
ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OFSPACES OF KNOTSV. A. VASSILIEVAbstra
t. We develop homologi
al te
hniques for �nding expli
it 
ombinatorialexpressions of �nite-type 
ohomology 
lasses of spa
es of knots in Rn ; n � 3; gen-eralizing Polyak{Viro formulas [10℄ for invariants (i.e. 0-dimensional 
ohomology
lasses) of knots in R3 .As the �rst appli
ationswe give su
h formulas for the (redu
ed mod 2) generalizedTeiblum{Tur
hin 
o
y
le of order 3 (whi
h is the simplest 
ohomology 
lass of longknots R1 ,! Rn not redu
ible to knot invariants or their natural stabilizations),and for all integral 
ohomology 
lasses of orders 1 and 2 of spa
es of 
ompa
t knotsS1 ,! Rn . As a 
orollary, we prove the nontriviality of all these 
ohomology 
lassesin spa
es of knots in R3 : 1. Introdu
tionThere is a wide family of 
ohomology 
lasses of spa
es of knots S1 ,! Rn (n � 3),
alled �nite-type 
ohomology 
lasses; see [14℄, [16℄, [18℄. For n > 3 they 
over all ofthe 
ohomology group of the spa
e of knots in Rn , for n = 3 their 0-dimensional partare the �nite-type knot invariants.These 
lasses are de�ned as linking numbers (in the spa
e of all smooth mapsS1 ! Rn) with appropriate 
y
les (of in�nite dimension but �nite 
odimension) inthe dis
riminant spa
e � (
f. [1℄); in our 
ase this spa
e 
onsists of maps whi
h are notsmooth embeddings. The group of all su
h 
lasses is �ltered by their orders indu
edby some �ltration of (some resolution of) the dis
riminant: roughly speaking, theorder of a 
ohomology 
lass indi
ates how mu
h 
ompli
ated strata of � parti
ipatein the de�nition of its dual variety.In [10℄, M. Polyak and O. Viro have proposed some 
ombinatorial formulas forthe �nite-type invariants of knots in R3 . Later, M. Goussarov has proved that any�nite-type invariant 
an be represented by a formula of this type, see [6℄.We des
ribe some 
al
ulus for �nding (and proving) 
ombinatorial formulas forarbitrary �nite type 
ohomology 
lasses, in parti
ular show what the answers 
anlook like. Any su
h 
ombinatorial formula is nothing else than some semialgebrai

hain in the spa
e of maps S1 ! Rn ; su
h that its boundary lies in � and ourIndependent Mos
ow University. Supported in part by RFBR (proje
t 98-01-00555a) and NWO-RFBR grant (proje
t 047-008-005). 1



2 V. A. VASSILIEV
ohomology 
lass is equal to the linking number with this boundary. We introdu
eseveral natural families of semialgebrai
 subvarieties of the spa
e of su
h maps, ofwhi
h the desired 
hains are built. These varieties are de�ned by easy di�erentialgeometri
al 
onditions; they arise naturally in the dire
t 
al
ulation of the mainspe
tral sequen
e 
onverging to the (�nite type) 
ohomology group of the spa
e ofknots. It is not surprising that some elements of this 
al
ulus repeat pi
tures from[10℄, [6℄, and also from the A. B. Merkov's works on invariants of plane 
urves [9℄, [8℄.We a

omplish these 
al
ulations expli
itly for several 
ohomology 
lasses of loworders. Before des
ribing them three remarks more.1. Long and 
ompa
t knots. We shall distinguish two kinds of knot spa
es.The 
ompa
t knots in Rn are any smooth embeddings S1 ! Rn ; while the long knotsare the smooth embeddings R1 ! Rn 
oin
iding with a standard linear embeddingoutside some 
ompa
t subset in R1 . The invariants of knots of both types in R3naturally 
oin
ide, but generally the 
ohomology ring of the spa
e of 
ompa
t knotsis more 
ompli
ated: it is built of the similar ring for long knots (playing the role of a"
oeÆ
ient" ring) and homology groups of the spa
e S1 and 
ertain its 
on�gurationspa
es.2. Stabilization. If numbers n and m are of the same parity, then the theoriesof (�nite type) 
ohomology groups of spa
es of knots in Rn and Rm are very similar.Namely, the �rst terms of spe
tral sequen
es 
al
ulating both groups and generatedby the natural �ltration of resolved dis
riminants 
oin
ide up to shifts of indi
es:(1) Ep;q�pn1 (Rn) ' Ep;q�pm1 (Rm):Moreover, for spe
tral sequen
es 
al
ulating Z2-
ohomology groups this identity istrue also if n and m are of di�erent parities. M. Kontsevi
h has proved (but notpublished) that in the 
ase of 
omplex 
oeÆ
ients our spe
tral sequen
e degeneratesat the �rst term: Ep;q1 � Ep;q1 , therefore also the limit groups of �nite type 
ohomology
lasses are very similar. (I 
onje
ture that in the 
ase of long knots the similardegeneration holds also for any 
oeÆ
ients.)3. This paper is very mu
h a work in the di�erential geometry of spatial 
urvesand their proje
tions to di�erent subspa
es, although almost all results of this kindare hidden in the formulas for boundary operators in our homologi
al 
al
ulations.1.1. Results for long knots. A

ordingly to [14℄, [11℄, [18℄, [16℄, all 
ohomology
lasses of orders � 3 of the spa
e of long knots in Rn ; n � 3; are as follows.Proposition 1. There are no 
ohomology 
lasses of order 1. The 
lasses of order2 are only in dimension 2n � 6 and form a group isomorphi
 to Z (for n = 3 it isgenerated by the simplest knot invariant). In order 3 additional 
lasses 
an be inexa
tly two dimensions more: 3n � 9 and 3n� 8. In dimension 3n� 9 they form agroup isomorphi
 to Z (for n = 3 it is generated by the next simple knot invariant). In



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 3dimension 3n�8 the same is true if n > 3; and for n = 3 the similar (1-dimensional)
ohomology group is 
y
li
 (maybe of order 1 or 1).It was 
onje
tured in [16℄, [18℄ that the latter group for n = 3 also is isomorphi
to Z; we shall prove it in the present work.For any n we 
all the generator of this (3n � 8)-dimensional 
ohomology groupthe Tur
hin{Teiblum 
o
y
le. In the 
ase of odd n its existen
e was dis
overed byD. M. Teiblum and V. E. Tur
hin about 1995 ([11℄). Its (quite di�erent) superanalogfor even n was found in [16℄, [18℄. However, all these works 
ontain only an impli
itproof of the existen
e of su
h a 
lass: namely, the 
al
ulation of the third 
olumnof our spe
tral sequen
e (whi
h is responsible for the third order 
ohomology 
lassesand is isomorphi
 to Z for exa
tly two values of q), and the remark that all furtherdi�erentials a
ting from or to this 
olumn are trivial by some dimensional reasons.In x3 we prove the following 
ombinatorial expression for this 
lass redu
ed mod2. Let us 
hoose a dire
tion "up" in Rn , and say that a point x 2 Rn is above thepoint y if the ve
tor ��!(yx) has the 
hosen dire
tion. Let Rn�1 be the quotient spa
e ofRn by this dire
tion, and p : Rn ! Rn�1 the 
orresponding proje
tion. We 
hoose adire
tion "to the right" in Rn�1 and say that the point x 2 Rn is to the right of thepoint y if the ve
tor ��������!(p(y);p(x)) 2 Rn�1 has this 
hosen dire
tion.Theorem 1. For any n � 3; the value of the redu
ed mod 2 Teiblum{Tur
hin 
lasson any generi
 (3n� 8)-dimensional singular 
y
le in the spa
e of long knots in Rnis equal to the parity of the number of points of this 
y
le 
orresponding to su
h knotsf : R1 ! Rn that one of three holds:a) there are �ve points a < b < 
 < d < e in R1 su
h that f(a) is above f(d), andf(e) is above f(
) and f(b);b) there are four points a < b < 
 < d in R1 su
h that f(a) is above f(
), f(b) isbelow f(d), and the proje
tion of the derivative f 0(b) to Rn�1 is dire
ted to the right;
) there are three points a < b < 
 in R1su
h that f(a) is above f(b) but below f(
),and the "exterior" angle in Rn�1 formed by proje
tions of f 0(a) and f 0(b) 
ontains thedire
tion "to the right" (i.e. this dire
tion is equal to a linear 
ombination of theseproje
tions, and at least one of 
oeÆ
ients in this 
ombination is nonpositive).These interse
tion points should be 
ounted with multipli
ities equal to the numberof di�erent point 
on�gurations for whi
h the 
orresponding 
ondition is satis�ed(note however that for n > 3 a generi
 (3n�8)-dimensional 
y
le 
annot have pointsfor whi
h this multipli
ity is greater than 1).We prove this theorem in x3. In the next works I am planning to a

omplish allthe same 
al
ulations taking respe
t on the orientations, and thus to obtain similarresults with integer 
oeÆ
ients.



4 V. A. VASSILIEVCorollary 1. The group of order 3 one-dimensional 
ohomology 
lasses of the spa
eof long knots in R3 is free 
y
li
 and generated by the (integral) Teiblum{Tur
hin
lass.More pre
isely, let us 
onsider the 
onne
ted sum of two equal (long) trefoil knotsin R3 and a path in the spa
e of knots 
onne
ting this knot with itself as in the proofof the 
ommutativity of the knot semigroup: we shrink the �rst summand, move it"through" the se
ond, and then blow up again.Proposition 2. This 
losed path in the spa
e of long knots has an odd interse
tionnumber with the union of three varieties indi
ated in items a, b and 
 of Theorem 1.The proof will be given in x 3.7.On the other hand, for any n the Teiblum{Tur
hin 
o
y
le is a well-de�ned integral
ohomology 
lass. By the previous proposition it takes a nonzero value on a well-de�ned integral 
y
le, hen
e is not a torsion element, and Corollary 1 is proved.1.2. Answers for 
ompa
t knots. Nontrivial 
ohomology 
lasses in the spa
e of
ompa
t knots S1 ,! Rn appear already in �ltrations 1 and 2. We assume that a
y
li
 
oordinate in S1, i.e. an identi�
ation S1 ' R1=2�Z, is �xed.Proposition 3 (see [17℄, [18℄). For any n � 3 the group of Z2-
ohomology 
lassesof order 1 of the spa
e of 
ompa
t knots in Rn is nontrivial only in dimensionsn� 2 and n� 1, and is isomorphi
 to Z2 in these dimensions. Moreover, for (only)even n similar integral 
ohomology groups in these dimensions are isomorphi
 to Z:The generator of the (n � 2)-dimensional group is Alexander dual to the set L ofdis
riminant maps S1 ! Rn gluing together some two opposite points of S1, and thegenerator of the (n � 1)-dimensional group is dual to the set of maps gluing some
hosen opposite points, say 0 and �.Proposition 4 (see [16℄, [18℄). Additional 
lasses of order 2 exist in exa
tly twodimensions: 2n � 6 and 2n � 3. In dimension 2n � 6 they for any n form a groupisomorphi
 to Z (for n = 3 it is generated by the simplest knot invariant). The groupin dimension 2n�3 is isomorphi
 to Z for n > 3 and 
y
li
 for n = 3; its generator isAlexander dual to the 
y
le in the dis
riminant, whose prin
ipal part (see De�nition 1in x2 below) in the double sel�nterse
tion of � is swept out by su
h maps f : S1 ! Rnthat for some � 2 S1 we have f(�) = f(� + �); f(� + �=2) = f(� + 3�=2):Below we prove in parti
ular that for n = 3 the last group also is free 
y
li
, seeCorollary 3. Now we give expli
it 
ombinatorial formulas for all 
lasses mentioned inPropositions 3 and 4.Theorem 2. For any n � 3, the values of any of these four basi
 
ohomology 
lasseson any generi
 
y
le of 
orresponding dimension in the spa
e Kn n � of 
ompa
tknots S1 ,! Rn is equal to the number of points of this 
y
le, 
orresponding to knotssatisfying the following 
onditions (and in the 
ase of integer 
oeÆ
ients taken withappropriate signs).



