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Abstract

In this paper we adopt the Hyperboloid in Minkowski space as the model of Hyperbolic
space. We define the hyperbolic Gauss map and the hyperbolic Gauss indicatrix of a
hypersurface in Hyperbolic space. The hyperbolic Gauss map has been introduced by
Epstein[7] in the Poincaré boll model which is very useful for the study of constant mean
curvature surfaces. However, it is very hard to proceed the calculation because it has an
intrinsic form. Here, we give an extrinsic definition and we study singularities of these. In
the study of singularities of the hyperbolic Gauss map (indicatrix), we understand that
the hyperbolic Guass indicatrix is much easier to proceed the calculation. We introduce
the notion of hyperbolic Gauss-Kronecker curvature whose zero sets correspond to the
singular set of the hyperbolic Gauss map (indicatrix). We also develop a local differential
geometry of hypersurfaces concerning on contact with hyperhorospheres.

1 Introduction

In this paper we study extrinsic differential geometry on hypersurfaces in Hyperbolic space as
applications of singularity theory. In [3] Bleeker and Wilson studied the singularities of the
Gauss map of a surface in Euclidean 3-space. In their paper the main theorem asserts that the
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generic singularities of the Gauss map are folds or cusps. Later that Banchoff et al [2] have
studied geometric meanings of cusps of the Gauss map of a surface. Bruce[4] and Romero-
Fuster[19] have also independently studied the singularities of the Gauss map and the dual
of a hypersurface in Euclidean space. The singularity of the dual of a hypersurface is deeply
related to the singularity of the Gauss map of the hypersurface. Their main tools for the study
is the height function on a surface. It has been classically known that the singular set of the
Gauss map is the parabolic set of the surface and it can be interpreted as the criminant set of
the height function. This is the reason why they adopted the height function for the study of
Gauss maps. They applied the deformation theory of smooth functions to the height function
and derived geometric results on the Gauss maps. We can interpret that these results on Gauss
maps describe the contact between surfaces and planes. It is called the flat geometry of surfaces
in Euclidean space. Singularities of the projective Gauss map are also studied by McCrory et
al [15, 16].

On the other hand, Epstein [7] introduced the notion of the hyperbolic Gauss map of a
surface in the Poincaré ball model of Hyperbolic space. However, it is very hard to study the
singularities of the hyperbolic Gauss map because it is given by an intrinsic expression. Here,
we adopt the Hyperboloid in Minkowski space as the model of Hyperbolic space. Under this
framework, we can explicitly express the hyperbolic Gauss map of a hypersurface by the local
parametrisation of the hypersurface. In §2 we introduce the notion of the lightcone normal,
the hyperbolic Gauss map and the hyperbolic Gauss indicatrix of a hypersurface in Hyperbolic
space. Readers can easily recognise that the hyperbolic Gauss indicatrix is much easier to
study compared with the hyperbolic Gauss map. Corresponding to these notions, we define
two hyperbolic invariants. One is the hyperbolic Gauss-Kronecker curvature and another is
the hyperbolic mean curvature. We only consider the geometric meaning of the hyperbolic
Gauss-Kronecker curvature here. Comparing with the ordinary Gauss-Kronecker curvature,
the hyperbolic Gauss-Kronecker curvature is not an intrinsic invariant. It depends on the em-
bedding of the hypersurface into Hyperbolic space. One of our conclusions asserts that the
hyperbolic Gauss-Kronecker curvature is a local invariant which describe the contact between
hypersurfaces and hyperhoroshperes. This means that we establish the “horospherical geom-
etry” of hypersurfaces in Hyperbolic space. We do not know that these hyperbolic invariants
are essentially new or not. This is the authors’ future problem.

All maps considered here are of class C* unless otherwise stated.
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2 The extrinsic hyperbolic differential geometry

In this section we develop the hyperbolic differential geometry in the explicit way. Here, we
adopt the Lorentzian model of the hyperbolic n-space.

Let R** = {(z,21,..-,%n) | z: € R (: =0,1,...,n) } be an (n + 1)-dimensional vector
space. For any € = (Zo,Z1,---,%n), ¥ = (Y0,¥1,---,Un) € R*, the pseudo scalar product of



« and y is defined by
(:13, y) = —ToYo + Z Z5Y;-
i=1

We call (R*1,(,)) Minkowski (n + 1)-space. We denote R instead of (R™*!,(,)). We say
that a non-zero vector & € R is spacelike, lightlike or timelike if (x, ) > 0, (z,z) = 0 or
(z,z) < 0 respectively. For a vector v € R’l'“ and a real number ¢, we define the hyperplane
with pseudo normal v by

HP(v,c) = {z e R} | (z,v) =c }.
We call HP(v, ¢) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if v is

timelike, spacelike or lightlike respectively.
We now define Hyperbolic n-space by

H?(-1) ={z e R} [{z,z) = —1,20 > 1}

and de Sitter n-space by
St = {z € RV |(x,0) = 1}.

For any &, &,,..., T, € RM! we define a vector &; ATz A--- Az, by
—€ € €n
1 1 1
Ty Ty Tn
2 2 2
:1:1/\51:2/\‘--/\:1:n= o £y Tn )
T n n
xo ml .. x"
where eg, €,...,e, is the canonical basis of R**! and bz; = (x},z%,...,z%). We can easil
0 ) ) 1 0 %1 1 4n y
check that
(, ey AT A -+ ANxy) =det(z, @y, ..., 20),
so that &y A 3 A - -+ A &, is pseudo orthogonal to any x; (1 =1,...,n).

We also define a set LC, = {z € RI* | (x — a,z — a) = 0 }, which is called a closed
lightcone with the vertex a. We denote that

LCT ={x = (20,...%n) € LCy |20 >0}

and we call it the future lightcone at the origin. We can also define the notion of the past

lightcone. If & = (9,21, ...,%y,) is a lightlike vector, then zq # 0. Therefore we have
g=(1,2,..., 2 esm " ={x=(z0,21,...,7) | (&, 2) =0, =1}
Zo o

Here, we call ST™! the lightcone (n — 1)-sphere.
We now construct the explicit differential geometry on hypersurfaces in H7(—1). Let

x:U— H}(-1)

be a regular hypersurface (i.e., an embedding), where U C R"! is an open subset. We denote
that M = x(U) and identify M and the embedding x. Since (x, ) = —1, we have

(g, z)=0 (i=1,...,n—-1),
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where v = (1, ...un—1) € U. Define a vector

then we have
(e,@y,) =(e,x) =0, (e,e)=1.

Therefore the vector x + e is lightlike. Since x(u) € H?(—1) and e(u) € S}, we can show that
z(u) + e(u) € LC}. We define a map

]L:E:U-—>LC_T_

by L*(u) = #(u) + e(u) which is called the hyperbolic Gauss indicatriz (or the lightcone dual)

of . We also define a map .
L*:U — S371

by ﬁ(u) = ]Ei(\;) which is called the hyperbolic Gauss map of .

We remark that the notion of the hyperbolic Gauss map is defined in [7] for a surface in the
Poincaré disk model and our definition is equivalent to the definition in [7] in the case when
n =3.

On the other hand, we define a map

E:U— ST

by E(u) = e(u) which is called the ordinary Gauss indicatriz of x.

We can construct an extrinsic differential geometry on @ by using the unit normal e like as
the unit normal of a hypersurface in Euclidean space. In this case, the ordinary Gauss indicatrix
of a hypersurface plays the similar role like as the Gauss map of a hypersurface in Euclidean
space plays. However, we do not study the properties of the ordinary Gauss indicatrix here.

In order to define the hyperbolic Gauss-Kronecker curvature and the hyperbolic mean cur-
vature of the hypersurface M = a(U), we have the following fundamental lemma.

Lemma 2.1 For anyp = x(uo) € M andv € T,M, we have D,e € T,M, so that D,L* € T,M.
Here, D, denotes the covariant derivative with respect to the tangent vector v.

Proof. Since {x,e,®y,,..., %, ,} is a basis of the vector space TPR'IH'I, we have D,e =
Az+ne+ @y, + - -+ A1y, _, for some real numbers A, 7, Ay, . .., A,y It follows form the fact
(e,e) = 0 that we have v({e, e)) = 0. On the other hand, we have 2(D,e, e) = v({e, e)) = 0,
so that # = 0. It also follows from the fact (e, ) = 0 that A = 0. Since =,,...,®,,_, is the
basis of T,M, D,e € T,M. By definition, we have D,@ = p1®y, + *+* + fin_1Z,,_, for some
[1, - - -, fn—1. Therefore, we have D,L* = Dyz + D,e € T, M. O

We now consider the geometric meaning of the hyperbolic Gauss map and the hyperbolic
indicatrix of a hypersurface. The model hypersurface in Euclidean differential geometry is a
hyperplane or a hypersphere. It might be said that singularities of the Gauss map (i.e., parabolic
points) estimate how the hypersurface is different from (or, the same as) a hyperplane (i.e, so
called, the flat geometry). Here, we consider the following model hypersurfaces in Hyperbolic
space. A hypersurface given by the intersection of H%(—1) and a spacelike hyperplane, a
timelike hyperplane or a lightlike hyperplane is respectively called a hypersphere, a equidistant
hyperplane or a hyperhorosphere. Then we have the following proposition.
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Proposition 2.2 Let ¢ : U — H%(—1) be a hypersurface in H}(—1). If the hyperbolic Gauss
indicatriz Lt is constant, then the hypersurface x(U) is a part of a hyperhorosphere.

