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Abstract

We define Thom polynomials for Lagrange, Legendre and critical point function singu-
larities. Our approach is based on the notion of classifying space of singularities. This ap-
proach provides a universal method of computing Thom polynomials. Characteristic classes
of complex Lagrange and Legendre singularities of small codimensions are computed. These
expressions reduced modulo 2 agree with those obtained by Vassiliev for the real case.

1 Introduction

The natural way to study the global properties of isolated hypersurface singularities is to include
the hypersurface into a generic family. Formally this can be described as follows. Consider a
smooth embedded hypersurface in the total space of a smooth locally trivial complex analytic
fibration:

H — W

m
B

(The case when 7 is the trivial bundle is already interesting enough.) We consider H as a family
of (possibly singular) hypersurfaces Hy, C Wy, Wy = 7 1(b), Hy= HNW;, b€ B. Let M C H
be the union of all singular points of Hp’s. Generically M is smooth and has the codimension
n=dmW —dimB in H. It can be identified with the zero locus of a certain section of some
vector bundle. Namely, the bundle is Hom(V, I), where V' C TW is the subbundle of vectors
tangent to the fibres of = and I is the normal bundle of H. The section is given by the natural
projection V. C TyW — TyW/TH = I. The genericity condition means that this section
is transversal to the zero section of the same bundle. This condition is open but in complex
situation it is not necessary dense. Similarly below by genericity for some smooth map we mean
the transversality of its jet extension to a certain stratification on the jet space.

Let Q be any class of isolated hypersurface singularities (an algebraic subvariety in some jet
space of function germs C*,0 — C,0 which is invariant with respect to the group of left-right
changes of variables). Define the locus Q(H) C M as the locus consisting of the points at which
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the hypersurface Hy belongs to the given singularity class 2. According to the general principle
of Thom the cohomology class Poincaré dual to the locus Q(H) is independent on H (provided
H is generic) and can be expressed as a universal polynomial in Chern classes of W, B, H. We
claim that this polynomial can be expressed in terms of some particular combinations of these
classes. Namely, let u = ¢;(I) = ¢1(TW —TH) be the restriction to M of the class of the divisor
H. Denote ¢; = ¢;(V) = ¢;(TW —n*TB), and define classes a; = ¢;(V*®I — V') as homogeneous
components in the expansion

(1+u)"—(1+uw) g+ (1+u)" 2co—... ¢y

1 —
+a1 +az+ T

(1)

These classes satisfy relations

ai az
1 L)1 = —...] =1 2
Gratat. ) (1o 2 ) o1 )

(following from the identity U + U*®I = 0, where U is the formal difference U = V*®I — V).
These relations allow to expand the squares of classes a; and hence any polynomial in u, a1, az, . . .
can be expressed as a linear combination of monomials uif’a’ll as ... with ig > 0, i, € {0,1}

(k> 0).

Theorem 1. For any isolated hypersurface singularity class £ the cohomology class in
H*(M) Poincaré dual to the locus QU(H) can be expressed as a universal polynomial Pq in

u,a1,as,.... This polynomial (called Thom polynomial) is independent on n (we use the same
letter ) for the class of function germs c',0— C,0, n' # n, stably equivalent to the functions
from Q).

For the singularity classes of codimension not greater than 6 the Thom polynomials are
represented in Table 1.

To determine the cohomology class dual to the locus Q(H) in H or in W we apply the

push-forward formula i.(i*a b) = a i.(b) to the embeddings M < H <y W and the classes
a = Pq, b= 1. For instance, since i,(1) = [M] = ¢,(Hom(V,I)) = u™ —u™ le; + ... £ ¢, we
get that the dual of Q(H) considered as a locus in H is equal to

QH)] = (" — u" ey + ... % ¢n) Py € H*(H).

Similarly, the homomorphism j, : H*(H) — H*(W) on the class above is given by the multi-
plication by wu.

To prove Theorem 1 we relate the problem to the theory of Lagrange and Legendre singular-
ities and their characteristic classes. Namely, we consider the hypersurface H as the ‘generating
family’ for the Legendre immersion M — PT*B.

In the simplest case when the bundle I is trivial (and hence v = 0) the problem is reduced
to the study of Lagrange singularities. Lagrange singularities are those of the projection of a
Lagrange submanifold to the base of the cotangent bundle. Singularity loci of this projection
could define cohomology classes on this manifold. The simplest example is Arnold-Maslov class
which is dual to the total critical set of the projection. The theory of characteristic classes
related to the real Lagrange singularities was developed by V.Vassiliev. In his book [18] a
cochain complex (so called Vassiliev universal complex of singularity classes) was constructed
whose generators correspond to the singularity classes. The cohomology groups of this complex
are well defined characteristic classes. Vassiliev has computed the cohomology of this complex



Table 1: Thom polynomials of isolated hypersurface singularities of codim < 6

Ay = a
Az = 3as+ua
Ay = 3ajas + 6ag + duas + ulag
Dy = ajas — 2ag — uas
As = 27ajag+ 6ag + u(16a1a2 — 12a3) — 4u?as + uday
Ds = 6ajag — 12a4 + u(4ajas — 14a43 — 4u’as
Ag = 8Tagag + 54ajays + 7T8ag+
u(127a1a3 — 53a4) + u?(59a1as — 126a3) — 41uas + u*a;
D¢ = 12ajag — 24as + u(l14ajaz — 40ay) + u%(8ajas — 30a3) — 8uay
Es = 9ajsag — 12a;a,4 + 6ag + 3uas + u?(3a1a2 — 6a3) — 3uay
A; = 13Bajasag + 465aza4 + 264a a5 + 522a¢ + u(516aza3 — 16ajas + 485as5)+
u?(305a1a3 — 70a4) + u3(190a;as — 440a3) — 165uas + u’a;
D; = 24ajajzag — 24asa, + 48aja5 — 144ag + u(8azasz + 44a1a4 — 224as5)+
u?(48araz — 172a4) + u3(20aiaz — 88a3z) — 20ua;
E; = 9ajasag + 6azas — 42aja5 + 36ag + u(2lazas — 6laias + 80as)+
u?(43a4 — 6ajaz) + u(Taras — 8az) — Tutay
Ps = ajagag — 6agay + 6ajas — 4ag+

u(7aya4 — 4asaz — 10as) + u%(2a1a3 — 8aq) — 2uias

in the codimension not exceeded 6 and found the expressions for all these classes (except A7)
in terms of Stiefel-Whitney classes.

In the paper [9] we suggested an approach to this problem based on the study of classifying
space of Lagrange singularities. This has led to understanding the geometrical meaning of
Vassiliev complex and to introducing new characteristic classes. In this paper we develop this
approach. In particular, we complete computing characteristic classes dual to singularity classes
in terms of multiplicative generators the ring of characteristic classes (i.e. Thom polynomials)
and describe also the complex version of the theory.

Any classification problem in singularity theory can be considered as a problem of classifying
orbits for an action of some Lie group G on some vector space V. For instance, for left-
right equivalence of maps V is the space of map germs (R",0) — (R™,0) (or jets of maps
of fixed order) and G is the group of the left-right changes which is homotopy equivalent to
GL(n,R) x GL(m,R). The theory of characteristic classes of this classification problem is
therefore the theory of characteristic classes of the given Lie group G. The classifying space
BV of this classification problem is defined using standard Borel’s construction, BV =V Xxg
BE = (V x BE)/G, where BE — BQG is the classifying principle G-bundle. The classifying
space BV is homotopy equivalent to BG (since the bundle BV — BG has contractible fibres).
Any invariant algebraic subset ¥ C V gives rise to a subset BY = ¥ xg BE C V of the
same codimension. With this approach the ‘Theorem about existence of Thom polynomials’
is evident; Thom polynomial of ¥ C V is just the element represented by the fundamental
cycle of ¥ in the equivariant cohomology group H( (V) = H{(pt) = H*(BG), or, which is



equivalent, the element, represented by the fundamental cycle of BY in the usual cohomology
group H*(BV) = H*(BG).