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 5A. For the (n� 1)-dimensional 
lass of order 1: proje
tions of f(0) and f(�) intothe plane Rn�1 
oin
ide, and f(0) is above f(�).B. For the (n�2)-dimensional 
lass of order 1, one of the following two 
onditions:a) there is a point � 2 [0; �) su
h that the proje
tions of f(�) and f(� + �) toRn�1 
oin
ide, and moreover f(�) is above f(�+ �);b) the proje
tion of the point f(0) to Rn�1 lies "to the right" from the proje
tionof f(�).C. For the (2n� 3)-dimensional 
lass of order 2, one of following two 
onditions:a) there is a point � 2 [0; �=2) su
h that proje
tions of f(�) and f(�+ �) to Rn�1
oin
ide, proje
tions of f(�+�=2) and f(�+3�=2) to Rn�1 
oin
ide, and additionallyf(� + �) is above f(�) and f(�+ �=2) is above f(� + 3�=2);b) proje
tions of f(0) and f(�) to Rn�1 
oin
ide, f(�) is above f(0), and theproje
tion of f(�=2) to Rn�1 lies "to the right" from the proje
tion of f(3�=2).D. For the (2n� 6)-dimensional 
lass of order 2, one of two 
onditions:a) there are four distin
t points �; �; 
; Æ 2 S1 (whose 
y
li
 
oordinates satisfy0 � � < � < 
 < Æ < 2�) su
h that proje
tions of f(�) and f(
) to Rn�1 
oin
ide,proje
tions of f(�) and f(Æ) to Rn�1 
oin
ide, and additionally f(
) is above f(�)and f(�) is above f(Æ).b) If n = 3 then se
ond 
ondition is void (and we have only the �rst one 
oin
idingwith the 
ombinatorial formula from [10℄), but for n > 3 we have additional 
ondition:there are three distin
t points �; 
; Æ (whose 
y
li
 
oordinates satisfy 0 < � < 
 <Æ < 2�) su
h that proje
tions of f(
) and f(0) to Rn�1 
oin
ide, f(
) is above f(0),and the proje
tion of f(Æ) to Rn�1 lies "to the right" of the proje
tion of f(�).Proofs see in x 4.Corollary 2. For any n � 3, the basi
 
lass of order 2 and dimension 2n � 3takes value �1 on the submanifold of the spa
e of knots, 
onsisting of all naturallyparametrized great 
ir
les of the unit sphere in Rn .Indeed, the variety a) of statement C does not interse
t this submanifold, andvariety b) has with it exa
tly one interse
tion point. �In the 
ase of even n the fa
t that this variety in the spa
e of knots is not homol-ogous to zero was proved in [5℄ by very di�erent methods.Corollary 3. The group of (2n � 3)-dimensional 
ohomology 
lasses of order 2 isfree 
y
li
 for n = 3 as well. �I am indebted to A. B. Merkov very mu
h for many interesting 
onversations. Iappre
iate the hospitality of the Isaa
 Newton Institute, Cambridge, where this workwas �nished.



6 V. A. VASSILIEV2. Methodology and nature of 
ombinatorial expressions.In fa
t, our main purpose is to develop a general method of �nding 
ombinatorialformulas of this type.Any su
h formula is just a relative 
y
le in the spa
e of knots (modulo the dis-
riminant �) whose boundary in � is Alexander dual to our 
ohomology 
lass. Theproblem is to 
onstru
t su
h a variety expli
itly and as simply as possible.Our method of doing it 
onsists in the 
ons
ientious 
al
ulation of our spe
tralsequen
e. In this subse
tion we outline the de�nition of this sequen
e and this 
al
u-lation. This spe
tral sequen
e for spa
es of knots is very analogous to that 
al
ulatingthe 
ohomology of 
omplements of plane arrangements (see [15℄); let us demonstratetheir main 
ommon features on the latter more simple example.2.1. Simpli
ial resolutions for plane arrangements. Let L � RN be an aÆneplane arrangement, i.e. the union of �nitely many aÆne planes Li of any dimensions,L = Ski=1 Li: The 
ohomology group of its 
omplement is Alexander dual to thehomology group of L: Hj(RN n L) ' �HN�j�1(L); here �H� denotes the Borel{Moorehomology group, i.e. the homology group of the one-point 
ompa
ti�
ation redu
edmodulo the added point. To 
al
ulate the latter group it is 
onvenient to use thesimpli
ial resolution of L (whi
h is a 
ontinuous version of the 
ombinatorial formulaof in
lusions and ex
lusions).For some three line arrangements in R2 (shown in the lower part of Fig. 1) the
orresponding simpli
ial resolutions are given above them in the same pi
ture. Theseresolutions are 
onstru
ted as follows.First, we embed the set of indi
es f1; : : : ; kg into a spa
e RT of dimension T � k�1in su
h a way that their 
onvex hull is a (k� 1)-dimensional simplex. The resolutionwill be 
onstru
ted as a subset in RT �RN : For any point x 2 L denote by ~�(x) the
onvex hull in RT of images of su
h indi
es i that Li 3 x, i.e. the simplex with verti
esat images of all these indi
es. Denote by �(x) the simplex ~�(x)� fxg � RT � RN :Denote by L0 the union of all simpli
es �(x), x 2 L: The obvious proje
tion L0 ! L(sending any �(x) to x) is a homotopy equivalen
e, as well as its extension to themap of one-point 
ompa
ti�
ations �L0 ! �L: In parti
ular �H�(L0) � �H�(L):On the other hand, L0 has a very useful �ltration. For any set of indi
es I �f1; : : : ; kg, denote by LI the plane \i2ILi: Let L0I � L0 be the proper preimage ofLI , i.e. the 
losure of the union of 
omplete preimages of all generi
 points of LI(i.e. of points not from even smaller strata LJ � LI ; LJ 6= LI). There is obvioushomeomorphism L0I ' ~�(I) � LI ; where ~�(I) � RT is the simplex whose verti
es
orrespond to all indi
es i su
h that Li � LI : (It is equal to ~�(x) where x is anygeneri
 point of LI :)By de�nition, L0 = SL0I ; where the union is taken over all geometri
ally di�erentplanes LI . We de�ne the term Fp of the desired �ltration of L0 as the similar union
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Figure 1. Examples of line arrangementsof prisms L0I over all planes LI of 
odimension � p. Then we extend it to a �ltrationon the one-point 
ompa
ti�
ation L0 of L0 setting F0 = fthe added pointg.This �ltration de�nes a spe
tral sequen
e 
al
ulating the group �H�(L0) ' �H�(L):by de�nition its term E1p;q is equal to �Hp+q(Fp n Fp�1) � Hp+q(Fp=Fp�1): This spa
eFp n Fp�1 splits into a disjoint union (over all spa
es LI of 
odimension exa
tly p) ofspa
es �L0I def= ��(I) � L0I , where ��(I) is the simplex ~�(I) from whi
h several fa
esare removed: namely su
h fa
es ~�(J), J � I; that the plane LJ is stri
tly greaterthan LI . For instan
e, for the 
on�gurations shown in pi
tures a), b), 
) of Fig. 1 theplanes LI of 
odimension 2 are: the point (1; 2), the point (1; 2; 3), and three points(1; 2); (1; 3), (2; 3) respe
tively. The proper preimages of them are: one segment, onetriangle (shadowed verti
ally in the pi
ture), and three segments. In all these 
asesthe 
orresponding spa
es �LI 
oin
ide with ��I , namely they are: an open interval, atriangle without verti
es, and three open intervals, respe
tively.In general, any fa
e of the simplex ~�(I) is 
hara
terized by its verti
es, i.e. someindi
es i 2 f1; : : : ; kg. A fa
e of ~�(I) is 
alled marginal if the interse
tion of planesLi labeled by its verti
es is stri
tly greater than LI : ��(I) is equal to ~�(I) withall marginal fa
es removed. By the K�unneth formula, E1p;q = L �Hp+q�(N�p)( ��(I));summation over all planes LI of 
odimension p.



8 V. A. VASSILIEVThe geometri
al sense of the 
orresponding �ltration in the Alexander dual groupH�(RN n L) is as follows: any element of this group has �ltration p if and only ifit is equal to a linear 
ombination of �nitely many elements 
j, any of whi
h 
anbe represented by the interse
tion index with some semilinear1 subvariety Vj � RN ;�Vj � L; invariant under the group RN�pj of translations in all dire
tions parallel tosome (N � pj)-dimensional plane LIj with pj � p.Proposition 5 (see [15℄). Our �ltration of the spa
e L0 always homotopi
ally splits,i.e. we have the homotopy equivalen
e(2) �L0 � �F1 _ ( �F2= �F1) _ : : : _ ( �FN= �FN�1):In parti
ular, the spe
tral sequen
e degenerates in the �rst term: E1 � E1, and wehave �Hp+q(�L0) = �Np=1E1p;q. �An equivalent statement was proved in [20℄.This theorem redu
es the stru
ture of 
ohomology groups of RN nL to dimensionsof all spa
es LI . However, it does not allow us to 
al
ulate the value of an arbitraryelement of the group E1p;q on any 
y
le in RN n L. For instan
e, in the 
ase ofthe arrangement shown in Fig. 1a, the entire group E12;� appears from the unique
rossing point Lf1;2g. This group is nontrivial only for � = �1, is isomorphi
 to Zand is generated by the homology 
lass of the segment �(1; 2) modulo its endpoints(lying in F1). The splitting formula (2) means that we 
an extend this relative 
y
leof �F2 (mod �F1) (or, equivalently, a 
losed lo
ally �nite 
y
le in F2 n F1) to a 
y
le inentire �L0 (respe
tively, in entire L0). However, to be able to de�ne the value of thispoint or of this segment on any 0-dimensional 
y
le (i.e. on a point) in R2 nL we needto 
hoose su
h an extension expli
itly. Then we proje
t it to L and get a 
y
le there.Finally, we need to 
hoose a relative 
y
le in R2 (mod L) whose boundary 
oin
ideswith this 
y
le. Then we 
all this relative 
y
le "a 
ombinatorial formula": its valueon a point in R2 n L is equal to the multipli
ity of this 
y
le in the neighborhood ofthis point.If we have a more 
ompli
ated plane arrangement, then the most 
onvenient wayto extend an element of E1p;q to a 
losed 
y
le in L0 is to do it step by step over our�ltration. Our starting element 
 2 E1p;q is represented by a 
y
le with 
losed supportsin Fp n Fp�1. We take its �rst boundary d1(
), whi
h is a 
y
le in Fp�1 (mod Fp�2).Then we span it, i.e. 
onstru
t a 
losed 
hain ~
1 in Fp�1 n Fp�2 su
h that �~
1 = d1
there. Then we take the boundary of 
 + ~
1 in the spa
e Fp�2 n Fp�3 and span itthere by a 
hain ~
2; et
. The degeneration formula (2) ensures that all this sequen
eof 
hoi
es 
an be a

omplished. See [20℄, [9℄ for some pre
ise algorithms of doing itin the 
ase of plane arrangements.1= semialgebrai
 distinguished by only linear equations and inequalities