Proof. Since L* = & + e is constant, the set
V={yeR" |(yz+e)=0}
is a lightlike hyperplane. For any u, v’ € U, we now show that
V+azu)=V+az().

Since (z + €)(u) = (x £ e)(v'), we have z(u) = x(u') £ (e(u') — e(u)). It is enough to show
that e(u’) — e(u) € V. We can calculate that (e(u),z + e) = (e(v'), ® + e) = %1, so that wen
have (e(u') — e(u), z & e) = 0. This means that e(v') — e(u) € V.

Therefore, V 4+ x(u) is a constant affine hyperplane in Rt! and we have (U) C V +z(u)N
H?%(—1). Here, V + x(u) N HY(—1) is a hyperhorosphere.

Since two psuedo-normals to a lightlike hyperplane are constant, the converse is true. [

We remark that if the hyperbolic Gauss map L* is constant, then the hyperbolic Gauss
indicatrix L* is also constant, so that the surface is a part of a hyperhorosphere. In Euclidean
differential geometry, if the Gauss map of a surface is constant, then the surface is a part of a
hyperplane. Therefore, we now treat hyperhorospheres in our theory like as hyperplanes in Eu-
clidean differential geometry. We would establish the horospherical geometry as an application
of singularity theory in this paper.

Under the identification of & and M, the derivative dz(ug) can be identified to the identity
mapping idr, »s on the tangent space T, M, where p = x(uo). This means that dL* (uo) = idz, m+
de(up). By Lemma 2.1, de(uy) is also a linear transformation on the tangent space T, M. We
call the linear transformation SIDjE = —d(ug) : T,M — T, M the hyperbolic shape operator of
M = z(U) at p = x(up). We also call the linear transformation A, = —de(ug) : TpM — T,M
the (ordinary) shape operator of M = x(U) at p = x(u). We denote the eigenvalue of S by
kL and the eigenvalue of A, by kp. By the relation S = —idgp,y + Ap, S5 and A, have same
eigenvectors and we have a relation that RI? = —-1=+k,.

We now define the notion of hyperbolic curvatures as follows: The hyperbolic Gauss-
Kronecker curvature of M = x(U) at p = x(uy) is defined to be

The hyperbolic mean curvature of M = x(U) at p = x(uy) is defined to be
1
+ _ +
Hh (Uo) = mT‘raceSp .

Since A, is the shape operator with respect to the Riemannian metric on M induced from
the Lorentzian metric in R}, the (ordinary) Gauss-Kronecker curvature is K(up) = det4,

and the (ordinary) mean curvature is H(up) = ﬁ'I‘raceAp. By definition, we have the

relation HiF (u) = £H (u) — 1. In the theory of surfaces in Hyperbolic space with constant mean
curvature, surfaces with A = +£1 are the most important class. These surfaces corresponds to
surfaces with H }T = 0. These might be called hyperbolic minimal surfaces. However, we do not
consider about the hyperbolic mean curvature in this paper.
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We say that a point u € U or p = x(u) is an wmbilic point if S = K*(p)idg,s. Since
the eigenvectors of S;*L and A, are same, the above condition is equivalent to the condition
Ap = k(p)idr,p. We say that M = x(U) is totally umbilic if all points on M are umbilic. In
[6], Cecile and Ryan have characterized totally umbilic submanifolds by using three different
functions on Hyperbolic space. Here, we have the following classification theorem:

Proposition 2.3 Suppose that M = x(U) is totally umbilic, then k*(p) is constant k*. Under
this condition, we have the following classification:
1) Suppose that k* # 0.
a) If k* # —1 and |[k* + 1| < 1, then M is a part of an equidistant hyperplane.
b) If &* # —1 and |k + 1| > 1, then M is a part of a hypersphere.
c) If &+ = —1, then M is a part of a hyperplane.
2) If & =0, then M is a part of a hyperhorosphere.

Proof. By definition, we have —LE = k*wx,, for i =1,...,n — 1. Therefore, we have
+ _ o+ s
—Liu; = Ry @y, + R By,
Since —]L.i_uj = —]Lffju'_ and R¥@y,., = R¥@y,;,;, we have Rffjmw — kfx,, = 0. By definition,
{®u;,---,®u,_,} is linearly independent, so that AT is constant. Since &* = —1 &+ x, the

condition —Lf = k*x,, is equivalent to the condition —e,, = txz,,.

We now assume that k% # 0. If k¥ # —1, then & # 0, so that we have z,, = £(1/k)e,,.
Therefore, there exists a constant vector a such that # = a F (1/k)e. Since (x — a,z — a) =
(1/k)?, we have

1/1 1/1 1
<a'7$>__§ (F-{—l“(a’:a)) —'—5 (E+1+1—§) = —1.

This means that M = (U) C HP(a,—-1)N H}(-1). If |k| < 1, @a = & £ (1/k)e is spacelike,so
that we have the assertion 1)-a). In the case when || > 1 the assertion 1)-b) follows.

If it = —1, then we have e,, = 0. Thus e is a constant vector a. Since a is a spacelike
vector and we have (x,a) =0, M = x(U) C HP(a,0) N H?(—1). This means that M is a part
of a hyperplane.

Finally, we assume that &* = 0. In this case, we have —ILf =0, so that —L* is a constant
lightlike vector a. This means that the hyperbolic Gauss map is constant. The assertion 2)
follows from Lemma 2.2. This completes the proof. O

By the above proposition, we can classify the umbilic point as follows: Let p = x(up) €
z(U) = M be an umbilic point, we say that p is an equidistant flat point if K # 0,0 <
|k +1| < 1, a hyperspherical point if KT # 0, |k* +1| > 1, a flat point if &+ #0,|&k*+1| =0,
or a hyperhorospherical point if &* = 0.

In the last part of this section, we prove the hyperbolic Weingarten formula. Since z,,
(¢ =1,...n — 1) are spacelike vectors, we induce the Riemannian metric (the hyperbolic first
fundamental form ) ds® = S0 gijduidu; on M = z(U), where g;;(u) = (o (1), o, (1))
for any v € U. We also define the hyperbolic second fundamental invariant by f_zf;(u) =
(=LE (u), @, (u)) for any u € U. If we define the (ordinary) second fundamental invariant

by hij(u) = —(ey,;(u), 2y, (u)), then we have the relation
his(u) = —gi; () % hij(u).



Proposition 2.4 Under the above notations, we have the following hyperbolic Weingarten for-
mula:

[y

n—

1 = -3 (),
1

where ((ﬁi)f) = (l—zﬁc) (gkj) and (gkj) = (gkj)—l.

Proof. There exist real numbers A, 4, I"f such that

.
1l

n—1

. .
Lf =Xe+pz+ ) Tz,

Jj=1
Since (¥, L*) = 0, we have
0=(LE L*)=(e+pz,zte)=—pLA

Therefore, we have
n—1

+ + j
Lf = ul* + ) Tim,,.

j=1
By definition, we have

n—1 n—1
—hf; = ZF?(wua,wuﬁ) = ZI‘?gaﬁ.
a=1 a=1

Hence, we have

_ ] n—1 B ' n—1n-1 ) '
() = R = 33 Tiguae® = T
B=1 B=1 a=1

On the other hand, since (L*,z) = —1 and (L*,x,,) = 0, we have p = —pu{l*, z) =
(LE,x) = 0. This completes the proof of the hyperbolic Weingarten formula. a

As a corollary of the above proposition, we have an explicit expression of the hyperbolic
Gauss-Kronecker curvature by Riemannian metric and the hyperbolic second fundamental in-
variant.