The classifying spaces BG and BV have infinite dimensions, but they always have very
nice finite dimensional approximations that can be used as well for ‘stable’ problems, where
the maps of manifolds of different dimensions are considered. For example, for the theory of
singularities of (R*,0) — (R*** 0) the classifying space is the space of germs (or jets of high
order) of n-manifolds in (RV,0), N > n > 0. This space is homotopy equivalent to the
usual Grassmannian G, y and stratified according to singularities of the projection to the fixed
coordinate (n+ k)-subspace. In a similar way, for the classifying space of Lagrange singularities
one can take the space of all germs (or jets of high order) of Lagrange submanifolds in the
symplectic space (R2",0), n > 0. The same constructions can be used for studying complex
spaces and holomorphic maps.

Note that if X C V is an orbit then BYX. = ¥ X¢ EG = BGy is the classifying space of the
‘symmetry group’ Gy of the singularity ¥ (the stationary subgroup of any point z € ¥). A
similar description of BY exists even if 3 consists of many orbits.

In [13] Sziics and Riményi used an alternative approach to the definition of the classify-
ing space of singularities based on Szucs’s idea of gluing the classifying spaces of symmetry
groups of singularities. They considered only simple singularities, and very clear topology of
the classifying space does not follow from their construction. It should be noticed nevertheless
that their construction works as well for the case of multisingularities, see [14, 11, 12] for some
applications. It is an interesting problem to find an a prior: construction for the classifying
space of multisingularities and to describe its topology (the work [13] implies that it should be
related to cobordism theory).

The group of Lagrange characteristic classes is the cohomology group of Lagrange Grass-
mannian A® (or its complex analogue A®). The cohomological information about adjacencies of
singularities is translated into properties of the spectral sequence constructed by the filtration
on the classifying space by the codimension of singularities [8]. Let us describe this spectral
sequence for the classification of (complex) Lagrange singularities [9]. The initial term of this
sequence is By = @y, H*(BGy), where Gy, is the symmetry group of the singularity ¥. The
symmetry groups of all singularities of small codimensions are well known. They are all finite
(some extension of S3 for the singularity D4 and cyclic groups for all other singularities). In
fact, Vassiliev proved recently that the symmetry group of any critical point singularity of finite
multiplicity is finite, see the Russian translation of [18]. This gives the complete description
of the groups E5? = ER! for small p. They are all torsion groups for ¢ > 0 and the free
generators of the raw F, 0 correspond to the fundamental cycles of singularity classes. Hence
we immediately arrive without any calculation to the following conclusion.

Theorem. The classes of complex Lagrange singularities Ao, As, ..., E7, Py form a basis in
the group of Lagrange characteristic classes H='2(A,Q). In case of integer coefficients these
classes generate freely subgroups of finite indices 1,3,12,360,... respectively in H?(AC,7Z),
d < 6.

Of course, this result follows also from the explicit form of these classes represented in
Table 1 (one should set u = 0; the corresponding terms are marked in boldface). The presents
of even numbers in the sequence 1,3,12,360, ... implies that in case of real singularities there
are some relations between these classes. These relations have been found by Vassiliev in [18]:
A4—D4:D5:DGZAG—E6:D7:E7—P8=0 (m0d2)

We describe two methods for computing Thom polynomials, both based on the concept
of the classifying space. The idea of the first method is the following. Consider a cellular



partition of the classifying space such that both Schubert cycles and singularity classes are some
combinations of cells. Then the problem is reduced to linear algebra in some finitely generated
cochain complex. To obtain such a partition one can consider a classification of critical point
singularities with respect to a smaller group of equivalence consisting of diffeomorphism germs
with identical linear terms. Such classification has no simple singularities but the number of
modules is always finite. The main property of this classification is that the symmetry group
of every its singularity class is trivial, and hence, the induced partition of the classifying space
is a cellular partition.

A realization of the program above is possible though it requires a great deal of computa-
tions. To reduce the amount of computations we use as a kind of compromise another detailed
classification of singularities with smaller but not trivial symmetry groups. The corresponding
classes are called marked singularity classes. A number of relations between these marked sin-
gularities is sufficient to reduce the problem of finding Thom polynomials to those singularity
classes for which this problem can be solved by classical methods like resolutions of singularities.
To describe these relations we introduce the notion of adjacency exponent for a pair of singu-
larities of (complex) neighbour codimensions which is an analogue of the incidence coefficient
in real case, see [18].

For the simplicity we present the computations of Thom polynomials for the classes of
function singularities. All steps of our computations can easily be reformulated in terms of
Lagrange (or Legendre) singularities.

Another method of finding Thom polynomials uses basically the idea of R.Riményi. Any
example when both Chern classes and the class represented by singularity locus can be com-
puted produces some relations between the coefficients of Thom polynomial. When the number
of computed examples is high enough these relations could be sufficient to determine Thom
polynomial completely. Rimanyi noticed that a lot of examples can be produced by considering
tubular neighbourhoods of singularity loci in the classifying space. To see when this could give
the result let us look again at the characteristic spectral sequence converging to the group of
characteristic classes. Its second term is B} = @y H*(BGy). In complex case all topology is
often concentrated in even dimensions and the spectral sequence converges in the second term.
This means that any characteristic class is completely determined by the collection of its images
in the groups H*(BGyx). In fact, these images belong not to the group H*(BGy) = H*(BY)
itself but to the (isomorphic to it) cohomology group H*(T'Y) of Thom space T'Y of the normal
bundle to the submanifold BY. of the classifying space of singularities. Therefore, to apply
Riményi’s method we need that the homomorphisms ¢ : H*(TY) — H*(BY) induced by inclu-
sion of the zero section of the normal bundle to its Thom space would be monomorphic.

If Gy, is trivial then the homomorphism ¢ (given by the multiplication by the top Chern
class of the bundle) is trivial. In a similar way ¢ is trivial if Gy, is finite and we consider the
cohomology with coefficients in a field of characteristic zero. Therefore Rimdnyi’s method of
finding Thom polynomials can be applied only when every singularity has a continuous group
of symmetry. This is not the case for Lagrange singularities. Nevertheless this is true in case
of Legendre or twisted Lagrange singularities. In the classification of Legendre singularities
the right equivalence of functions is replaced by V- (or K- depending on the terminology)
classification when one allows to multiply a function by another nowhere vanishing function. In
this classification any quasihomogeneous singularity has an obvious U(1)-symmetry. Thus the
Rimanyi’s method gives Thom polynomials of all Legendre singularities in small codimensions
and as a particular case Thom polynomials of Lagrange singularities.

Reducing the coefficients modulo two we get real Legendre characteristic classes (Thom
polynomials for them were not computed in [18]).



The paper is organised as follows. In Section 2 we present two independent methods of
computing Thom polynomials of Table 1. Their existence is proved in Section 3 where the
characteristic classes of Lagrange and Legendre singularities are studied.

I appreciate the hospitality of the I. Newton Institute, Cambridge, where the work on the
paper was completed.

2 Resolutions and adjacencies of function singularities

In this section we compute the Thom polynomials listed in Theorem 1 for the case of bundle map
problem considered here. The proof of their existence is postponed until Section 3.2. Everywhere
in this section we use the same notations for the singularity loci and for the cohomology classes
represented by these loci.

2.1 Bundle map problem

Before computing Thom polynomials of Theorem 1 we formulate a slightly different but, in fact,
an equivalent problem. Consider two complex vector bundles V, I of ranks tkV =n, rkl =1
over a smooth base M. We do not assume any complex structure on the base M. Consider a
smooth bundle map

whose restriction f,, : Vo — Iy, w € M to each fibre is a complex polynomial of some fixed
degree N > 0 with a critical point at the origin. We may think of f as a generic section
f = fi2)+ fi3)+- .- of the vector bundle S2V*@I® S?V*®I®---. With any function singularity
class Q we associate the locus Q(f) C M consisting of the points w € M such that the polynomial
fw has the prescribed singularity type €2 at the origin. Theorem 1 is a particular cases of the
following more general one.

Theorem 2. For any generic f the cohomology class Poincaré dual to the locus Q(f) can
be expressed as a universal polynomial Pq in classes u = ¢1(I) and a; = ¢;(V*®I — V). For
singularity classes of codimension < 6 these polynomials are those listed in Theorem 1.

