)3(1 + t)3 t6Relations arising from these examples are suÆient to ompute all Thom polynomials ofTheorem 1. �3 Charateristi lasses of Lagrangeand Legendre singularitiesThe orrespondene between Lagrange (Legendre) singularities and ritial point singularitiesdesribed in this setion is valid for both real and omplex ases. We assume some familiarity ofthe reader with the theory of Lagrange and Legendre singularities, see, eg. [4, 2℄. Our de�nitionsshould not be onsidered for the introdution to sympleti or ontat geometry.3.1 Lagrange singularities and harateristi lassesA Lagrange singularity is a projetion singularity of a Lagrange submanifold in the spae ofotangent bundle to the base of the bundle.De�nition. A submanifold M � T �B, dimM = dimB is alled Lagrangian, if thestandard sympleti 2-form ! =P dpi ^ dqi vanishes on L, where qi are some loal oordinateson the base B, and pi a the orresponding oordinates on the �bres of the otangent bundleT �B ! B. 16



With any germ of Lagrange submanifold in the otangent bundle one an assoiate a ritialpoint funtion singularity. Namely, any Lagrange germ M � T �C n may be given by a germ ofits generating family of funtions F (x; q) aording to the rule (f. [4, 2℄)L = n(p; q) 2 T �C n ��� 9x; �F=�x = 0; p = �F=�qo:Here x is the oordinate on the �bres of an auxiliary bundle (C n+m ; 0)! (C n ; 0). We assoiatewith the Lagrange germ M the the initial funtion germ of its generating family f(x) = F (x; 0).The generating family is not unique but another hoie of the family or of the oordinates onthe base lead to Rst-equivalent funtion germs. (Reall that two funtion germs in spaes ofpossibly di�erent dimensions are alled Rst-equivalent (stably right equivalent) if after addingsuitable non-degenerate quadrati forms in new variables eah of these funtions an be broughtinto another by a hange of variables.)Example. Let V be a vetor spae. With any funtion germ f : V; 0 ! C ; 0 we assoiatea Lagrange germ L(f) � T �V , the graph of the di�erential �df (it is onvenient to put the sign`�' here). The natural isomorphisms T �V �= V � V � �= TV � allows to onsider Lw(f) also as asubmanifold in T �V �. The sympleti strutures indued on V �V � by this isomorphisms di�erby sign. Hene, L(f) is also Lagrange as a submanifold in T �V �. The ritial point funtionsingularity orresponding to the germ L(f) � T �V � is the singularity of the funtion f itself.Indeed, L(f) � T �V � may be given by the following generating familyF (x; q) = hx; qi+ f(x); q 2 V �; x 2 V:Here x is onsidered as an additional variable and h�; �i : V � V � ! C is the natural oupling.De�nition. The lassifying spae of Lagrange singularities L = LCN is the spae ofall K-jets of Lagrange germs M � (T �C N ; 0) = (C 2N ; 0), where K;N � 0 are some largeintegers. This spae is homotopy equivalent to the Lagrange Grassmannian � = �CN onsistingof Lagrange planes in C 2N sine the natural projetion L ! � sending a Lagrange germ to itstangent plane have ontratible �bres. The ring of Lagrange harateristi lasses is the limitohomology ring limN!1H�(�CN ).The topology of real Lagrange Grassmannian is well studied (see [6℄). Its Z2-ohomology ringH�(�RN ) is generated by Stiefel-Whitney lasses �i of the tautologial bundle, the generators�i satisfy relations �2i=0. Similar desription exists for the (integer) ohomology ring of theomplex Lagrange Grassmannian.Theorem ([17, 10℄). The ring of Lagrange harateristi lasses is isomorphi to thequotient of polynomial ring in variables a1; a2; : : : of degrees 2; 4; : : : over the ideal generated byelements a2i � 2ai+1ai�1 + 2ai+2ai�2 � 2ai+3ai�3 + : : : : (5)The group of Lagrange harateristi lasses is torsion free and the monomials ai11 : : : ainn , ik 2f0; 1g form a free additive basis.For the generators we hoose the lasses ai = i(C 2N =L) = i(L�) = (�1)ii(L) 2 H2i(�CN ),where L is the tautologial bundle L ! �CN . To express an element of this ring in terms ofthe additive basis one should apply repeatedly relation (5) to every monomial whih ontainssquares of generators. This will require a �nite number of steps sine every newly appearedmonomial has the degree stritly less than the original one if one uses the `strange' �ltrationwith the degree of ai equal i2. 17