Corollary 2.5 Under the same notations as in the above proposition, the hyperbolic Gauss-
Kronecker curvature is given by

o _ det (hi5)

P det (gog)
Proof. By the hyperbolic Weingarten formula, the representation matrix of the hyperbolic
shape operator with respect to the basis {®,,,...,®,,_,} is ((ﬁi)Z) = () (¢¥) - 1t follows
from this fact that

T+
K = etz = det ((7%)7) = det (%) (¢%) = %
d

We say that a point p = x(uo) is a (positive or negative) horospherical parabolic point (or,
briefly a H*-parabolic point) of ¢ : U —» Hp(-1) if K,T(ug) =0.
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3 Horospherical height functions

In this section we introduce two different families of functions on a hypersurface in Hyper-
bolic space which are useful for the study of singularities of hyperbolic Gauss indicatrices and
hyperbolic Gauss maps. Let  : U — H7}(—1) be a hypersurface. We define a family of
functions
H:UxLC, —R

by H(u,v) = {(x(u),v) + 1. We call H a horospherical ( or, a normalised lightcone) height
function on @ : U — HY(-1).
Proposition 3.1 Let H : U x LCY, — R be a horospherical height function on ¢ : U —
H%(—1). Then

(1) H(u,v) = 0 if and only if there exist real numbers u, &1, ..., &1 such that v = x +pe+
§1$u1 e ‘En—lwun_l-

(2) H(u,v) = gTH(u, v)=0(¢=1,...,n—1) if and only if v = z(u) + e(u) = L*(u).
Proof. (1) Since {z,e,x,,,...,&,,_,} is a basis of the vector space T,R}*! where p = z(u),

there exist real numbers A, u,&;,...,&,—1 such that v = Az + pe + i@y, + -+ + €1, _, -
Therefore H(u,v) =0 if and only if —1 = (x,v) = Mz, x) = —

(2) Since %(U,v) = (@, V), we have 0 = (z,,,v) = &(@y,, Ty,). This means that the

condition of (2) is equivalent to the condition v = & + pe. Since (v,v) = 0, p = £1. This
completes the proof. O

We denote the Hessian mairiz of the horospherical height function h,x(u) = H(u, vi) at
uo by Hess(h,z)(uo).

Proposition 3.2 Let x : U — H?(—1) be a hypersurface in Hyperbolic space and vy =
L*(ug). Then

(1) p = z(uo) is a HE-parabolic point if and only if det Hess(h,z)(uo) = 0.

(2) p = x(up) is a hyperhorospherical point if and only if rank Hess(hvoi)(uo) =0.

Proof. By definition, we have
Hess(h,¢) (t0) = ((@ugu; (u0), L¥ (w0))) = (= (@, (10), LE () .

By the hyperbolic Weingarten formula, we have

n— 1 n—1
—(@,,, LT )5 @ Ty = Z (A*)? goj = RiE.
a=1 a=1
Therefore we have det Hess(h, +) ( )
et Hess(h_+)(u
K’:::(uo) — Vg 0

det (gap(u0))

The first assertion follows from this formula. For the second assertion, by the hyperbolic
Weingarten formula, p = *(ug) is an umbilic point if and only if there exists an orthogonal
matrix A such that *4 ((R*)]) A = &*I. Therefore, we have ((h*)]) = AR*I'A = K*I, so that

Hess(hvo) (hi) ((hi) ) (9as) = & (g45) -
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Thus, p is a hyperhorospherical point if and only if rank Hess(h, )(uo) = 0. O
We also define a family of functions
H:UxSt'—R

by H(u,v) = (z(u),v). We call H a hyperbolic (or, a lightcone ) height function on « : U —

H%(-1).

Proposition 3.3 Let H : U><S?f1 — R be a hyperbolic height function onx : U — HP(—1).
H —

Then gu (u,v) =0 (i=1,...n —1) if and only if v = L*(u).

The proof is also given by the direct calculation like as those in Proposition 3.1.

4 Hyperbolic Gauss indicatrices as wave fronts

In this section we naturally interpret the hyperbolic Gauss indicatrix of a hypersurface in
Hyperbolic space as a wave front set in the framework of contact geometry We consider a
point v = (vg,v1,...,vs) € LC%, then we have the relation vg = \/vf + - -+ v2. So we adopt
the coordinate (v1,...,v,) of the manifold LC7. Here, we consider the projective cotangent
bundle 7 : PT™ (LC’_";) — LC7 with the canonical contact structure. We now review geometric
properties of this space. Consider the tangent bundle 7 : TPT*(LC}) — PT*(LC%) and the
differential map dmw : TPT*(LC%) — TLC? of m. For any X € TPT*(LC?), there exists an
element o € T*(LC%) such that 7(X) = [a]. For an element V' € T,(LCY), the property
a(V) = 0 does not depend on the choice of representative of the class [a]. Thus we can define
the canonical contact structure on PT*(LC?) by

K ={X ¢ TPT*(LC})|7(X)(dn (X)) = 0}.
Since we consider the coordinate (vy, ..., v,), we have the trivialisation PT*(LC%) = LC} x
P(R*1)* we call
((v1y---,vn), [€1:000 &)

a homogeneous coordinate, where [& : --- : §,;] is the homogeneous coordinate of the dual
projective space P(R*1)*.

It is easy to show that X € K, ) if and only if >°7", p:€; = 0, where dt(X) = >, :“ia%'
An immersion ¢ : L — PT*(LC}) is said to be a Legendrian immersion if dim L = n and
dig(TqL) C Kj(q for any ¢ € L. We also call the map m o i the Legendrian map and the set
W (%) = imagem o i the wave front of i. Moreover, 7 (or, the image of ) is called the Legendrian
lift of W(3).

For any hypersurface  : U — H?%(—1), we denote that x(u) = (zo(u),...,zn(u)) and
Lt (u) = (6£(u), ..., £E5(u)) as coordinate representations. We now define a smooth mapping

L*:U —s PT*(LCY)

by
L*(u) = (L (u), [ 45 (w)zo(w) + & (W21 (u) : - - -+ =L (w)zo + L5 (w)za(w))).



Proposition 4.1 £* is an integral map with respect to the canonical contact structure. In
other wards, we have dL% (T,,U) C K, for any ue € U, where p = L*(uo)

a
Proof. For any 0 € T,,U, we have

ac* (3u,> Zaul ; v

where V is a tangent vector of the fibre of . By definition, we have (z, ,L*) = 0. Since
(®,L*) = —1, we have (&, L) = —(®,,,L*) = 0. This means that

0zo + Bwl + Oz,
0 Qu; +4 S +h Ou;

It also follows from the fact (L*,L*) = 0 that we have (L ,L*) =0, so that

—0E = 0.

oty + . ag;t +
6u,£ ZB &

Therefore, we have

n =+ n +
Z zfg (uo)(— Z (wo)zo(uo) + £ (uo)z;(uo)) = £ (ug) (Z —zj(uo)gi (uo)) = 0.

=0

O

We can show that £* is always an immersion. We will show this fact in the next section.
So we have the Legendrian lift £* of I*. The conclusion of this section is that the hyperbolic
Gauss indicatrix of a hypersurface can be considered as a wave front.

5 Generating families

By the previous arguments, we can study singularities of Gauss indicatrices by the Legendrian
singularity theory. For our purpose, we give a quick survey on the Legendrian singularity theory
mainly due to Arnol’d-Zakalyukin[1, 23]. Almost all results have been known at least implicitly.
Nevertheless, the topological theory for Legendrian singularities has not been written in any
contexts except [11], so that we summarise here. Let F : (R* x R”,0) — (R, 0) be a function
germ. We say that F' is a Morse family if the mapping

oOF OF
A'F=|F—,...,— | :(R* xR*,0) — (R x R¥,0
(Fom ) ) — )

is non-singular, where (¢,z) = (q1,-.-,q, %1, .-, %) € (R¥ x R*,0). In this case we have a
smooth (n — 1)-dimensional submanifold

5.(F) = {(q,x> € (R xR",0) | Fl0,) = o(g.0) =+ = 2 (g,0) =0 }
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and the map germ ®p : (X.(F),0) — PT*R" defined by

22(0,9) = (o [Gr-(@.0) -+ (@)

is a Legendrian immersion. Then we have the following fundamental theorem of Arnol’d-
Zakalyukin [1, 23].

Proposition 5.1 All Legendrian submanifold germs in PT*R" are constructed by the above
method.

We call F' a generating family of ®p. Therefore the wave front is

W(®r)= {:1: € R" |there exists ¢ € R* such that F(q,z) = Cr)—F(q, )=+ = QI—?—(q, z)=0 } .
Oqm Ags.
We sometime denote that D = W (®F) and call it the discriminant set of F.

On the other hand, for any map f : N — P, we denote X(f) the set of singular points
of f and D(f) = f(X(f)). In this case we call f|X(f) : B(f) — D(f) the critical part
of the mapping f. For any Morse family F : (R¥ x R",0) — (R, 0), (F~1(0),0) is a smooth
hypersurface, so that we define a smooth map germ 7z : (F~1(0),0) — (R,0) by mr(q,z) = .
We can easily show that X,(F) = X(nr). Therefore, the corresponding Legendrian map 7o ®x
is the critical part of 7p.