Proof of Theorem 1. Let as explain how the problem of studying the hypersurface
singularities discussed at the introduction can be reduced to a bundle map problem considered
here. Let the diagram H C W 5 B and the critical set M C H be as in the introduction.
Assume that the divisor H is given locally by the equation ¢ = 0 where g is some function
given in a neighbourhood of the given point w € M. Denote by f, the N-jet of the restriction
of g to the fibre of 7 through w. These function jets f,, form together a section in the bundle
J whose structure group is the Lie group formed by the IN-jets of right changes in C”,0 and
multiplications by the N-jets of non-vanishing functions. This group is contractible to the
subgroup GL(n,C) x GL(1,C) of linear changes. Hence, the structure group of J can be
reduced to this subgroup. The possibility of such reduction means the possibility of introducing
the complex linear structures ‘up to the order N’ on the germs W,,, C*°-smoothly depending
on the point w € M. After such reduction the N-jets f,, can be considered as polynomial maps
fw : Vi — Iy, where V,, = Ty, Wy, I, = T,,W/T,,H. By Tugeron’s finite determinacy theorem
the singularity type of the hypersurface H,, is that of the function germ f,,. Therefore the



partition on M by different singularity loci of H,, coincides with that of the polynomial bundle
map f:V — L. O

2.2 The Gysin homomorphism

Some part of Thom polynomials of Theorem 1 is computed using the method of resolutions
of singularities. The computations of this method use a formula for the Gysin homomorphism
proved in [10]. Consider vector bundles V,I — M of ranks n,1 respectively and a quadratic
bundle map f3) : V' — I. The map f(,) is considered as a section of the bundle S2V* ® I or
as a linear self-adjoined bundle map f(3) : V — V*®I. Denote by F, = F.(V), r < n the flag
bundle over M whose total space is formed by all possible flags

FlcF:c...FicV,  dimF, =i weM,

in the fibres of V. The cohomology ring of F, is generated by the cohomology of M and by
the classes t; = —cy(F!/Fi~!) = ¢;((F'/F*1)*), where F? are the corresponding tautological
vector bundles. Denote by Z, C F, the locus defined by the condition Fy, C ker f(3),,, w € M.
Generically Z, is smooth and dim¢ Z, = dime M — r. We study the Gysin (or push-forward or

transfer) homomorphism
pre H*(Z,) = H*™" (M)

corresponding to the natural projection p, : Z, — M.

Theorem ([10]). Assume that the bundle I is trivial. Then for any monomial tj* - -t

we have
Pra(tit - £37) = Quy 11, 5,41 € H2ZLEFD(M),

where Qx, ., = Qi (a1,a2,...) are polynomials in classes a = cx(V* — V) defined as
follows:

o forr =1 we have Q = ay;

e forr =2 we set

o0
. ak+- akil
Qry = —Qup = E (-1) ! "1
i=1 Al+i Q-

e for any even r > 4 we set
Q... = PEIQx ;1< <

e for any odd r > 3 we set

r

k-1
Qri,. N\ = Z(*l) A QA M1 A1y Ar

k=1

Here Pf is the Pfaffians of a skew-symmetric matrix. Remark that in the infinite sum for
Q1 only first max(k, 1) terms may be different from zero.

The computation of the homomorphism p,, in generic case can be reduced to the case
considered above.



Corollary. The formula of previous Theorem holds true in the generic case if it is applied
to the classes t; = —cl(F’/szl) + u/2 instead of t; and to the classes ay, instead of ay, where
u=-ci(I) and

1- 1+Czla/2 + (1+Zz/2)z .- = c,-(V).

l1+a1+as+...=
I+ Sstaamz

Proof. We use the following trick borrowed from [7]. Consider first the case when I = J®2
where J is another line bundle with ¢;(J) = ¢;(I)/2 = u/2. Then S*’V*®I = S?*(V®J*)*
so f(2) can be treated as a self-adjoined bundle map V ® J* — (V ® J*)* and we can apply
previous Theorem to the classes #; = —c1((F!/F"1)®@J*) = —c1(F{/F"1) 4+ u/2 and a =
ck(VRJ*)* — V®J*). The formulas obtained in this way can be applied to any line bundle
since they are universal, cf. [7, 10].

Remark. The classes a; are related to the integer classes a; = ¢;(V* — V®I) via

ai a2

1+a Gy +...=1
+ar+ax+ +17u/2+(17u/2)

7 o

The formula of Corollary above uses the division by powers of 2. Of course the direct image
under p,, of any monomial in ¢; = ¢1(F;/F;_1) is an integer class and so it can be expressed
as a universal polynomial with integer coeflicients in u, a1, as,.... The Corollary allows to find
these polynomials for any particular monomial but these expressions have no nice closed form
similar to that in case I = C.

Example. The image p1(Z;) C M is the closure of the locus As(f). Therefore,

Ay =p1.(1) = Q1 = a1.

This is the first formula of Table 1.

2.3 Marked singularities and their resolutions

In this section we compute the Thom polynomials for the classes Ao, A3, Dy, D5, Fg, Pg using
their resolutions. The other classes from the list of Theorem 1 have no good resolutions but the
partial resolution of these classes simplifies the computation of Thom polynomials for them as
well.

Let f : V — I be a polynomial bundle map such that the restrictions f,, : V, — I,
have a critical point at the origin for any w € M as in Section 2.1. The second differential
few = d?fu : Viy — I, is a well defined at any point w € M. We consider f2) as a twisted
self-adjoined map of vector bundles f(5): V — V*®I on M.

Let F; = P(V) be the projectivisation of the vector bundle V. — M. Consider the sub-
manifold Z; C F; formed by the pairs of the form (a point w € M, a line | C K,,, where
K. = ker f(3),, is the kernel of the second differential of f,,. We would like to represent the
cycles of fibre singularities of f as the direct images of certain cycles on Z; under the natural
projection

p1 Z1 — M.

Definition. Let g : C*,0 — C,0 be a germ of a critical point singularity and K =
ker d’g C TyC" be the kernel of its second differential. The line I C K is called distinguished
if the cubic form g(3) given by the third-order terms in the Taylor expansion of g vanishes on



l. A marked critical point singularity is a pair (g,l), where g is a function germ and [ is a
distinguished direction.

Remark that the cubic form g3) is well defined on K (in a sense that it is independent on the
choice of coordinates on C"*,0). Consider the classification of marked critical point singularities.

If g has a singularity of type Ay, k > 3, or By, k = 6,7,8, then the distinguished direction
is unique. The corresponding marked singularity is denoted by Ay, E}, respectively.

In case of singularity Dy, the distinguished direction may be either a simple or a double
zero of the cubic form g(3)|x. We denote the two cases by Dj, and D” respectively. So for kK =4
there are 3 directions of D)-type and for k > 4 there are two dlstlngulshed directions, one D'
and one D’ !

In case of singularity Pg the distinguished directions form a cubic curve in CP? = P(K). We
use the notation Py if this is a generic point of the cubic and Pg’ if this is one of the 9 inflection
points on it.

We get the following classification of marked function singularities.

codim
As 1
A4,D), 2
A5, DL, D! 3
Ag,Ds, Dl E¢,Py 4
A;, D} D! E;,PY 5

The codimension is counted in the space of function germs g : C*,0 — C,0 such that
dg(0) = 0 and ker d?g contains some fixed direction Iy C ToC".

The classification of marked singularities produces the corresponding classification of the
points on the manifold Z;. Namely, we say that the point (w,l) € Z; C P(V) has marked
singularity ) if the function germ f, has singularity type € and the line [ C ker f(3), is
distinguished.

Lemma. The cohomology classes on M dual to the singularity loci of codimension < 6
can be determined as the direct images of the following cycles on Zy:

Ay = pudr, (k>3);

1 ~ - -
Dy = gpl*Di;; Dy = pu.D}, = pu.Dy, (k=5);
Ek - pl*Eka (k = 6) 7) 8)3

1 ~ 1 ~
Py = §p1*Pg = gpl*tlpé-

Proof. Just note that every point w € M such that the singularity type of f,, is Ay, Eg,
or D~4 has a unique preimage in the corresponding cycle on Z;. For the singularity D4 there
are 3 such preimages (corresponding to three zero lines of f3)w on K,) and for the singularity
Py there are 9 preimages on Py (corresponding to 9 inflection points of the cubic f3yw =0 on
P(K)). The restriction of t; = —c1(F') to any fibre of P(V) — M is the class of a hyperplane.
Hence the three preimages of a generic point w € Pg on a cycle representing tllgg correspond to
3 points of the intersection of the cubic f(3),, = 0 with a generic projective line in P(K,). O



Since the homomorphism pi, is known by results of Section 2.2, the last lemma reduces the
problem to the computation of cohomology classes represented by certain cycles on 7.