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 9Spa
e RN Spa
e Kn of smooth maps R1 ! Rnwith a �xed behavior at 1Union of planes L = [Li � RN Dis
riminant subset � � KnSet of indi
es f1; : : : ; kg Chord spa
e B(R1 ; 2)A plane Li A subspa
e L(a; b), a; b 2 R1Disjoint union of hyperplanes Li Tautologi
al resolution F1� of �Simpli
ial resolution L0 of L Simpli
ial resolution � of �Subsets I � f1; : : : ; kg Combinatorial types of 
hord 
on�gurations Jwith 
odimLI = p with 
odimL(J) = pnA prism L0I A J-blo
k in �K�unneth isomorphism for Thom isomorphism for the �bration ofhomology of �L0I = ��(I)� LI pure J-blo
ks by spa
es L(J 0)Homotopy splitting (2) Kontsevi
h's degeneration theoremTable 12.2. All the same for knots. The 
ase of knots (say, of long knots) is very similarto that of plane arrangements. A list of parallel notions is given in Table 1 (whoseleft part was explained in the previous subse
tion, and the right-hand part will beexplained in the present one).So, instead of RN we 
onsider the aÆne spa
e Kn of all smooth maps R1 ! Rn 
o-in
iding with a �xed linear embedding "at in�nity", and instead of L the dis
riminantspa
e � � Kn of all su
h maps whi
h are not smooth embeddings.Of 
ourse, the spa
e Kn is in�nitedimensional, and formally we 
annot use theAlexander duality in it: the (�nitedimensional) 
ohomology 
lasses of the spa
e ofknots Kn n� should 
orrespond to "in�nitedimensional 
y
les" in �, whose de�nitionrequires some e�ort. The stri
t de�nition of su
h 
y
les 
orresponding to �nite-type
ohomology 
lasses was proposed in [14℄ and is as follows. We 
onsider a sequen
e of�nitedimensional approximating subspa
es Kjn in Kn, 
al
ulate (some) 
ohomology
lasses of Kjn n � dual to 
ertain 
y
les in �, and then prove a stabilization theoremwhen j ! 1: It follows from the Weierstrass approximation theorem that thesestable 
o
y
les are well-de�ned 
ohomology 
lasses in Kn n�. A rigorous reader 
aneither read [14℄ or [16℄ for all justi�
ations or to think of the spa
es Kn as of su
happroximating spa
es of very high but �nite dimension. Let us denote this virtualdimension of Kn by !:Again, � is the union of a family of subspa
es of very simple nature. For any pairof points (a; b) in R1 , denote by L(a; b) the spa
e of all maps f 2 Kn su
h that(3) f(a) = f(b) (if a 6= b ) or f 0(a) = 0 (if a = b):Su
h spa
es form a 2-parametri
 family parametrized by all points (a; b) of the spa
eB(R1 ; 2) of all unordered 
olle
tions of two points in R1 : Sin
e [14℄ su
h pairs are
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ted by ar
s 
onne
ting the points a; b (
alled 
hords in [2℄), so the spa
e B(R1 ; 2)will be 
alled here the 
hord spa
e. Its degenerated points (
orresponding to pairsa = b) are depi
ted by an asterisk at the point a.The tautologi
al resolution F1� of � is 
onstru
ted as a subspa
e of the dire
tprodu
t B(R1 ; 2) � Kn: this is the spa
e of pairs ((a; b); f) satisfying (3). It isthe spa
e of an (! � n)-dimensional ve
tor bundle over B(R1 ; 2): Therefore by theThom isomorphism we have �H�(F1�) ' �H��(!�n)(B(R1 ; 2)) � 0 : indeed, B(R1 ; 2) ishomeomorphi
 to the 
losed halfplane. There is obvious proje
tion F1� ! �; it is amap onto, and 
lose to generi
 points of � is a homeomorphism.Further, we insert simpli
es spanning preimages of nongeneri
 points of �. Aspreviously, we embed the spa
e B(R1 ; 2) generi
ally and algebrai
ally into a spa
eRT of a huge dimension (T � !3). Then for any point f 2 � we mark all the points(a; b) 2 B(R1 ; 2) su
h that L(a; b) 3 f; and denote by ~�(f) the 
onvex hull of imagesof all these points in RT :Of 
ourse, there exist points f 2 � having in�nitely many preimages. However theyform a subset of in�nite 
odimension in Kn, and we 
an ignore them by 
onsideringonly �nitedimensional approximations Kjn in general position with the strati�
ationof �. Then all the sets ~�(f); f 2 Kjn; still will be the simpli
es with verti
es at theimages of all 
orresponding points (a; b) of the 
hord spa
e. The simpli
ial resolution� � RT � Kn is de�ned as the union of all simpli
es �(f) � ~�(f)� ffg.Again, � has a useful in
reasing �ltration. Let I � B(R1 ; 2) be a �nite set of 
hords(a; b). The interse
tion of 
orresponding planes L(a; b) is a subspa
e L(I) � Kn;whose 
odimension is a multiple of n. The proportionality 
oeÆ
ient 
odimL(I)=nis 
alled the 
omplexity of I. Consider all the points (a; b) 2 B(R1 ; 2) su
h thatL(a; b) � L(I); and denote by ~�(I) � RT the 
onvex hull of images of all thesepoints. (It is equal to the spa
e ~�(f) where f is a generi
 point of the spa
e L(I).)Set L0(I) = ~�(I)� L(I) � RT � Kn: Finally, de�ne the term Fp(�) of the �ltrationas the union of all simpli
es �(I) over all I of 
omplexity � p:De�nition 1. A 
ohomology 
lass of the spa
e of knots Kn n � is a �nite type 
lassof order p if it 
an be de�ned as the linking number with the dire
t image in � ofa 
y
le (with 
losed support) lying in the term Fp of the standard �ltration of �.For any su
h 
lass of order p and dimension d, its prin
ipal part is the 
lass of the
orresponding 
y
le in the group �H!�d�1(Fp n Fp�1).The important property of this �ltration is as follows: any its term Fp n Fp�1is the spa
e of an (! � pn)-dimensional aÆne bundle over some �nitedimensionalsemialgebrai
 base: the proje
tion of this bundle is indu
ed by the obvious proje
tionRT � Kn ! RT : In parti
ular, the Thom isomorphism redu
es the Borel{Moorehomology group of this term to the homology group of lo
ally �nite 
hains of this
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ase of odd n with 
oeÆ
ients in some system of groups lo
ally isomorphi
to Z, whi
h is 
onstant only for p = 1).These �nitedimensional bases, and hen
e also entire spa
es Fp n Fp�1 of our �ltra-tion, admit an easy des
ription, in parti
ular their one-point 
ompa
ti�
ations havea natural stru
ture of CW -
omplexes. First let us des
ribe all the spa
es L(I) of
omplexity exa
tly p.De�nition 2 (see [14℄). Let A is a unordered �nite 
olle
tion of naturals A =(a1; : : : ; a#A); aj � 2; and b any nonnegative integer. Then an (A; b)-
on�guration inR1 is any 
olle
tion of distin
t a1 + � � �+ a#A points in R1 separated into groups of
ardinalities a1; : : : ; a#A, plus a 
olle
tion of b distin
t points in R1 (some of whi
h
an 
oin
ide with the points of the A-part). A map f : R1 ! Rn respe
ts an (A; b)-
on�guration J if it maps all points of any of groups of 
ardinality aj; j = 1; : : : ;#A;into one point (these points for di�erent groups may 
oin
ide), and f 0 = 0 at all pointsof the b-part of the 
on�guration. The spa
e of all maps f respe
ting a �xed (A; b)-
on�guration J is denoted by L(J). Two (A; b)-
on�gurations are equivalent if they
an be transformed one into the other by an orientation-preserving homeomorphismof R1 . The 
omplexity of an (A; b)-
on�guration is the number P#Aj=1(aj � 1) + b:Obviously the 
odimension in Kn of any spa
e L(J) is equal to n times the 
om-plexity of J . The spa
e of all (A; b)-
on�gurations of 
omplexity 1 is the 
hord spa
eB(R1 ; 2). Any interse
tion of �nitely many planes L(a; b), (a; b) 2 B(R1 ; 2); is aplane of form L(J) for some (A; b)-
on�guration J . The 
orresponding simplex ~�(J)in RT has exa
tly P#Ai=1 �ai2 � + b verti
es. The J-blo
k �(J) in � is the union of allpairs (x; f) � RT � Kn; su
h that x belongs to the simplex ~�(J 0) for some (A; b)-
on�guration J 0 equivalent to J , and f respe
ts this 
on�guration J 0. It belongs tothe term Fp of our �ltration, where p is the 
omplexity of J .The pure J-blo
k ��(J) is equal to �(J) n Fp�1. It is �bered over the spa
e of(A; b)-
on�gurations J 0 equivalent to J , with �ber equal to ��(J)�L(J), where ��(J)is the union of several (nonmarginal in some sense) fa
es of ~�(J). The base of this�ber bundle is an open 
ell, thus the bundle is trivial, and we have a 
anoni
alde
omposition of ��(J) into open 
ells 
orresponding to all su
h nonmarginal fa
es.The 
anoni
al notation of any su
h 
ell is a generalized 
hord diagram, i.e. a �nite
olle
tion of ar
s 
onne
ting some points of R1 and of asterisks marking some points,say as in the pi
ture(4) � �� �� �Æ 
Æ 
��� �presenting one of 
ells of a 
ertain equivalen
e 
lass of ((4; 3); 2)-
on�gurations.Namely, for any su
h 
ell related with a 
lass of equivalent (A; b)-
on�gurations,we �x some 
on�guration J � R1 of this 
lass, mark by asterisks all points of its



12 V. A. VASSILIEVb-part ("singular points") and draw a 
hord between any its two points a; b su
h thatthe point (a; b) 2 B(R1 ; 2) is a vertex of the fa
e of ~�(J) 
orresponding to this 
ell.The spa
e Fp n Fp�1 is the union of su
h pure blo
ks ��(J) over (�nitely many)equivalen
e 
lasses of all (A; b)-
on�gurations of 
omplexity exa
tly p. So we get alsothe de
omposition of this spa
e into �nitely many open 
ells. This de
omposition 
anbe extended to the stru
ture of a CW -
omplex on the one-point 
ompa
ti�
ation ofFp nFp�1. Its stru
ture and in
iden
e 
oeÆ
ients are expli
itly des
ribed in [14℄, [16℄,whi
h gives also an algorithm for 
al
ulating the term E1 of the spe
tral sequen
egenerated by this �ltration and 
onverging to the group of all �nite-type 
ohomology
lasses of the spa
e of knots. In parti
ular, if n = 3 then all J-blo
ks of 
omplexity pwhi
h (by dimensional reasons) 
an be valuable for the 
al
ulation of knot invariants,are only the blo
ks with (A; b) equal to ((2; : : : ; 2); 0) (
hord diagrams), ((2; : : : ; 2); 1)(one-term relations, see [3℄, [2℄), and ((3; 2; : : : ; 2); 0) (any su
h blo
k 
orresponds tothe totality of 4-term relations arising from the neighborhood of a triple point: thereare three su
h relations, any two of whi
h are independent).Example 1. The term F1 
onsists of exa
tly two 
ells, one of whi
h is the boundaryof the other:(5) � =� � � ;thus there are no 
ohomology 
lasses of order 1 of the spa
e of long knots. (Here andin the next example we assume some natural orientations of su
h 
ells, see [14℄, [16℄.)Example 2. The term F2 n F1 
onsists of the following 
ells: four 
ells of maximaldimension(6) � �� � ; � � � � , � �� � ; � �� �� �(only the �rst and the last of whi
h will be interesting for us), three 
ells forming theboundary of any of these two 
ells,(7) � �� � ; � �� � ; and � �� � ;and also six 
ells de�ned by maps with singular points (i.e. in whose notation theasterisks � parti
ipate):(8) � �� � �� � �� � �� � �� � �, , , , , .