We now introduce an equivalence relation among Legendrian immersion germs. Let 7 :
(L,p) C (PT*R",p) and ¢ : (L',p') C (PT*R*,p') be Legendrian immersion germs. Then
we say that ¢ and i’ are Legendrian equivalent if there exists a contact diffeomorphism germ
H : (PT*R",p) — (PT*R",p') such that H preserves fibres of m and that H(L) = L". A
Legendrian immersion germ into PT*R™ at a point is said to be Legendrian stable if for every
map with the given germ there is a neighbourhood in the space of Legendrian immersions (in
the Whitney C* topology) and a neighbourhood of the original point such that each Legendrian
immersion belonging to the first neighbourhood has in the second neighbourhood a point at
which its germ is Legendrian equivalent to the original germ.

Since the Legendrian lift 7 : (L, p) C (PT*R™, p) is uniquely determined on the regular part
of the wave front W (), we have the following simple but significant property of Legendrian
immersion germs:

Proposition 5.2 Let i : (L,p) C (PT*R",p) and i’ : (L',p’) C (PT*R",p’) be Legendrian
immersion germs such that regular sets of mw o i,m o' are dense respectively. Then 1,7 are
Legendrian equivalent if and only if wave front sets W (i), W (i) are diffeomorphic as set germs.

This result has been firstly pointed out by Zakalyukin[24]. The assumption in the above
proposition is a generic condition for ¢,7'. Especially, if 7,7 are Legendrian stable, then these
satisfy the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families.
We denote &, the local ring of function germs (R*,0) — R with the unique maximal ideal
M, ={he& |h(0)=0} Let F,G : (RF xR*,0) — (R, 0) be function germs. We say that F
and G are P-K-equivalent if there exists a diffeomorphism germ ¥ : (Rf xR", 0) — (RF xR", 0)
of the form ¥(z, u) = (¥1(g, x), ¥a()) for (¢, z) € (R* xR", 0) such that T*((F)e,, ) = (G)ey, -
Here ¥* : £y — Ekyn is the pull back R-algebra isomorphism defined by ¥*(h) = ho ¥ .
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Let F: (R* x R}, 0) — (R, 0) a function germ. We say that F is a K-versal deformation
of f = FIRF x {0} if

oF OF
& =T(K)(f) + <a—x1|]1§’c X {0}""’E|Rk X {0}>R,

where of of
T.(6)(f) = <5§ > |

(See [12].)
The main result in Arnol’d-Zakalykin’s theory[1, 23] is as follows:

Theorem 5.3 Let F,G : (R¥ x R*,0) — (R, 0) be Morse families. Then
(1) ®F and ®¢ are Legendrian equivalent if and only if F, G are P-K-equivalent.
(2) ®F is Legendrian stable if and only if F' is a K-versal deformation of F' | R* x {0}.

Since F,G are function germs on the common space germ (R¥ x R",0), we do no need
the notion of stably P-K-equivalences under this situation (cf., [1]). By the uniqueness result
of the X-versal deformation of a function germ, Proposition 5.2 and Theorem 5.3, we have
the following classification result of Legendrian stable germs(cf., [10]). For any map germ
f:(R*,0) — (RP,0), we define the local ring of f by Q(f) = En/f*(IMp)En.

Proposition 5.4 Let F,G : (R x R*,0) — (R, 0) be Morse families. Suppose that ®r, B¢
are Legendrian stable. The the following conditions are equivalent.

(1) (W(®F),0) and (W(®g),0) are diffeomorphic as germs.

(2) ®F and ®¢ are Legendrian equivalent.

(3) Q(f) and Q(g) are isomorphic as R-algebras, where f = F|RF x {0}, g = G|RF x {0}.

Proof. Since ®p, ®¢ are Legendrian stable, these satisfy the generic condition of Proposition
5.2, so that the conditions (1) and (2) are equivalent. The condition (3) implies that f, g are
K-equivalent[12, 13]. By the uniqueness of the K-versal deformation of a function germ, F, G
are P-K-equivalent. This means that the condition (2) holds. By Theorem 5.3, the condition
(2) implies the condition (3). O

We now consider what does the wave front look like generically? We have another char-
acterisation of K-versal deformations of function germs. Let J¢(R¥ R) be the /-jet bundle of
n-variable functions which has the canonical decomposition: J4(RF,R) = R¥ x R x J¥(k,1).
For any Morse family F : (R x R®,0) — (R, 0), we define a map germ

JEF: (RF x R*,0) — JYR*,R)

by j¢F(q,z) = 7*F.(q), where F,(g) = F(g,z). We denote K*(z) the K-orbit through z =
74 F(0) € J4k,1). (cf., [12]). If f(q) = F(q,0) is f-determined relative to K, then F is a
K-versal deformation of f if and only if j¥F is transversal to RF x {0} x K¥(z) (cf., [12])

We now consider the stratification such that the discriminant set of /C-versal deformations
has the corresponding canonical stratification. By Theorem 5.3, such a stratification should
be K-invariant, where we have the K-action on J*(k,1) (cf., [12, 13]). By this reason, we use
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Mather’s canonical stratification here [9, 14]. Let A’(k,1) be the canonical stratification of
Jt(k,1) \ W¥(k,1), where

W(k,1) = {§*£(0) | dimg&e/((T.K)(f) + ;) 2 £ }.
We now define the stratification A4(R¥, R) of J4(R¥,R) \ W*(R*,R) by
RE x (R\ {0}) x (J4(k, 1) \ Wi(k, 1)), RF x {0} x A%(k, 1),

where W4(R*, R) = R* x Rx W*(k,1). In [20], Y.-H. Wan has shown that if j£F(0) ¢ W¥(k,1)
and j¢F is transversal to A§(RF, R) then 77 : (F~1(0),0) — (R",0) is a MT-stable map germ.
(See also [11]). Here, we call a map germ MT-stable if it is transversal to the canonical stratifi-
cation of a jet space which is introduced in [9, 14]. The main assertion of Mather’s topological
stability theorem is that an MT-stable map germ is a topological stable map germ. Moreover,
the critical value of an MT-stable map germ is canonically stratified. For the classification, we
refer the following theorem of Fukuda-Fukuda[8].

Theorem 5.5 Let f,g : (R*,0) — (R?,0) be MT-stable map germs. If Q(f) and Q(g) are
isomorphic as R-algebras, then these map germs are topological equivalent.

If we carefully read their proof, we can conclude that critical value sets (discriminant sets) of
f, g are stratified equivalent. Here we say that two stratified sets are stratified equivalent if
there exists a homeomorphism between stratified sets such that the homeomorphism maps a
strata onto a strata and the restriction on each strata is smooth.

In order to apply Theorem 5.5 to our situation, we need to review the theory of unfoldings
of map germs. The definition of r-dimensional unfolding of f : (R*,0) — (R?,0) (originally
due to Thom) is a germ F : (R* x R",0) — (R? x R",0) given by F(z,u) = (F(z,u), ),
where F(z,u) is a germ of r dimensional parametrised families of germs with F(z,0) = f(z).
This definition depends on the coordinates of both of spaces (R* x R",0) and (RP x R",0). For
our purpose, we need the coordinate free definition of unfoldings[9]. Let f : (N, zo) — (P, yo)
be a map germ between manifolds. An unfolding of f is a triple (ﬁ,i, j) of map germs, where
i:(N,zo) — (N',z), 7: (P,yo) — (P',4}) are immersions and 7 is transverse to F, such
that Foi=jo fand (5f) : N — {(z',y) € N' x P | F(z') = j(y)} is a diffeomorphism
germ. The dimension of (ﬁ, i,7) as an unfolding is dim N’ — dim N. We can easily prove that
the above two definitions are equivalent. We can show that the local ring of a map germ does
not depend on the choice of the local coordinates at the points. Therefore we can define the
local ring Q(7r) for a Morse family F. We can easily show that Q(f) and Q(ﬁ) are canonically
isomorphic as R-algebras.

We now apply the above arguments to our case. The idea used here is originally from
Martinet’s study of stable map germs[12]. Let F : (R* x R*,0) — (R, 0) be a Morse family.
Corresponding to F, we have an unfolding of f = F|{0} x R”

F: (R* xR*,0) — (R x R*,0)
given by F(q,z) = (F(g,z),z). Then we can easily show the following lemma.

