
ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OFSPACES OF KNOTSV. A. VASSILIEVAbstrat. We develop homologial tehniques for �nding expliit ombinatorialexpressions of �nite-type ohomology lasses of spaes of knots in Rn ; n � 3; gen-eralizing Polyak{Viro formulas [10℄ for invariants (i.e. 0-dimensional ohomologylasses) of knots in R3 .As the �rst appliationswe give suh formulas for the (redued mod 2) generalizedTeiblum{Turhin oyle of order 3 (whih is the simplest ohomology lass of longknots R1 ,! Rn not reduible to knot invariants or their natural stabilizations),and for all integral ohomology lasses of orders 1 and 2 of spaes of ompat knotsS1 ,! Rn . As a orollary, we prove the nontriviality of all these ohomology lassesin spaes of knots in R3 : 1. IntrodutionThere is a wide family of ohomology lasses of spaes of knots S1 ,! Rn (n � 3),alled �nite-type ohomology lasses; see [14℄, [16℄, [18℄. For n > 3 they over all ofthe ohomology group of the spae of knots in Rn , for n = 3 their 0-dimensional partare the �nite-type knot invariants.These lasses are de�ned as linking numbers (in the spae of all smooth mapsS1 ! Rn) with appropriate yles (of in�nite dimension but �nite odimension) inthe disriminant spae � (f. [1℄); in our ase this spae onsists of maps whih are notsmooth embeddings. The group of all suh lasses is �ltered by their orders induedby some �ltration of (some resolution of) the disriminant: roughly speaking, theorder of a ohomology lass indiates how muh ompliated strata of � partiipatein the de�nition of its dual variety.In [10℄, M. Polyak and O. Viro have proposed some ombinatorial formulas forthe �nite-type invariants of knots in R3 . Later, M. Goussarov has proved that any�nite-type invariant an be represented by a formula of this type, see [6℄.We desribe some alulus for �nding (and proving) ombinatorial formulas forarbitrary �nite type ohomology lasses, in partiular show what the answers anlook like. Any suh ombinatorial formula is nothing else than some semialgebraihain in the spae of maps S1 ! Rn ; suh that its boundary lies in � and ourIndependent Mosow University. Supported in part by RFBR (projet 98-01-00555a) and NWO-RFBR grant (projet 047-008-005). 1



2 V. A. VASSILIEVohomology lass is equal to the linking number with this boundary. We introdueseveral natural families of semialgebrai subvarieties of the spae of suh maps, ofwhih the desired hains are built. These varieties are de�ned by easy di�erentialgeometrial onditions; they arise naturally in the diret alulation of the mainspetral sequene onverging to the (�nite type) ohomology group of the spae ofknots. It is not surprising that some elements of this alulus repeat pitures from[10℄, [6℄, and also from the A. B. Merkov's works on invariants of plane urves [9℄, [8℄.We aomplish these alulations expliitly for several ohomology lasses of loworders. Before desribing them three remarks more.1. Long and ompat knots. We shall distinguish two kinds of knot spaes.The ompat knots in Rn are any smooth embeddings S1 ! Rn ; while the long knotsare the smooth embeddings R1 ! Rn oiniding with a standard linear embeddingoutside some ompat subset in R1 . The invariants of knots of both types in R3naturally oinide, but generally the ohomology ring of the spae of ompat knotsis more ompliated: it is built of the similar ring for long knots (playing the role of a"oeÆient" ring) and homology groups of the spae S1 and ertain its on�gurationspaes.2. Stabilization. If numbers n and m are of the same parity, then the theoriesof (�nite type) ohomology groups of spaes of knots in Rn and Rm are very similar.Namely, the �rst terms of spetral sequenes alulating both groups and generatedby the natural �ltration of resolved disriminants oinide up to shifts of indies:(1) Ep;q�pn1 (Rn) ' Ep;q�pm1 (Rm):Moreover, for spetral sequenes alulating Z2-ohomology groups this identity istrue also if n and m are of di�erent parities. M. Kontsevih has proved (but notpublished) that in the ase of omplex oeÆients our spetral sequene degeneratesat the �rst term: Ep;q1 � Ep;q1 , therefore also the limit groups of �nite type ohomologylasses are very similar. (I onjeture that in the ase of long knots the similardegeneration holds also for any oeÆients.)3. This paper is very muh a work in the di�erential geometry of spatial urvesand their projetions to di�erent subspaes, although almost all results of this kindare hidden in the formulas for boundary operators in our homologial alulations.1.1. Results for long knots. Aordingly to [14℄, [11℄, [18℄, [16℄, all ohomologylasses of orders � 3 of the spae of long knots in Rn ; n � 3; are as follows.Proposition 1. There are no ohomology lasses of order 1. The lasses of order2 are only in dimension 2n � 6 and form a group isomorphi to Z (for n = 3 it isgenerated by the simplest knot invariant). In order 3 additional lasses an be inexatly two dimensions more: 3n � 9 and 3n� 8. In dimension 3n� 9 they form agroup isomorphi to Z (for n = 3 it is generated by the next simple knot invariant). In



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 3dimension 3n�8 the same is true if n > 3; and for n = 3 the similar (1-dimensional)ohomology group is yli (maybe of order 1 or 1).It was onjetured in [16℄, [18℄ that the latter group for n = 3 also is isomorphito Z; we shall prove it in the present work.For any n we all the generator of this (3n � 8)-dimensional ohomology groupthe Turhin{Teiblum oyle. In the ase of odd n its existene was disovered byD. M. Teiblum and V. E. Turhin about 1995 ([11℄). Its (quite di�erent) superanalogfor even n was found in [16℄, [18℄. However, all these works ontain only an impliitproof of the existene of suh a lass: namely, the alulation of the third olumnof our spetral sequene (whih is responsible for the third order ohomology lassesand is isomorphi to Z for exatly two values of q), and the remark that all furtherdi�erentials ating from or to this olumn are trivial by some dimensional reasons.In x3 we prove the following ombinatorial expression for this lass redued mod2. Let us hoose a diretion "up" in Rn , and say that a point x 2 Rn is above thepoint y if the vetor ��!(yx) has the hosen diretion. Let Rn�1 be the quotient spae ofRn by this diretion, and p : Rn ! Rn�1 the orresponding projetion. We hoose adiretion "to the right" in Rn�1 and say that the point x 2 Rn is to the right of thepoint y if the vetor ��������!(p(y);p(x)) 2 Rn�1 has this hosen diretion.Theorem 1. For any n � 3; the value of the redued mod 2 Teiblum{Turhin lasson any generi (3n� 8)-dimensional singular yle in the spae of long knots in Rnis equal to the parity of the number of points of this yle orresponding to suh knotsf : R1 ! Rn that one of three holds:a) there are �ve points a < b <  < d < e in R1 suh that f(a) is above f(d), andf(e) is above f() and f(b);b) there are four points a < b <  < d in R1 suh that f(a) is above f(), f(b) isbelow f(d), and the projetion of the derivative f 0(b) to Rn�1 is direted to the right;) there are three points a < b <  in R1suh that f(a) is above f(b) but below f(),and the "exterior" angle in Rn�1 formed by projetions of f 0(a) and f 0(b) ontains thediretion "to the right" (i.e. this diretion is equal to a linear ombination of theseprojetions, and at least one of oeÆients in this ombination is nonpositive).These intersetion points should be ounted with multipliities equal to the numberof di�erent point on�gurations for whih the orresponding ondition is satis�ed(note however that for n > 3 a generi (3n�8)-dimensional yle annot have pointsfor whih this multipliity is greater than 1).We prove this theorem in x3. In the next works I am planning to aomplish allthe same alulations taking respet on the orientations, and thus to obtain similarresults with integer oeÆients.



4 V. A. VASSILIEVCorollary 1. The group of order 3 one-dimensional ohomology lasses of the spaeof long knots in R3 is free yli and generated by the (integral) Teiblum{Turhinlass.More preisely, let us onsider the onneted sum of two equal (long) trefoil knotsin R3 and a path in the spae of knots onneting this knot with itself as in the proofof the ommutativity of the knot semigroup: we shrink the �rst summand, move it"through" the seond, and then blow up again.Proposition 2. This losed path in the spae of long knots has an odd intersetionnumber with the union of three varieties indiated in items a, b and  of Theorem 1.The proof will be given in x 3.7.On the other hand, for any n the Teiblum{Turhin oyle is a well-de�ned integralohomology lass. By the previous proposition it takes a nonzero value on a well-de�ned integral yle, hene is not a torsion element, and Corollary 1 is proved.1.2. Answers for ompat knots. Nontrivial ohomology lasses in the spae ofompat knots S1 ,! Rn appear already in �ltrations 1 and 2. We assume that ayli oordinate in S1, i.e. an identi�ation S1 ' R1=2�Z, is �xed.Proposition 3 (see [17℄, [18℄). For any n � 3 the group of Z2-ohomology lassesof order 1 of the spae of ompat knots in Rn is nontrivial only in dimensionsn� 2 and n� 1, and is isomorphi to Z2 in these dimensions. Moreover, for (only)even n similar integral ohomology groups in these dimensions are isomorphi to Z:The generator of the (n � 2)-dimensional group is Alexander dual to the set L ofdisriminant maps S1 ! Rn gluing together some two opposite points of S1, and thegenerator of the (n � 1)-dimensional group is dual to the set of maps gluing somehosen opposite points, say 0 and �.Proposition 4 (see [16℄, [18℄). Additional lasses of order 2 exist in exatly twodimensions: 2n � 6 and 2n � 3. In dimension 2n � 6 they for any n form a groupisomorphi to Z (for n = 3 it is generated by the simplest knot invariant). The groupin dimension 2n�3 is isomorphi to Z for n > 3 and yli for n = 3; its generator isAlexander dual to the yle in the disriminant, whose prinipal part (see De�nition 1in x2 below) in the double sel�ntersetion of � is swept out by suh maps f : S1 ! Rnthat for some � 2 S1 we have f(�) = f(� + �); f(� + �=2) = f(� + 3�=2):Below we prove in partiular that for n = 3 the last group also is free yli, seeCorollary 3. Now we give expliit ombinatorial formulas for all lasses mentioned inPropositions 3 and 4.Theorem 2. For any n � 3, the values of any of these four basi ohomology lasseson any generi yle of orresponding dimension in the spae Kn n � of ompatknots S1 ,! Rn is equal to the number of points of this yle, orresponding to knotssatisfying the following onditions (and in the ase of integer oeÆients taken withappropriate signs).