The meaning of the relations is the following. The sympleti form indues the anonialisomorphism C 2N =L �= L�. By Whitney formula we have (L)(L�) = 1 or(1 + a1 + a2 + : : :)(1� a1 + a2 � : : :) = 1whih is equivalent to (5).By onstrution above the points of L are lassi�ed aording to the Rst-lassi�ation offuntion germs. With any singularity lass 
 (given as an R-invariant algebrai subset in somejet spae of funtion germs) we assoiate the orresponding subvariety 
(L) � L.De�nition. The Thom polynomial assoiated with an Rst-lass 
 of ritial point singu-larity is the universal Lagrange harateristi lass P
 2 H�(�) (expressed in terms of multi-pliative generators ai) represented by the intersetion with the variety 
(L) � LN .This de�nition is independent on K;N provided these numbers are large enough (N mustbe larger than the odimension of the singularity and K is hosen so that the K-jet of thesingularity is suÆient, see [4, 3℄).Proo f o f Theorem 2 fo r the t r i v i a l bund l e I . Consider vetor bundles V; I !Mand a �bre bundle map f : V ! I as in Setion 2.1. Assume that the bundle I is trivial, I = C .For eah point w 2 W we de�ne the Lagrange germ Lw(f) � T �Vx as above. We wouldlike to extend this orrespondene between the ritial point singularities and the Lagrangesingularities and to onstrut a lassifying map M ! L whih preserves the Lagrange (orritial point) singularity type at onsidered points.The onstrution is as follows. Consider a bundle U ! M suh that V � U is the trivialbundle C N . Then V�V � � U�U� �= C 2n is also trivial. Hene all Lagrange germs �(w) =Lw(f) � 0�U�w � Vw�V �w � Uw�U�w = T �(V �w � U�w) = T �C N belong to the same sympletispae C 2N . One an see that the ritial point singularity orresponding to �(w) is the same asfor Lw(f), i.e. fw. Thus onstruted map� :M ! LN ; w 7! Lw(f)� 0�U�;indues both the lasses dual to the loi of Lagrange singularities and the harateristi lassesai 2 H�(LN ). By de�nition, ��ai = i((V � U�)�) = i(V � � V ).We have proved, therefore, that the ohomology lass on M Poinar�e dual to the lous
(f) �M is equal to the de�ned above polynomial P
 evaluated on the lasses ai = i(V ��V ).This proves Theorem 2 of Setion 2.1 in ase when the bundle I is trivial. �Theorem. The Thom polynomials of Rst-singularities of funtion of odimension � 6 areobtained from the polynomials of the list of Table 1 by setting u = 0.Proo f . There are two possible proofs of this theorem. First we observe simply that thehomomorphismZ[a1; a2; : : :℄! Z[1; 2; : : :℄ whih sends the generator ai to the ith homogeneousterm of the expansion (1� 1+ 2� : : :)(1+ 1+ 2+ : : :)�1 indues an injetive homomorphismof the ring of Lagrange harateristi lasses to the polynomial ring Z[1; 2; : : :℄ (see [10℄). Itfollows that the formulas for the harateristi lasses found for the ase of �ber singularitiesan be applied to the ase of Lagrange singularities.In another proof we oserve that all steps of our omputations made in Setions 2.2{2.4(inluding resolutions, the formula for the Gysin homomorphism, markings, adjaensy expo-nents and basi relations) an be arried out diretly for the ase of Lagrange singularities.For instane, the kernel of the seond di�erential f(2) of a funtion germ orresponds to theintersetion of the thangent plane of a Lagrange germ L � C 2N with the �xed Lagrange plane18