Lemma 5.6 We consider inclusions i : (F~1(0),0) — (R* x R",0) and j : ({0} x R*,0) —
(R x R*,0). Then (F,i,3) is an unfolding of mp : (F~1(0),0) — (R", 0).
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By the previous arguments, Q(rr), Q(F) and Q(f) are isomorphic to each other as R-
algebras. By Theorem 5.5, we have the following proposition:

Proposition 5.7 Let F,G : (RF x R*,0) — (R,0) be Morse families such that np and g
are MT-stable map germs. If Q(f) and Q(g) are isomorphic as R-algebras, then np and wg are
topological equivalent. Moreover, in this case, Dr and D¢ are stratified equivalent.

Let F: (R® x R*,0) — (R, 0) be a Morse family. Suppose that j{F(0) ¢ W*(k,1) and
jtF is transversal to A5(R*,R) for sufficient large ¢ (i.e., codim W¥(k,1) > k + n). By the
transversality assumption, we cannot avoid strata X; of codimension < k +n. For n < 6
and ¢ > 8, by the classification of X-simple function germs [1], codim W*(k,1) > k + 6 and
each strata of A%k, 1) is a K*-orbit in J(k,1). In this case, we can say that F is a K-versal
deformation of f = F|R* x {0} by the characterisation of K-versal deformations. Therefore
®p is Legendrian stable. For general n > 7, by the previous arguments, the wave front W(®r)
is the discriminant set of the MT-stable map germ =r : (F~1(0),0) — (R", 0).

In the last part of this section we return to the study of the horospherical height function of
a hypersurface in H7(—1). By Proposition 4.1, we have the Legendrian lift L* of the hyperbolic
Gauss indicatrix L*. Since we have the following proposition, Proposition 3.1 means that the
horospherical height function H : U x LC§ — R is the generating family of £*.

Proposition 5.8 The horospherical height function H : U x LC; — R is a Morse family.

Proof. For any v = (vg,v1,...,v,) € LCY, we have vg = 4/vi + - - + 2, so that

H(u,v) = —zo(u)4y/v? + -+ 02 + z1(w)vy + - - + 2 (u)v, + 1,

where x(u) = (zo(u), ..., 2za(u)). We have to prove that the mapping

0H OH
A*H=1{H, ey
Ouq Op_1
is non-singular at any point. The Jacobian matrix of A*H is given as follows:
U1 Un
(Ty,,v) - (Tu,_,, V) ~%o + 1 e —xov— +z,
'u? Ug
<$U1‘U17 'U) Tt (wu1un_1: 'U) _xﬂul - + xlul T _xﬂul - + mnul
Vo Vo
(%] Un
(mun—-wn 'U> T (mun—lun—l’ 'U) ~Zoun—y ’U_ + Llup—y " '—xOUn—1,U_ + Lnain_1
0 0

We now show that the determinant of the matrix

"1 Un
—Zo— + 11 —Zyp— + I,
Vo Yo
(4 Un
7 + T1uy o Ty, — + Thu,
A — Vo Yo
(4] Un
—_xoun—l - + mlun—l e —xoun—l - + x“un—l
Vo Yy
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does not vanish at (u,v) € £,(H). In this case, v = L*(u) and we denote that

Zo z Ty
o -TO.ul by = 931-u1 b= Ty,
L0un_1 Tlun_1 Tnun_1
Then we have
det A = —2det (by ... by) — det(a by ...by) — -+ — —2det (by ... ba_y a).
Vo Vo Vo

On the other hand, we have

ATy, A ANy, = (—det(by ... b,),—det(a by ...b,),...,—det(by ... b,_1 a)).
Therefore we have

det A = <(:—§Z—Z) LT A Ty, /\---/\wu"> = vl—o(]Li,e> ::t% £ 0.

We have the following corollary which we announced in §4.

Corollary 5.9 For any hypersurface  : U — H7%(—1), LE is a Legendrian immersion whose
generating family is the horospherical height function H : U X LC} — R of @.

6 Duality and hyperbolic Gauss maps

In §2 we call L* the hyperbolic Gauss indicatrix or the lightcone dual of . In the first part of this
section we describe why we call it the lightcone dual of . After that we consider the relationship
between the hyperbolic Gauss indicatrix and the hyperbolic Gauss map of a hypersurface. We
consider a function H* : H?(—1) x U —» R defined by H*(v, u) = (v,L*(u)) + 1. Since L* (U)
is a wave front set, we have the tangent space V, at any point p = L*(u). By Lemma 2.1,
V, is equal to the tangent space T,x(U) for ¢ = «(u), so that V, is an (n — 1)-dimensional
spacelike subspace of R{**. Therefore, we have the intersection curve V;* N H7(—1). Since
L*(u) € LC%, there exists a unique v € V;- N H(—1) such that (L*(u),v) = —1. We denote
that (L*)*(u) = v, then we have a mapping

(L*)*: U — H(-1).
If u € U is a regular point of L*, then (L*)*(u) satisfies the conditions that
((LF)(u), L (w)) = =1, {(I*)*(u), (1*)u,(u)) = 0.

This means that (L*)*(u) € Dg-.
On the other hand, since  and L* satisfy the condition that

(x, L) = -1, (x,,, L) =0,

we have (z,L}) = 0. Hence, we have & = (L*)* at a regular point of L*. Since both of
mappings are defined on U and (L*)* is at least a continuous mapping, we have the following
proposition.
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Proposition 6.1 Suppose that the H*-parabolic set of x : U — H7(—1) has no inner point,
then we have (L*)* = z.

We remark that the assumption of the above proposition is generic for « : U — H}(-1).

On the other hand, if we start a spacelike immersion y : U — LC"} and consider a function
HY: H?(—1) x U — R defined by H*(v,u) = (v, y(u)) + 1, we can obtain the dual mapping
y* : U — HZ}(-1) of y exactly the same way as the previous arguments. If y* is a immersion
at u € U, we can easily show that one of the hyperbolic Gauss indicatrix of y* at  is y(u).

If we consider a function H : H}(—1) x LC; — R defined by H(v1,v3) = (v1,v2) + 1, we
have

H=Ho (:1: X id]_’,c:_), H*=%Ho (’LdH_r'l_(_l) X I[J:t) and Hﬂ =Ho (ZdH_’l'_(—-l) X y)

We understand that all arguments in this section are controlled by the function #. As a con-
clusion, we may call L* the lightcone dual of  : U — H7(—1).

On the other hand, we now consider the relation between the hyperbolic Gauss indicatrix and
the hyperbolic Gauss map of a hypersurface in H}(—1). For any  : U — H}(—1), we define a
function $ : Ux ST — R by H(u, 'u) {z(u),v). We call § the lgihtcone height function of z.
We also define a function § : U x S* ' x R, — R by H(u, v 9) = H(u,v)+y = (z(u),v) +y,
where R, denotes the set of positive real numbers. We call 9 the extended lightcone height
function on x. By the similar calculations like as the proof of Proposition 3.1, we have

5 = {(L*(u), ~(2(u), ¥ (u))) € S7" xR, [ueU }.

Let m : $77" x R — S} be the canonical projection, then m;|Dg can be identified to the
hyperbolic Gauss map of x.

1
We define a diffeomorphism & : S7~! x Ry — LC* by ®(v,y) = ;v. Since

1 —
T, E@y ¢

we have ®(Dg) = {L*(u) | u € U } = Dy. By these arguments, we can say that the hyperbolic
Gauss indicatrix is a lift of the hyperbolic Gauss map. In fact, by the general theory of
Lagrangian and Legendrian mappings [1, 23], we can construct the Lagrangian immersion
LU — T*S?™! such that Il o £* = L* whose generating family is the lgihtcone height
function $, where II : 7*S7™" — S77' is the projection of the cotangent bundle over ST~
This means that the hyperbolic Gauss map is a Lagrangian map like as ordinary Gauss maps
in Euclidean space.

On the other hand, we also have a Legendrian immersion £ : U — T*S?™' x R, given
by £5(u) = (LE(u), —(z(u),L*(u))) which covers £*. The generating family of £% is the
extended lgihtcone height function $. We can naturally regard that 7*S7?™! x R, is an affine

il ~
part of PT*(S7! x R,). We also have a relation H o (idy x ®)(u,v,y) = —aﬁ(u, v,y) which

L* (u) =

means that H o (idy x ®) and § are C-equivalent in the sense of Mather[13]. It has been known
that these generating families correspond to a same Legendrian submanifold [1, 23]. In this
case we have a unique contact diffeomorphism & : PT*(S%! x R,) — PT*(LC?%) covering

®: S" ' xRy — LC? such that &0 &% = £*, 50 that £* is considered to be a covering of L.

16



This is the background relation between the hyperbolic Gauss indicatrix and the hyperbolic
Gauss map of a hypersurface in H?(—1). Moreover, we have the relation

71 o L (u) = (L* (u), —(w(u), L* (w))),
so that .
d(®7" o L*(u)) = d(L* (u)) @ d(—(z(u), L* ().
By Lemma 2.2, we have
(—(@(u), L* (u)))u; = — (@, (1), L* (u)) — (2(u), dL* (w)u,) = 0.
This means that d(—{z(u), L (u)) = 0. Thus we have the following result.