Example. The third differential d3f,, = few : F!' — I is a section of the line bundle
(F1)*®3 ® I on Zy, where F} is the tautological line bundle on Z; C P(V). The closure of the
cycle Ajz is the zero locus of this section. Therefore, Az = c;((F')*®3 ® I) = 3t; + u and

As = p1.(3t1 + u), t1 = —a(F1), uw=c(I).

which gives after applying the formulas of Section 2.2 the Thom polynomial for Ag.

Similar arguments can be used for some other marked singularity classes if we construct
resolutions with help of flags instead of projective spaces. The following Lemma uses notations
of Section 2.2.

Lemma. The following relations hold for the Gysin homomorphism p1, : H*(Z1) — M**2.

!

p1«(43) = p1«(3t1 +u)

p1eDy) = p2.(3ts +u)

PDf) = pou((3t1 + u)(2t1 +t2 +u))

preD}) = pau((3t1 +u)2(ts + 2t + u)) (3)
p1(Bs) = ponl((3t1 4 u)(2t1 + to + u)(ts + 2t9 + u))

p1e(Py) = p3.((3t1 4 u)(2t1 + to + u))

Pre(Pg) = pau((3t +u)(2t1 + to + u)(tr + 22 + u))

Applying formulas for the homomorphisms p,. : H*(Z,) — M described in Section 2.2 we
complete the computations of the Thom polynomials for singularities A3, D4, D5, Eg, Ps.

Proof. The case of A is considered above. In the case of singularities DY, ... ,Es the kernel
K. = ker f(5),, has dimension 2. We can associate with any of these cycles the correspondlng
cycles 52, .. E‘G C Zy C Fy by letting F2 to be the kernel K,. Then we get pl*D4 = pg*D4
and the same for Dg,Dg,EG The third differential f(3),, can be written as

f(3)w = a(].'IT3 + a1x2y + azmy2 + a3y3

with an appropriate choice of coordinates (z,y) on F? such that the line F! is given by y = 0.
The coefficients a; are globally defined sections of the bundles (F')*®3-%) g (F2/F')*® @ [
with the first Chern classes (3 — i)t; + ito +u, i = 0,1,2,3,4 (every section in this sequence is
defined only on the zero locus of the previous one). The closures of the considered cycles are
given by the equations

511 a0:0,

515,: a0:a1:0,

ﬁﬁt a0:a1:a2:0
ﬁ;: ao—a2 4a1a3 =0

respectively which gives the formulas of Lemma (the expression a3 — 4ajas is a well defined
section of ((F1)* @ (F2%/F')*®2 ® I)®2 on the zero locus of ay).

The singularities ﬁg,ﬁg are resolved in a similar way using flags F. C F2 C F3, where
F3 = K,, PF? is the tangent line to the cubic f(3)w\F3, = 0. The tangency condition is

10



equivalent to the condition that f3 w\F has a double zero on F. and the condition that the
tangent line is a point of inflection is equivalent to the condition that f(3 w|F has a triple zero

on F}. Arguing as above we arrive to the expressions for the direct images of P8,P8 O

2.4 Adjacency exponents

The Thom polynomials for classes not considered in previous Section are computed using rela-
tions between them. These relations are applied not to the classes themselves but to the classes
of their partial resolutions.

Lemma (basic relations).  The cohomology classes of cycles gg,g4,...ﬁg C Z1 are
subject to the following relations.

(41 +u) A3 = Aq—D)
(5t; +u) Ay = As— 2D

(6t, +2u) Dy = —D} + 4D
(6ty +u) As = Ag— 2D" — 3Eq

(8t + 3u)l:7 = :5'6 + 12E + 4P @
(4t, +u)D! = DY P}
(Tty +u) Ag = A7 —2D! — 5B,

(10t, + 4u)D}, = -D.+16E;

(5t1 + u)ﬁg = D! —E;
(4t +u)Eg = E;—PY

Final computations of polynomials of Theorem 1. A part of Thom polynomial
are computed in previous section. Using relations (3) and (4) we get subsequently

A4 = (4t1 + u)gg +5£1,
P1x(A4) = pr((4t1 +u)(3t1 + u)) + pas(3t1 + u);
As = (5t1 + U)A4 +

pie(As) = pra((5t1 + u)(4ts + w) (3t + u)) + pax (9t + 2t5 + 3u)(3t1 + u));

and so on. Continuing this way we get expressions for the direct images of all cycles on Z;
of codimension less or equal to 5. Applying formulas for the Gysin homomorphisms from
Section 2.2 we obtain all Thom polynomials of Theorem 1. Note that the expressions for
p1+(D},) are not necessary for computing Thom polynomials. We use these expressions only to
verify our computations. O

The reason for the basic relations is as follows. Consider a germ of some marked singularity,
say Ag. In some coordinate system it can be written as

= .’Ek+1 +Q;

where @ is a nondegenerate quadratic form in the remaining variables. Such a coordinate system
is not unique. Another choice of the coordinate system results in the multiplication of the
tangent vector d/0x to the distinguished line by some complex number ¢ and the simultaneous
multiplication of the tangent vector d/0z to the target space by ¢**!. Therefore the tensor
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s = de®**+) ® 9/9z is invariantly defined. We obtain that the bundle (F1)*®**+1) g I restricted
to the cycle Ap C Z; admits a canonical nowhere vanishing section s.

Lemma. The restrictions of the line bundles listed in the table below to the corresponding
singularity loci in Z1 are trivial.

f bundle Y a(Y)
Ap okt (F1y*8ktl o T (k+1)t; +u
52 ykfl + ym2 (FI)*®(2k72) ® 7®(k-2) (2k: _ 2)t1 + (k . 2)u
Dy ek tyay?| (Fy®kDg] (k—1)t1 +u
Eg | zt+443 (Fly®igIr 4t1 + u
E; | DPy+4P (F1)®9 @ [®2 91 + 2u
Eg | 2°+¢° (F1)y*® @1 5t1 + u

The canonical sections for the bundles from this lemma are chosen so that for the (marked)
functions in the normal form above the coordinate of this section is equal to 1 (the distinguished
line is the z-axis).

The proof for all cases is the same as for the case of singularity Zk- The symmetry group of
all these singularities acts on the lines F'' and I by quasi-homogeneous homoteties. Therefore,
the required bundle can be chosen in the form (F!)*® QI®P where a/f3 is equal to the quotient
of quasi-homogeneous weights of the function and of the variable = respectively. O

Let Q C Z; be a cycle of some marked singularity from the last Lemma, Y — Z; be the
corresponding line bundle whose restriction to (2 is trivialised. This trivialisation of Y can not be
extended to the closure of €2 since the bundle Y is not trivial. Let ® C Z; be a singularity class
of neighbouring complex codimension, codim ® = codim 2 + 1. Choose some point w € © and
a (codim ©)-dimensional transversal slice T' to © at this point. The singularity locus 2 cut out
a number of curves 71,2, ... on T.. Let (C,0) — (T, w) be a normalisation (= parameterisation)
of one of these curves ;. Then the canonical section s of Y on ; C Q can be written (using
some local trivialisation of Y near w) in the form s = 7% h; where 7 is a parameter on the curve
and h; is a germ of a holomorphic non-vanishing function.

Definition. The adjacency exponent [, ©] is the sum of the exponents k; over all curves
v; of singularity €2 in the transversal to the singularity ©.

Lemma. The following equality holds in the cohomology of Z1,
a(Y)Q =) [0.6]e,

where the sum is taken over all classes of marked singularities © C Zy with codim ® = codim Q+
1.

Proof. Let Q C Z; be a test compact cycle of real dimension 2(codim¢ Q + 1). Without
loss of generality we assume that () intersects 2 transversally so that D = QN {2 is a real surface
without some finite set Sing D of points corresponding to intersections of () with singularity
classes of (complex) codimension codimg Q + 1. Then

(e (Y) Q,Q) = (a(Y), D).

The last number can be computed using the restriction of the section s to the cycle D. It is
equal to the sum of indices ind,(s) of this section over all points of Sing D. But every such index
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ind;(s) is equal, by definition, to the adjacency exponent of singularities 2 and ©® > z. Hence,
the sum of the indices is equal to the intersection number of ) with the linear combination of
cycles > [, 0] © over all classes © C Z; with codim © = codim 2 + 1.