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 5A. For the (n� 1)-dimensional lass of order 1: projetions of f(0) and f(�) intothe plane Rn�1 oinide, and f(0) is above f(�).B. For the (n�2)-dimensional lass of order 1, one of the following two onditions:a) there is a point � 2 [0; �) suh that the projetions of f(�) and f(� + �) toRn�1 oinide, and moreover f(�) is above f(�+ �);b) the projetion of the point f(0) to Rn�1 lies "to the right" from the projetionof f(�).C. For the (2n� 3)-dimensional lass of order 2, one of following two onditions:a) there is a point � 2 [0; �=2) suh that projetions of f(�) and f(�+ �) to Rn�1oinide, projetions of f(�+�=2) and f(�+3�=2) to Rn�1 oinide, and additionallyf(� + �) is above f(�) and f(�+ �=2) is above f(� + 3�=2);b) projetions of f(0) and f(�) to Rn�1 oinide, f(�) is above f(0), and theprojetion of f(�=2) to Rn�1 lies "to the right" from the projetion of f(3�=2).D. For the (2n� 6)-dimensional lass of order 2, one of two onditions:a) there are four distint points �; �; ; Æ 2 S1 (whose yli oordinates satisfy0 � � < � <  < Æ < 2�) suh that projetions of f(�) and f() to Rn�1 oinide,projetions of f(�) and f(Æ) to Rn�1 oinide, and additionally f() is above f(�)and f(�) is above f(Æ).b) If n = 3 then seond ondition is void (and we have only the �rst one oinidingwith the ombinatorial formula from [10℄), but for n > 3 we have additional ondition:there are three distint points �; ; Æ (whose yli oordinates satisfy 0 < � <  <Æ < 2�) suh that projetions of f() and f(0) to Rn�1 oinide, f() is above f(0),and the projetion of f(Æ) to Rn�1 lies "to the right" of the projetion of f(�).Proofs see in x 4.Corollary 2. For any n � 3, the basi lass of order 2 and dimension 2n � 3takes value �1 on the submanifold of the spae of knots, onsisting of all naturallyparametrized great irles of the unit sphere in Rn .Indeed, the variety a) of statement C does not interset this submanifold, andvariety b) has with it exatly one intersetion point. �In the ase of even n the fat that this variety in the spae of knots is not homol-ogous to zero was proved in [5℄ by very di�erent methods.Corollary 3. The group of (2n � 3)-dimensional ohomology lasses of order 2 isfree yli for n = 3 as well. �I am indebted to A. B. Merkov very muh for many interesting onversations. Iappreiate the hospitality of the Isaa Newton Institute, Cambridge, where this workwas �nished.



6 V. A. VASSILIEV2. Methodology and nature of ombinatorial expressions.In fat, our main purpose is to develop a general method of �nding ombinatorialformulas of this type.Any suh formula is just a relative yle in the spae of knots (modulo the dis-riminant �) whose boundary in � is Alexander dual to our ohomology lass. Theproblem is to onstrut suh a variety expliitly and as simply as possible.Our method of doing it onsists in the onsientious alulation of our spetralsequene. In this subsetion we outline the de�nition of this sequene and this alu-lation. This spetral sequene for spaes of knots is very analogous to that alulatingthe ohomology of omplements of plane arrangements (see [15℄); let us demonstratetheir main ommon features on the latter more simple example.2.1. Simpliial resolutions for plane arrangements. Let L � RN be an aÆneplane arrangement, i.e. the union of �nitely many aÆne planes Li of any dimensions,L = Ski=1 Li: The ohomology group of its omplement is Alexander dual to thehomology group of L: Hj(RN n L) ' �HN�j�1(L); here �H� denotes the Borel{Moorehomology group, i.e. the homology group of the one-point ompati�ation reduedmodulo the added point. To alulate the latter group it is onvenient to use thesimpliial resolution of L (whih is a ontinuous version of the ombinatorial formulaof inlusions and exlusions).For some three line arrangements in R2 (shown in the lower part of Fig. 1) theorresponding simpliial resolutions are given above them in the same piture. Theseresolutions are onstruted as follows.First, we embed the set of indies f1; : : : ; kg into a spae RT of dimension T � k�1in suh a way that their onvex hull is a (k� 1)-dimensional simplex. The resolutionwill be onstruted as a subset in RT �RN : For any point x 2 L denote by ~�(x) theonvex hull in RT of images of suh indies i that Li 3 x, i.e. the simplex with vertiesat images of all these indies. Denote by �(x) the simplex ~�(x)� fxg � RT � RN :Denote by L0 the union of all simplies �(x), x 2 L: The obvious projetion L0 ! L(sending any �(x) to x) is a homotopy equivalene, as well as its extension to themap of one-point ompati�ations �L0 ! �L: In partiular �H�(L0) � �H�(L):On the other hand, L0 has a very useful �ltration. For any set of indies I �f1; : : : ; kg, denote by LI the plane \i2ILi: Let L0I � L0 be the proper preimage ofLI , i.e. the losure of the union of omplete preimages of all generi points of LI(i.e. of points not from even smaller strata LJ � LI ; LJ 6= LI). There is obvioushomeomorphism L0I ' ~�(I) � LI ; where ~�(I) � RT is the simplex whose vertiesorrespond to all indies i suh that Li � LI : (It is equal to ~�(x) where x is anygeneri point of LI :)By de�nition, L0 = SL0I ; where the union is taken over all geometrially di�erentplanes LI . We de�ne the term Fp of the desired �ltration of L0 as the similar union
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a b Figure 1. Examples of line arrangementsof prisms L0I over all planes LI of odimension � p. Then we extend it to a �ltrationon the one-point ompati�ation L0 of L0 setting F0 = fthe added pointg.This �ltration de�nes a spetral sequene alulating the group �H�(L0) ' �H�(L):by de�nition its term E1p;q is equal to �Hp+q(Fp n Fp�1) � Hp+q(Fp=Fp�1): This spaeFp n Fp�1 splits into a disjoint union (over all spaes LI of odimension exatly p) ofspaes �L0I def= ��(I) � L0I , where ��(I) is the simplex ~�(I) from whih several faesare removed: namely suh faes ~�(J), J � I; that the plane LJ is stritly greaterthan LI . For instane, for the on�gurations shown in pitures a), b), ) of Fig. 1 theplanes LI of odimension 2 are: the point (1; 2), the point (1; 2; 3), and three points(1; 2); (1; 3), (2; 3) respetively. The proper preimages of them are: one segment, onetriangle (shadowed vertially in the piture), and three segments. In all these asesthe orresponding spaes �LI oinide with ��I , namely they are: an open interval, atriangle without verties, and three open intervals, respetively.In general, any fae of the simplex ~�(I) is haraterized by its verties, i.e. someindies i 2 f1; : : : ; kg. A fae of ~�(I) is alled marginal if the intersetion of planesLi labeled by its verties is stritly greater than LI : ��(I) is equal to ~�(I) withall marginal faes removed. By the K�unneth formula, E1p;q = L �Hp+q�(N�p)( ��(I));summation over all planes LI of odimension p.



8 V. A. VASSILIEVThe geometrial sense of the orresponding �ltration in the Alexander dual groupH�(RN n L) is as follows: any element of this group has �ltration p if and only ifit is equal to a linear ombination of �nitely many elements j, any of whih anbe represented by the intersetion index with some semilinear1 subvariety Vj � RN ;�Vj � L; invariant under the group RN�pj of translations in all diretions parallel tosome (N � pj)-dimensional plane LIj with pj � p.Proposition 5 (see [15℄). Our �ltration of the spae L0 always homotopially splits,i.e. we have the homotopy equivalene(2) �L0 � �F1 _ ( �F2= �F1) _ : : : _ ( �FN= �FN�1):In partiular, the spetral sequene degenerates in the �rst term: E1 � E1, and wehave �Hp+q(�L0) = �Np=1E1p;q. �An equivalent statement was proved in [20℄.This theorem redues the struture of ohomology groups of RN nL to dimensionsof all spaes LI . However, it does not allow us to alulate the value of an arbitraryelement of the group E1p;q on any yle in RN n L. For instane, in the ase ofthe arrangement shown in Fig. 1a, the entire group E12;� appears from the uniquerossing point Lf1;2g. This group is nontrivial only for � = �1, is isomorphi to Zand is generated by the homology lass of the segment �(1; 2) modulo its endpoints(lying in F1). The splitting formula (2) means that we an extend this relative yleof �F2 (mod �F1) (or, equivalently, a losed loally �nite yle in F2 n F1) to a yle inentire �L0 (respetively, in entire L0). However, to be able to de�ne the value of thispoint or of this segment on any 0-dimensional yle (i.e. on a point) in R2 nL we needto hoose suh an extension expliitly. Then we projet it to L and get a yle there.Finally, we need to hoose a relative yle in R2 (mod L) whose boundary oinideswith this yle. Then we all this relative yle "a ombinatorial formula": its valueon a point in R2 n L is equal to the multipliity of this yle in the neighborhood ofthis point.If we have a more ompliated plane arrangement, then the most onvenient wayto extend an element of E1p;q to a losed yle in L0 is to do it step by step over our�ltration. Our starting element  2 E1p;q is represented by a yle with losed supportsin Fp n Fp�1. We take its �rst boundary d1(), whih is a yle in Fp�1 (mod Fp�2).Then we span it, i.e. onstrut a losed hain ~1 in Fp�1 n Fp�2 suh that �~1 = d1there. Then we take the boundary of  + ~1 in the spae Fp�2 n Fp�3 and span itthere by a hain ~2; et. The degeneration formula (2) ensures that all this sequeneof hoies an be aomplished. See [20℄, [9℄ for some preise algorithms of doing itin the ase of plane arrangements.1= semialgebrai distinguished by only linear equations and inequalities