Proposition 6.2 The set of singular points of the hyperbolic Gauss map of a hypersurface is
coincide with the H*-parabolic set of the hypersurface. In other wards, we have

SIA) =25 ={uelU | Kf) =0}

7 Contact with hyperhorospheres

Before we start to consider the contact between hypersurfaces and hyperhorospheres, we briefly
review the theory of contact due to Montaldi[17]. Let X;,Y; (i = 1,2) be submanifolds of R"
with dim X; = dim X; and dim Y; = dim Y5. We say that the contact of X; and Y; at y; is same
type as the contact of X, and Y3 at y, if there is a diffeomorphism germ @ : (R*, 1) — (R, y2)
such that ®(X;) = X, and ®(Y;) = Y. In this case we write K(X1,Y]; 1) = K(X3,Y2;92). It
is clear that in the definition R™ could be replaced by any manifold. In his paper[17], Montaldi
gives a characterisation of the notion of contact by using the terminology of singularity theory.

Theorem 7.1 Let X;,Y; (i = 1,2) be submanifolds of R* with dim X; = dim X, and dimY; =
dimYs. Let g; : (X;,z;) — (R®,v;) be immersion germs and f; : (R*,y;) — (RP,0) be
submersion germs with (Yi,y;) = (£71(0),y:). Then K(X1,Y1;m) = K(Xa, Ya;12) if and only
if fro0g1 and fs 0 g are K-equivalent.

We now remember the function # : H}(—1)x LC} — R given in §6. For any vy € LC, we
denote that by, (u) = H(u, vo) and we have a hyperhorosphere b, '(0) = HP(vo, —1)NH}(—1).
We write that HS(vo, —1) = HP(vo, —1) N H}(—1). For any ug € U, we consider the lightlike
vector vy = L* (ug), then we have

[jvg; o :B(’LLO) =Ho (:1: X ’l:ch_*’-_)(’LLo, ’03:) = H(uO,Lﬂ:(‘U’o)) =0.
We also have relations that

Ohxox 0H
Bui uo) N au,

for i =1,...,n — 1. This means that the hyperhorosphere h}(0) = HS(vi, ~1) is tangent to
Yo

(o, LE (1g)) = 0.

M = z(U) at p = x(uq). In this case, we call HS(v3, —1) the tangent hyperhorosphere of M =
z(U) at p = x(up) (or, uy), which we write HS*(x, ug). Let vy, v, be lightlike vectors. If vy, vy
are linearly dependent, then corresponding lightlike hyperplanes H P(v;, —1), HP(vy, —1) are
parallel. Therefore, we say that two hyperhorospheres HS(v;, —1), HS(v,, —1) are parallel if
vy, vy are linearly dependent. Then we have the following simple lemma.
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Lemma 7.2 Let x : U — H7%(—1) be a hypersurface. Consider two points ui,us € U. Then
(1) L* (uy) = L*(up) if and only if HS*(x,uy) = HS*(x, uy).
(2) ]f;(ul) = L*(uy) if and only if HS*(x,u;), HS*(x,us) are parallel.

Eventually, we have tools for the study of the contact between hypersurfaces and hyperhoro-
spheres.

Let L : (U,u;) — (LC%,v¥) (i = 1,2) be two hyperbolic Gaussian indicatrix germs of
hypersurface germs ; : (U, u;) — (H?(—1), z;(u;)). We say that L¥ and L are A-equivalent
if there exist diffeomorphism germs ¢ : (U,u1) — (U, u,) and @ : (LC%, vF) — (LCL,v¥)
such that ®olLf = L o¢. If the both of the regular sets of L are dense in (U, u;), it follows from
Proposition 5.2 that I[fllE and ]I_.:,i are A-equivalent if and only if the corresponding Legendrian
immersion germs L5 : (U,u1) — (PT*(LC%),2;) and L5 : (U,up) — (PT*(LC%), 25) are
Legendrian equivalent. This condition is also equivalent to the condition that two generating
families H; and H, are P-K-equivalent by Theorem 5.3. Here, H; : (U x LC%, (u;, vf)) — R
is the horospherical height function germ of z;.

On the other hand, we denote that h; ,+(u) = Hi(u, v), then we have Byt (u) = bt oi(u)-
By Theorem 7.1, K(z1(U), HS*(x1,u1), vy) = K(x2(U), HS*(x2, uz), v5) if and only if Ay ,,
and h, ,, are K-equivalent. Therefore, we can apply the arguments in §5 to our situation. We
denote Q* (=, uo) the local ring of the function germ h,z : (U, ug) — R, where vg = L* (uo).
We remark that we can explicitly write the local ring as follows:

Caa(U)

x, ug) = ’
Q™ (z, w) ((m(u),Li(uo))—l-l)cgg(U)

where C2(U) is the local ring of function germs at 4y with the unique maximal ideal I, (V).

Theorem 7.3 Let ; : (U,u;) — (H}(-1),x:(uw:)) (1 = 1,2) be hypersurfaces germs such
that the corresponding Legendrian immersion germs L5 : (U, u;) — (PT*(LC%), z) are Leg-
endrian stable. Then the following conditions are equivalent:

(1) Hyperbolic Gauss indicatriz germs Lf and L are A-equivalent.

(2) Hy, and H, are P-K-equivalent.

(3) h1y, and hy,, are K-equivalent.

(4) K(z1(U), HS*(21,u), vi) = K(x2(U), HS*(x2, us), v3).

(5) Q*(x1,u1) and Q= (x2,us) are isomorphic as R-algebras.

Proof. By the previous arguments (mainly from Theorem 7.1), it has been already shown that
conditions (3) and (4) are equivalent. Other assertions follow from Proposition 5.4. O

In the next section, we will prove that the assumption of the theorem is generic in the case
when n < 6. For general dimension, we need the topological theory.

Theorem 7.4 Let x; : (U,u;) — (HY(-1),2:(ui)) (¢ = 1,2) be hypersurfaces germs such
that the map germ given by my, : (H; ' (vF), (ui, v¥)) — (LC%,vF) at any point u; € U is an
MT-stable map germ, where H; is the horospherical height function of x; and 'vf;t e ]Lz:-t (w;). If
Q*(x1,u1) and QF(xy,up) are isomorphic as R-algebras, then (LE(U), u1) and (LE(U), uz) are

stratified equivalent as set germs.

In general we have the following proposition.
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Proposition 7.5 Let @; : (U,u;) — (H}(-1),®:(w;)) (i = 1,2) be hypersurface germs such
that their H*-parabolic sets have no innerpoints as subspaces of U. If hyperbolic Gauss indicatriz
germs ILE | 1L are A-equivalent, then

K(z1(U), HS* (21, w1), v¥) = K(2o(U), HS*(22, us), v¥).

In this case, (7 (HS(LE (w1), —1)),w) and (x5 (HS(L5 (us), —1)), us) are diffeomorphic as
set germs.

Proof. The H*-parabolic set is the set of singular points of the hyperbolic Gauss indica-
trix. So the corresponding Legendrian lifts ﬁ;t satisfy the hypothesis of Proposition 5.2. If
hyperbolic Gauss indicatrix germs LE, L are A-equivalent, then £F, £F are Legendrian
equivalent, so that H;, H, are P-K-equivalent. Therefore, hy,,, 1., are K-equivalent. By
Theorem 7.1, this condition is equivalent to the condition that K(z1(U), HS* (1, u1), v¥) =
K(wz(U), HSi(a:g, ’LL2), ’Dg:)

On the other hand, we have (z;(HS(Li" (uo), —1)), uo) = (b, (0), o). It follows from this
fact that (7 (HS(LE(v1),—1)),w) and (x5 (HS(LF (us), —1)),us) are diffeomorphic as set
germs because the K-equivalence preserve the zero level sets. O

For a hypersurface germ  : (U, ug) — (HT(—1), z(up)), we call (z=* (HS(L* (uo), —1)), uo)
the tangent hyperhorospherical indicatriz germ of x. By Proposition 7.5, the diffeomorphism
type of the tangent hyperhorospherical indicatrix germ is an invariant of the .A-classfication
of the hyperbolic Gauss indicatrix germ of . Moreover, by the above results, we can borrow
some basic invariants from the singularity theory on function germs. We need K-invariants for
function germ. The local ring of a function germ is a complete K-invariant for generic function
germs. It is, however, not a numerical invariant. The K-codimension (or, Tyurina number) of
a function germ is a numerical K-invariant of function germs[12]. We denote that

Call)
(e (u), L (u0)) + 1, (@u, (u), L™ (o)) cgs

Usually H-ord* (@, uo) is called the K-codimension of hvgc. However, we call it the order of contact
with the tangent hyperhorosphere at x(uy). We also have the notion of corank of function germs.