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 13The boundary operator in this term F2 n F1 (i.e. the verti
al di�erential d0 of thespe
tral sequen
e) a
ts as follows:
� =� =
� =� =
� �� � � � ��� + ����� � ������� (�1)n � ��+ ����� �� �� �Æ
 (�1)n � ��� + � �� � � ���� ���+������ ���� �� �� �� = � ��� == � �� �
� �� � (�1)n � � �+(�1)n � ��� ���
��� �

� = � ���� == � ��� �
� �� �� ���� �� ��� � (�1)n�1++

+����� :In parti
ular there is exa
tly one nontrivial group �Hi(F2 n F1) � E12;i�2, namely su
hgroup with i = ! � (2n � 5) is isomorphi
 to Z and is generated by the sum of the�rst and the last 
ells in (6).Thus we obtain a proof of the �rst statement of Proposition 1. The group �H�(F3 nF2) of (possible) prin
ipal parts of third order 
ohomology 
lasses was 
al
ulated in[11℄ for odd n (another proof, not relying on the 
omputer's honesty, see in [18℄) andin [18℄ for even n. In both 
ases, there are exa
tly two nontrivial groups �Hi(F3nF2) 'E13;i�3, namely with i = ! � (3n � 8) and ! � (3n � 7); they both are isomorphi
to Z. By the dimensional reasons both these groups for any n � 3 
oin
ide with
orresponding groups E13;i�3, and their generators extend to well-de�ned 
ohomology
lasses of spa
es of long knots in Rn . By similar 
onsiderations (see e.g. [18℄) for



14 V. A. VASSILIEVn � 4 these generators are nontrivial and free. If n = 3 then for the �rst of these
lasses the same follows from the fa
t that it 
oin
ides with the se
ond simple knotinvariant (
al
ulated in [14℄) whose nontriviality is well known. The other 
lass isexa
tly the Teiblum{Tur
hin 
lass studied below; the fa
t that it also is nontrivialand free for n = 3 will follow from the proof of Corollary 1.Remark 1. It is often 
onvenient to repla
e formally our homologi
al spe
tral se-quen
e 
al
ulating �H�(�) by the "Alexander dual" 
ohomologi
al spe
tral sequen
eEp;qr � Er�p;!�q�1:It lies in the se
ond quadrant in the wedge f(p; q)jp � 0; q + pn � 0g and 
onvergesto some subgroup of the group H�(Kn n �) (if n > 3 then to entire this group).Remark 2. There are beautiful algebrai
 stru
tures on the above-des
ribed spe
tralsequen
e, and hen
e on its limit �ltered group H�(Kn n �) and the 
orrespondingadjoint graded group, see [12℄.All of this theory 
an be extended almost literally to the 
ohomology of the spa
eof 
ompa
t knots S1 ,! Rn .2 However, in this 
ase the 
hord spa
e B(S1; 2) is nottopologi
ally trivial (it is a 
losed M�obius band); also the spa
es of equivalent (A; b)-
on�gurations are not the 
ells. To get the 
ell de
omposition of all spa
es Fp n Fp�1we need to mark one point in S1 ("the origin") and 
all two 
on�gurations equivalentif they are transformed one into the other by a homeomorphism of S1 preserving theorigin and the orientation.The dire
t 
al
ulation of the spe
tral sequen
e and obtaining the 
ombinatorialformulas for the �nite-type 
ohomology 
lasses of spa
es of knots is formally thesame pro
ess as in the 
ase of plane arrangements. However, the exa
t 
hoi
e of thespanning 
hains in all the 
onse
utive terms of the �ltration and in entire Kn dependsvery mu
h of the features of the knot spa
e.Remark 3. There is another, sometimes more 
onvenient 
onstru
tion of the res-olution of dis
riminant sets, namely the 
oni
al resolutions based on the notion ofa 
ontinuous order 
omplex of a topologized partially ordered set, see e.g. [19℄. Inparti
ular it allows us to resolve the points of � with in�nitely many preimages inthe tautologi
al resolution spa
e. However, for the 
al
ulations in the present workit will be enough to use the "naive" simpli
ial resolution des
ribed above.2.3. Finite type knot invariants and Polyak-Viro 
ombinatorial formulas.Suppose that n = 3 and we are interested in the knot invariants, i.e. the 0-dimensional
ohomology 
lasses of Kn n �. For any su
h 
lass of �nite �ltration p, its prin
ipalpart in Fp n Fp�1 is a linear 
ombination of 
ells depi
ted by p-
hord diagrams (i.e.
olle
tions of p 
hords with distin
t endpoints) and ~p-
on�gurations, i.e. 
olle
tions2As well as of 
ompa
t links, i.e. of embeddings of a disjoint union of several 
ir
les into Rn ; weshall not dis
uss here the latter theory
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hords with di�erent endpoints and one triple of points joined by three 
hords.E.g., among all diagrams in (4){(8) only the left pi
ture in (5) and three left pi
turesin (6) are 
hord diagrams, and only the last pi
ture in (6) is a ~2-
on�guration. The
oeÆ
ients with whi
h all these 
ells 
an enter the linear 
ombination satisfy the ho-mologi
al 
ondition. In parti
ular the 
oeÆ
ients at ~p-
on�gurations are determinedby these at p-
hord diagrams, and any admissible linear 
ombination is 
hara
terizeduniquely only by the 
olle
tion of latter 
oeÆ
ients, whi
h is 
alled a weight system.The elementary 
hara
terization of these invariants is as follows (see e.g. x0.2 in[14℄). Let us 
onsider any immersion R1 ! R3 with exa
tly k transverse sel�nterse
-tion points. We 
an resolve any of these points in two lo
ally distin
t ways to geta knot without interse
tions. One of these two lo
al resolutions 
an be invariantlyde�ned as a positive, and the other as the negative one. The k-th index of a knotinvariant at our singular immersion is equal to the alternated sum of its values at all2k knots obtained by all di�erent possible resolutions of double points: the value at aknot is 
ounted with sign 1 or �1 depending on the parity of the number of positivelo
al resolutions. A knot invariant is of �ltration p if and only if all its indi
es at allimmersions with k > p sel�nterse
tions are equal to 0. The same de�nition 
an beapplied to de�ne the �ltration of invariants of 
ompa
t knots S1 ! R3 . On the otherhand, it is easy to see that there is a natural one-to-one 
orresponden
e between 
on-ne
ted 
omponents of spa
es of long and 
ompa
t knots, in parti
ular the theories oftheir invariants naturally 
oin
ide.Some 
ombinatorial formulas for the simplest �nite-type knot invariants | of or-ders 2 and 3 | were found in [7℄. Another, more 
onvenient formulas were introdu
edby M. Polyak and O. Viro in [10℄. These formulas for long knots look as the linear
ombinations of 
hord diagrams with oriented 
hords. E.g. the formula = >should be read as follows. Consider a generi
 long knot f : R1 ! R3 . A representa-tion of the above pi
ture in this knot is any 
olle
tion of points a < b < 
 < d � R1su
h that f(a) lies below f(
) and f(d) lies below f(b). The value of this pi
tureon our knot is equal to the number of its representations (
ounted with appropriatesigns). An immediate 
al
ulation shows that this number is a knot invariant of order2. In the 
ase of 
ompa
t knots, there are Polyak-Viro formulas of two types: ab-solute and pun
tured ones. They also look as oriented 
hord diagrams, but withendpoints in the oriented 
ir
le S1 instead of R1 ; moreover, a pun
tured Polyak-Virodiagram 
ontains a point in S1 not 
oin
iding with the endpoints of 
hords. E.g.a representation of the diagram ������I��� in a 
ompa
t knot is any 
olle
tion of fourpoints in S1 with 
y
li
 order a < b < 
 < d < a, satisfying the same 
onditionsas previously. A representation of the pun
tured diagram ������I���r is su
h a 
olle
tion