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 9Spae RN Spae Kn of smooth maps R1 ! Rnwith a �xed behavior at 1Union of planes L = [Li � RN Disriminant subset � � KnSet of indies f1; : : : ; kg Chord spae B(R1 ; 2)A plane Li A subspae L(a; b), a; b 2 R1Disjoint union of hyperplanes Li Tautologial resolution F1� of �Simpliial resolution L0 of L Simpliial resolution � of �Subsets I � f1; : : : ; kg Combinatorial types of hord on�gurations Jwith odimLI = p with odimL(J) = pnA prism L0I A J-blok in �K�unneth isomorphism for Thom isomorphism for the �bration ofhomology of �L0I = ��(I)� LI pure J-bloks by spaes L(J 0)Homotopy splitting (2) Kontsevih's degeneration theoremTable 12.2. All the same for knots. The ase of knots (say, of long knots) is very similarto that of plane arrangements. A list of parallel notions is given in Table 1 (whoseleft part was explained in the previous subsetion, and the right-hand part will beexplained in the present one).So, instead of RN we onsider the aÆne spae Kn of all smooth maps R1 ! Rn o-iniding with a �xed linear embedding "at in�nity", and instead of L the disriminantspae � � Kn of all suh maps whih are not smooth embeddings.Of ourse, the spae Kn is in�nitedimensional, and formally we annot use theAlexander duality in it: the (�nitedimensional) ohomology lasses of the spae ofknots Kn n� should orrespond to "in�nitedimensional yles" in �, whose de�nitionrequires some e�ort. The strit de�nition of suh yles orresponding to �nite-typeohomology lasses was proposed in [14℄ and is as follows. We onsider a sequene of�nitedimensional approximating subspaes Kjn in Kn, alulate (some) ohomologylasses of Kjn n � dual to ertain yles in �, and then prove a stabilization theoremwhen j ! 1: It follows from the Weierstrass approximation theorem that thesestable oyles are well-de�ned ohomology lasses in Kn n�. A rigorous reader aneither read [14℄ or [16℄ for all justi�ations or to think of the spaes Kn as of suhapproximating spaes of very high but �nite dimension. Let us denote this virtualdimension of Kn by !:Again, � is the union of a family of subspaes of very simple nature. For any pairof points (a; b) in R1 , denote by L(a; b) the spae of all maps f 2 Kn suh that(3) f(a) = f(b) (if a 6= b ) or f 0(a) = 0 (if a = b):Suh spaes form a 2-parametri family parametrized by all points (a; b) of the spaeB(R1 ; 2) of all unordered olletions of two points in R1 : Sine [14℄ suh pairs are



10 V. A. VASSILIEVdepited by ars onneting the points a; b (alled hords in [2℄), so the spae B(R1 ; 2)will be alled here the hord spae. Its degenerated points (orresponding to pairsa = b) are depited by an asterisk at the point a.The tautologial resolution F1� of � is onstruted as a subspae of the diretprodut B(R1 ; 2) � Kn: this is the spae of pairs ((a; b); f) satisfying (3). It isthe spae of an (! � n)-dimensional vetor bundle over B(R1 ; 2): Therefore by theThom isomorphism we have �H�(F1�) ' �H��(!�n)(B(R1 ; 2)) � 0 : indeed, B(R1 ; 2) ishomeomorphi to the losed halfplane. There is obvious projetion F1� ! �; it is amap onto, and lose to generi points of � is a homeomorphism.Further, we insert simplies spanning preimages of nongeneri points of �. Aspreviously, we embed the spae B(R1 ; 2) generially and algebraially into a spaeRT of a huge dimension (T � !3). Then for any point f 2 � we mark all the points(a; b) 2 B(R1 ; 2) suh that L(a; b) 3 f; and denote by ~�(f) the onvex hull of imagesof all these points in RT :Of ourse, there exist points f 2 � having in�nitely many preimages. However theyform a subset of in�nite odimension in Kn, and we an ignore them by onsideringonly �nitedimensional approximations Kjn in general position with the strati�ationof �. Then all the sets ~�(f); f 2 Kjn; still will be the simplies with verties at theimages of all orresponding points (a; b) of the hord spae. The simpliial resolution� � RT � Kn is de�ned as the union of all simplies �(f) � ~�(f)� ffg.Again, � has a useful inreasing �ltration. Let I � B(R1 ; 2) be a �nite set of hords(a; b). The intersetion of orresponding planes L(a; b) is a subspae L(I) � Kn;whose odimension is a multiple of n. The proportionality oeÆient odimL(I)=nis alled the omplexity of I. Consider all the points (a; b) 2 B(R1 ; 2) suh thatL(a; b) � L(I); and denote by ~�(I) � RT the onvex hull of images of all thesepoints. (It is equal to the spae ~�(f) where f is a generi point of the spae L(I).)Set L0(I) = ~�(I)� L(I) � RT � Kn: Finally, de�ne the term Fp(�) of the �ltrationas the union of all simplies �(I) over all I of omplexity � p:De�nition 1. A ohomology lass of the spae of knots Kn n � is a �nite type lassof order p if it an be de�ned as the linking number with the diret image in � ofa yle (with losed support) lying in the term Fp of the standard �ltration of �.For any suh lass of order p and dimension d, its prinipal part is the lass of theorresponding yle in the group �H!�d�1(Fp n Fp�1).The important property of this �ltration is as follows: any its term Fp n Fp�1is the spae of an (! � pn)-dimensional aÆne bundle over some �nitedimensionalsemialgebrai base: the projetion of this bundle is indued by the obvious projetionRT � Kn ! RT : In partiular, the Thom isomorphism redues the Borel{Moorehomology group of this term to the homology group of loally �nite hains of this



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 11base (in the ase of odd n with oeÆients in some system of groups loally isomorphito Z, whih is onstant only for p = 1).These �nitedimensional bases, and hene also entire spaes Fp n Fp�1 of our �ltra-tion, admit an easy desription, in partiular their one-point ompati�ations havea natural struture of CW -omplexes. First let us desribe all the spaes L(I) ofomplexity exatly p.De�nition 2 (see [14℄). Let A is a unordered �nite olletion of naturals A =(a1; : : : ; a#A); aj � 2; and b any nonnegative integer. Then an (A; b)-on�guration inR1 is any olletion of distint a1 + � � �+ a#A points in R1 separated into groups ofardinalities a1; : : : ; a#A, plus a olletion of b distint points in R1 (some of whihan oinide with the points of the A-part). A map f : R1 ! Rn respets an (A; b)-on�guration J if it maps all points of any of groups of ardinality aj; j = 1; : : : ;#A;into one point (these points for di�erent groups may oinide), and f 0 = 0 at all pointsof the b-part of the on�guration. The spae of all maps f respeting a �xed (A; b)-on�guration J is denoted by L(J). Two (A; b)-on�gurations are equivalent if theyan be transformed one into the other by an orientation-preserving homeomorphismof R1 . The omplexity of an (A; b)-on�guration is the number P#Aj=1(aj � 1) + b:Obviously the odimension in Kn of any spae L(J) is equal to n times the om-plexity of J . The spae of all (A; b)-on�gurations of omplexity 1 is the hord spaeB(R1 ; 2). Any intersetion of �nitely many planes L(a; b), (a; b) 2 B(R1 ; 2); is aplane of form L(J) for some (A; b)-on�guration J . The orresponding simplex ~�(J)in RT has exatly P#Ai=1 �ai2 � + b verties. The J-blok �(J) in � is the union of allpairs (x; f) � RT � Kn; suh that x belongs to the simplex ~�(J 0) for some (A; b)-on�guration J 0 equivalent to J , and f respets this on�guration J 0. It belongs tothe term Fp of our �ltration, where p is the omplexity of J .The pure J-blok ��(J) is equal to �(J) n Fp�1. It is �bered over the spae of(A; b)-on�gurations J 0 equivalent to J , with �ber equal to ��(J)�L(J), where ��(J)is the union of several (nonmarginal in some sense) faes of ~�(J). The base of this�ber bundle is an open ell, thus the bundle is trivial, and we have a anonialdeomposition of ��(J) into open ells orresponding to all suh nonmarginal faes.The anonial notation of any suh ell is a generalized hord diagram, i.e. a �niteolletion of ars onneting some points of R1 and of asterisks marking some points,say as in the piture(4) � �� �� �Æ Æ ��� �presenting one of ells of a ertain equivalene lass of ((4; 3); 2)-on�gurations.Namely, for any suh ell related with a lass of equivalent (A; b)-on�gurations,we �x some on�guration J � R1 of this lass, mark by asterisks all points of its



12 V. A. VASSILIEVb-part ("singular points") and draw a hord between any its two points a; b suh thatthe point (a; b) 2 B(R1 ; 2) is a vertex of the fae of ~�(J) orresponding to this ell.The spae Fp n Fp�1 is the union of suh pure bloks ��(J) over (�nitely many)equivalene lasses of all (A; b)-on�gurations of omplexity exatly p. So we get alsothe deomposition of this spae into �nitely many open ells. This deomposition anbe extended to the struture of a CW -omplex on the one-point ompati�ation ofFp nFp�1. Its struture and inidene oeÆients are expliitly desribed in [14℄, [16℄,whih gives also an algorithm for alulating the term E1 of the spetral sequenegenerated by this �ltration and onverging to the group of all �nite-type ohomologylasses of the spae of knots. In partiular, if n = 3 then all J-bloks of omplexity pwhih (by dimensional reasons) an be valuable for the alulation of knot invariants,are only the bloks with (A; b) equal to ((2; : : : ; 2); 0) (hord diagrams), ((2; : : : ; 2); 1)(one-term relations, see [3℄, [2℄), and ((3; 2; : : : ; 2); 0) (any suh blok orresponds tothe totality of 4-term relations arising from the neighborhood of a triple point: thereare three suh relations, any two of whih are independent).Example 1. The term F1 onsists of exatly two ells, one of whih is the boundaryof the other:(5) � =� � � ;thus there are no ohomology lasses of order 1 of the spae of long knots. (Here andin the next example we assume some natural orientations of suh ells, see [14℄, [16℄.)Example 2. The term F2 n F1 onsists of the following ells: four ells of maximaldimension(6) � �� � ; � � � � , � �� � ; � �� �� �(only the �rst and the last of whih will be interesting for us), three ells forming theboundary of any of these two ells,(7) � �� � ; � �� � ; and � �� � ;and also six ells de�ned by maps with singular points (i.e. in whose notation theasterisks � partiipate):(8) � �� � �� � �� � �� � �� � �, , , , , .