H-corank*(z, ug) = (n — 1) — rank Hess(h,(uo)),

H-ord*(z, uy) = dim

where vy = L (uy).

By Proposition 3.2, x(ug) is a H*-parabolic point if and only if H-corank™(z,uo) > 1.
Moreover (ug) is a hyperhorospherical point if and only if H-corank®(,up) = n — 1.

On the other hand, a function germ f : (R"!, a) — R has the Ai-type singularity if f is K-
equivalent to the germ u?+- - -+u2_,+uf1. If H-corank®(z, uy) = 1, the horospherical height
function h,+ has the Apg-type singularity at ug in generic. In this case we have H-ord* (2, ug) = k.
This number is equal to the order of contact in the classical sense (cf., [5]). This is the reason
why we call H-ord* (x, uo) the order of contact with the tangent hyperhorosphere at x(uy).

8 (Generic properties

In this section we consider generic properties of hypersurfaces in H?(—1). The main tool is a
kind of transversality theorems. We consider the space of proper embeddings Emb (U, H}(—1))
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with Whitney C*-topology. We also consider the function # : H}(—1) x LC} — R which is
given in §6. We claim that #,, is a submersion for any w € LC?, where H,(v) = #H(u,v). For
any ¢ € Emb (U, H}(—1)), we have H = H o (z x idyc ). We also have the {-jet extension

jH : U x LC — JYU,R)

defined by j{H (u, v) = j*hy(u). We consider the trivialisation J4(U,R) = U x R x Jé(n — 1,1).
For any submanifold @ C J¢(n — 1,1), we denote that Q = U x {0} x Q. Then we have the
following proposition as a corollary of Lemma 6 in Wassermann[21]. (See also Montaldi[18]).

Proposition 8.1 Let Q be a submanifold of J¥(n — 1,1). Then the set
To = {z € Emb (U, H"(—1)) | j¢H is transversal to Q }
is a residual subset of Emb (U, H}(—1)). If Q is a closed subset, then Tg is open.

On the other hand, we already have the canonical stratification A§(U,R) of J4(R* 1, R) \
W*(R"!,R). By the above proposition and arguments in §5, we have the following theorem.

Theorem 8.2 There exists an open dense subset O C Emb (U, H}(—1)) such that for any
x € O, the germ of the corresponding hyperbolic Gauss indicatriz 1* at each point is the
critical part of an MT-stable map germ.

In the case when n < 6, for any © € O, the germ of the Legendrian lift LT of the hyperbolic
Gauss indicatriz at each point is Legendrian stable.

We remark that we can also prove the multi-jet version of Proposition 8.1. As an application
of such a muti-jet transversality theorem, we can show that the hyperbolic Gauss indicatrix is
the critical part of an (global) MT-stable map for a generic hyper surface  : U — H7}(-1).
However, the arguments are rather tedious and we only consider local phenomenon in this
paper, so that we omit it.

9 Hyperbolic Monge form

The notion of the Monge form of a hypersurface in Euclidean space is one of the powerful tools
for the study of local properties of the hypersurface from the view point of differential geometry.
In this section we consider the analogous notion for a hypersurface in Hyperbolic space.

We now consider a function f(u,...,u,-1) with f(0) = 0 and f,,(0) = 0. Then we have a
hypersurface in H?(—1) defined by

mf(ul7 v 7un—1) = (\/fz(uls e "u'n—l) + U% e +’U;i_1 = 1: f(uh R 7un—1)1u17 . -;un—l)-

We can easily calculate that e(0) = (0,1,0...,0), therefore L*(0) = (1,41,0,...,0). We call
x; a hyperbolic Monge form (briefly, H-Monge form). Then we have the following proposition.

Proposition 9.1 Any hypersurface in H7}(—1) is locally given by the H-Monge form.

Proof. Let & : U — H}(—1) be a hypersurface. We can apply Lorentzian motions of
Minkowski space RPt! such that H?(—1) is the invariant set. Therefore, without loss of gen-
erality, we assume that p = z(0) = (1,0,...,0). We denote M = z(U). We have a basis
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{z(0), €(0), ., (0), . . ., Tu,_, (0)} of T,R}* such that T,M = (z,,(0),...,®,,_,(0))r. Applying
the Gramm-Schmidt procedure, we have a pseudo-orthonormal basis {(0), e(0),e1,...e,_1} of
Rt such that T,M = (e, . .. e,_1)p- Especially {ey, ..., e,_1} is an orthonormal basis of T,M.
Since p = (1,0,...,0), T,M is considered to be a subspace of Rf = {(0,z1,...,2,) | z; € R}. By
a rotation of the space R?, we might assume that T,M = {(0,0,uy,...,un—1) | u; € R } C RFFL.
Then the germ (M, p) might be written in the form

(fO(U'l: R un—-l)a f(uh s 1un—1)7u1) s 7un—1)

by function germs fo(uy, ..., un—1), f(t1,...,%n—1). Since M C H}(—1), we have the relation

fo(ul,. .. ,Un—l) = \/fz(ul, . ..,un_l) +’UI% + - +U%_1 + 1.

Since we have T,M = {(0,0,u3, ..., Un—1) | u; € R }, the conditions f(0) =0 and f,,(0) =0
are automatically satisfied. This completes the proof. d

For the lightlike vector v = (1,%1,0,...,0), we consider the hyperhorosphere HS(vi, —1).
Then we have the H-Monge form of HS(vE, —1) :

wttud  +2 w4+ ud
hi(ula"')un—l):( : 2 : 1:t : 2 = lyul) ..,Un_1>.

Here, we can easily check the relation that (vi, h*(u)) = —1.

On the other hand, h*(0) = (1,0,...,0) = p and h(0) is equal to the z;,-axis for
i=1,2,...,n — 1. This means that T, M T,(hE(D)). Therefore h*(U) = HS(vy, —1) is the
tangent hyperhorosphere of M == f(U ) at p = x£(0). It follows from this fact that the tangent
hyperhorospherical indicatrix of the Monge form germ (xy, 0) is given as follows:

w;‘-l(H‘S(’vat? _1)) = {(ula -3 aun—l) | + Zf(ul, G 4 1un—1) = U% + -+ Ui_l }

Since the height function of x; at vy is

hyt (u) = \/f2 Uy oy Upoa) FUB+ ot ud 1k Fug, . ung) + 1,

we can calculate the Hessian matrix, then we have Hess (h,2(0)) = Hess (+f(0)). Thus we

conclude that H-corank®(z;, 0) = (n — 1) — rank Hess (+£(0)).
On the other hand, since f(0) = f,,(0) = 0, we may write

K1 Kn-1
f(uly-”aun-—l):_é‘u%‘*‘ e+ n2 ?,, 1+9(U1,---,un—1),
where g € 93 _,. Here,ks, ..., kn_ are eigenvalues of (fy4;(0)). Under this representation, we

can easily calculate that @ u.4;(0) = (04, fu;u;(0),0,...,0). It follows from this fact that
’_'L:;(O) = —5,-]- + fUin (0) = (5,'_7'(—1 + K,,;).
and g;;(0) = &;;. Therefore, we have 7 (0) = —1 & &; and

n—1

H =[J(-1£x).

=1

The tangent hyperhorospherical indicatrix is given by
o (HS(vo,—1)) = {(u1, ..., un—1) | KT (0)ud +- - + Ry 1 (0)uZ_; £ 2g(us, ..., up_g) =0 }.
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10 Surfaces in Hyperbolic 3-space

In this section we stick to the case when n = 3. In this case we call & : U — H3(—1) a surface,
HS(vg,—1) a horosphere etc. By Proposition 8.2 and the classification of function germs [1],
we have the following theorem.

Theorem 10.1 There ezists an open dense subset O C Emb (U, H3(—1)) such that for any
x € O, the following conditions hold:

(1) The H*-parabolic set K;'(0) is a regular curve. We call such a curve the H*-parabolic
curve.

(2) The hyperbolic Gauss indicatriz L™ along the H*-parabolic curve is the cuspdialedge
except isolated points. At these points LE is the swallowtail.

Here, o map germ f : (R%,a) — (R3,b) is called a cuspidaledge if it is A-equiviant to
the germ (uy,u3,ud) (cf., Fig. 1) and a swallowtasl if it is A-equivalent to the germ (3ui +
’U.%’LLZ, 4u§ + 2’!1,111,2, ’Ll,z) (Cf., Flgl)

cuspidal edge swallowtail
Fig. 1.

