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Abstract

We study numerically the interaction of four initial superfluid vortex rings in
the absence of any dissipation or friction. We find evidence for a cascade of
Kelvin waves generated by individual vortex reconnection events. The Kelvin
wave cascade transfers energy to higher and higher wavenumbers k. After
the vortex reconnections occur the energy spectrum scales like ¥~! and the
curvature spectrum becomes flat. These effects highlight the importance of
Kelvin waves and reconnections in the transfer of energy within a turbulent

vortex tangle.
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When studying a physical system which is dynamically complex, an important issue to
consider is the effect of nonlinearity on the distribution of energy over the degrees of freedom
of the system. For example, it is well known that in the case of a classical viscous flow the
nonlinear terms of the Navier-Stokes equation redistribute the energy over various scales of
motion without affecting the total energy budget. In this case the celebrated Richardson
cascade of eddies leads to Kolmogorov’s k=5/% dependence of energy on wavenumber k. The
aim of our letter is to describe a form of energy cascade of helical waves on vortex filaments
(Kelvin waves). Our argument is that vortex reconnections leave behind regions of high
curvature which generate Kelvin waves (oscillations of a filament’s position). Nonlinear in-
teractions between the Kelvin waves transfer energy to higher Kelvin wavenumbers k'. We
use the term ‘Kelvin wavenumber’ to distinguish between this wavenumber k' (the wavenum-
ber along the vortex filament) and the magnitude k = |k| of the wavevector k of the Fourier
spectrum of three-dimensional space z,y, z. We investigate the Kelvin wave cascade process
through direct numerical simulations of vortex filament dynamics and show that this wave
cascade is clearly visible in the spectra of vortex line curvature, torsion, and line velocity.

Although our system is classical (essentially, it consists of vortex filaments governed by
the inviscid, incompressible Euler equation) the motivation behind our work is the desire
to understand the turbulent state of superfluid He II. This form of turbulence, which takes
the form of a tangle of vortex filaments, is currently attracting experimental [1] [2] [3] [4]
[5] and theoretical attention [6] [7] [8] [9] [10] [11]. A superfluid vortex filament has two
key properties [12]: the first is the microscopic size of the vortex core radius, a &~ 1078 cm;
the second is the quantization of the circulation, which takes a fixed value I' = 9.97 x
10~ cm?/sec given by the ratio of Planck’s constant and the mass of a helium atom. The
smallness of a, the fact that the values of the core size and the circulation are the same for
all filaments, and finally the superfluid’s lack of viscosity, are all ingredients for which it is
natural to use the classical theory of vortex filaments [13] to describe the dynamics of the
superfluid turbulence. Therefore we represent a vortex filament as a curve s = s(§,¢) in

three dimensional space (where £ is arclength and ¢ is time) [14]. At each position s along
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a filament we also define the three right handed unit vectors t, i and b along the tangent,
normal and binormal directions respectively. We also define the local curvature ¢(€) = |s”|
and torsion 7(¢) = |b'|, where a prime denotes derivative with respect to arclength. The

curve moves with velocity vy at the point s given by the Biot-Savart law
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(1)
In writing (1) we neglect the friction against the normal fluid component, that is to say
we concentrate our attention to the low temperature turbulence studied experimentally
by McClintock and coworkers [2] and theoretically by Tsubota [7]. In order to calculate
numerically [15] the time evolution of a configuration of vortices we use the Biot - Savart law
(1) together with the assumption that vortex filaments reconnect when they approach each
other at sufficiently short distance. This extra assumption is justified by results obtained [16]
using the more microscopic Bose- Einstein condensate model which describes phenomena
(such as reconnections) which happen on the quantum mechanical healing length scale of
the vortex core a. Our numerical method will be described with more details elsewhere
[17]; here it suffices to say that the filaments are discretized with a variable number of
mesh points (the calculation reported in the figures have 576 points at ¢ = Osec and 927
points at ¢ = 0.129sec) and that the time step At is also variable, but typically it has value
At = 0.0008sec.