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 13The boundary operator in this term F2 n F1 (i.e. the vertial di�erential d0 of thespetral sequene) ats as follows:
� =� =
� =� =
� �� � � � ��� + ����� � ������� (�1)n � ��+ ����� �� �� �Æ (�1)n � ��� + � �� � � ���� ���+������ ���� �� �� �� = � ��� == � �� �
� �� � (�1)n � � �+(�1)n � ��� ���
��� �

� = � ���� == � ��� �
� �� �� ���� �� ��� � (�1)n�1++

+����� :In partiular there is exatly one nontrivial group �Hi(F2 n F1) � E12;i�2, namely suhgroup with i = ! � (2n � 5) is isomorphi to Z and is generated by the sum of the�rst and the last ells in (6).Thus we obtain a proof of the �rst statement of Proposition 1. The group �H�(F3 nF2) of (possible) prinipal parts of third order ohomology lasses was alulated in[11℄ for odd n (another proof, not relying on the omputer's honesty, see in [18℄) andin [18℄ for even n. In both ases, there are exatly two nontrivial groups �Hi(F3nF2) 'E13;i�3, namely with i = ! � (3n � 8) and ! � (3n � 7); they both are isomorphito Z. By the dimensional reasons both these groups for any n � 3 oinide withorresponding groups E13;i�3, and their generators extend to well-de�ned ohomologylasses of spaes of long knots in Rn . By similar onsiderations (see e.g. [18℄) for



14 V. A. VASSILIEVn � 4 these generators are nontrivial and free. If n = 3 then for the �rst of theselasses the same follows from the fat that it oinides with the seond simple knotinvariant (alulated in [14℄) whose nontriviality is well known. The other lass isexatly the Teiblum{Turhin lass studied below; the fat that it also is nontrivialand free for n = 3 will follow from the proof of Corollary 1.Remark 1. It is often onvenient to replae formally our homologial spetral se-quene alulating �H�(�) by the "Alexander dual" ohomologial spetral sequeneEp;qr � Er�p;!�q�1:It lies in the seond quadrant in the wedge f(p; q)jp � 0; q + pn � 0g and onvergesto some subgroup of the group H�(Kn n �) (if n > 3 then to entire this group).Remark 2. There are beautiful algebrai strutures on the above-desribed spetralsequene, and hene on its limit �ltered group H�(Kn n �) and the orrespondingadjoint graded group, see [12℄.All of this theory an be extended almost literally to the ohomology of the spaeof ompat knots S1 ,! Rn .2 However, in this ase the hord spae B(S1; 2) is nottopologially trivial (it is a losed M�obius band); also the spaes of equivalent (A; b)-on�gurations are not the ells. To get the ell deomposition of all spaes Fp n Fp�1we need to mark one point in S1 ("the origin") and all two on�gurations equivalentif they are transformed one into the other by a homeomorphism of S1 preserving theorigin and the orientation.The diret alulation of the spetral sequene and obtaining the ombinatorialformulas for the �nite-type ohomology lasses of spaes of knots is formally thesame proess as in the ase of plane arrangements. However, the exat hoie of thespanning hains in all the onseutive terms of the �ltration and in entire Kn dependsvery muh of the features of the knot spae.Remark 3. There is another, sometimes more onvenient onstrution of the res-olution of disriminant sets, namely the onial resolutions based on the notion ofa ontinuous order omplex of a topologized partially ordered set, see e.g. [19℄. Inpartiular it allows us to resolve the points of � with in�nitely many preimages inthe tautologial resolution spae. However, for the alulations in the present workit will be enough to use the "naive" simpliial resolution desribed above.2.3. Finite type knot invariants and Polyak-Viro ombinatorial formulas.Suppose that n = 3 and we are interested in the knot invariants, i.e. the 0-dimensionalohomology lasses of Kn n �. For any suh lass of �nite �ltration p, its prinipalpart in Fp n Fp�1 is a linear ombination of ells depited by p-hord diagrams (i.e.olletions of p hords with distint endpoints) and ~p-on�gurations, i.e. olletions2As well as of ompat links, i.e. of embeddings of a disjoint union of several irles into Rn ; weshall not disuss here the latter theory



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 15of p�2 hords with di�erent endpoints and one triple of points joined by three hords.E.g., among all diagrams in (4){(8) only the left piture in (5) and three left pituresin (6) are hord diagrams, and only the last piture in (6) is a ~2-on�guration. TheoeÆients with whih all these ells an enter the linear ombination satisfy the ho-mologial ondition. In partiular the oeÆients at ~p-on�gurations are determinedby these at p-hord diagrams, and any admissible linear ombination is haraterizeduniquely only by the olletion of latter oeÆients, whih is alled a weight system.The elementary haraterization of these invariants is as follows (see e.g. x0.2 in[14℄). Let us onsider any immersion R1 ! R3 with exatly k transverse sel�nterse-tion points. We an resolve any of these points in two loally distint ways to geta knot without intersetions. One of these two loal resolutions an be invariantlyde�ned as a positive, and the other as the negative one. The k-th index of a knotinvariant at our singular immersion is equal to the alternated sum of its values at all2k knots obtained by all di�erent possible resolutions of double points: the value at aknot is ounted with sign 1 or �1 depending on the parity of the number of positiveloal resolutions. A knot invariant is of �ltration p if and only if all its indies at allimmersions with k > p sel�ntersetions are equal to 0. The same de�nition an beapplied to de�ne the �ltration of invariants of ompat knots S1 ! R3 . On the otherhand, it is easy to see that there is a natural one-to-one orrespondene between on-neted omponents of spaes of long and ompat knots, in partiular the theories oftheir invariants naturally oinide.Some ombinatorial formulas for the simplest �nite-type knot invariants | of or-ders 2 and 3 | were found in [7℄. Another, more onvenient formulas were introduedby M. Polyak and O. Viro in [10℄. These formulas for long knots look as the linearombinations of hord diagrams with oriented hords. E.g. the formula = >should be read as follows. Consider a generi long knot f : R1 ! R3 . A representa-tion of the above piture in this knot is any olletion of points a < b <  < d � R1suh that f(a) lies below f() and f(d) lies below f(b). The value of this pitureon our knot is equal to the number of its representations (ounted with appropriatesigns). An immediate alulation shows that this number is a knot invariant of order2. In the ase of ompat knots, there are Polyak-Viro formulas of two types: ab-solute and puntured ones. They also look as oriented hord diagrams, but withendpoints in the oriented irle S1 instead of R1 ; moreover, a puntured Polyak-Virodiagram ontains a point in S1 not oiniding with the endpoints of hords. E.g.a representation of the diagram ������I��� in a ompat knot is any olletion of fourpoints in S1 with yli order a < b <  < d < a, satisfying the same onditionsas previously. A representation of the puntured diagram ������I���r is suh a olletion



16 V. A. VASSILIEVof points in the parametrized irle, whose yli oordinates satisfy a more strongondition 0 < a < b <  < d < 2�; the origin 0 = 2� 2 S1 orresponds to the markedpoint in the diagram. It is easy to see that the number of representations of the lastpuntured diagram (ounted with natural signs) is a knot invariant, and the similarnumber for the absolute diagram is not.However, some of �nite type knot invariants an be realized by absolute dia-grams: in partiular the unique invariant of order 3 an be given by the diagram��������6��+QQs6-�12 +13 , see [10℄.M. Goussarov has proved that any �nite-type knot invariant of long knots an berepresented by a formula of Polyak{Viro type, see [6℄.Similar (but more ompliated) formulas appear naturally in the alulation ofhigherdimensional ohomology lasses of spaes of knots, see the next setions.Remark 4. The homologial alulations disussed below provide numerous possi-bilities to make a mistake: to miss some omponent of the boundary, to alulatewrongly some orientation, et. Fortunately, we always an hek our alulations. Ifwe have alulated some boundary operator and suspet that it is not orret, justalulate the boundary of this boundary, and try to understand why it is not equalto zero! My experiene says that no mistakes survive this examination.3. Proof of Theorem 13.1. Prinipal part of the oyle. In the original alulation [11℄, the prinipalpart of the Teiblum-Turhin oyle in the term F3 n F2 of the natural �ltration ofthe resolved disriminant was found as a linear ombination of some 8 ells of theanonial ell deomposition, see e.g. [18℄, [16℄.This expression an be simpli�ed, espeially if n is even.Proposition 6. For any n � 3, the group of order 3 ohomology lasses of dimension3n� 8 of the spae of long knots R1 ! Rn is yli; for n � 3 it is free Abelian.If n is even, then this group is generated by the sum of only two ells:(9) � �� �� �Æ +Æ � �� �TT = :For odd n it is generated by the linear ombination(10) Æ � �� �� �+ � �� �� �Æ + Æ � �� �+ Æ � �� �� � �� �Æ :The �rst statement of this proposition for odd n was essentially proved by Teiblumand Turhin [11℄; the justi�ation of entire statement see in x6 of [18℄ or xV.8.8 of[16℄.