16 V. A. VASSILIEVof points in the parametrized 
ir
le, whose 
y
li
 
oordinates satisfy a more strong
ondition 0 < a < b < 
 < d < 2�; the origin 0 = 2� 2 S1 
orresponds to the markedpoint in the diagram. It is easy to see that the number of representations of the lastpun
tured diagram (
ounted with natural signs) is a knot invariant, and the similarnumber for the absolute diagram is not.However, some of �nite type knot invariants 
an be realized by absolute dia-grams: in parti
ular the unique invariant of order 3 
an be given by the diagram��������6��+QQs6-�12 +13 , see [10℄.M. Goussarov has proved that any �nite-type knot invariant of long knots 
an berepresented by a formula of Polyak{Viro type, see [6℄.Similar (but more 
ompli
ated) formulas appear naturally in the 
al
ulation ofhigherdimensional 
ohomology 
lasses of spa
es of knots, see the next se
tions.Remark 4. The homologi
al 
al
ulations dis
ussed below provide numerous possi-bilities to make a mistake: to miss some 
omponent of the boundary, to 
al
ulatewrongly some orientation, et
. Fortunately, we always 
an 
he
k our 
al
ulations. Ifwe have 
al
ulated some boundary operator and suspe
t that it is not 
orre
t, just
al
ulate the boundary of this boundary, and try to understand why it is not equalto zero! My experien
e says that no mistakes survive this examination.3. Proof of Theorem 13.1. Prin
ipal part of the 
o
y
le. In the original 
al
ulation [11℄, the prin
ipalpart of the Teiblum-Tur
hin 
o
y
le in the term F3 n F2 of the natural �ltration ofthe resolved dis
riminant was found as a linear 
ombination of some 8 
ells of the
anoni
al 
ell de
omposition, see e.g. [18℄, [16℄.This expression 
an be simpli�ed, espe
ially if n is even.Proposition 6. For any n � 3, the group of order 3 
ohomology 
lasses of dimension3n� 8 of the spa
e of long knots R1 ! Rn is 
y
li
; for n � 3 it is free Abelian.If n is even, then this group is generated by the sum of only two 
ells:(9) � �� �� �Æ 
+Æ 
� �� �TT = :For odd n it is generated by the linear 
ombination(10) Æ 
� �� �� �+ � �� �� �Æ 
+ Æ 
� �� �+ Æ 
� �� �� � �� �Æ 
:The �rst statement of this proposition for odd n was essentially proved by Teiblumand Tur
hin [11℄; the justi�
ation of entire statement see in x6 of [18℄ or xV.8.8 of[16℄.
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e we 
onsider our 
lass mod 2, the stabilization formula (1) allows us to useany of expressions (9), (10) in the 
ase of any n. We shall use the shorter "even"version (9).All further 
al
ulations in this se
tion are mod 2 only.3.2. On the pi
tures. The system of notation in this work is an extension of thatused in x 2 for the 
ells of the natural simpli
ial resolution of the dis
riminant. Anyof our pi
tures 
onsists of a horizontal segment (the Wilson loop symbolyzing the lineR1), several asterisks pla
ed on it, and several ar
s ("
hords") 
onne
ting some itspoints (these data determine su
h a 
ell), plus some additional furniture 
onsisting ofbroken lines (zigzags) and subs
ripts, whi
h distinguish 
ertain subvarieties in these
ells.For instan
e, the pi
ture � �� �HH�� means, �rst of all, that we are in the 
ell� �� � of the term F2 n F1. This 
ell 
an be 
onsidered as the spa
e of all triples(�; t; f) where � is some quadruple of points a < b < 
 < d in R1 , f is a smooth mapR1 ! Rn su
h that f(a) = f(
); f(b) = f(d), and t is a point of the segment ~�(J);J = ((a; 
); (b; d)), parti
ipating in the 
onstru
tion of the resolution: its endpoints
orrespond formally to the pairs of points (a; 
) and (b; d) glued together by f . Theadditional zigzag in the pi
ture � �� �HH�� distinguishes the subvariety in this 
ell,
onsisting of su
h triples (�; t; f) that there exists one point � 2 R1 more, b < � < 
,su
h that f(�) = f(d). By de�nition, this subvariety is identi
al with the one en
odedby the pi
ture � �� ���HH .The pi
ture � �� �HH��� (respe
tively, � �� �HHj�� ) will denote almost thesame, but with the 
ondition f(�) = f(d) repla
ed by the 
ondition that f(�) hasthe same proje
tion to Rn�1 as f(d) = f(b) and lies below (respe
tively, above) f(d)in the line of all points with the same proje
tion.The subs
ript of type ���AAK1 2 under a pi
ture denotes the 
ondition that the"verti
al" dire
tion in Rn lies in the angle between the tangent dire
tions f 0(a1)and f 0(a2), where a1 and a2 are the �rst and the se
ond from the left points of R1parti
ipating a
tively in the pi
ture. Similarly, the subs
ript ��1PPq12 (respe
tively,AAU��� 21 ) says that the verti
al dire
tion lies in the angle between the ve
tors �f 0(a1)and f 0(a2) (respe
tively, between the ve
tors �f 0(a1) and �f 0(a2)). The subs
ript-� r1 2 means that the tangent dire
tions f 0(a1) and f 0(a2) are opposite in Rn . Thenotation of all these types appears only if the 
ondition f(a1) = f(a2) is satis�ed(and 
an be seen from the 
hords and zigzags on the pi
ture).The subs
ript HHj��*-21 means that the distinguished dire
tion "to the right" in Rn�1lies between the proje
tions of su
h tangents f 0(a1); f 0(a2) to Rn�1 (i.e. this dire
tionis the linear 
ombination of these proje
tions with nonnegative 
oeÆ
ients). Thesubs
ript 1 ! 2 means that the proje
tions of tangents f 0(a1); f 0(a2) to Rn�1 have



18 V. A. VASSILIEVopposite dire
tions. The notation of last two types 
an appear only if the proje
tionsof 
orresponding points f(a1); f(a2) 
oin
ide in Rn�1 .The sum of varieties distinguished by 
onditions of types ���AAK1 2 and AAU��� 21 inone and the same 
ell is equal to the variety of type 1 ! 2 ; "of type" here meansthat some other two numbers instead of 1 and 2 
an stay in all three pi
tures. Thisidentity is not symmetri
: indeed, the variety of type 1 ! 2 
an be well de�nedeven when the former two varieties have no sense.The subs
ript 2 l (respe
tively, 2 ", respe
tively, 2 #) means that the tangent ve
torf 0(a2) is verti
al (respe
tively, verti
al dire
ted up, respe
tively, verti
al dire
teddown). The subs
ript of type 2 7! means that the proje
tion of the tangent f 0(a2)to Rn�1 is dire
ted "to the right".Abbreviation f1 repla
es the 
omposition pÆf : R1 ! Rn�1 . Finally, a 
olle
tion ofve
tors in a framebox means that these ve
tors are linearly dependent. For instan
ethe subs
ript f 01(1); f 001 (2); 7! means that some three ve
tors in Rn�1 , namely theproje
tion of f 0(a1), the proje
tion of f 00(a2), and the dire
tion "to the right", spana subspa
e of dimension � 2. Several more spe
i�
 abbreviations will be explainedlater, 
lose to their �rst use.The boundary of the variety distinguished in any 
ell by the 
ondition ���AAK1 2(respe
tively, AAU��� 21 ) is equal to the sum of varieties distinguished by 
onditions-� r1 2 , 1 " and 2 " (respe
tively, -� r1 2 , 1 # and 2 #) plus maybe somethingin the boundary of the 
ell. Similarly, the boundary of the variety distinguished bythe 
ondition HHj��*-21 is equal (modulo the boundary of the 
ell) to the sum of varietiesdistinguished in the same 
ell by 
onditions 1 ! 2 , 1 7!, and 2 7!. The boundaryof the 
ondition 2 7! is equal to 2 l plus something in smaller 
ells.3.3. The �rst di�erential. Formula (9) de�nes a relative 
y
le in the term F3 ofour �ltration modulo F2: In this subse
tion we 
al
ulate its boundary in the termF2nF1; and span it by some 
hain with 
losed supports in this term (i.e. we representit as the boundary of su
h a 
hain).Proposition 7. The boundary of the 
y
le (9) in F2 n F1 is equal to the 
hain(11) � �� �� ���HH� �� �� �-�1 2r� ���� �� �HH��� �� �HH A B C D E+ + + +�� AA�� :(Namely, the boundary of the �rst term of (9) 
onsists of four 
hains A, B, C and Din (11), and the boundary of the se
ond is equal to the �fth 
hain E.)The unique nontrivial term of this formula is the 4th one: it appears when the �rstpoint of the 5-
on�guration parti
ipating in the �rst term of (9) tends to the se
ond,and simultaneously the fourth point tends to the third. �
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ise: to 
he
k that the 
hain (11) a
tually is a 
y
le in F2 n F1.Now, let us span this 
y
le by a 
hain in the term F2 n F1. The 
ellular stru
tureof this term was des
ribed in Example 2 of se
tion 2.First we span the 
omponents D and E of (11) inside the 
ell � �� �� � , i.e. we
onstru
t the homology between their sum and some 
hain in the boundary of this
ell. It is natural to span a 
hain with 
ondition of type -� r1 2 by a similar 
hainwith 
ondition of type ���AAK1 2 , and a 
hain having zigzag without arrows by a similar
hain with an arrow added at one of endpoints of the zigzag. The 
hains obtainedin this way from the ones en
oded by parts D and E of (11) are indi
ated in the leftparts of the next two equations (12) and (13) respe
tively.In the right-hand parts of these formulas, as well as in all forth
oming expressionsfor boundary operators in this work, we �rst 
ount the 
omponents of the boundaryde�ned by the degenerations of the subvarieties in the 
orresponding 
ells, distin-guished by arrowed zigzags and subs
ripts. Then we 
ount the 
omponents de�nedby the limit positions of these varieties when the 
ell itself degenerates be
ause ofthe 
ollision of some points forming its underlying J-
on�guration in R1 . The latterdegenerations appear in the lexi
ographi
 order: �rst by the number of 
olliding pairsof points in R1 , and then by their positions in R1 .
(12)

� � �� �� ������I 12 = � �� �� � � �� �� � � �� �� �++1 " 2 " -� r 12 +� �� ������I 12 � �� ������I 12 � �� ������I 12+++ ;
(13) � � �� �� ���HHY � �� �� � � �� �� � � �� �� �++= 1 # 2 " ��HH +� �� ���HHY � �� ���HHY � �� � ��HHY+++ :Proposition 8. The equalities (12), (13) are 
orre
t, i.e. the algebrai
 boundaries(mod 2) in F2 n F1 of the varieties indi
ated in their left parts are equal to the sumsof varieties indi
ated in their right-hand parts. �In (13) �rst two summands are degenerations of the variety de�ned by the zigzagwhen its arrowed endpoint tends to one of boundaries of the 
orresponding segment,and the third summand belongs to its boundary as the equality of type �(x) = �(y)de�nes a 
omponent of the boundary of the set de�ned by the inequality �(x) � �(y).The last three summands in both (12) and (13) belong to the boundary (7) of the
ell � �� �� � .



20 V. A. VASSILIEVThe sum of all varieties indi
ated in right-hand parts of (12), (13) 
onsists of partD + E of (11), some 
hain in the boundary of the 
ell � �� �� � , and the �rst
hain in the right-hand part of the equation(14) � �� �� � � �� �� �1 l=� � �� � � �� � � �� �+ ++ 1 7!1 7!1 7!1 7! :In other words, the sum of three 
hains in the left parts of equations (12), (13) and(14) realizes homology between the sum of 
hains D and E and some 
hain in theboundary of the 
ell � �� �� � .Now we span the summands B and C of (11) inside the open 
ell � �� � . Weneed to �nd varieties in this 
ell, whose boundaries in
lude these summands. Theobvious 
andidates for this are the 
hains shown in the left parts of equations (15)and (16) respe
tively.
(15)

� � �� �= � �� �
� �� � � �� �+++ PPP��> 2 #+ � �� � + � �� �+ � �� � SSo ��712ZZ��> ZZ�� ZZ��=ZZ��>

(16)
� � �� �= � �� �+ � �� �HH��> + � �� �2 " +����AA��� + ����

� JĴ12+ � ���AA��� + � ���SS��/ SS��+ PPq��131Again, all summands in lower rows of these equalities belong to the boundary ofthe 
ell � �� � .Proposition 9. The equalities (15), (16) are 
orre
t, i.e. the algebrai
 (mod 2)boundaries in F2 n F1 of the varieties indi
ated in their left parts are equal to thesums of varieties indi
ated in their right-hand parts. �In parti
ular we get that the boundary of the sum of these two left-side varietiesis equal to the sum of varieties denoted in (11) by B and C, plus some 
hain in theboundary of the 
ell � �� � , plus the variety distinguished in this 
ell by theadditional 
ondition 2 l. The last variety is a part of the boundary of the similarset distinguished by the 
ondition 2 7!. Entire boundary of this set in F2 n F1 is



ON COMBINATORIAL FORMULAS FOR COHOMOLOGY OF SPACES OF KNOTS 21expressed by the formula(17) 2 7! 2 l 1 7! 2 7! 2 7!� ����= ����+ ��� �+ Æ
��+ � ���+ ��*�f 0001 (1)=f 001 (1) �� 7! =f 001 (1):The subs
ript under the last term of (17) means, that the proje
tions of se
ond andthird derivatives of f at the point a1 into Rn�1 lie in the same 2-plane as the dire
tion"to the right", and two frames in this 2-plane obtained by adding to the proje
tionof f 00(a1) either the proje
tion of f 000(a1) or the dire
tion "to the right" have oppositeorientations. This term o

urs when both endpoints a1; a3 of the "lower" ar
 in theleft pi
ture of (17) tend from di�erent sides to the �rst endpoint a2 of the "upper"ar
.Finally we get that the 
y
le d1(TT ) shown in (11) is homologous in F2 n F1 toa 
hain lying in the union of 
ells of nonmaximal dimensions listed in (7), (8); thishomology is provided by the sum of six varieties indi
ated in the left parts of equalities(12), (13), (14), (15), (16), and (17).Namely, this 
y
le homologous to d1(TT ) is as follows. In the 
ell � �� � itis zero, in the 
ell � �� � it is equal to the 
hain(18) ����+ ����+ ����+ ����2 7!