C N � C 2N , zeroes of the third-order terms f(3) on ker f(2) orrespond to the lines of higher orderof tangeny of Lagrange submanifolds et. In fat, our original omputation of Thom polyno-mials of Theorem 1 was performed on the languaue of Lagrange (or Legendre) singularities andonly later we translated it to the language of �ber singularities of funtions. �Example (harateristi lasses of Lagrange submanifolds in T �B). LetM ! T �Bbe a Lagrange immersion. A similar onstrution exists for the map � : M ! �N whihpreserves ritial point singularity types assoiated with Lagrange germs (see also [5℄). Theharateristi lasses indued by this map are ai = i(TMB � TM). Again, the lasses dual todi�erent singularity loi of Lagrange projetion M ! T �B ! B are given by universal Thompolynomials evaluated on the lasses i(TMB � TM).Remark. The most general situation where Lagrange harateristi lasses appear is thefollowing. Let E !M be a vetor bundle of even rank equipped with sympleti bilinear formson its �bers (given as a nowhere degenerating setion of �2E�). Let L1; L2 � E be two Lagrangesubbundles (in a sense that the �bers of L1; L2 are Lagrange planes in the �bers of E. Thenthe relative Chern lasses (f. [16℄) of the triple (E;L1; L2) are de�ned as ai = i(L�2�L1). Theequalities (L1 + L�1) = (L2 + L�2) = (E) imply the identity 5 for these lasses.The situations onsidered above �t into this pattern. In ase of �ber bundle map f : V ! Cwe take E = V � V �, L1 = V � 0, and L2 �= L1 is the bundle of Lagrange planes tangent to thegerms of Lw(f) � Vw � V �w .In ase of Lagrange immersion M ! T �B we set E = TM (T �B), L1 = TM , and L2 �=(T �B)jM is the bundle of `vertial' tangent vetors to T �B, orresponding to the kernel of thedi�erential of the projetion T �B ! B. �3.2 Legendre singularities and harateristi lassesThe theory of Legendre harateristi lasses is a twisted version of the theory of Lagrangeones. Consider vetor spaes V; I suh that dim I = 1. The spae V � V �
I has the naturalnondegenerate skew-symmetri bilinear form with values in I. After any isomorphism I �= Cthis form turns into the standard sympleti form on V � V � �= T �V . The Grassmannian ofLagrange planes in V � V �
I with respet to this form is isomorphi to the usual LagrangeGrassmannian �n, where n = dimV .De�nition. The Legendre Grassmannian e� = e�CN is the total spae over BU(1) whose�bers are formed by the Grassmannians of Lagrange subspaes in the twisted sympleti �bersof the bundle C N � C N
�, where BU(1) �= CP1 is the lassifying spae of one-dimensionalvetor bundles (or some its �nite-dimensional approximation C PN 0 , N 0 � 0), and � ! BU(1)is the anonial line bundle. The ring of Legendre harateristi lasses is the ohomology ringof the stable Legendre Grassmannian H�(e�) = limn!1H�(e�N ).Theorem (f. [10℄). The ring of Legendre harateristi lasses is given by generatorsu; a1; a2; : : :, and relations whih are homogeneous omponents of the equality(1 + a1 + a2 + a3 + : : :)�1� a11 + u + a2(1 + u)2 � a3(1 + u)3 + : : :� = 1: (6)The lass u = 1(�) is the standard generator of H�(BU(1)) and the lasses ai are de�nedas ai = i(�L), where L is the tautologial bundle over the Grassmannian. The relation aboveomes from the isomorphism (C N � C N
�)=L �= L�
�, or, formally, L+ (L� � C N )
� = 0.19



Remark. The desription above is valid for both omplex ase and integer oeÆients(with deg ai = 2i) and real ase and Z2-oeÆients (with deg ai = i). Note also that themonomials ui0ai11 ai22 , i0 � 0, ik 2 f0; 1g for k > 0, form a free additive basis. Nevertheless evenfor the ase of Z2-oeÆients it is not isomorphi to Z2[u℄
�Z2(a1; a2; : : :) (The multipliativestruture in the ring of Legendre harateristi Z2-lasses is wrongly omputed in [9℄.) Indeed,the relation of degree 2 is a1u+ a21 = 0 (mod 2) and so the square of none element of degree1 vanishes. On the other hand one an show that for the ohomology with oeÆients in any�eld K of harateristi di�erent from 2 there is an isomorphism H�(e�;K) �= K[u℄
