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Abstract

An ornament is a collection of oriented closed curves in a plane or another
2-surface, none three of which intersect at the same point. Similarly a doodle
is a collection of oriented closed curves with no triple points at all. Homotopy
invariants of ornaments and doodles are natural analogues of homotopy and
isotopy invariants of links respectively. The Vassiliev theory of finite-order
invariants of ornaments and the series of such invariants are applied to doo-
dles. It appears that these finite-order invariants classify doodles. Similar
finite-order invariants of connected oriented closed plane curves classify the
latter up to isotopy of the ambient plane.
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1 Introduction

The ornaments were introduced by V.Vassiliev in [V93]. An ornament is a finite
collection of closed curves in a plane or another surface, none three of which meet
at the same point. The homotopy classification of ornaments is similar to the
homotopy classification of links. A general way of calculation of cohomology of the
space of ornaments was described in [V93]. The calculations are very complicated
even for 0-cohomology, i.e. the group of invariants. The set of explicitly shown
invariants is even smaller, than the set of calculated generators of the cohomology
group.

R.Fenn and P.Taylor ([FT77]) introduced doodles as finite collections of closed
curves in the 2-sphere or plane (or in another two-dimensional manifold) with no
selfintersections and no triple intersections. Later M.Khovanov ([Kh94]) redefined
doodles as finite collections of closed curves with neither triple intersections nor
triple selfintersections (generic (self-)intersections are allowed). The second defini-
tion will be used below.

V.Arnold in [A93] started a big series of works on isotopy classification of generic
smooth closed plane curves, which is an analogue of the isotopy classification of
knots. A generic plane curve can have a finite number of transversal selfintersections,
but other singularities are forbidden. This theory is developing in another way
than the classification of ornaments: no general homological calculations have been
performed, but a big number of particular invariants are studied in details (and
generalized to the case of Legendrian fronts).

All ornaments, doodles and curves below are oriented.

This paper is a by-product of attempts to check whether Vassiliev invariants
classify ornaments. The question, whether Vassiliev invariants classify objects of
some type, is interesting for different geometric objects. It is answered positively
for braids and string links by D.Bar-Natan in [B-N95] and for their plane analogues
by A.Merkov in [M96]; it remains open for other cases (e.g. knots).

In this paper a series of Vassiliev invariants of ornaments, constructed in [M96]
and generalizing Polyak-Viro invariants via Gauss diagrams (see [PV94, P94)), is
modified for doodles. The original series is not large enough to classify ornaments,
but the modified one classifies doodles and, after minor changes, plane curves.

In section 2 the general theory of ornaments and doodles is reminded briefly. In
section 3 the series of Vassiliev invariants of doodles is described. In section 4 it is
proved, that they distinguish all non-equivalent doodles. In section 5 the same is
done for classification of plane curves.

2 Vassiliev Invariants of Ornaments and Doodles

The notions ‘finite-order invariant’, ‘finite type invariant’ and ‘Vassiliev invariant’
coincide identically. The first one was introduced by V.Vassiliev himself, the other
two are used by the majority of the other authors.

2.1 Homological Theory

What follows is an informal sketch of the theory of Vassiliev invariants of ornaments
and doodles. See [V93] and [M95] for details for ornaments and [V94] for more



general theory. The doodle-specific details are outlined when they differ from such
of ornaments.