� JĴ121 7!JJ℄ 

�1 2 ;in the 
ell � �� � it is equal to the 
hain
(19)

� �� �+ � �� �+ � �� �+ � �� �+� �� �� �� �+AAK ��� 21 1 7! 2 7!��AAK""QQ+ ��1PPq31 ;in the 4th 
ell of (8) it is equal to(20) � �*�f 0001 (1)=f 001 (1) �� 7! =f 001 (1) ;and its interse
tions with all other 
ells are empty.The sum of the �rst and the third terms in (18) is equal to the variety denoted bythe subs
ript 1 ! 2 . To kill it (and something else) we 
onsider the equality(21) ������*HHj-12� =������������+++ � �* + � �f 0001 (1)=f 001 (1) �� 7! =f 001 (1) -���*1HHYHHY2-�1 2 1 7! 2 7! * :



22 V. A. VASSILIEVThe variety in its left part 
onsists of su
h points of the 
ell � �� � that thedire
tion "to the right" in Rn�1 lies between the proje
tions of f 0(a1) and f 0(a2) toRn�1 . The sum of three �rst terms in the right-hand part of (21) is equal to entire(18). The subs
ript under the fourth term in (21) means almost the same as in (17)or (20), but now the two frames 
ompared there should de�ne equal orientations.Finally, the last term in (21) belongs to the 5th 
ell in (8). This 
ell 
an be
onsidered as the spa
e of triples (�; t; f) where � is a pair of points (a < b) in R1 ,f a map R1 ! Rn su
h that f(a) = f(b); f 0(b) = 0, and t is a point of a segmentparti
ipating in the 
onstru
tion of the simpli
ial resolution (its endpoints formally
orrespond to the above two linear 
onditions). The subs
ript under the pi
ture ofthis 
ell in (21) denotes a subvariety in the spa
e of su
h triples, de�ned by thefollowing additional 
ondition: the dire
tion "to the right" in Rn�1 belongs to theangle between proje
tions of ve
tors f 0(a) and �f 00(b). Here the number of arrowslabeled by 2 shows us the order of the derivative at the se
ond point b parti
ipatingin this 
ondition, and the reversed dire
tion of these arrows indi
ates that we needto take this derivative with the opposite sign.Now we span the 
hain (19) inside the 
ell � �� � . First of all we kill the5th pi
ture in (19) by the variety shown in the left part of the next equality:
(22) � � �� �HHH��� � �� �HHH��= + � �� �QQ��� + � �� �+� �� �+ � �� � � �� �+ 

 ���HHH ���* ��� AAU 12 PPq��131 ;thus redu
ing it to the sum of other �ve pi
tures in the right part of this equality.The last pi
ture in the upper row of (22) and the �rst pi
ture in the lower row denoteone and the same set and annihilate. The �rst term in (19) together with the se
ondfrom the end term in (22) form a subvariety in the same 
ell de�ned by the 
onditionof the type 1 ! 2 . It is natural to kill it by the left part of the following equation:(23) � � �� � � �� � � �� � � �� �+++=��*HHj-12 1 7! 2 7!-�1 2 � ��-���*1HHYHHY2 :Summing up all terms in right-hand parts of equations (21){(23) and subtra
ting the
hains (18), (19), (20), we annihilate almost all of their summands ex
ept for theterm (20) and the se
ond from the right term of (21). The sum of these two terms isequal to the right-hand part of the identity(24) � � �� � = � ��f 01(1); f 01(2); 7! f 001 (1); f 0001 (1); 7! :
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ript under this right-hand part means that the proje
tions of f 00(a1) andf 000(a1) to Rn�1 and the dire
tion "to the right" should be linearly dependent; thesubs
ript in the left part says the same about proje
tions of ve
tors f 0(a1) and f 0(a2).If n = 3 then both these subs
ripts mean nothing.Summarizing, we get that for the desired 
hain spanning (11) in F2 n F1 we 
antake the sum of varieties shown in left parts of equalities (12){(17) and (21){(24), i.e.the 
hain
(25)

� �� �� ����AAK2 1 + � �� �� �+ � �� �� �+��AAK 1 7! � �� �CC��� + ++ � �� �2 7! + � �� ���*HHj-21 + � ���QQ��3 + � �����*HHj-21
� �� �""ZZ~� �� �+f 01(1); f 01(2); 7!:3.4. The se
ond di�erential and its homology to zero. Now let us 
onsiderthe boundary of the 
hain (25) in the term F1 of the �ltration. This term 
onsistsof two 
ells, one of whi
h is 
hara
terized by a single 
hord and the se
ond by oneasterisk; see (5). It is easy to see that the �rst three summands in (25) do not haveany homologi
al boundary in these 
ells, and the next seven have two 
omponentsof the boundary ea
h, and these pairs of 
omponents are shown 
onse
utively in thenext formula (26):

(26)

� �QQ��\\��/ + � ����ll��JJ℄ + � �HHH,,AA��� + � ����ll����� +
� �HHH,,2 7! + � ����ll2 7! + ��������*HHj- + ����\\��*HHj- +

+ + � �ll,, + ��HHHH�����*HHj- ��*HHj-
12 1212 12�� ���� �QQ�� �� ������ +� �+ Æ 
HH�� ���HHH���

f 01(1); f 01(2); 7! f 01(1); f 01(2); 7!+
+
+

:The last pi
tures in the se
ond and the third lines of this formula denote one andthe same variety and annihilate, so we get only the sum of remaining twelve varieties.



24 V. A. VASSILIEVNow let us span this sum by a 
hain in F1. As usual, any time as we have avariety 
hara
terized by a pi
ture with a zigzag (without arrows) we represent it asa 
omponent of the boundary of a variety, whose pi
ture is obtained from this oneby adding an arrow at one of the ends of the zigzag. Performing this systemati
ally,we �nd some ten varieties of 
odimension 1 in the greater 
ell of F1. These varietiesare en
oded in the left parts of the following equations (27){(36), whose right-handparts express the boundaries of these varieties.
(27)

� � �����	TT��	 = � �����TT��	 + � �����	\\�� + � �����	TT��	 ++ � �SS��	����R + � �TT��	TT��	 +� �����	 2 " + � �SS��/ AAU���1 2
(28)

� � ���?��SSw = � �����	TT�� + � �TT��SSw + � ���?����R ++ ������	SS��/+ ������	 2 # + � ���?��? + ��LL��	AAK ���21 + � �TT��	 ��*HHj12
(29)

� � �ll��= 2 7! = � �bbb## 2 7! + � �ll��= 2 l + � �1 7! ++ � �\\��	2 7! + � �����	2 7! + � �1 7! + � HHH����f 0001 (1)=f 001 (1) �� 7! =f 001 (1)��1PPq12
HHH����

(30)
� ��*HHj-21 = ������������	 + ����	�� +��*HHj-21 1 7!+

����	�� +2 7!������	1 ! 2 + � �2 "+ HHH�����f 0001 (1)=f 001 (1) �� 7! =f 001 (1) -���1PPiPPi21
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(31)
� � �ll��	��*HHj-12 = � �ll��	1 7! � �ll��	2 7! ++ � �ll��	1 ! 2+ � �ll��HHj��*12 - � �2 "+

+ +
+ � �1 # f 0001 (1)=f 001 (1) ��7! =f 001 (1)-���1PPiPPi21

(32)
� � ��� ��R��AAU = � ��� ��AAU �� + � ��� ��R��SS + � �����R LL��	 ++ ��,,��R2 # + ��,,��R ��	 + ������R \\? + � �����R+� �TT��	1 ! 2 ��1PPq31

(33)
� � �����R2 7! = � �����2 7! + � �����R2 l + � �����R1 7! +� �1 7! ��1PPq21+ + � �1 # f 0001 (1)=f 001 (1) ��7! =f 001 (1)(34) � ��,,��R��6 = ����6,,ll + ����LL,,��R + ������I,,��R + ��,,��R2 "

(35) � � �= � �QQ�� + � �1 # � �2 "+f 001 (1); f 0001 (1); 7! f 001 (1); f 0001 (1); 7!f 01(1); f 01(2); 7!f 01(1); f 01(2); 7!QQ��3
(36) � ������	 = HHH�����+���� + � �2 "��f 01(1); f 01(2); 7! f 001 (1); f 0001 (1); 7!f 01(1); f 01(2); 7! f 01(1); f 001 (2); 7!



26 V. A. VASSILIEVSumming up the right-hand parts of these equations, we get the following state-ment.Proposition 10. The 
y
le d2(TT ) � F1 presented by the linear 
ombination (26)is equal to the boundary (mod 2) of the sum of ten varieties shown in the left partsof equations (27){(36).In this summation we use the following relations. Let us denote by (a;b) the b-thsummand in the right-hand part of the equation (a). Then (27;6) + (28;5) = (29;2);(27;7) + (28;7) = (30;4); (27;5) + (28;6) = (32;3); (34;3) + (32;6) = (32;5); (34;4)+ (32;4) = (33;2).
3.5. The third di�erential. Ten varieties des
ribed by left parts of equations (27){(36) form a 
hain in the term F1 of the resolved dis
riminant, i.e. in the tautologi
alresolution of this dis
riminant, see x2.Finally, we 
onsider the image of this 
hain in the dis
riminant itself. The imageof any of ten 
omponents of this image is a subvariety in the spa
e Kn of mapsR1 ! Rn , distinguished by 
onditions, whose notation is obtained from the notationof the 
orresponding variety in F1 by repla
ing its unique 
hord by a zigzag withthe same endpoints. It remains to span the sum of these varieties by a 
hain in thespa
e Kn. Pro
eeding as before, we �nd �ve varieties indi
ated in the left parts ofthe following identities (37){(41).