H�(�;K).Proo f . The lass u generates the ohomology of the base and the lasses a1; a2; : : : generatethe ohomology of eah �bre. It follows that the spetral sequene of the bundle e� ! BU(1)degenerate at the seond term and the lasses u; a1; a2; : : : generate the whole ohomology ringof e�. We know already some set of relations and omparing the dimensions we see that thereare no other relations between the generators. �Now we explain the relationship between the de�nition above and the theory of Legendresingularities. Let V; I be smooth manifolds (not neessary vetor spaes) of dimensions n; 1respetively. The spae J1(V; I) of 1-jets of maps V ! I is the total spae of the bundleT �V
TI over V�I. This spae arries the natural ontat struture (a odimension 1 subbundlein the tangent bundle). If z : I ! C is a loal oordinate on I then we get J1(V; C ) �= T �V � C .The ontat struture on J1(V; C ) = T �V � C is given by the �eld of kernels of the 1-form� = dz � �;where � is the Liouville form on T �V (written as � =P pi dqi in anonial oordinates). Anotherhoie of the oordinate z leads to a multipliation of � by a nonzero funtion so the �eld ofkernels of � is invariantly de�ned.De�nition. A submanifold M � J1(V; I), is alled Legendrean, if it is tangent to theontat �eld at every point.With any germ of Legendre submanifold L � J1(V; I) one an assoiate a ritial pointfuntion singularity. To do that, we hoose a loal oordinate z on I. Observe that the image ofL under the natural projetion J1(V; C ) = T �V � C ! T �V is Lagrangian. Then we apply theonstrution of previous setion. Another hoie of the oordinate on C may lead to anotherfuntion but the lass of Vst-equivalene of the ritial point funtion singularity is well de�ned(see [4, 2℄). Reall that two funtion germs in spaes of possibly di�erent dimensions are alledVst-equivalent1 if after adding suitable non-degenerate quadrati forms in new variables andmultipliation by non-vanishing funtions they an be brought on into another by a hange ofvariables.Remark that the orrespondene between Lagrange germs in (T �C n ; 0) and Legendre germsin (J1(C n ; C ) = T �C n � C ; 0) is bijetive. Indeed, the z-oordinate is uniquely determined bythe ondition dz = p dq sine the restrition of the form p dq to a Lagrange germ is losed (andhene, exat).Example. Let V and I be vetor spaes. Then we have the following bijetionsLegendre Lagrange Lagrange Legendregerms in 1 ! germs in 2 ! germs in 3 ! germs in(J1(V; I); 0) (T �V; 0) (T �V �; 0) (J1(V �
I; I); 0)1Sometimes in the literature this equivalene is alled ontat equivalene. We prefer following [4, 2℄ to keepthe notion of ontat equivalene for ontat di�eomorphisms of the ambient spae.20



where 2 is indued by the isomorphism T �V = V � V � = T �V �. The orrespondenes 1 and3 depend on the hoie of oordinate on I �= C . Nevertheless the resulting orrespondenebetween Legendre submanifolds in J1(V; I) and J1(V �
I; I) is invariantly de�ned. Moreover,this orrespondene is given by the global (nonlinear) ontatomorphism of these spaes. Thisontatomorphism h : J1(V; I) �! J1(V �
I; I)is alled the hodograph transform. It is given byh : (v; u; z) 7�! (v; u; hv; ui � z); v 2 V; u 2 V �
I; z 2 Iwhere we identify J1(V; I) = V � V �
I � I = J1(V �
I; I). (Remark that the two ontatstrutures indued on V � V �
I � I are di�erent.)It is easy to verify that if L(f) � J1(V; I) is a germ of Legendre submanifold given asthe 1-jet extension of the funtion f : V; 0 ! I; 0 then the lass of V -equivalene of funtionsingularities assoiated with h(L(f)) � J1(V �
I; I) is represented by the funtion germ f itself.De�nition. The lassifying spae of Legendre singularities eL = eLCN is the total spae ofthe bundle over (a �nite dimensional approximation of) BU(1) with the �bre over x 2 BU(1)onsisting of all K-jets of Legendre germs in (J1(C N ; �x); 0) �= (J1(C N
�x; �x); 0), where �is the anonial line bundle over BU(1). This spae is homotopy equivalent to the LegendreGrassmannian e� = e�CNAs it is explained above, the points of eL are lassi�ed aording to the Vst-lassi�ation offuntion germs. With any singularity lass 