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 17Sine we onsider our lass mod 2, the stabilization formula (1) allows us to useany of expressions (9), (10) in the ase of any n. We shall use the shorter "even"version (9).All further alulations in this setion are mod 2 only.3.2. On the pitures. The system of notation in this work is an extension of thatused in x 2 for the ells of the natural simpliial resolution of the disriminant. Anyof our pitures onsists of a horizontal segment (the Wilson loop symbolyzing the lineR1), several asterisks plaed on it, and several ars ("hords") onneting some itspoints (these data determine suh a ell), plus some additional furniture onsisting ofbroken lines (zigzags) and subsripts, whih distinguish ertain subvarieties in theseells.For instane, the piture � �� �HH�� means, �rst of all, that we are in the ell� �� � of the term F2 n F1. This ell an be onsidered as the spae of all triples(�; t; f) where � is some quadruple of points a < b <  < d in R1 , f is a smooth mapR1 ! Rn suh that f(a) = f(); f(b) = f(d), and t is a point of the segment ~�(J);J = ((a; ); (b; d)), partiipating in the onstrution of the resolution: its endpointsorrespond formally to the pairs of points (a; ) and (b; d) glued together by f . Theadditional zigzag in the piture � �� �HH�� distinguishes the subvariety in this ell,onsisting of suh triples (�; t; f) that there exists one point � 2 R1 more, b < � < ,suh that f(�) = f(d). By de�nition, this subvariety is idential with the one enodedby the piture � �� ���HH .The piture � �� �HH��� (respetively, � �� �HHj�� ) will denote almost thesame, but with the ondition f(�) = f(d) replaed by the ondition that f(�) hasthe same projetion to Rn�1 as f(d) = f(b) and lies below (respetively, above) f(d)in the line of all points with the same projetion.The subsript of type ���AAK1 2 under a piture denotes the ondition that the"vertial" diretion in Rn lies in the angle between the tangent diretions f 0(a1)and f 0(a2), where a1 and a2 are the �rst and the seond from the left points of R1partiipating atively in the piture. Similarly, the subsript ��1PPq12 (respetively,AAU��� 21 ) says that the vertial diretion lies in the angle between the vetors �f 0(a1)and f 0(a2) (respetively, between the vetors �f 0(a1) and �f 0(a2)). The subsript-� r1 2 means that the tangent diretions f 0(a1) and f 0(a2) are opposite in Rn . Thenotation of all these types appears only if the ondition f(a1) = f(a2) is satis�ed(and an be seen from the hords and zigzags on the piture).The subsript HHj��*-21 means that the distinguished diretion "to the right" in Rn�1lies between the projetions of suh tangents f 0(a1); f 0(a2) to Rn�1 (i.e. this diretionis the linear ombination of these projetions with nonnegative oeÆients). Thesubsript 1 ! 2 means that the projetions of tangents f 0(a1); f 0(a2) to Rn�1 have



18 V. A. VASSILIEVopposite diretions. The notation of last two types an appear only if the projetionsof orresponding points f(a1); f(a2) oinide in Rn�1 .The sum of varieties distinguished by onditions of types ���AAK1 2 and AAU��� 21 inone and the same ell is equal to the variety of type 1 ! 2 ; "of type" here meansthat some other two numbers instead of 1 and 2 an stay in all three pitures. Thisidentity is not symmetri: indeed, the variety of type 1 ! 2 an be well de�nedeven when the former two varieties have no sense.The subsript 2 l (respetively, 2 ", respetively, 2 #) means that the tangent vetorf 0(a2) is vertial (respetively, vertial direted up, respetively, vertial direteddown). The subsript of type 2 7! means that the projetion of the tangent f 0(a2)to Rn�1 is direted "to the right".Abbreviation f1 replaes the omposition pÆf : R1 ! Rn�1 . Finally, a olletion ofvetors in a framebox means that these vetors are linearly dependent. For instanethe subsript f 01(1); f 001 (2); 7! means that some three vetors in Rn�1 , namely theprojetion of f 0(a1), the projetion of f 00(a2), and the diretion "to the right", spana subspae of dimension � 2. Several more spei� abbreviations will be explainedlater, lose to their �rst use.The boundary of the variety distinguished in any ell by the ondition ���AAK1 2(respetively, AAU��� 21 ) is equal to the sum of varieties distinguished by onditions-� r1 2 , 1 " and 2 " (respetively, -� r1 2 , 1 # and 2 #) plus maybe somethingin the boundary of the ell. Similarly, the boundary of the variety distinguished bythe ondition HHj��*-21 is equal (modulo the boundary of the ell) to the sum of varietiesdistinguished in the same ell by onditions 1 ! 2 , 1 7!, and 2 7!. The boundaryof the ondition 2 7! is equal to 2 l plus something in smaller ells.3.3. The �rst di�erential. Formula (9) de�nes a relative yle in the term F3 ofour �ltration modulo F2: In this subsetion we alulate its boundary in the termF2nF1; and span it by some hain with losed supports in this term (i.e. we representit as the boundary of suh a hain).Proposition 7. The boundary of the yle (9) in F2 n F1 is equal to the hain(11) � �� �� ���HH� �� �� �-�1 2r� ���� �� �HH��� �� �HH A B C D E+ + + +�� AA�� :(Namely, the boundary of the �rst term of (9) onsists of four hains A, B, C and Din (11), and the boundary of the seond is equal to the �fth hain E.)The unique nontrivial term of this formula is the 4th one: it appears when the �rstpoint of the 5-on�guration partiipating in the �rst term of (9) tends to the seond,and simultaneously the fourth point tends to the third. �



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 19Exerise: to hek that the hain (11) atually is a yle in F2 n F1.Now, let us span this yle by a hain in the term F2 n F1. The ellular strutureof this term was desribed in Example 2 of setion 2.First we span the omponents D and E of (11) inside the ell � �� �� � , i.e. weonstrut the homology between their sum and some hain in the boundary of thisell. It is natural to span a hain with ondition of type -� r1 2 by a similar hainwith ondition of type ���AAK1 2 , and a hain having zigzag without arrows by a similarhain with an arrow added at one of endpoints of the zigzag. The hains obtainedin this way from the ones enoded by parts D and E of (11) are indiated in the leftparts of the next two equations (12) and (13) respetively.In the right-hand parts of these formulas, as well as in all forthoming expressionsfor boundary operators in this work, we �rst ount the omponents of the boundaryde�ned by the degenerations of the subvarieties in the orresponding ells, distin-guished by arrowed zigzags and subsripts. Then we ount the omponents de�nedby the limit positions of these varieties when the ell itself degenerates beause ofthe ollision of some points forming its underlying J-on�guration in R1 . The latterdegenerations appear in the lexiographi order: �rst by the number of olliding pairsof points in R1 , and then by their positions in R1 .
(12)

� � �� �� ������I 12 = � �� �� � � �� �� � � �� �� �++1 " 2 " -� r 12 +� �� ������I 12 � �� ������I 12 � �� ������I 12+++ ;
(13) � � �� �� ���HHY � �� �� � � �� �� � � �� �� �++= 1 # 2 " ��HH +� �� ���HHY � �� ���HHY � �� � ��HHY+++ :Proposition 8. The equalities (12), (13) are orret, i.e. the algebrai boundaries(mod 2) in F2 n F1 of the varieties indiated in their left parts are equal to the sumsof varieties indiated in their right-hand parts. �In (13) �rst two summands are degenerations of the variety de�ned by the zigzagwhen its arrowed endpoint tends to one of boundaries of the orresponding segment,and the third summand belongs to its boundary as the equality of type �(x) = �(y)de�nes a omponent of the boundary of the set de�ned by the inequality �(x) � �(y).The last three summands in both (12) and (13) belong to the boundary (7) of theell � �� �� � .



20 V. A. VASSILIEVThe sum of all varieties indiated in right-hand parts of (12), (13) onsists of partD + E of (11), some hain in the boundary of the ell � �� �� � , and the �rsthain in the right-hand part of the equation(14) � �� �� � � �� �� �1 l=� � �� � � �� � � �� �+ ++ 1 7!1 7!1 7!1 7! :In other words, the sum of three hains in the left parts of equations (12), (13) and(14) realizes homology between the sum of hains D and E and some hain in theboundary of the ell � �� �� � .Now we span the summands B and C of (11) inside the open ell � �� � . Weneed to �nd varieties in this ell, whose boundaries inlude these summands. Theobvious andidates for this are the hains shown in the left parts of equations (15)and (16) respetively.
(15)

� � �� �= � �� �
� �� � � �� �+++ PPP��> 2 #+ � �� � + � �� �+ � �� � SSo ��712ZZ��> ZZ�� ZZ��=ZZ��>

(16)
� � �� �= � �� �+ � �� �HH��> + � �� �2 " +����AA��� + ����

� JĴ12+ � ���AA��� + � ���SS��/ SS��+ PPq��131Again, all summands in lower rows of these equalities belong to the boundary ofthe ell � �� � .Proposition 9. The equalities (15), (16) are orret, i.e. the algebrai (mod 2)boundaries in F2 n F1 of the varieties indiated in their left parts are equal to thesums of varieties indiated in their right-hand parts. �In partiular we get that the boundary of the sum of these two left-side varietiesis equal to the sum of varieties denoted in (11) by B and C, plus some hain in theboundary of the ell � �� � , plus the variety distinguished in this ell by theadditional ondition 2 l. The last variety is a part of the boundary of the similarset distinguished by the ondition 2 7!. Entire boundary of this set in F2 n F1 is



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 21expressed by the formula(17) 2 7! 2 l 1 7! 2 7! 2 7!� ����= ����+ ��� �+ Æ��+ � ���+ ��*�f 0001 (1)=f 001 (1) �� 7! =f 001 (1):The subsript under the last term of (17) means, that the projetions of seond andthird derivatives of f at the point a1 into Rn�1 lie in the same 2-plane as the diretion"to the right", and two frames in this 2-plane obtained by adding to the projetionof f 00(a1) either the projetion of f 000(a1) or the diretion "to the right" have oppositeorientations. This term ours when both endpoints a1; a3 of the "lower" ar in theleft piture of (17) tend from di�erent sides to the �rst endpoint a2 of the "upper"ar.Finally we get that the yle d1(TT ) shown in (11) is homologous in F2 n F1 toa hain lying in the union of ells of nonmaximal dimensions listed in (7), (8); thishomology is provided by the sum of six varieties indiated in the left parts of equalities(12), (13), (14), (15), (16), and (17).Namely, this yle homologous to d1(TT ) is as follows. In the ell � �� � itis zero, in the ell � �� � it is equal to the hain(18) ����+ ����+ ����+ ����2 7!