Thus both sides of the equality of Lemma take the same values on the elements of homology
group of the complement dimension. This proves the equality of Lemma modulo torsion. In
fact, this equality holds for any group of coefficients since the group of characteristic classes of
complex vector bundles is torsion free. O

To complete the proof of basic relations (4) we need to compute the adjacency exponents
for marked singularity classes. Finding adjacency exponents is a part of the proof which really
requires a lot of computations. One should find all possible adjacencies of classes of neighbour
codimensions and to compute the adjacency exponents. In these computations the methods
and results from [1, 18, 15] are used.

Lemma. The following lists and the comments below erhaust all possible adjacencies of
marked singularity classes of codim < 6. (The distinguished direction in the lists below is the
diection of the x-axis. The functions of the family corresponding to the adjacency ©® — ) have
singularity Q) at the origin for all parameter values T # 0 and © for 7 = 0. In the table below s
is the canonical section, ¢ € C is a constant.)

0 — N f s [©: 0] | notes
gk+1 — Zk zht2 4 rghtl cT 1
52“ —>5}€ y* + 2y + Tyhl er 1 -1
ﬁlkl+1 —>5Z z® + xy? 4+ 2kl cT 1
511 — As | y® + 2%y + 7y er 1 -1
l~)g —>l~)i1 2t + zy? + 2%y ert 4
l~)’5' — Ay | (22 + 7y)? + 1) cr—? —2
l~)g — A | 2° — zy? + 7(y + 22)? er—! —2 (1)
Be — As | v* + (22 + 1y)? er 3 -3
Es — D} | z* + y(y + 72)? cr!? 12
Bg — D! | 2* + (y + 72)y? c 0
Igg —>5'5 22y 4 2% — 29% + 722 cT 4 | (i1, 1i1)
ﬁg —>5g ylr 4 2% — za? 4 722 er ! —1| (%)
5’7’ — Ag | 28 + ay? — 7225 + (7222 + 1y)? er 2 -2
E7 — Ag | v + (22 — 47y)(vy + 722 — 472y) | e ® -5
E; =Dy | 23y + (y + )y + 72 crt6 16
E; —>l~7g 3y + (y + 7)y? er ! -1
E7 _>Eﬁ 23y + Tyt + o3 cT 1
ﬁg’ — Eg Y3 4+ 22z + w2 + 722 er! 11 | (%)

Comments. (i) There are 2 curves realizing the adjacency ﬁg — As corresponding to the
two possible signs of &. For both of them we have s = ¢t~ ! so [A5 : D§] = —2.
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(ii) There are 4 curves realizing the adjacency 1525 —>5'5 (see below). For all of them we have
A =crso [Df : Pyl = 4.

(iii) The singularity 15;3/ has a module (of a plane cubic). Similarly 13% has two modules (a
plane cubic and a point on it). In the formulas above we used some particular values of modules.
The adjacency exponent does not depend on the choice of modules.

(iv) The critical point function singularity Pg is not adjacent neither to Dg, nor to Ag,
see [15]. _ _ _ _ _ N

(v) There are no adjacencies Dy, — Ay (k> 3), Dy, =Dy (k> 4),D} , =Dy .

(vi) There is no adjacency Py — As.

Proof. The method of finding the adjacencies is described in details in [18]. The condi-
tion that a function has a singularity of certain type is reformulated as a system of algebraic
equations on the coefficients of the Taylor expansion of the function. These equations may be
explicitly solved which gives the formulas above. Most of these formulas (except those related
to adjacencies of ‘new’ singularity type Pj, see below) are taken from [1, 18, 15] (sometimes
with a minor change of variables).

Essentially new part of our calculations is finding the adjacency exponents. As an example
we show the computation of the asymptotic s = e¢7° for the adjacency E’7 — ge above.
Consider the family of function germs

fla,y;m) = y° + (¥ — dry) (zy + 72® — 47%y).
For 7 # 0 the partial derivative
fy = 3273y — 87222 — 8ray + 3y? + o3

has no critical point at the origin. Therefore by parametric Morse Lemma this function is stably
equivalent to its restriction to the smooth curve f, = 0. This equation defines implicitly y as a

function in z

z? 3 zt x5

Y= 4 T30 TR 102477
After substitution to f we get

+ o(z®).

7

<L 7
flg,=0 = 5195 +o(z").

This means that the singularity type of f is Ag for 7 # 0 and

1

The cases of other singularities are treated in a similar way.

Let us describe in more details adjacencies of the singularity ﬁg The function fy realizing
this singularity is a cubic form in three variables z,y, z. The distinguished direction P € (NCP2
of the z-axis belongs to the cubic C € CP? given by fo = 0. The codimension of the class P} is
3. A possible transversal is given by the family fo + Q where Q = Ay? + 2X\yz + A322 is the
family of quadratic forms having the direction d/9z in the kernel. By homogeneity all functions
of the family

f=fo+71Qo

are right equivalent to each other for 7 # 0 for any fixed quadratic form y. Hence any
adjacency is realized by a family of this type. The function f has the singularity Dy iff Qq = I?

14



where [ = 0 is the equation of the tangent to the cubic C. If the tangency point is P then
the distinguished direction P is of D type in our classification. It is possible also that the line
| = 0 passes through P and is tangent to C at another point. Then the distinguished direction
P has D type. Generically there are 4 such lines. So there are 4 curves of singularity D in the
transversal to 13%

Now let us prove the equality [25 :ﬁg] = 0. It is sufficient to show that fy = zy? + 23 — 222
is not adjacent to 25. This would imply that no singularity of type Igg close to fy is adjacent to
15 and neither are Igg—singularities from a Zarisski open set in the space of modules and hence
[Z5 :ﬁg] = 0. So assume that a function of the form fo + Q¢ with Qg = Ay? + 2X\yz + A322
has singularity As at the origin. Then the form @) is non-degenerate and f is stably equivalent
to its restriction f|r,—r —o. Resolving the system f, = f, = 0 we get

At AZ

_ 4 5 5 = — = 72 3y 2
flfy=p.=0 = caz” + cs2° +o(z”), ¢4 TPV YO T TPV R W W

It is clear that the system c4 = ¢5 = 0 has no solution that is the function fy + ¢ cannot be
of As-type. O

Combining two last Lemmas we complete the proof of the basic relations Lemma formulated
at the beginning of this Section. U

2.5 Symmetries and Thom polynomials

In this section we describe a method of computing Thom polynomials which is based on
Rimanyi’s idea of using symmetries. Unlike the direct method for computing Thom polynomials
described in previous sections this method uses an a priori Theorem 1 about the existence of
these polynomials. This method is less geometric but it uses less computations. The idea is
the following. We know that the class dual to some singularity locus €2 is given by a certain
polynomial Pq in Chern classes so we need to compute the coefficients of this polynomial. Every
example where both the cohomology class dual to the singularity locus of  C M and the classes
u,a; can be computed explicitly gives rise to a number of linear relations on the coefficients
of this polynomial Pqg. If the number of examples is high enough then these relations could
determine the polynomial completely. A number of examples are produced in the following
way. Consider some quasihomogeneous family of function germs realizing a transversal to some
singularity class, say

flz,y,a1,...,b2) = y° + 2’y + aly4 + asy® + azy® + biz® + bay.

Consider some line bundle ¢ — B with the first Chern class t = ¢;(¢) € H?(B). With any
variable z,y,a1,...,by we associate a line bundle ¢®! where [ is the quasihomogeneous weight
of the variable. Then the family f may be interpreted as a quasihomogeneous bundle map

f 2 pemtdm - @ ¥ ¢®5, TPYDar @ by flx,y,a1,...,b).

Now define M to be the total space of the bundle 7 : £ @ --- ® (%2 — B corresponding to
the parameters a1, ..., by of the family f; V' — M to be the rank 2 bundle 7*¢%2 @ n*¢ over M
corresponding to variables z, y; and I = 7*¢%5. So we constructed vector bundles V, I — M and
a smooth bundle map f : V — I as in Section 2.1. The characteristic classes in this example
are

(14 (5—1t)(1+ (5—2)t)
(14 1)(1 + 2t)

u=c(I) =5t a=cV*®@I-V)= =1+4t—2624....