 (given as a V -invariant algebrai subset in somejet spae of funtion germs) we assoiate the orresponding subvariety 
( eL) � eL.De�nition. The Thom polynomial assoiated with a V -lass 
 of ritial point singu-larity is the universal Legendre harateristi lass P
 2 H�( eL) (expressed in terms of themultipliative generators u; ai) represented by the intersetion with the variety 
( eL) � eLN .Similar to the Lagrange ase, this de�nition is independent on K;N provided these numbersare large enough.Proo f o f Theorem 2 . Consider vetor bundles V; I ! M and a �bre bundle mapf : V ! I as in Setion 2.1.With eah point w 2 W we assoiate the Legendre germ Lw(f) � J1(V; I) given as the1-graph of fw : Vw ! Iw. Using the hodograph transform we may onsider this germ as a germLw(f) � J1(V �w
Iw; Iw). The V -singularity lass assoiated with this germ is the lass of thegerm fw. We would like to extend this orrespondene between the ritial point singularitiesand the Legendre singularities and to onstrut a lassifying map M ! eL whih preserves theLegendre singularity type at onsidered points.The onstrution is similar to that onsidered for Lagrange ase in previous setion. Considera vetor bundle U !M suh that V �U is the trivial bundle C N . Then for eah w 2M the germLw(f) de�nes the germ Lw(f) � 0 � U�w
Iw � J1(V �w
Iw � U�w
Iw; Iw) = J1(C N
Iw; Iw). Itremains to observe that the spaes J1(C N
Iw; Iw) form a U(1)-bundle that an be indued fromthe universal one. The universal bundle is, by de�nition, the spae eLN . The orrespondeneused in this onstrution preserves the V -singularity lass assoiated to Legendre germs. Theharateristi lasses indued by this onstrution are u = 1(I) and ai = i(�(V � U�
I)) =i(V �
I � V ). �Theorem. The Thom polynomials of Vst-singularities of funtions of odimension � 6 arethose from the list of Theorem 1. 21



Proo f repeats the arguments used for the proof(s) of similar theorem in Lagrange ase ofprevious setion. �Example (harateristi lasses of Legendre submanifolds in PT �B). The spaePT �B of projetivised otangent bundle is formed by pairs (a point b 2 B, a hyperplaneh � TbB). Suh pairs are alled ontat elements. The spae PT �B arries the natural ontatstruture that an be de�ned as follows. Represent (loally) the base B as B =M � I. Denoteby P0 � PT �B the open set formed by ontat elements that are transversal to the linesfptg� I �M � I. Every suh ontat element h 2 Tw;z(M�I) = TwM �TzI an be onsideredas a linear map h : TwM ! TzI. This allows to identify P0 �= J1(M; I). The ontat strutureon PT �B is independent on the presentation B =M � I.With every germ of Legendre submanifold L � J1(M; I) = P0 � PT �B we an assoiatethe lass of Vst-equivalene of funtion singularities. This lass is also independent of the loalrepresentation B = M � I. It is not diÆult to onstrut a map � : L ! �N whih preservesVst-singularity types assoiated with Legendre germs. The harateristi lasses indued by thismap are the following: u = 1(I), where I is the onjugate of the tautologial line bundle onPT �B (it an be also de�ned as the normal line bundle of the ontat struture); for the lassesai we have ai = i(TMB � TM � I) (see below). Similar to the Lagrange ase, the lasses dualto di�erent singularity loi of Legendre projetionM ! T �B ! B are given by universal Thompolynomials evaluated on the lasses 1(I), i(TMB � TM � I).Remark. The most general situation where Legendre harateristi lasses appear is thefollowing. Let E ! M be a vetor bundle of even rank. Assume that the �bres of this bundleare equipped with sympleti bilinear forms that take values in the �bres of some line bundle I(i.e. we are given a nowhere degenerating setion of �2E�
I). Let L1; L2 � E be two Lagrangesubbundles with respet to this twisted sympleti form. Then the relative Chern lasses ofthe quadruple (E; I; L1; L2) are de�ned as u = 1(I), ai = i(L�2
I � L1). The equalities(L1 + L�1
I) = (L2 + L�2