� JĴ121 7!JJ℄ 

�1 2 ;in the ell � �� � it is equal to the hain
(19)

� �� �+ � �� �+ � �� �+ � �� �+� �� �� �� �+AAK ��� 21 1 7! 2 7!��AAK""QQ+ ��1PPq31 ;in the 4th ell of (8) it is equal to(20) � �*�f 0001 (1)=f 001 (1) �� 7! =f 001 (1) ;and its intersetions with all other ells are empty.The sum of the �rst and the third terms in (18) is equal to the variety denoted bythe subsript 1 ! 2 . To kill it (and something else) we onsider the equality(21) ������*HHj-12� =������������+++ � �* + � �f 0001 (1)=f 001 (1) �� 7! =f 001 (1) -���*1HHYHHY2-�1 2 1 7! 2 7! * :



22 V. A. VASSILIEVThe variety in its left part onsists of suh points of the ell � �� � that thediretion "to the right" in Rn�1 lies between the projetions of f 0(a1) and f 0(a2) toRn�1 . The sum of three �rst terms in the right-hand part of (21) is equal to entire(18). The subsript under the fourth term in (21) means almost the same as in (17)or (20), but now the two frames ompared there should de�ne equal orientations.Finally, the last term in (21) belongs to the 5th ell in (8). This ell an beonsidered as the spae of triples (�; t; f) where � is a pair of points (a < b) in R1 ,f a map R1 ! Rn suh that f(a) = f(b); f 0(b) = 0, and t is a point of a segmentpartiipating in the onstrution of the simpliial resolution (its endpoints formallyorrespond to the above two linear onditions). The subsript under the piture ofthis ell in (21) denotes a subvariety in the spae of suh triples, de�ned by thefollowing additional ondition: the diretion "to the right" in Rn�1 belongs to theangle between projetions of vetors f 0(a) and �f 00(b). Here the number of arrowslabeled by 2 shows us the order of the derivative at the seond point b partiipatingin this ondition, and the reversed diretion of these arrows indiates that we needto take this derivative with the opposite sign.Now we span the hain (19) inside the ell � �� � . First of all we kill the5th piture in (19) by the variety shown in the left part of the next equality:
(22) � � �� �HHH��� � �� �HHH��= + � �� �QQ��� + � �� �+� �� �+ � �� � � �� �+  ���HHH ���* ��� AAU 12 PPq��131 ;thus reduing it to the sum of other �ve pitures in the right part of this equality.The last piture in the upper row of (22) and the �rst piture in the lower row denoteone and the same set and annihilate. The �rst term in (19) together with the seondfrom the end term in (22) form a subvariety in the same ell de�ned by the onditionof the type 1 ! 2 . It is natural to kill it by the left part of the following equation:(23) � � �� � � �� � � �� � � �� �+++=��*HHj-12 1 7! 2 7!-�1 2 � ��-���*1HHYHHY2 :Summing up all terms in right-hand parts of equations (21){(23) and subtrating thehains (18), (19), (20), we annihilate almost all of their summands exept for theterm (20) and the seond from the right term of (21). The sum of these two terms isequal to the right-hand part of the identity(24) � � �� � = � ��f 01(1); f 01(2); 7! f 001 (1); f 0001 (1); 7! :



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 23The subsript under this right-hand part means that the projetions of f 00(a1) andf 000(a1) to Rn�1 and the diretion "to the right" should be linearly dependent; thesubsript in the left part says the same about projetions of vetors f 0(a1) and f 0(a2).If n = 3 then both these subsripts mean nothing.Summarizing, we get that for the desired hain spanning (11) in F2 n F1 we antake the sum of varieties shown in left parts of equalities (12){(17) and (21){(24), i.e.the hain
(25)

� �� �� ����AAK2 1 + � �� �� �+ � �� �� �+��AAK 1 7! � �� �CC��� + ++ � �� �2 7! + � �� ���*HHj-21 + � ���QQ��3 + � �����*HHj-21
� �� �""ZZ~� �� �+f 01(1); f 01(2); 7!:3.4. The seond di�erential and its homology to zero. Now let us onsiderthe boundary of the hain (25) in the term F1 of the �ltration. This term onsistsof two ells, one of whih is haraterized by a single hord and the seond by oneasterisk; see (5). It is easy to see that the �rst three summands in (25) do not haveany homologial boundary in these ells, and the next seven have two omponentsof the boundary eah, and these pairs of omponents are shown onseutively in thenext formula (26):

(26)

� �QQ��\\��/ + � ����ll��JJ℄ + � �HHH,,AA��� + � ����ll����� +
� �HHH,,2 7! + � ����ll2 7! + ��������*HHj- + ����\\��*HHj- +

+ + � �ll,, + ��HHHH�����*HHj- ��*HHj-
12 1212 12�� ���� �QQ�� �� ������ +� �+ Æ HH�� ���HHH���

f 01(1); f 01(2); 7! f 01(1); f 01(2); 7!+
+
+

:The last pitures in the seond and the third lines of this formula denote one andthe same variety and annihilate, so we get only the sum of remaining twelve varieties.



24 V. A. VASSILIEVNow let us span this sum by a hain in F1. As usual, any time as we have avariety haraterized by a piture with a zigzag (without arrows) we represent it asa omponent of the boundary of a variety, whose piture is obtained from this oneby adding an arrow at one of the ends of the zigzag. Performing this systematially,we �nd some ten varieties of odimension 1 in the greater ell of F1. These varietiesare enoded in the left parts of the following equations (27){(36), whose right-handparts express the boundaries of these varieties.
(27)

� � �����	TT��	 = � �����TT��	 + � �����	\\�� + � �����	TT��	 ++ � �SS��	����R + � �TT��	TT��	 +� �����	 2 " + � �SS��/ AAU���1 2
(28)

� � ���?��SSw = � �����	TT�� + � �TT��SSw + � ���?����R ++ ������	SS��/+ ������	 2 # + � ���?��? + ��LL��	AAK ���21 + � �TT��	 ��*HHj12
(29)

� � �ll��= 2 7! = � �bbb## 2 7! + � �ll��= 2 l + � �1 7! ++ � �\\��	2 7! + � �����	2 7! + � �1 7! + � HHH����f 0001 (1)=f 001 (1) �� 7! =f 001 (1)��1PPq12
HHH����

(30)
� ��*HHj-21 = ������������	 + ����	�� +��*HHj-21 1 7!+

����	�� +2 7!������	1 ! 2 + � �2 "+ HHH�����f 0001 (1)=f 001 (1) �� 7! =f 001 (1) -���1PPiPPi21
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(31)
� � �ll��	��*HHj-12 = � �ll��	1 7! � �ll��	2 7! ++ � �ll��	1 ! 2+ � �ll��HHj��*12 - � �2 "+

+ +
+ � �1 # f 0001 (1)=f 001 (1) ��7! =f 001 (1)-���1PPiPPi21

(32)
� � ��� ��R��AAU = � ��� ��AAU �� + � ��� ��R��SS + � �����R LL��	 ++ ��,,��R2 # + ��,,��R ��	 + ������R \\? + � �����R+� �TT��	1 ! 2 ��1PPq31

(33)
� � �����R2 7! = � �����2 7! + � �����R2 l + � �����R1 7! +� �1 7! ��1PPq21+ + � �1 # f 0001 (1)=f 001 (1) ��7! =f 001 (1)(34) � ��,,��R��6 = ����6,,ll + ����LL,,��R + ������I,,��R + ��,,��R2 "

(35) � � �= � �QQ�� + � �1 # � �2 "+f 001 (1); f 0001 (1); 7! f 001 (1); f 0001 (1); 7!f 01(1); f 01(2); 7!f 01(1); f 01(2); 7!QQ��3
(36) � ������	 = HHH�����+���� + � �2 "��f 01(1); f 01(2); 7! f 001 (1); f 0001 (1); 7!f 01(1); f 01(2); 7! f 01(1); f 001 (2); 7!



26 V. A. VASSILIEVSumming up the right-hand parts of these equations, we get the following state-ment.Proposition 10. The yle d2(TT ) � F1 presented by the linear ombination (26)is equal to the boundary (mod 2) of the sum of ten varieties shown in the left partsof equations (27){(36).In this summation we use the following relations. Let us denote by (a;b) the b-thsummand in the right-hand part of the equation (a). Then (27;6) + (28;5) = (29;2);(27;7) + (28;7) = (30;4); (27;5) + (28;6) = (32;3); (34;3) + (32;6) = (32;5); (34;4)+ (32;4) = (33;2).
3.5. The third di�erential. Ten varieties desribed by left parts of equations (27){(36) form a hain in the term F1 of the resolved disriminant, i.e. in the tautologialresolution of this disriminant, see x2.Finally, we onsider the image of this hain in the disriminant itself. The imageof any of ten omponents of this image is a subvariety in the spae Kn of mapsR1 ! Rn , distinguished by onditions, whose notation is obtained from the notationof the orresponding variety in F1 by replaing its unique hord by a zigzag withthe same endpoints. It remains to span the sum of these varieties by a hain in thespae Kn. Proeeding as before, we �nd �ve varieties indiated in the left parts ofthe following identities (37){(41).