15



On the other hand we may compute the classes dual to the singularity loci. This gives the
following relations on the coefficients of the Thom polynomials Pq(u,aq,as,...):

o If O = Dg then Q(f) is the zero section of the bundle M — B and its dual cohomology
class is the top Chern class e = ¢5(M — B) of this bundle, so

Pp,(5t,4t,—2t%,...) =t-2t-3t-t- 2t = 12t5.

o If O = Ag, Eg or Q is any singularity class of greater codimension then Q(f) = @ and so
Pq(5t,4t, —2t2,...) = 0.

(We may compute the classes Pp, (5t, 4t, —2t2,...), k < 6 in a similar way but these extra
relations are redundant.) The characteristic classes for quasihomogeneous deformations of other
singularities of codimension < 6 are given in the following table.

Q U a=14+a1+as+... €
1+ kt
A k+1)t k—1)1¢k—1
k| (k+1) 1+t (k—1)
D, | 206—1)1 (1 + 2(k—2)t)(1 + kt) (k)1
(1+2t)(1 + (k—2)t)
5 "y (1+9t)(1 + 8t) 615
6 (1+36)(1 + 4¢) '
(1+7t)(1 + 61) 6
E 9t 3-5!t
! (1+26)(1 + 3¢)
(1+2t)° 6
P; t T t
5 9 1+

Relations arising from these examples are sufficient to compute all Thom polynomials of
Theorem 1. O

3 Characteristic classes of Lagrange
and Legendre singularities

The correspondence between Lagrange (Legendre) singularities and critical point singularities
described in this section is valid for both real and complex cases. We assume some familiarity of
the reader with the theory of Lagrange and Legendre singularities, see, eg. [4, 2]. Our definitions
should not be considered for the introduction to symplectic or contact geometry.

3.1 Lagrange singularities and characteristic classes

A Lagrange singularity is a projection singularity of a Lagrange submanifold in the space of
cotangent bundle to the base of the bundle.

Definition. A submanifold M C T*B, dimM = dim B is called Lagrangian, if the
standard symplectic 2-form w =Y dp; A dg; vanishes on L, where g; are some local coordinates
on the base B, and p; a the corresponding coordinates on the fibres of the cotangent bundle
T*B — B.
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With any germ of Lagrange submanifold in the cotangent bundle one can associate a critical
point function singularity. Namely, any Lagrange germ M C T*C™ may be given by a germ of
its generating family of functions F(z,q) according to the rule (cf. [4, 2])

L= {(p, g) € T*C" | 3z, OF |z = 0, p = aF/aq}.

Here z is the coordinate on the fibres of an auxiliary bundle (C"*™ 0) — (C"*,0). We associate
with the Lagrange germ M the the initial function germ of its generating family f(z) = F(x,0).
The generating family is not unique but another choice of the family or of the coordinates on
the base lead to Rgi-equivalent function germs. (Recall that two function germs in spaces of
possibly different dimensions are called Rgi-equivalent (stably right equivalent) if after adding
suitable non-degenerate quadratic forms in new variables each of these functions can be brought
into another by a change of variables.)

Example. Let V be a vector space. With any function germ f : V,0 — C,0 we associate
a Lagrange germ L(f) C T*V, the graph of the differential —df (it is convenient to put the sign
‘— here). The natural isomorphisms T*V = V @ V* = TV* allows to consider L,,(f) also as a
submanifold in 7*V*. The symplectic structures induced on V & V* by this isomorphisms differ
by sign. Hence, L(f) is also Lagrange as a submanifold in 7*V*. The critical point function
singularity corresponding to the germ L(f) C T*V™* is the singularity of the function f itself.
Indeed, L(f) C T*V* may be given by the following generating family

F(z,q) = (z,q) + f(z), gevV*, zeV.

Here z is considered as an additional variable and (-,-) : V' x V* — C is the natural coupling.

Definition. The classifying space of Lagrange singularities L = E(]CV is the space of
all K-jets of Lagrange germs M C (T*CN,0) = (C?V,0), where K, N > 0 are some large
integers. This space is homotopy equivalent to the Lagrange Grassmannian A = A(]CV consisting
of Lagrange planes in C?V since the natural projection £ — A sending a Lagrange germ to its
tangent plane have contractible fibres. The ring of Lagrange characteristic classes is the limit
cohomology ring A}gnoo H*(A%).

The topology of real Lagrange Grassmannian is well studied (see [6]). Its Zs-cohomology ring
H *(A%) is generated by Stiefel-Whitney classes «; of the tautological bundle, the generators
«; satisfy relations a?=0. Similar description exists for the (integer) cohomology ring of the
complex Lagrange Grassmannian.

Theorem ([17, 10]).  The ring of Lagrange characteristic classes is isomorphic to the
quotient of polynomial ring in variables a1, as, ... of degrees 2,4, ... over the ideal generated by
elements

a? — 2011051 + 20;120; 2 —2a;130; 3+ .... (5)

The group of Lagrange characteristic classes is torsion free and the monomials ail cealn g €
{0,1} form a free additive basis.

For the generators we choose the classes a; = ¢;(C?N /L) = ¢;(L*) = (—1)ic;(L) € H®(AS),
where L is the tautological bundle L — A%. To express an element of this ring in terms of
the additive basis one should apply repeatedly relation (5) to every monomial which contains
squares of generators. This will require a finite number of steps since every newly appeared
monomial has the degree strictly less than the original one if one uses the ‘strange’ filtration
with the degree of a; equal 7.
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The meaning of the relations is the following. The symplectic form induces the canonical
isomorphism C2V /L = L*. By Whitney formula we have ¢(L)c(L*) = 1 or

(1—i—a1+a2+...)(1—a1+a2—...):1

which is equivalent to (5).

By construction above the points of £ are classified according to the Rg-classification of
function germs. With any singularity class Q (given as an R-invariant algebraic subset in some
jet space of function germs) we associate the corresponding subvariety Q(L£) C L.

Definition. The Thom polynomial associated with an Rg-class 2 of critical point singu-
larity is the universal Lagrange characteristic class Po € H*(A) (expressed in terms of multi-
plicative generators a;) represented by the intersection with the variety Q(L£) C Ly.

This definition is independent on K, N provided these numbers are large enough (N must
be larger than the codimension of the singularity and K is chosen so that the K-jet of the
singularity is sufficient, see [4, 3]).

Proof of Theorem 2 for the trivial bundle I. Consider vector bundles V, I — M
and a fibre bundle map f : V — I as in Section 2.1. Assume that the bundle I is trivial, I = C.

For each point w € W we define the Lagrange germ L, (f) C T*V, as above. We would
like to extend this correspondence between the critical point singularities and the Lagrange
singularities and to construct a classifying map M — L which preserves the Lagrange (or
critical point) singularity type at considered points.

The construction is as follows. Consider a bundle U — M such that V & U is the trivial
bundle CV. Then V@V* x UgU* = C?" is also trivial. Hence all Lagrange germs x(w) =
Ly(f) x 08U C V@V x Up®US = T*(V x UX) = T*CN belong to the same symplectic
space C2V. One can see that the critical point singularity corresponding to x(w) is the same as
for Ly,(f), i.e. fy. Thus constructed map

k: M — Ly, w — Ly(f) x 088U*,

induces both the classes dual to the loci of Lagrange singularities and the characteristic classes
a; € H*(Ly). By definition, s*a; = ¢;((V @ U*)*) = ¢;(V* = V).

We have proved, therefore, that the cohomology class on M Poincaré dual to the locus
Q(f) C M is equal to the defined above polynomial Pq evaluated on the classes a; = ¢;(V* —V).
This proves Theorem 2 of Section 2.1 in case when the bundle [ is trivial. O

Theorem. The Thom polynomials of Ry -singularities of function of codimension < 6 are
obtained from the polynomials of the list of Table 1 by setting u = 0.

Proof. There are two possible proofs of this theorem. First we observe simply that the

homomorphism Z[a1, ag, . ..]| = Z[c1, ca, . . .] which sends the generator a; to the ith homogeneous
term of the expansion (1 —c;+ca —...)(1+¢1 +c2+...) " induces an injective homomorphism
of the ring of Lagrange characteristic classes to the polynomial ring Z[ey, ca, . ..] (see [10]). It

follows that the formulas for the characteristic classes found for the case of fiber singularities
can be applied to the case of Lagrange singularities.