The assertion of Theorem 10.1 can be interpreted that the Legendrian lift £* of the hy-
perbolic Gauss indicatrix L* of & € O is Legendrian stable at each point. Since £* is the
Legendrian covering of the Lagrangian map £+ associated to the hyperbolic Gauss map IL*,
it has been known that the corresponding singularities of L* are folds or cusps [1]. Hence, we
have the following corollary.

Corollary 10.2 Let O C Emb (U, H3(—1)) be the same open dense subset as in Theorem 10.1.
For any x € O, the followings hold:

(1) A H*-parabolic point ug € U is a fold of the hyperbolic Gauss map if and only if it is a
cuspidal edge of the hyperbolic Gauss indicatrix.

(2) A H*-parabolic point ug € U is a cusp of the hyperbolic Gauss map if and only if it is
a swallowtail of the hyperbolic Gauss indicatriz.

Here, a map germ f : (R?,a) — (R?%,b) is called a fold if it is A-equivalent to the germ
(u1,u2) and a cusp if it is A-equivalent to the germ (uy, u3 + ujus).

Following the terminology of Whitney[22], we say that a surface @ : U — H3(—1) has the
ezcellent hyperbolic Gauss indicatriz I* if £* is a stable Legendrian immersion at each point.
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In this case, the hyperbolic Gauss indicatrix L* has only cuspidaledges and swallowtails as
singularities. Theorem 10.1 asserts that a surface with the excellent hyperbolic Gauss indicatrix
is generic in the space of all surfaces in H3(—1). We now consider the geometric meanings of
cuspidaledges and swallowtails of the hyperbolic Gauss indicatrix. We have the following results
analogous to the results in Banchoff et al[2].

Theorem 10.3 Let L* : (U, up) — (H3(—1),vq) be the ezcellent hyperbolic Gauss indicatriz
of a surface  and h« : (U, uy) — R be the horospherical height function germ ot v = L* (up).
Then we have the following:
(1) o 4s an H*-parabolic point of  if and only if H-corank™(z,uo) = 1 (i.e.,uq is not a
horospherical point of x).
(2) If ug is an H*-parabolic point of x, then hyt has the Ag-type singularity for k = 2, 3.
(3) Suppose that ug is an HE-parabolic point of €. Then the following conditions are equivalent:

(a) I* has a cuspidaledge at ug

(b) hvoi has the A,-type singularity.

(c) H-ord*(z, up) = 2.

(d) Tangent horospherical indicatriz is a ordinary cusp, where a curve C C R? is called a
ordinary cusp if it is diffeomorphic to the curve given by {(ug,uz) | u2 —u3 =0 }.

(e) For each € > 0, there exist two distinct points uy,us € U such that |ug — u;| < € for
i =1,2, both of uy,uy are not HE-parabolic points and the tangent horosphere to M = x(U) at
U1, Uy are parallel.
(4) Suppose that ug is an H*-parabolic point of . Then the following conditions are equivalent:

(a) L* has a swallowtail at ug

(b) hyx has the As-type singularity.

(c) H-ord*(z, u) = 3.

(d) Tangent horospherical indicatriz is a point or a tachnodal, where a curve C C R? is
called a tachnodal if it is diffeomorphic to the curve given by {(u1,us) | u —ui =0 }.

(€) For each € > 0, there exist three distinct points uy,us,us € U such that |ug — u;| < € for
i =1,2,3 and the tangent horosphere to M = x(U) at uy, us, us are parallel.

(f) For each € > 0, there exzist two distinct points uy,us € U such that |up — us| < € for
i = 1,2 and the tangent horosphere to M = x(U) at uy,u, are equal.

Proof. We have shown that u, is an H*-parabolic point if and only if H-corank™*(z, ug) > 1.
Since n = 3, we have H-corank™®(z,uo) < 2. Since the horospherical height function germ
H : (U x LC%, (ug,v9)) — R can be considered as a generating family of the Legendrian
immersion germ L¥, hvoi has only the Aj-type singularities (k = 1,2,3). This means that the
corank of the Hessian matrix of h, at an H *.parabolic point is 1. The assertion (2) also follows.
By the same reason, the conditions (3);(a),(b),(c) (respectively, (4); (a),(b),(c)) are equivalent.
If the height function germ hvg has the A,-type singularity, it is K-equivalent to the germ
+u2 + uj. Since the K-equivalence send the zero level sets, the tangent horospherical indicatrix
is diffeomorphic to the curve given by = 0. This is the ordinary cusp. The normal form for
the Az-type singularity is given by +u? + u$, so that the tangent horospherical indicatrix is
diffeomorphic to the curve +u? + u5 = 0. This means that the condition (3),(d) (respectively,
(4),(d)) is also equivalent to the other conditions.

Suppose that up is an H-parabolic point, then the hyperbolic Gauss map has only folds or
cusps. If the point g is a fold point, there is a neighbourhood of up on which the hyperbolic
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Gauss map is 2 to 1 except the H-parabolic curve (i.e, fold curve). By Lemma 7.2, the condition
(3), (e) is satisfied. If the point ug is a cusp, the critical value set is an ordinary cusp. By
the normal form, we can understand that the hyperbolic Gauss map is 3 to 1 inside region of
the critical vale. Moreover, the point ug is in the closure of the region. This means that the
condition (4),(e) holds. We can also observe that near by a cusp point, there are 2 to 1 points
which approach to ug. However, one of those points are always H*-parabolic points. Since
other singularities do not appear for in this case, so that the condition (3),(e) (respectively,
(4),(e)) characterises a fold (respectively, a cusp).

If we consider the hyperbolic Gauss indicatrix in stead of the hyperbolic Gauss map, the
only singularities are cuspidaledges or swallowtails. For the swallowtail point wg, there are
self intersection curve (cf., Fig. 1) approaching to up. On this curve, there are two distinct
point uy, uy such that L* (u;) = L*(u3). By Lemma 7.2, this means that tangent horosphere to
M = z(U) at ui, us are equal. Since there are no other singularities in this case, the condition
(4),(f) characterise a swallowtail point of . This completes the proof. a

We can study more detailed properties of surfaces in Hyperbolic 3-space. Nevertheless, we
stop here, these will be discussed in the forthcoming papers.

11 Examples

In the last part of the paper, we give some examples and draw their pictures. In order to draw
pictures, we consider the Poincaré ball model. Let D = {(z;, z2,23) | 22 + 2+ 22 < 1 } be the
Poincaré ball model of Hyperbolic space. Here, we consider the hyperbolic metric

2 _ Mdaf + daf + daf)

2 2 2

ds

It has been known that there is the canonical isometric diffeomorphism @ : H3(-1) — D

given by
T ) 3
®(z9, 21, 20,23) = , , ;
(20, 1,22, 73) (m0+1 To+ 1 $0+1>

For a H-Monge form

xp(ug, ug) = (\/fz(U'hUZ) +uf 4+ uf + 1, fu1, uz), u1, u1),
the composition ® o x¢(uy, up) is given by
f(ul,uz) Uy Us
VI u,ug) +Fud Fud 4+ 1 g, ug) +ud Fud 1 2 (ug, ue) +ud Fu 41

Therefore, for any function f(ui,us2) with f(0) = f,,(0) = 0, we can draw the picture of the
surface in D. For the horosphere

2 2 2 2
ui+us+2 uitu
hi(UI;UZ):( L 22 1:t L 2:“’11“’2))

2

we have

u2 + 'U:z 2’1.!,1 2U2
® o ht(uy,up) = | £———2—, , .
°h™(u, ) ( Erui+4 ¥ o4 udtud+4
The picture of the horosphere ® o h™(U) is given by the left side picture in Fig.2.
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Example 11.1 If f(uy,up) = jui+;uf then k) = 1 and k3 = 0. Then we have &7 (0) = —1 and
%5 (0) = —2, so that the origin is not a H~-parabolic point. However,%{ (0) = ~1 and k5 (0) = 0,
then the origin is a H*-parabloic point. The positive tangent horospherical indicatrix is the
ordinary cusp u} = 3ul. Therefore, the hyperbolic Gauss indicatrix L~ is non-singular at the
origin and L* is a cuspidaledge at the origin. The surface and the intersection of the positive
horosphere are depicted in Fig.2.

Example 11.2 Consider a function f(ui,us) = 1(uf + u}), then ;1 = 1 and s, = 0. By the
same reason as the previous example the origin is not a H -parabolic point but a H*-parabolic
point. The positive tangent horospherical indicatrix is the tachnode u2 = u}. Therefore, the
hyperbolic Gauss indicatrix .~ is non-singular at the origin and L* is a swallowtail at the
origin. The surface and the intersection of the positive horosphere are also depicted in Fig.3.

Fig. 3.
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