Our numerical calculation begins with four superfluid vortex rings of radius 0.023cm
placed on the opposite sides of a cube of size 0.0639cm (see the first picture in Figure 1) and
oriented so that they all move toward the center of the cube [18]. This vortex configuration
is convenient for our purpose because, unlike other more complex configurations [7] [10], it
is simple enough to investigate the effects of an individual reconnection. Figure 1 shows four
snapshots during the time evolution. The four rings approach each other and undergo four
symmetric reconnections at time £, = 0.059sec. Each reconnection introduces a cusp which
then relaxes, generating large amplitude Kelvin waves (see the third picture of Figure 1).

As time proceeds, the vortex filaments assume a crinkled shape, which is apparent in the
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last picture of Figure 1, because there is no friction with the normal fluid to smooth small
scale waves. A similar effect has been seen by Tsubota [7] in recent simulations.

During the approach of the vortex rings to reconnection very little vortex wave is visible
on the rings, even though the non-local Biot-Savart equation of vortex line motion is used.
Since vortex lines approaching reconnection tend to twist to an antiparallel orientation, our
initial conditions in which the vortices are approaching each other in an antiparallel manner
may be preventing the generation of strong vortex waves before reconnection. If so, this is
fortunate in that it allows us to study the behavior of the vortex waves radiating from the
reconnection event itself, without the distraction of the Kelvin waves due to the reorientation
motion of the filaments prior to reconnection.

Since our model is incompressible there is no loss of energy by the generation of sound
either during the reconnection event itself or as an effect of the motion of the filaments
[19]. In a real system however these processes must take place and they would represent
dissipation processes even in the pure inviscid superfluid at absolute zero temperature. The
loss of vortex energy to sound emission will be most effective [6] at high Kelvin wavenumbers
k' > ksouna- We need therefore a mechanism to transfer energy to high Kelvin wavenumbers.
We show in this letter that isolated (and rare) reconnection events along with the nonlinear
transport of energy between wave modes provide this mechanism.

To study this energy transfer we first consider the spectrum Ey (k) of the superfluid
velocity field v,, herefter referred to as the energy spectrum (or the spectrum of the Eulerian

velocity) which is such that

o0
%///vf(x,y, z)d:vdydz:/ Ev(k)dk. (2)
0
where p, is the superfluid density. The results of this calculation are shown in Figure
2. Isolated and straight vortex filaments have a 1/r velocity field, and thus have a k!

energy spectrum. For our initial conditions of four large rings the energy spectrum shows

approximately an exponential behaviour (see the two bottom curves of Figure 2). After



the reconnections occur and the reconnected vortex lines begin to move further apart, the
energy spectrum develops approximately a k™! form (see the two top curves of Figure 2).
The energy spectrum in the high & region rises after the reconnections, directly illustrating
the transfer of energy to high k£ values by the reconnection events. The energy spectrum
after reconnection has the same k~! form of the spectrum of an isolated vortex filament.
This is a bit unfortunate since it is difficult to distinguish the exponential form and the
k~! form at intermediate values of k, so the shape of Ey (k) is relatively uneffected by the
cascade.

To study this energy transfer in more detail and confirm the Kelvin wave cascade, it is

more instructive to consider the curvature spectrum which is such that

;[ ey = [ Boyar, ©
where the right-hand-side integral is taken over the Kelvin wavenumber &'.

This spectrum is initially a delta function (representing the curvature of the four rings)
and it remains a sharp function until the time ¢, of the reconnection event. Curvature
spectra at different times ¢ > ¢, are shown in Figure 3a,b,c. It is interesting to note that as
soon as the reconnection takes place Eq (k') becomes nonzero at all Kelvin wavenumbers, so,
strictly speaking, two energy transfer mechanisms are operating: the instantaneous transfer
of energy to a wide range of curvatures by the reconnection event and the following redistri-
bution of that energy by nonlinear interactions. The effect of the reconnection is non-local
in curvature space (meaning that it affects a wide range of curvatures simultaneously) while
the nonlinear wave interactions are primarily local interactions, exchanging energy between
neighboring wavelength scales [20].

If one gives enough time for the nonlinear interaction between the Kelvin waves to
equilibrate in some statistical sense, one sees that the spectrum E¢ becomes constant (Figure
3c). It takes some time to reach this equilibration, and during this equilibriation process

the plateau region of the spectrum spreads from low &’ to high k’. This is a consequence of



the local nature of the Kelvin wave cascade. However, Figure 3 shows that it takes only a
short time (only 0.03 seconds after the reconnection) to reach this equilibrium value over a
significant range of the spectrum. This indicates that the nonlinear interaction of the Kelvin
waves is not weak and cannot be ignored in theories of superfluid turbulence.