(37)
� ZZZ���=JJ

� = ZZZ���=JJ

� ZZZ���=HHHH����*JJ

� + ++ + JJ��	 + 2 "+ JJ��	 JJ��	 + HHHH ����*JJ��	JJ��	 +����	�� ���

����	�� ����� ��� ZZZ��� JJ

�� ���� ��� �� ���
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(38)
� +

++
HHHH����* ZZZ���=����� = ZZZ���=����� HHHH����* ZZZ���= ++ZZZ����* ZZZ����� 2 #����	JJ�������HHHj++ HHHH����*�����+ �� ��� ����	���AAU + �� �������	QQ��� ����	QQQ���1 ! 2

�� �� �� �� ����

(39) + + + ���QQQs��SSo2 7!��SSw SS��/2 7!SS��7 QQQ���+ 1 7!
� QQQ���+QQQ���32 7! QQQ���+QQQ���2 7! QQQ���QQQ���32 7! QQQ���+QQQ���3= + + +2 l+ HHH����1 # �f 0001 (1)=f 001 (1) ��7! =f 001 (1)

(40)
� ��*HHj-21 HHH��������� ��*HHj-21 HHH����� ��*HHj-21 HHH������ HHH���������= + + +1 7!�����HHH���������+ +2 7! HHH��������� +� - 21 HHH����1 # f 0001 (1)=f 001 (1) ��7! =f 001 (1)

(41) � HHH��������� HHH����� HHH������ HHH����++��� �� 1 #f 01(1); f 01(2); 7! f 01(1); f 01(2); 7! f 01(1); f 01(2); 7! f 001 (1); f 0001 (2); 7!=It is easy to 
he
k that the homologi
al sum of the right-hand parts of theseidentities is equal to the sum of our ten dis
riminant varieties obtained from leftparts of equalities (27){(36). (We use the following relations: (37;5) + (38;5) =(39;3); (39;6) + (40;4) = (39;5); (39;4) + (40;6) = (41,3); (37;4) + (37;6) + (37;7)+ (38;4) + (38;6) + (38;7) = 0.)



28 V. A. VASSILIEVTherefore the sum of the �ve varieties indi
ated in left parts of equalities (37){(41)is the desired relative 
y
le in Kn (mod �).The sum of the �rst and the se
ond of these �ve varieties (respe
tively, the thirdvariety, respe
tively, the di�eren
e of the �fth and the fourth varieties) is exa
tly thevariety indi
ated in item a) (respe
tively, b), respe
tively, 
)) of Theorem 1, whi
h isthus 
ompletely proved.3.6. Problems. 1. Algorithmization. To write a 
omputer algorithm doing allthe same for any other �nite-type 
ohomology 
lass of the spa
e of knots. Let us
onsider any homology 
lass 
 of the dis
riminant of the spa
e of knots, havingsome �nite �ltration ("order") p and presented by its "prin
ipal part", i.e. by the
orresponding homology 
lass in the term Fp n Fp�1 of the resolved dis
riminant.This 
lass always is des
ribed by some linear 
ombination of pi
tures (generalized
hord diagrams) as in (9), (10), see x 2. To get the 
ombinatorial des
ription of a
ohomology 
lass with this prin
ipal part, we need to 
al
ulate all the steps of thespe
tral sequen
e starting from this part. To do it, on any step we need to �nd the
hains spanning the 
onse
utive boundaries dr(
) � Fp�r n Fp�r�1. Above we haveused some obvious rules: if a pie
e of our 
y
le dr(
) is des
ribed by a pi
ture like in(11){(40), then it is natural to kill it by a pie
e of the spanning 
hain, des
ribed byalmost the same pi
ture, only repla
ing some one zigzag without arrows by the samezigzag with arrow at one its end, or repla
ing some 
ondition of type -� r1 2 bythe 
ondition of type ���AAK1 2 , or repla
ing some 
ondition 1 ! 2 by the 
onditionHHj��*-21 , et
. But how to de
ide, whi
h of these fragments (and for whi
h pie
e of the
y
le) to repla
e �rst? At whi
h endpoint to put the arrow? Is it possible to do italways in su
h a way that all the other 
omponents of the boundary of this spanningvariety would be in some sense "of lesser 
omplexity" than the killed one, so that ouralgorithm 
onverges indu
tively? Whi
h other subvarieties in the 
ells of Fp n Fp�1
an o

ur in the pro
ess of performing this algorithm ? What are the formal rulesfor 
al
ulating their boundaries ?I presume that the main �ltering degree should be the number of points in R1parti
ipating in the de�nition of the subvariety, and the orientation of arrows is notimportant: say, the algorithm will work if we orient all of them from the right to theleft (although, of 
ourse, other 
hoi
e 
an provide somewhat easier formulas).2. Orientable 
ase.To do all the same for homology with integer 
oeÆ
ients, i.e. taking into a

ountorientations of our varieties. In this problem, the answers for odd and even n will bedi�erent: already the 
hain (9) is a Z-
y
le in F3 n F2 only for even n. If n is even,is it 
orre
t, that all the 
al
ulations of x 3 remain valid after imposing appropriatesigns before the pi
tures ?
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3.7. Proof of Proposition 2. First we spe
ify a loop in the spa
e of long knots asin this Proposition. We 
an assume that the standard embedding R1 ! R3 (withwhi
h all long knots should 
oin
ide 
lose to the in�nity) lies in the plane R2 andhas angle �=4 with the 
hosen dire
tion "to the right". Let us 
onsider the standardlong trefoil as shown in Fig. 2.Namely, we assume that 
lose to all 
rossing points the proje
tions of tangentdire
tions to R2 are separated from the dire
tion "to the right" or "to the left":for 
ertainty, let us make the angles between the dire
tion "to the right" and theseproje
ted tangent dire
tions at 
onse
utive 6 points to be equal to �=4, 3�=10, ��=4,3�=4, 2�=10, and �=4 respe
tively.We 
all this knot a "large" one, and tie a very small homotheti
 knot on its initialsegment indi
ated by a tiny square in Fig. 2. Then we shrink very mu
h the largeknot in the "verti
al" dire
tion (orthogonal to the plane of our pi
ture) so that itbe
omes almost 
at and its derivative almost horizontal, not 
hanging the small knot.Then we move this small knot along the large one in su
h a way as if it would befrozen in a small hard bead put on this large knot. (On the same Fig. 2 we showby the thi
k lines the 
hannel of the bead; in this 
ase all the pi
ture should be
onsidered as that of the small homotheti
 knot. In parti
ular all the points of thisknot where the dire
tion of its derivative is suÆ
iently far from the standard one, areinside the bead.)



30 V. A. VASSILIEVMore pre
isely, we asso
iate with this bead a orthonormal frame in R3 whose �rstve
tor in the initial instant is verti
al (i.e. orthogonal to the plane of the pi
ture)and the se
ond ve
tor is dire
ted along the 
hannel.Lemma 1. Suppose that a) the ratio of the diameter of the 
hannel to its lengthis equal to a suÆ
iently small number ", b) the 
oeÆ
ient of the 
attening of thelarge knot in the verti
al dire
tion is of order "2, so that the absolute value of the"verti
al" part of the derivative of the large knot shown in Fig. 2 is nowhere greaterthan "2 times the length of its "horizontal" part, and 
) the size of the bead (i.e. thehomothety 
oeÆ
ient of two knots) is equal to "3.Then we 
an move our bead along the entire large knot in su
h a way thatA) the �rst ve
tor of its asso
iated frame remains verti
al all the time, andB) there is a smooth one-parametri
 family of long knots in R3 su
h that at anyinstanti) they 
oin
ide with the large knot everywhere outside the 
onvex hull of the bead,ii) their interse
tion with the bead itself remains �xed and is as shown in Fig. 2,iii) in all the points of the knot inside the 
hannel of the bead, the angle betweenthe derivative of the knot and the dire
tion of the 
hannel is less than �=4. �The �rst and last instants of this one-parameter family of knots obviously 
an bejoined by a homotopy not 
hanging the topology of the knot diagram, and we get a
losed loop in the spa
e of knots. Now let us 
al
ulate the interse
tion number ofthis loop with the 
hain des
ribed in Theorem 1.This loop 
an interse
t the varieties indi
ated in statements a) and 
) of thisTheorem only when triple interse
tions of the proje
tion o

ur. This 
an happenonly if one of 
rossing points of the smaller knot moving along some bran
h of thelarge knot passes above or below the other its bran
h: in total 18 suspi
ious instants.These instants should be 
ounted with multipli
ities. In the 
ase of variety des
ribedin statement a) the multipli
ity is equal (mod 2) to the number of other 
rossing pointsof the 
omposite knot forming together with this triple point a 
on�guration satisfyingall other 
onditions of this statement; for variety des
ribed in 
) the multipli
ity isequal to 0 or 1 depending on the 
ondition on the tangent frame.It is easy to 
al
ulate that the desired 
on�gurations for the variety a) exist onlywhen our small knot passes the �rst time (i.e. along the lower bran
h) the third
rossing point of the large knot: moreover, all three instants when one of 
rossingpoints of the small knot pass this point have multipli
ity 1. Therefore the totalnumber of interse
tions of our path with variety a) is equal to 3. Similarly, we meet thevariety 
) only on
e, when our small knot (more pre
isely, its se
ond 
rossing point)passes the �rst time the �rst 
rossing point of the large knot. So, the interse
tionnumber with variety 
) is equal to 1.The 
on�gurations of type b) 
an appear by two reasons. First, when the smallknot passes a 
rossing point of the large one (and namely an under
rossing) then all
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h of the large knot; at some instant this happenswith the point with the distinguished tangent dire
tion. Again, any su
h instantshould be 
ounted with multipli
ities depending on the order of other 
rossing pointsof the 
omposite knot. It is easy to 
al
ulate that only on
e this multipli
ity 
anbe not equal to zero. Namely, when our small knot under
rosses the third 
rossingpoint, then at some instant this situation appears with multipli
ity 2. Further, whenour small knot moves and rotates together with the derivative of the large one, someof tangent lines at its own 
rossing points 
an instantly be
ome dire
ted "to theright". (Namely, only the tangent line at the under
rossing bran
h of the �rst orthird 
rossing point of the small knot is interesting for us.) There are exa
tly twopoints of the large knot at whi
h it happens: in Fig. 2 they are indi
ated by small
ir
les. The multipli
ity of the "lower" (in this pi
ture) point is equal to 1, and themultipli
ity of the "upper" one is equal to 0.Finally, the total number of interse
tion points of our path with the variety indi-
ated in Theorem 1 is equal to 3 + 1 + 2 + 1 = 7, and proposition 2 is 
ompletelyproved. 4. Comments on and proof of Theorem 2Four statements A, B, C, D of this theorem are dis
ussed in 
orresponding partsof this se
tion.A. The variety in Kn given by the 
ondition f(0) = f(�) is a ve
tor subspa
e of
odimension n: It is equal to the boundary of the variety A des
ribed in statement Aof Theorem 2. The map Kn ! Rn�1 ; sending any 
urve f to the ve
tor f1(�)�f1(0);de�nes an isomorphism between Rn�1 and the normal bundle of A, in parti
ularindu
es a 
oorientation of A from any orientation of Rn�1 . Thus for any integral(n � 1)-dimensional 
y
le in Kn n � its interse
tion index with A is well de�nedand is equal to its linking number with the subspa
e ff jf(0) = f(�)g. It followsfrom 
al
ulations in [17℄, [16℄, [18℄ that su
h integral 
y
les exist only if n is even.For instan
e, let S2k�1 be the unit sphere, and 
onsider all the �bers of the Hopfbundle S2k�1 ! C Pk�1 supplied with natural parametrizations respe
ting the naturalorientations of these �bers. The set of all these parametrized �bers is obviouslyhomeomorphi
 to S2k�1 (to any parametrized �ber there 
orresponds the zero of theparameter) and has exa
tly one interse
tion point with the variety A.B. The algorithm of �nding the spanning 
hain is as follows. The variety L de-s
ribed in Proposition 3 is swept out by 1-parametri
 family of subspa
es L(�) � Knof 
odimension n: they are parametrized by points � of the half
ir
le S1=� = R1=�Zand de�ned by 
onditions f(�) = f(�+ �). Let us try to span all these spa
es sepa-rately. Consider the trivial bundle Kn � [0; �℄! [0; �℄ and subset in it 
onsisting ofpairs (�; f) su
h that f(�) is above f(�+�) in Rn : This subset is a smooth subman-ifold with boundary, and its proje
tion to [0; �℄ is a smooth �ber bundle. Forgetting