(37)
� ZZZ���=JJ

� = ZZZ���=JJ

� ZZZ���=HHHH����*JJ

� + ++ + JJ��	 + 2 "+ JJ��	 JJ��	 + HHHH ����*JJ��	JJ��	 +����	�� ���

����	�� ����� ��� ZZZ��� JJ

�� ���� ��� �� ���
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(38)
� +

++
HHHH����* ZZZ���=����� = ZZZ���=����� HHHH����* ZZZ���= ++ZZZ����* ZZZ����� 2 #����	JJ�������HHHj++ HHHH����*�����+ �� ��� ����	���AAU + �� �������	QQ��� ����	QQQ���1 ! 2

�� �� �� �� ����

(39) + + + ���QQQs��SSo2 7!��SSw SS��/2 7!SS��7 QQQ���+ 1 7!
� QQQ���+QQQ���32 7! QQQ���+QQQ���2 7! QQQ���QQQ���32 7! QQQ���+QQQ���3= + + +2 l+ HHH����1 # �f 0001 (1)=f 001 (1) ��7! =f 001 (1)

(40)
� ��*HHj-21 HHH��������� ��*HHj-21 HHH����� ��*HHj-21 HHH������ HHH���������= + + +1 7!�����HHH���������+ +2 7! HHH��������� +� - 21 HHH����1 # f 0001 (1)=f 001 (1) ��7! =f 001 (1)

(41) � HHH��������� HHH����� HHH������ HHH����++��� �� 1 #f 01(1); f 01(2); 7! f 01(1); f 01(2); 7! f 01(1); f 01(2); 7! f 001 (1); f 0001 (2); 7!=It is easy to hek that the homologial sum of the right-hand parts of theseidentities is equal to the sum of our ten disriminant varieties obtained from leftparts of equalities (27){(36). (We use the following relations: (37;5) + (38;5) =(39;3); (39;6) + (40;4) = (39;5); (39;4) + (40;6) = (41,3); (37;4) + (37;6) + (37;7)+ (38;4) + (38;6) + (38;7) = 0.)



28 V. A. VASSILIEVTherefore the sum of the �ve varieties indiated in left parts of equalities (37){(41)is the desired relative yle in Kn (mod �).The sum of the �rst and the seond of these �ve varieties (respetively, the thirdvariety, respetively, the di�erene of the �fth and the fourth varieties) is exatly thevariety indiated in item a) (respetively, b), respetively, )) of Theorem 1, whih isthus ompletely proved.3.6. Problems. 1. Algorithmization. To write a omputer algorithm doing allthe same for any other �nite-type ohomology lass of the spae of knots. Let usonsider any homology lass  of the disriminant of the spae of knots, havingsome �nite �ltration ("order") p and presented by its "prinipal part", i.e. by theorresponding homology lass in the term Fp n Fp�1 of the resolved disriminant.This lass always is desribed by some linear ombination of pitures (generalizedhord diagrams) as in (9), (10), see x 2. To get the ombinatorial desription of aohomology lass with this prinipal part, we need to alulate all the steps of thespetral sequene starting from this part. To do it, on any step we need to �nd thehains spanning the onseutive boundaries dr() � Fp�r n Fp�r�1. Above we haveused some obvious rules: if a piee of our yle dr() is desribed by a piture like in(11){(40), then it is natural to kill it by a piee of the spanning hain, desribed byalmost the same piture, only replaing some one zigzag without arrows by the samezigzag with arrow at one its end, or replaing some ondition of type -� r1 2 bythe ondition of type ���AAK1 2 , or replaing some ondition 1 ! 2 by the onditionHHj��*-21 , et. But how to deide, whih of these fragments (and for whih piee of theyle) to replae �rst? At whih endpoint to put the arrow? Is it possible to do italways in suh a way that all the other omponents of the boundary of this spanningvariety would be in some sense "of lesser omplexity" than the killed one, so that ouralgorithm onverges indutively? Whih other subvarieties in the ells of Fp n Fp�1an our in the proess of performing this algorithm ? What are the formal rulesfor alulating their boundaries ?I presume that the main �ltering degree should be the number of points in R1partiipating in the de�nition of the subvariety, and the orientation of arrows is notimportant: say, the algorithm will work if we orient all of them from the right to theleft (although, of ourse, other hoie an provide somewhat easier formulas).2. Orientable ase.To do all the same for homology with integer oeÆients, i.e. taking into aountorientations of our varieties. In this problem, the answers for odd and even n will bedi�erent: already the hain (9) is a Z-yle in F3 n F2 only for even n. If n is even,is it orret, that all the alulations of x 3 remain valid after imposing appropriatesigns before the pitures ?
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3.7. Proof of Proposition 2. First we speify a loop in the spae of long knots asin this Proposition. We an assume that the standard embedding R1 ! R3 (withwhih all long knots should oinide lose to the in�nity) lies in the plane R2 andhas angle �=4 with the hosen diretion "to the right". Let us onsider the standardlong trefoil as shown in Fig. 2.Namely, we assume that lose to all rossing points the projetions of tangentdiretions to R2 are separated from the diretion "to the right" or "to the left":for ertainty, let us make the angles between the diretion "to the right" and theseprojeted tangent diretions at onseutive 6 points to be equal to �=4, 3�=10, ��=4,3�=4, 2�=10, and �=4 respetively.We all this knot a "large" one, and tie a very small homotheti knot on its initialsegment indiated by a tiny square in Fig. 2. Then we shrink very muh the largeknot in the "vertial" diretion (orthogonal to the plane of our piture) so that itbeomes almost at and its derivative almost horizontal, not hanging the small knot.Then we move this small knot along the large one in suh a way as if it would befrozen in a small hard bead put on this large knot. (On the same Fig. 2 we showby the thik lines the hannel of the bead; in this ase all the piture should beonsidered as that of the small homotheti knot. In partiular all the points of thisknot where the diretion of its derivative is suÆiently far from the standard one, areinside the bead.)



30 V. A. VASSILIEVMore preisely, we assoiate with this bead a orthonormal frame in R3 whose �rstvetor in the initial instant is vertial (i.e. orthogonal to the plane of the piture)and the seond vetor is direted along the hannel.Lemma 1. Suppose that a) the ratio of the diameter of the hannel to its lengthis equal to a suÆiently small number ", b) the oeÆient of the attening of thelarge knot in the vertial diretion is of order "2, so that the absolute value of the"vertial" part of the derivative of the large knot shown in Fig. 2 is nowhere greaterthan "2 times the length of its "horizontal" part, and ) the size of the bead (i.e. thehomothety oeÆient of two knots) is equal to "3.Then we an move our bead along the entire large knot in suh a way thatA) the �rst vetor of its assoiated frame remains vertial all the time, andB) there is a smooth one-parametri family of long knots in R3 suh that at anyinstanti) they oinide with the large knot everywhere outside the onvex hull of the bead,ii) their intersetion with the bead itself remains �xed and is as shown in Fig. 2,iii) in all the points of the knot inside the hannel of the bead, the angle betweenthe derivative of the knot and the diretion of the hannel is less than �=4. �The �rst and last instants of this one-parameter family of knots obviously an bejoined by a homotopy not hanging the topology of the knot diagram, and we get alosed loop in the spae of knots. Now let us alulate the intersetion number ofthis loop with the hain desribed in Theorem 1.This loop an interset the varieties indiated in statements a) and ) of thisTheorem only when triple intersetions of the projetion our. This an happenonly if one of rossing points of the smaller knot moving along some branh of thelarge knot passes above or below the other its branh: in total 18 suspiious instants.These instants should be ounted with multipliities. In the ase of variety desribedin statement a) the multipliity is equal (mod 2) to the number of other rossing pointsof the omposite knot forming together with this triple point a on�guration satisfyingall other onditions of this statement; for variety desribed in ) the multipliity isequal to 0 or 1 depending on the ondition on the tangent frame.It is easy to alulate that the desired on�gurations for the variety a) exist onlywhen our small knot passes the �rst time (i.e. along the lower branh) the thirdrossing point of the large knot: moreover, all three instants when one of rossingpoints of the small knot pass this point have multipliity 1. Therefore the totalnumber of intersetions of our path with variety a) is equal to 3. Similarly, we meet thevariety ) only one, when our small knot (more preisely, its seond rossing point)passes the �rst time the �rst rossing point of the large knot. So, the intersetionnumber with variety ) is equal to 1.The on�gurations of type b) an appear by two reasons. First, when the smallknot passes a rossing point of the large one (and namely an underrossing) then all



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 31its points go under the other branh of the large knot; at some instant this happenswith the point with the distinguished tangent diretion. Again, any suh instantshould be ounted with multipliities depending on the order of other rossing pointsof the omposite knot. It is easy to alulate that only one this multipliity anbe not equal to zero. Namely, when our small knot underrosses the third rossingpoint, then at some instant this situation appears with multipliity 2. Further, whenour small knot moves and rotates together with the derivative of the large one, someof tangent lines at its own rossing points an instantly beome direted "to theright". (Namely, only the tangent line at the underrossing branh of the �rst orthird rossing point of the small knot is interesting for us.) There are exatly twopoints of the large knot at whih it happens: in Fig. 2 they are indiated by smallirles. The multipliity of the "lower" (in this piture) point is equal to 1, and themultipliity of the "upper" one is equal to 0.Finally, the total number of intersetion points of our path with the variety indi-ated in Theorem 1 is equal to 3 + 1 + 2 + 1 = 7, and proposition 2 is ompletelyproved. 4. Comments on and proof of Theorem 2Four statements A, B, C, D of this theorem are disussed in orresponding partsof this setion.A. The variety in Kn given by the ondition f(0) = f(�) is a vetor subspae ofodimension n: It is equal to the boundary of the variety A desribed in statement Aof Theorem 2. The map Kn ! Rn�1 ; sending any urve f to the vetor f1(�)�f1(0);de�nes an isomorphism between Rn�1 and the normal bundle of A, in partiularindues a oorientation of A from any orientation of Rn�1 . Thus for any integral(n � 1)-dimensional yle in Kn n � its intersetion index with A is well de�nedand is equal to its linking number with the subspae ff jf(0) = f(�)g. It followsfrom alulations in [17℄, [16℄, [18℄ that suh integral yles exist only if n is even.For instane, let S2k�1 be the unit sphere, and onsider all the �bers of the Hopfbundle S2k�1 ! C Pk�1 supplied with natural parametrizations respeting the naturalorientations of these �bers. The set of all these parametrized �bers is obviouslyhomeomorphi to S2k�1 (to any parametrized �ber there orresponds the zero of theparameter) and has exatly one intersetion point with the variety A.B. The algorithm of �nding the spanning hain is as follows. The variety L de-sribed in Proposition 3 is swept out by 1-parametri family of subspaes L(�) � Knof odimension n: they are parametrized by points � of the halfirle S1=� = R1=�Zand de�ned by onditions f(�) = f(�+ �). Let us try to span all these spaes sepa-rately. Consider the trivial bundle Kn � [0; �℄! [0; �℄ and subset in it onsisting ofpairs (�; f) suh that f(�) is above f(�+�) in Rn : This subset is a smooth subman-ifold with boundary, and its projetion to [0; �℄ is a smooth �ber bundle. Forgetting