Why should the curvature spectrum E¢(k') be constant? The parameters of the system
are I', p,, the characteristic vortex separation distance £ in a dense vortex tangle, and
the rate of vortex energy dissipation €;punq to sound emission at high Kelvin wavenumbers
ksounqg and above. If an equilibrium cascade of Kelvin waves is achieved [6] in the range
7! << k' << kyoung then we argue that the large and small scale parameters £ and €,oung
do not affect E¢(k') in that range, hence Ec(k') = E¢(ps,I',k'). The curvature spectrum
E¢(k'") is dimensionless - see Equation (3) - and dimensional constraints imply that Ec(k')
must be independent of p,, I' and &’ and be simply equal to a dimensionless constant in
the range £7! << k' << k,oung. Figure 3 confirms this argument. An identical dimensional
argument can be made for the spectrum E7(k') of the torsion. The torsion spectrum is also
equal to a dimensionless constant in the Kelvin wave cascade range of wavenumbers, and
evidence for this is given in Figure 4.

The spectrum FEr (k') of the (Lagrangian) velocity v, is such that

% V2 (€)de = / EL(K')dk'. (4)
Because vy = T'c to the leading approximation [14], and because Ec does not depend
on k', neither does Ez, and in fact B ~ I'?. Furthermore, equation (4) implies that
E}, is proportional to p,, hence E;(k') ~ p,I'2. The only way to balance this equation
dimensionally with the remaining parameters £ and €;oung 1S to multiply the right hand side

times £2. We conclude that

Ep(K') ~ £2p,T%. (5)

Figure 5 confirms that E; does not depend on &'.



We now consider the energy spectrum Ey (k). Vinen [6] introduced a ”smoothed” length
of vortex line per unit volume, obtained after all the Kelvin waves have been removed,
and considered Ex(k')dk', the energy per unit length of smoothed vortex line associated
with Kelvin waves in the range &' to k' + dk’. By dimensional analysis he found that
Ex (k') ~ psI'?k'~1. We notice that, because the fluctuations of the velocity field are induced
by the Kelvin wave fluctuations on the filaments, it is reasonable to expect that Ey (k) ~
Ex (k') with k' ~ k. Because the length of smoothed vortex lines scales with ¢, we have
Ev(k) ~ £Ex(K'). Using Vinen’s result, we obtain Ey ~ £p,J2k~', in agreement with the
k~! dependence observed after reconnections in Figure 2.

In conclusion we have found direct numerical evidence of the cascade process in the
interaction of Kelvin waves directly after individual reconnection events on vortex filaments.
The effect of this cascade on the spectra for curvature, vortex line velocity and torsion is
strong. The computed spectra confirm our scaling arguments. These results highlight the
importance of reconnections and Kelvin waves on the transfer of energy within a turbulent
superfluid vortex tangle. This work should also stimulate more efforts in the development
of micro-instrumentation: existing measurements of velocity spectra [5] cannot yet resolve

the small scales under discussion here, due to the relative large size of the probes.
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FIGURES

FIG. 1. Vortex configurations at ¢ = 0.0sec (initial state), ¢ = 0.059sec (first reconnection),

t = 0.69sec (note the Kelvin waves) and ¢t = 0.129sec (note the crinkled shape of the filements).
FIG. 2. Velocity spectra Ey (k) before the reconnections (lower two curves at ¢ = 0.0sec and
t = 0.030sec) and after the reconnections (upper two curves at ¢t = 0.069sec and ¢ = 0.089sec). The
spectra are obtained by discretizing the computational box into 643 mesh points.
FIG. 3. Curvature spectra Ec(k') at (a) t = 0.069sec, (b) ¢ = 0.089sec and (c) ¢t = 0.109sec.

FIG. 4. Torsion spectrum Fr(k') at ¢ = 0.109sec.

FIG. 5. Lagrangian velocity spectrum Ey(k') at ¢ = 0.109sec.
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