In another proof we oserve that all steps of our computations made in Sections 2.2-2.4
(including resolutions, the formula for the Gysin homomorphism, markings, adjacensy expo-
nents and basic relations) can be carried out directly for the case of Lagrange singularities.
For instance, the kernel of the second differential f() of a function germ corresponds to the
intersection of the thangent plane of a Lagrange germ L C C2V with the fixed Lagrange plane
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CN ¢ C?N | zeroes of the third-order terms f(3) on ker f(o) correspond to the lines of higher order
of tangency of Lagrange submanifolds ect. In fact, our original computation of Thom polyno-
mials of Theorem 1 was performed on the languaue of Lagrange (or Legendre) singularities and
only later we translated it to the language of fiber singularities of functions. O

Example (characteristic classes of Lagrange submanifolds in 7*B). Let M — T*B
be a Lagrange immersion. A similar construction exists for the map  : M — Ay which
preserves critical point singularity types associated with Lagrange germs (see also [5]). The
characteristic classes induced by this map are a; = ¢;(Tyy B — T'M). Again, the classes dual to
different singularity loci of Lagrange projection M — T*B — B are given by universal Thom
polynomials evaluated on the classes ¢;(Ty B — TM).

Remark. The most general situation where Lagrange characteristic classes appear is the
following. Let E — M be a vector bundle of even rank equipped with symplectic bilinear forms
on its fibers (given as a nowhere degenerating section of A2E*). Let L1, Ly C F be two Lagrange
subbundles (in a sense that the fibers of Lq, Lo are Lagrange planes in the fibers of E. Then
the relative Chern classes (cf. [16]) of the triple (E, L1, Lg) are defined as a; = ¢;(L5 — L1). The
equalities ¢(L; + L) = ¢(La + L3) = ¢(E) imply the identity 5 for these classes.

The situations considered above fit into this pattern. In case of fiber bundle map f : V — C
we take E=V @V* L; =V &0, and Ly = L; is the bundle of Lagrange planes tangent to the
germs of L, (f) C Vo, & V).

In case of Lagrange immersion M — T*B we set E = Ty (T*B), L1 = TM, and Ly =
(T*B)|pm is the bundle of ‘vertical’ tangent vectors to T* B, corresponding to the kernel of the
differential of the projection T*B — B. O

3.2 Legendre singularities and characteristic classes

The theory of Legendre characteristic classes is a twisted version of the theory of Lagrange
ones. Consider vector spaces V, I such that dim7 = 1. The space V & V*®I has the natural
nondegenerate skew-symmetric bilinear form with values in I. After any isomorphism I = C
this form turns into the standard symplectic form on V & V* = T*V. The Grassmannian of
Lagrange planes in V & V*®I with respect to this form is isomorphic to the usual Lagrange
Grassmannian A,,, where n = dim V.

Definition. The Legendre Grassmannian A = /NX% is the total space over BU(1) whose
fibers are formed by the Grassmannians of Lagrange subspaces in the twisted symplectic fibers
of the bundle CV @ CN ®¢, where BU(1) = CP® is the classifying space of one-dimensional
vector bundles (or some its finite-dimensional approximation CPY', N’ > 0), and ¢ — BU(1)
is the canonical line bundle. The ring of Legendre characteristic classes is the cohomology ring
of the stable Legendre Grassmannian H*(A) = nlirrgo H*(Ay).

Theorem (cf. [10]).  The ring of Legendre characteristic classes is given by generators
u,a1,0a9, .- ., and relations which are homogeneous components of the equality
al as as
1 RN — .. =1 6
(1+ar+az+as+ )< Tru  (Trw? (Trup ) (6)

The class u = ¢1(€) is the standard generator of H*(BU(1)) and the classes a; are defined
as a; = ¢;(—L), where L is the tautological bundle over the Grassmannian. The relation above
comes from the isomorphism (CN @ CN®¢)/L = L*®¢, or, formally, L + (L* — CV)®¢ = 0.
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Remark. The description above is valid for both complex case and integer coefficients
(with dega; = 2i) and real case and Zso-coefficients (with dega; = i). Note also that the
monomials uioaila?, ig >0, ix € {0,1} for k£ > 0, form a free additive basis. Nevertheless even
for the case of Zgy-coefficients it is not isomorphic to Zsu|®Az,(a1,az,...) (The multiplicative
structure in the ring of Legendre characteristic Zs-classes is wrongly computed in [9].) Indeed,
the relation of degree 2 is aju + a2 = 0 (mod 2) and so the square of none element of degree
1 vanishes. On the other hand one can show that for the cohomology with coefficients in any

field K of characteristic different from 2 there is an isomorphism H*(A, K) = K[u]|® H*(A, K).

Proof. The class u generates the cohomology of the base and the classes a1, as, ... generate
the cohomology of each fibre. It follows that the spectral sequence of the bundle A BU(1)
degenerate at the second term and the classes u, a1, ag,... generate the whole cohomology ring
of A. We know already some set of relations and comparing the dimensions we see that there

are no other relations between the generators. O

Now we explain the relationship between the definition above and the theory of Legendre
singularities. Let V,I be smooth manifolds (not necessary vector spaces) of dimensions n,1
respectively. The space J'(V,I) of 1-jets of maps V. — I is the total space of the bundle
T*VQ®TI over V xI. This space carries the natural contact structure (a codimension 1 subbundle
in the tangent bundle). If z : I — C is a local coordinate on I then we get J!(V,C) = T*V x C.
The contact structure on J!(V,C) = T*V x C is given by the field of kernels of the 1-form

a=dz— A,

where A is the Liouville form on 7*V (written as A = > p; dg; in canonical coordinates). Another
choice of the coordinate z leads to a multiplication of a by a nonzero function so the field of
kernels of « is invariantly defined.

Definition. A submanifold M C J'(V,I), is called Legendrean, if it is tangent to the
contact field at every point.

With any germ of Legendre submanifold L C J!(V,I) one can associate a critical point
function singularity. To do that, we choose a local coordinate z on I. Observe that the image of
L under the natural projection J*(V,C) = T*V x C — T*V is Lagrangian. Then we apply the
construction of previous section. Another choice of the coordinate on C may lead to another
function but the class of Vi -equivalence of the critical point function singularity is well defined
(see [4, 2]). Recall that two function germs in spaces of possibly different dimensions are called
Vit -equivalent® if after adding suitable non-degenerate quadratic forms in new variables and
multiplication by non-vanishing functions they can be brought on into another by a change of
variables.

Remark that the correspondence between Lagrange germs in (7*C",0) and Legendre germs
in (J1(C",C) = T*C™ x C,0) is bijective. Indeed, the z-coordinate is uniquely determined by
the condition dz = p dgq since the restriction of the form pdq to a Lagrange germ is closed (and
hence, exact).

Example. Let V and I be vector spaces. Then we have the following bijections

Legendre Lagrange Lagrange Legendre
germs in PN germs in PN germs in AN germs in
(J1(V,1),0) (T*V,0) (T*v*,0) (JH(V*®I,1),0)

!Sometimes in the literature this equivalence is called contact equivalence. We prefer following [4, 2] to keep
the notion of contact equivalence for contact diffeomorphisms of the ambient space.
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where 2 is induced by the isomorphism 7T*V =V @ V* = T*V*. The correspondences 1 and
3 depend on the choice of coordinate on I = C. Nevertheless the resulting correspondence
between Legendre submanifolds in J!(V,I) and J'(V*®I,I) is invariantly defined. Moreover,
this correspondence is given by the global (nonlinear) contactomorphism of these spaces. This
contactomorphism

h:JYV,I) — JY(V*®I, )

is called the hodograph transform. It is given by
h:(v,u,z) — (v,u,{v,u) —z2), veV, uvueV*'®I, ze€l

where we identify J'(V,I) = V x V*®I x I = JY(V*®I,I). (Remark that the two contact
structures induced on V' x V*®I x I are different.)

It is easy to verify that if L(f) C J'(V,I) is a germ of Legendre submanifold given as
the 1-jet extension of the function f : V,0 — I,0 then the class of V-equivalence of function
singularities associated with h(L(f)) C J'(V*®I, I) is represented by the function germ f itself.