32 V. A. VASSILIEVthe se
ond 
oordinate � de�nes the proje
tion of this manifold to Kn. Its image isexa
tly the variety Ba des
ribed in statement Ba of Theorem 2. Its boundary 
on-sists of the variety L and images of �bers of the above-des
ribed �ber bundle over thepoints 0 and �. The union of these two �bers is equal to the subspa
e distinguishedby the 
ondition f1(0) = f1(�), and is equal to the boundary of the halfspa
e Bbdes
ribed in statement Bb of Theorem 2.Now we 
hoose 
oorientations of these varieties. The variety Ba is singular. Anyits regular point f satis�es the 
ondition f1(�) = f1(�+ �) for exa
tly one � 2 [0; �)and has transverse sel�nterse
tion of the 
urve f1(S1) at this point. Close to su
ha point f the 
oorientation of Ba is de�ned as follows. Fix our point � and de�nethe map (Kn; f)! TSn�2 asso
iating to any parametrized 
urve g � f the point ofSn�2 equal to the dire
tion of the ve
tor g01(� + �) � g01(�), and the tangent ve
torat this point in Sn�2 equal to the proje
tion of the ve
tor g(� + �) � g(�) to theplane orthogonal to this ve
tor g01(�+�)�g01(�). The preimage of the zero se
tion ofTSn�2 under this map is tangent in Kn to the variety Ba, in parti
ular if we have ageneri
 germ of a (n� 2)-dimensional subvariety (simplex) in Kn at the point g thenit is transversal to both varieties and we 
an indu
e its desired orientation from (any�xed) orientation of the bundle TSn�2.The 
oorientation of the variety Bb is indu
ed from a 
hosen orientation of Rn�2by the map Kn ! Rn�2 by a map sending any f to the dire
tion of the ve
torf2(�)� f2(0) 2 Rn�2 � Rn=f"; 7!g.C. Re
all that the term F1 of the simpli
ial resolution of � is the spa
e of pairs(42) ((�; �); f) 2 B(S1; 2)� Knsu
h that f(�) = f(�). In parti
ular it is a ve
tor bundle over B(S1; 2). LetM �F2 nF1 be the prin
ipal part of the (2n� 3)-dimensional 
lass of order 2 des
ribed inProposition 4. Its �rst di�erential d1(M) is realized by the subvariety in F1 
onsistingof su
h pairs (42) that � = �+� and f satis�es not only the 
ondition f(�) = f(�+�)but also the 
ondition f(� + �=2) = f(� � �=2): The set of su
h pairs (�; �) is the
ir
le R1=�Z; so our 
y
le d1(M) is the spa
e of a ve
tor bundle over the 
ir
le. Tospan it in F1 
onsider the subvariety M01 � F1 
onsisting of su
h pairs (42) thatagain � = � + �; f(�) = f(�); but the image of one of points f(� � �=2) is abovethe other: namely, the image of those of these two points whi
h is separated from0 2 S1 by the points �; � + � is above the image of its antipode. This subvarietyalso forms a �ber bundle over the 
ir
le R1=�Z of all su
h pairs (�; � + �). Thereis exa
tly one position of � over whi
h this �ber bundle fails to be lo
ally trivial,namely � = 0(mod �): The boundary of this subvariety is equal to the sum of the
y
le d1(M) and the spa
e of points (42) where � = 0(mod �), f(0) = f(�) andf1(�=2) = f1(��=2). We span the latter spa
e by the similar halfspa
eM001, de�nedby the 
ondition that f(0) = f(�) and f1(�=2) lies to the right of f1(��=2). ThesumM01 +M001 is the desired 
hain in F1 whose boundary is equal to d1(M). Now
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onsider the image d2(M) of this 
hain in � and try to represent it as a boundaryof some relative 
y
le in Kn(mod �): The image ofM002 is obvious, and the image ofM01 
onsists of maps f su
h that there exists � 2 [0; �℄ su
h that f(�) = f(� + �),and the image of one of points �� �=2 (namely, the one separated from 0 by � and� + �) is above the other.It is natural to kill this variety by the spa
e of all maps f des
ribed in statementCa of Theorem 2. Its boundary 
onsists of this image ofM01 and the spa
e of su
hmaps f that f(�) is above f(0) and f1(�=2) = f1(��=2): The boundary of the varietydes
ribed in statement Cb of Theorem 2 is equal to the sum of the latter spa
e andthe image ofM001.Statement C of Theorem 2 is thus proved for Z2-homology; the proof of its integerversion requires additionally only an a

ounting of orientations.D. We shall use the pi
tures like in x 3, only the Wilson loop will be shown not bya segment but by an oval with marked "zero" point on its top. This point is referredto as 0 in subs
ripts, and all the other points parti
ipating in the de�nition of 
ellsand their subvarieties are numbered a

ordingly to the (
ounter
lo
kwise) orientationof the Wilson loop. All the 
al
ulus remains the same as in x3, only the boundaryoperators will in
lude the limit positions of our 
ells and their subvarieties when someof de�ning them points tend to 0.As we are interested in integral homology 
lasses, we shall take 
are of orientationsof all our varieties in the 
ells of the standard 
ell de
ompositions of terms Fi nFi�1:This orientation 
onsists of the orientation of the 
ell and the (
o)orientation of thesubvariety in it. The 
hoi
e of these orientations will follow the guidelines indi
atedin x3 of [14℄ or xV.3.3 of [16℄. Namely, they 
onsist of the following orientations (takenin that order): a) the orientation of the simplex parti
ipating in the 
onstru
tion ofthe simpli
ial resolution (i.e. the simplex ~�(J) or some its nonmarginal fa
e); b) the
oorientation of the subspa
e L(J) of the spa
e Kn; 
) the orientation of the spa
eof equivalent point 
on�gurations J � S1; d) the (
o)orientation of the subvarietyin the 
ell. The �rst three orientations are spe
i�ed exa
tly as in x3 of [14℄ (butnow in 
) we 
an move only nonzero points). Often the subvariety in the 
ell isgiven by several 
onditions of the form: "there are additional points in R1 whoseimages f(�) 2 Rn (or their proje
tions to some �xed subspa
e) 
oin
ide with oneanother or with images of some points parti
ipating in the de�nition of the 
ell", orat least our subvariety forms an open subset in a subvariety de�ned in su
h a way.In this 
ase the orientation d) also is de�ned by the sequen
e 
onsisting of �) the(
o)orientation of the ve
tor subspa
e de�ned by these 
onditions in the ve
tor spa
es
ounted in the step b) above, and �) the orientation of the spa
e of 
on�gurationsof additional points. These orientations also are spe
i�ed as in [14℄, [16℄; to de�nethe 
oorientations of subspa
es we assume that the dire
tion "up" in Rn is the �rstve
tor of the 
anoni
al frame, and the dire
tion "to the right" is the se
ond. All theforth
oming 
al
ulations refer to exa
tly this 
hoi
e of orientations.



34 V. A. VASSILIEVThe prin
ipal part of the 
onsidered 
lass in F2 n F1 is as follows:(43) �� ��V2 = + �� ��rr� �� � � �� �� � ;see [14℄. The se
ond summand has no boundary in F1, the boundary of the �rst isas follows:
(44) �� ���� ��rr� � � ��������� �(�1)n :Arguing as previously, we try to span the two terms of this 
hain by the varietiesen
oded in left parts of the next two equations, respe
tively:

(45) �� ��r �� ��r �� ��r�� ��r �� ��r �� ��r
�� ��r �� ��r �� ��r
�� ��r �� ��r �� ��r� = (�1)n�1 + +

� �
� = (�1)n �(�1)n +� �(�1)n

� �����I � ����� ?
����I� �����I� ����:XXXz21� ������ � ����� ?� �

� �

������ ������� ����:XXXz21

+
+(�1)nThe varieties shown by the se
ond from the end pi
tures in both these equations
oin
ide geometri
ally, and their 
anoni
al orientations di�er by the fa
tor (�1)n�1.Therefore the linear 
ombination of left parts of these equations taken with 
oeÆ
ients�1 and (�1)n�1 respe
tively is equal in F1 to the sum of the expression (44) and twolast varieties in these equations. If n = 3 then the sum of last two varieties is equalto zero. Indeed, any of these varieties 
onsists of pairs (42) with � = 0; f(�) = f(�);
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ities. These multipli
ities always are opposite, be
ause theyare equal (up to signs) to di�erent 
ombinatorial expressions for the linking numbersof two "smoothened" loops into whi
h the point f(0) = f(�) breaks the 
urve f(S1):However, if n > 3 then the sum of these two varieties is only homologous to zero,but not equal to it. We shall en
ode this sum by the pi
ture in the right-hand partof the following equation:(46) � �� ��r - = (�1)n�� ��r -� :The variety assumed in the left part of this equation 
onsists of all pairs (42) inF1 su
h that � = 0 and additionally there are points 
 2 (0; �) and Æ 2 (�; 2�) su
hthat the proje
tion of f(Æ) to Rn�1 lies "to the right" from that of f(�).So, the desired 
hain in F1 spanning the 
y
le (44) is equal to(47) �0��� ��+(�1)n�� ��+(�1)n �� ��-� ������r rr� �����I 1A :Its image in � is expressed by the formula(48) �0��� ��+(�1)n�� ��+ �� ��-�����r rr����I ���� ���� ��JJ 1A :We need to span this 
hain by a relative 
y
le in Kn (mod �). For this we have
(49)

��� ��r �� ��r �� ��r �� ��r�� ��r �� ��r �� ��r �� ��r
����	����� = (�1)n�1 ��������	 ���������� � +�����66����I�����QQQ���+SS��7SS��/����	QQQ���3 ++ + � ;(50) � �� ��-r6 = � -�� ��r��JJ + (�1)n�� ��r -� 6 :The sum of the fourth, �fth and sixth terms in the right-hand part of (49) isequal to zero. The sum of varieties en
oded by the pi
tures in the third and seventh



36 V. A. VASSILIEVterms is equal to the variety shown by the last pi
ture in (50). Therefore the desiredrelative 
y
le is equal to the linear 
ombination of left parts of (49) and (50) takenwith 
oeÆ
ients 1 and (�1)n respe
tively. Theorem 2 is 
ompletely proved.Referen
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