I) = (E) imply the identity (6) for these lasses.The situations onsidered above �t into this pattern. In ase of �bre bundle map f : V ! Iwe take E = V � V �
I, L1 = V � 0, and L2 �= L1 is the bundle of the tangent planes to thegraphs of the di�erentials of the maps fw : Vw ! Iw, w 2M .In ase of Legendre immersion M ! PT �B we set E � TM (PT �B) to be the bundle ofontat planes, I = TM (PT �B)=E to be the normal bundle of the ontat struture. Thesympleti form is given by (�; �) 7! [�; �℄ (mod E), where �; � are vetor �elds tangent toE and [�; �℄ is the ommutator of vetor �elds. (This is the invariant de�nition of the linearsympleti struture on ontat planes given by d�jE , where the ontat struture E is the �eldof kernels of the 1-form �.)The subbundles L1; L2 are TM , and the bundle of `vertial' tangent vetors to PT �B,orresponding to the kernel of the di�erential of the projetion PT �B ! B. Sine Ew=L2w isthe hyperplane of the ontat element w 2 M � PT �B, we have L�2
I = E � L2 = TMB � I,i.e. ai = i(L�2
I � L2) = i(TMB � TM � I): �3.3 Real Lagrange and Legendre singularities and harateristi lassesThe theorems on omplex harateristi lasses have usually a real analogue where the om-plex manifolds, maps and bundles are replaed by the real ones, integer ohomology by Z2-ohomology, Chern lasses by Stiefel-Whitney lasses et. This priniple an be applied to the22



problems studied in this paper as well. The notions of Lagrange and Legendre harateristilasses, the orrespondene between singularities of funtions and Lagrange (Legendre) singu-larities, the de�nitions of lassifying spaes and Thom polynomials repeat word-by-word theorresponding notions de�ned in this paper for omplex ase. The main di�erene is that thehomomorphism (1) of the ring of Legendre harateristi lasses to the polynomial ring in vari-ables u; 1; 2; : : : (whih is injetive over Z) has a big kernel over Z2. For instane, it is trivialin Lagrange ase when u = 0 (indeed, the total Stiefel-Whitney lass !(V � � V ) is trivial forany real bundle V ). It follows that the harateristi lasses of �bre singularities of real-valuedfuntions are trivial, see [8℄. Nevertheless these harateristi lasses are not trivial if theyare applied diretly to the yles of Lagrange singularities on Lagrange submanifolds in T �B(respetively, Legendre singularities of Legendre submanifolds in PT �B).Theorem. The Thom polynomials of real Legendre singularities of real odimension � 6are obtained from the list of Theorem 1 by replaing the Chern lasses ai by the orrespondingStiefel-Whitney lasses �i and reduing the oeÆients modulo 2,A2 = �1A3 = �2 + u�1A4 = �1�2 + u2�1D4 = �1�2 + u�2A5 = �1�3 + u3�1D5 = 0A6 = �2�3 + u(�1�3 + �4) + u2�1�2 + u3�2 + u4�1D6 = 0E6 = �2�3 + u�4 + u2�1�2 + u3�2A7 = �1�2�3 + �2�4 + u�5 + u2�1�3 + u4�2 + u5�1D7 = 0E7 = �1�2�3 + u(�2�3 + �1�4) + u2�4 + u3�1�2 + u4�2P8 = �1�2�3 + u�1�4In partiular, let M � PT �B be a real Legendre immersion. Then the Z2-ohomology lassdual to some yle of Legendre singularities of odim � 6 is equal to the orresponding Thompolynomial evaluated on the lasses u = !1(I) and �i = !i(TMB � TM � I), where I is thenormal line bundle of ontat struture on PT �B.Theorem (f. [18℄). The Thom polynomials of real Lagrange singularities of real odimen-sion � 6 are obtained from the list of previous theorem by setting u = 0.In partiular, let M � T �B be a real Lagrange immersion. Then the Z2-ohomology lassdual to some yle of Legendre singularities of odim � 6 is equal to the orresponding Thompolynomial evaluated on the lasses �i = !i(TMB � TM).These theorems an be proved applying step by step the real versions of all onstrutionsused in Setion 2 in the proof of the orresponding formulas for omplex ase. �Remark. The formulas for lasses of real Lagrange singularities of odim � 6 (exept A7)were obtained in [18℄ by a di�erent method. The expression A7 = �1�2�3 + �2�4 as well as alllasses of real Legendre singularities are new. 23
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