Definition. The classifying space of Legendre singularities L= Z% is the total space of
the bundle over (a finite dimensional approximation of) BU(1) with the fibre over z € BU(1)
consisting of all K-jets of Legendre germs in (J'(CN,¢,),0) = (JHCN®¢&,,€,),0), where &
is the canonical line bundle over BU(1). This space is homotopy equivalent to the Legendre
Grassmannian A = [N\%

As it is explained above, the points of L are classified according to the Vg-classification of
function germs. With any singularity class {2 (given as a V-invariant algebraic subset in some
jet space of function germs) we associate the corresponding subvariety Q(L£) C L.

Definition. The Thom polynomial associated with a V-class  of critical point singu-

larity is the universal Legendre characteristic class Po € H*(L) (expressed in terms of the
multiplicative generators u, a;) represented by the intersection with the variety Q(L£) C Ly.

Similar to the Lagrange case, this definition is independent on K, N provided these numbers
are large enough.

Proof of Theorem 2. Consider vector bundles V,I — M and a fibre bundle map
f:V — I as in Section 2.1.

With each point w € W we associate the Legendre germ L, (f) C J'(V,I) given as the
1-graph of f,, : Vi, — I,,. Using the hodograph transform we may consider this germ as a germ
Ly(f) € JY(V}®Iy, I,). The V-singularity class associated with this germ is the class of the
germ f,,. We would like to extend this correspondence between the critical point singularities
and the Legendre singularities and to construct a classifying map M — L which preserves the
Legendre singularity type at considered points.

The construction is similar to that considered for Lagrange case in previous section. Consider
a vector bundle U — M such that V @U is the trivial bundle CV. Then for each w € M the germ
Ly (f) defines the germ Ly, (f) x 0 ® U ®IL, C JY(Vi®I, & Uiy, I,) = JH(CV®L,, I,). It
remains to observe that the spaces J!(CN ®I,, I,,) form a U(1)-bundle that can be induced from
the universal one. The universal bundle is, by definition, the space EN. The correspondence
used in this construction preserves the V-singularity class associated to Legendre germs. The
characteristic classes induced by this construction are u = ¢;(I) and a; = ¢;(—(V @ U*®I)) =
Ci(V*®I — V) O

Theorem. The Thom polynomials of Vi -singularities of functions of codimension < 6 are
those from the list of Theorem 1.
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Proof repeats the arguments used for the proof(s) of similar theorem in Lagrange case of
previous section. O

Example (characteristic classes of Legendre submanifolds in PT*B). The space
PT*B of projectivised cotangent bundle is formed by pairs (a point b € B, a hyperplane
h C TyB). Such pairs are called contact elements. The space PT*B carries the natural contact
structure that can be defined as follows. Represent (locally) the base B as B = M x I. Denote
by Py C PT*B the open set formed by contact elements that are transversal to the lines
{pt} x I C M x I. Every such contact element h € T, ,(M xI) = T,, M @ T,I can be considered
as a linear map h : T, M — T,I. This allows to identify Py = J'(M,I). The contact structure
on PT*B is independent on the presentation B = M x I.

With every germ of Legendre submanifold L C J'(M,I) = Py C PT*B we can associate
the class of Vg-equivalence of function singularities. This class is also independent of the local
representation B = M x I. It is not difficult to construct a map x : L — Ay which preserves
Vit-singularity types associated with Legendre germs. The characteristic classes induced by this
map are the following: u = ¢;([), where I is the conjugate of the tautological line bundle on
PT*B (it can be also defined as the normal line bundle of the contact structure); for the classes
a; we have a; = ¢;(TyyB — TM — I) (see below). Similar to the Lagrange case, the classes dual
to different singularity loci of Legendre projection M — T*B — B are given by universal Thom
polynomials evaluated on the classes ¢1(I), ¢;(TyB —TM — I).

Remark. The most general situation where Legendre characteristic classes appear is the
following. Let £ — M be a vector bundle of even rank. Assume that the fibres of this bundle
are equipped with symplectic bilinear forms that take values in the fibres of some line bundle I
(i.e. we are given a nowhere degenerating section of A2E*®1). Let L, Lo C E be two Lagrange
subbundles with respect to this twisted symplectic form. Then the relative Chern classes of
the quadruple (E,I, Ly, Ls) are defined as u = ¢1(1), a; = ¢;(L3®I — Ly). The equalities
c(Ly + LT®I) = ¢(La + L5®I) = ¢(E) imply the identity (6) for these classes.

The situations considered above fit into this pattern. In case of fibre bundle map f:V — I
we take E =V @& V*®I, L1 =V &0, and Ly = L; is the bundle of the tangent planes to the
graphs of the differentials of the maps f,, : Vo — Iy, w € M.

In case of Legendre immersion M — PT*B we set E C Ty (PT*B) to be the bundle of
contact planes, I = Ty(PT*B)/E to be the normal bundle of the contact structure. The
symplectic form is given by (£,7) — [£,n7] (mod E), where &, n are vector fields tangent to
E and [, -] is the commutator of vector fields. (This is the invariant definition of the linear
symplectic structure on contact planes given by da|g, where the contact structure E is the field
of kernels of the 1-form «a.)

The subbundles L;, Ly are TM, and the bundle of ‘vertical’ tangent vectors to PT*B,
corresponding to the kernel of the differential of the projection PT*B — B. Since E,,/Lg, is
the hyperplane of the contact element w € M C PT*B, we have LsQI = E — Ly =TyB — 1,
ie.

a; — CZ(L§®I - Lz) == CZ(TMB —TM — I) O

3.3 Real Lagrange and Legendre singularities and characteristic classes

The theorems on complex characteristic classes have usually a real analogue where the com-
plex manifolds, maps and bundles are replaced by the real ones, integer cohomology by Zo-
cohomology, Chern classes by Stiefel-Whitney classes etc. This principle can be applied to the
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problems studied in this paper as well. The notions of Lagrange and Legendre characteristic
classes, the correspondence between singularities of functions and Lagrange (Legendre) singu-
larities, the definitions of classifying spaces and Thom polynomials repeat word-by-word the
corresponding notions defined in this paper for complex case. The main difference is that the
homomorphism (1) of the ring of Legendre characteristic classes to the polynomial ring in vari-
ables u, ¢y, ¢z, ... (which is injective over 7Z) has a big kernel over Z,. For instance, it is trivial
in Lagrange case when v = 0 (indeed, the total Stiefel-Whitney class w(V* — V) is trivial for
any real bundle V'). It follows that the characteristic classes of fibre singularities of real-valued
functions are trivial, see [8]. Nevertheless these characteristic classes are not trivial if they
are applied directly to the cycles of Lagrange singularities on Lagrange submanifolds in 7*B
(respectively, Legendre singularities of Legendre submanifolds in PT*B).

Theorem. The Thom polynomials of real Legendre singularities of real codimension < 6
are obtained from the list of Theorem 1 by replacing the Chern classes a; by the corresponding
Stiefel- Whitney classes a; and reducing the coefficients modulo 2,

Ay = o

A3 = ay 4 uom

A4 = 1029 + u2a1

D4 = 109 + ua

A5 = 103 + U3Oll

Ds = 0

Ag = asaz +ulajaz + ag) +ulajas + udas + utag
Dg = 0

Es = asaz +uayg+ulojas +udas

A7 = aqosasz+ ogas 4 uas + ularos + utas + oy
D; =0

E; = aasaz  +u(azas + ogaq) + vlag +udagas + ulas
Py = aiasaz 4+ uojoy

In particular, let M C PT*B be a real Legendre immersion. Then the Z,-cohomology class
dual to some cycle of Legendre singularities of codim < 6 is equal to the corresponding Thom
polynomial evaluated on the classes u = wi(I) and o; = wi(TyyB — TM — I), where I is the
normal line bundle of contact structure on PT*B.

Theorem (cf. [18]). The Thom polynomials of real Lagrange singularities of real codimen-
ston < 6 are obtained from the list of previous theorem by setting u = 0.

In particular, let M C T*B be a real Lagrange immersion. Then the Zs-cohomology class
dual to some cycle of Legendre singularities of codim < 6 is equal to the corresponding Thom
polynomial evaluated on the classes o; = w;j(TyB — TM).

These theorems can be proved applying step by step the real versions of all constructions
used in Section 2 in the proof of the corresponding formulas for complex case. ]

Remark. The formulas for classes of real Lagrange singularities of codim < 6 (except A7)
were obtained in [18] by a different method. The expression A7 = ajasas + azay as well as all
classes of real Legendre singularities are new.
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