32 V. A. VASSILIEVthe seond oordinate � de�nes the projetion of this manifold to Kn. Its image isexatly the variety Ba desribed in statement Ba of Theorem 2. Its boundary on-sists of the variety L and images of �bers of the above-desribed �ber bundle over thepoints 0 and �. The union of these two �bers is equal to the subspae distinguishedby the ondition f1(0) = f1(�), and is equal to the boundary of the halfspae Bbdesribed in statement Bb of Theorem 2.Now we hoose oorientations of these varieties. The variety Ba is singular. Anyits regular point f satis�es the ondition f1(�) = f1(�+ �) for exatly one � 2 [0; �)and has transverse sel�ntersetion of the urve f1(S1) at this point. Close to suha point f the oorientation of Ba is de�ned as follows. Fix our point � and de�nethe map (Kn; f)! TSn�2 assoiating to any parametrized urve g � f the point ofSn�2 equal to the diretion of the vetor g01(� + �) � g01(�), and the tangent vetorat this point in Sn�2 equal to the projetion of the vetor g(� + �) � g(�) to theplane orthogonal to this vetor g01(�+�)�g01(�). The preimage of the zero setion ofTSn�2 under this map is tangent in Kn to the variety Ba, in partiular if we have ageneri germ of a (n� 2)-dimensional subvariety (simplex) in Kn at the point g thenit is transversal to both varieties and we an indue its desired orientation from (any�xed) orientation of the bundle TSn�2.The oorientation of the variety Bb is indued from a hosen orientation of Rn�2by the map Kn ! Rn�2 by a map sending any f to the diretion of the vetorf2(�)� f2(0) 2 Rn�2 � Rn=f"; 7!g.C. Reall that the term F1 of the simpliial resolution of � is the spae of pairs(42) ((�; �); f) 2 B(S1; 2)� Knsuh that f(�) = f(�). In partiular it is a vetor bundle over B(S1; 2). LetM �F2 nF1 be the prinipal part of the (2n� 3)-dimensional lass of order 2 desribed inProposition 4. Its �rst di�erential d1(M) is realized by the subvariety in F1 onsistingof suh pairs (42) that � = �+� and f satis�es not only the ondition f(�) = f(�+�)but also the ondition f(� + �=2) = f(� � �=2): The set of suh pairs (�; �) is theirle R1=�Z; so our yle d1(M) is the spae of a vetor bundle over the irle. Tospan it in F1 onsider the subvariety M01 � F1 onsisting of suh pairs (42) thatagain � = � + �; f(�) = f(�); but the image of one of points f(� � �=2) is abovethe other: namely, the image of those of these two points whih is separated from0 2 S1 by the points �; � + � is above the image of its antipode. This subvarietyalso forms a �ber bundle over the irle R1=�Z of all suh pairs (�; � + �). Thereis exatly one position of � over whih this �ber bundle fails to be loally trivial,namely � = 0(mod �): The boundary of this subvariety is equal to the sum of theyle d1(M) and the spae of points (42) where � = 0(mod �), f(0) = f(�) andf1(�=2) = f1(��=2). We span the latter spae by the similar halfspaeM001, de�nedby the ondition that f(0) = f(�) and f1(�=2) lies to the right of f1(��=2). ThesumM01 +M001 is the desired hain in F1 whose boundary is equal to d1(M). Now



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 33we onsider the image d2(M) of this hain in � and try to represent it as a boundaryof some relative yle in Kn(mod �): The image ofM002 is obvious, and the image ofM01 onsists of maps f suh that there exists � 2 [0; �℄ suh that f(�) = f(� + �),and the image of one of points �� �=2 (namely, the one separated from 0 by � and� + �) is above the other.It is natural to kill this variety by the spae of all maps f desribed in statementCa of Theorem 2. Its boundary onsists of this image ofM01 and the spae of suhmaps f that f(�) is above f(0) and f1(�=2) = f1(��=2): The boundary of the varietydesribed in statement Cb of Theorem 2 is equal to the sum of the latter spae andthe image ofM001.Statement C of Theorem 2 is thus proved for Z2-homology; the proof of its integerversion requires additionally only an aounting of orientations.D. We shall use the pitures like in x 3, only the Wilson loop will be shown not bya segment but by an oval with marked "zero" point on its top. This point is referredto as 0 in subsripts, and all the other points partiipating in the de�nition of ellsand their subvarieties are numbered aordingly to the (ounterlokwise) orientationof the Wilson loop. All the alulus remains the same as in x3, only the boundaryoperators will inlude the limit positions of our ells and their subvarieties when someof de�ning them points tend to 0.As we are interested in integral homology lasses, we shall take are of orientationsof all our varieties in the ells of the standard ell deompositions of terms Fi nFi�1:This orientation onsists of the orientation of the ell and the (o)orientation of thesubvariety in it. The hoie of these orientations will follow the guidelines indiatedin x3 of [14℄ or xV.3.3 of [16℄. Namely, they onsist of the following orientations (takenin that order): a) the orientation of the simplex partiipating in the onstrution ofthe simpliial resolution (i.e. the simplex ~�(J) or some its nonmarginal fae); b) theoorientation of the subspae L(J) of the spae Kn; ) the orientation of the spaeof equivalent point on�gurations J � S1; d) the (o)orientation of the subvarietyin the ell. The �rst three orientations are spei�ed exatly as in x3 of [14℄ (butnow in ) we an move only nonzero points). Often the subvariety in the ell isgiven by several onditions of the form: "there are additional points in R1 whoseimages f(�) 2 Rn (or their projetions to some �xed subspae) oinide with oneanother or with images of some points partiipating in the de�nition of the ell", orat least our subvariety forms an open subset in a subvariety de�ned in suh a way.In this ase the orientation d) also is de�ned by the sequene onsisting of �) the(o)orientation of the vetor subspae de�ned by these onditions in the vetor spaesounted in the step b) above, and �) the orientation of the spae of on�gurationsof additional points. These orientations also are spei�ed as in [14℄, [16℄; to de�nethe oorientations of subspaes we assume that the diretion "up" in Rn is the �rstvetor of the anonial frame, and the diretion "to the right" is the seond. All theforthoming alulations refer to exatly this hoie of orientations.



34 V. A. VASSILIEVThe prinipal part of the onsidered lass in F2 n F1 is as follows:(43) �� ��V2 = + �� ��rr� �� � � �� �� � ;see [14℄. The seond summand has no boundary in F1, the boundary of the �rst isas follows:
(44) �� ���� ��rr� � � ��������� �(�1)n :Arguing as previously, we try to span the two terms of this hain by the varietiesenoded in left parts of the next two equations, respetively:

(45) �� ��r �� ��r �� ��r�� ��r �� ��r �� ��r
�� ��r �� ��r �� ��r
�� ��r �� ��r �� ��r� = (�1)n�1 + +

� �
� = (�1)n �(�1)n +� �(�1)n

� �����I � ����� ?
����I� �����I� ����:XXXz21� ������ � ����� ?� �

� �

������ ������� ����:XXXz21

+
+(�1)nThe varieties shown by the seond from the end pitures in both these equationsoinide geometrially, and their anonial orientations di�er by the fator (�1)n�1.Therefore the linear ombination of left parts of these equations taken with oeÆients�1 and (�1)n�1 respetively is equal in F1 to the sum of the expression (44) and twolast varieties in these equations. If n = 3 then the sum of last two varieties is equalto zero. Indeed, any of these varieties onsists of pairs (42) with � = 0; f(�) = f(�);



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 35taken with some multipliities. These multipliities always are opposite, beause theyare equal (up to signs) to di�erent ombinatorial expressions for the linking numbersof two "smoothened" loops into whih the point f(0) = f(�) breaks the urve f(S1):However, if n > 3 then the sum of these two varieties is only homologous to zero,but not equal to it. We shall enode this sum by the piture in the right-hand partof the following equation:(46) � �� ��r - = (�1)n�� ��r -� :The variety assumed in the left part of this equation onsists of all pairs (42) inF1 suh that � = 0 and additionally there are points  2 (0; �) and Æ 2 (�; 2�) suhthat the projetion of f(Æ) to Rn�1 lies "to the right" from that of f(�).So, the desired hain in F1 spanning the yle (44) is equal to(47) �0��� ��+(�1)n�� ��+(�1)n �� ��-� ������r rr� �����I 1A :Its image in � is expressed by the formula(48) �0��� ��+(�1)n�� ��+ �� ��-�����r rr����I ���� ���� ��JJ 1A :We need to span this hain by a relative yle in Kn (mod �). For this we have
(49)

��� ��r �� ��r �� ��r �� ��r�� ��r �� ��r �� ��r �� ��r
����	����� = (�1)n�1 ��������	 ���������� � +�����66����I�����QQQ���+SS��7SS��/����	QQQ���3 ++ + � ;(50) � �� ��-r6 = � -�� ��r��JJ + (�1)n�� ��r -� 6 :The sum of the fourth, �fth and sixth terms in the right-hand part of (49) isequal to zero. The sum of varieties enoded by the pitures in the third and seventh
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