All invariants of ornaments, doodles, etc. can be expressed via Alexander du-
ality in terms of closed homology of the discriminant, i.e. of the set of collections
of curves with forbidden triple points. The finjte-order invariants are exactly those
which can be expressed in terms of a finite number of strata of the natural stratifi-
cation of the discriminant induced by the classification of singular points. Because
the discriminant is a very singular space, it is more convenient to study its resolu-
tion, which is some topological space, homotopy (and hence, homology) equivalent
to the discriminant. Though these spaces are infinite-dimensional, the approxima-
tion technique developed in [V93] allows one to consider them as finite-dimensional
spaces of some big dimension co. There exists a natural filtration of the resolution
space, and the corresponding homological spectral sequence and the dual cohomo-
logical spectral sequence E£%,» > 1,p < 0,p+ ¢ > 0 may be written. There exists
an algorithm calculating this spectral sequence. For each n the group @p-oE PP
is the graded group adjoined to the group of invariants of order n. There is an
interesting question, whether this spectral sequence converges to cohomology of the
space of ornaments, or not. The question is still open for ornaments. The same
question is also open for the parallel theory of invariants of knots. It was answered
positively for invariants of string links by D.Bar-Natan in [B-N95].

Another problem is to describe all finite-order invariants explicitly. By now even
the groups E7™* are not calculated in general. Nor the conjecture that E{?? =
E-P? is proved (the similar fact for knots was proved by M.Kontsevich in [K93]).

2.2 Elementary theory

The homological definition of the order of invariants is not convenient for calcu-
lation of the order of an explicitly constructed invariant. Fortunately, it can be
reformulated in elementary terms, see [V93]. To do this we need to give several
definitions and introduce some notation.

2.2.1 Ornaments and quasiornaments

Denote by Cj the disjoint union ¢; LI ... Ll e of k circles.

Definition 1 (See [V93])

O. A k-ornament (or simply ornament) is a C"-smooth map Cx — R? such that
no point in R? has three different points of different circles in its pre-image. Two
ornaments are equivalent, if the corresponding maps Cx — R? can be connected by
a homotopy C x [0,1] — R? such that for any ¢ € [0, 1] the corresponding map of
Cy X t is an ornament. The ornament is trivial, if it is equivalent to an embedding

of Ck.

D. The definition of k-doodle (or simply doodle) is exactly the same except the
assertion ‘of different circles’ omitted.

Definition 2 (See [V93])
O. A k-quasiornament (or simply quasiornament) is any C'°-smooth map C, — R2.

D. So a quasidoodle is.



oL, 0}
0},

1
0_
—_—
1
034 .
2
0z, f s \efer O3
: -
2 .o
(O

Figure 1: Allowed local moves for ornaments. The upper index indicates the number
of the participating components, the lower index indicates the number of participat-
ing intersection points or its jump. Moves O}, are allowed for doodles, but moves
O3 are forbidden.

Figure 2: Forbidden local moves for ornaments and doodles

Definition 3 (See [V93]) An ornament or doodle is regular if it is an immersion
of Cy, and all the multiple points of the image of C in R? are simple transversal
intersection points only. A quasidoodle is regular if it is an immersion of C, at
any multiple point of the image all local components meet pairwise transversally.
A regular quasiornament is such a regular quasidoodle that the pre-image of each
multiple point either consists of two points, or contains points of at least three
circles ¢; 1.

Regular ornaments form a dense open set in the space of quasiornaments. Given
a generic path in the space of ornaments, almost all ornaments along this path
remain regular. At a finite number of singular instants one of the local moves
shown in fig. 1 occurs. Below we consider regular (quasi-)ornaments (doodles) only.

Remark. Ornaments, doodles, etc. can be defined similarly in any 2-dimensional
manifcld, e.g. in the sphere S?, instead of the plane R2. Though the homological
theory is the simplest for plane ornaments, some elementary theorems are more
natural for ornaments in S2.

2.2.2 Examples of invariants of ornaments

Let us fix an orientation of R2. Let = be a point of R2. Recall that the index of a
point z € R? with respect to a closed oriented curve ¢ : 8! — R? not containing
z is the rotation number of the vector c(¢) — z when ¢ runs along S'. Denote by
ind;(z) = indg(c,) () the index of 2 with respect to the [-th component ¢; of a regular
k-quasiornament ¢ if @ ¢ ¢(c;), and the arithmetical mean of the values of the index
in the components of the intersection of R?\ ¢(c;) and a small neighborhood of z,
if z € ¢(c;)?. Obviously, ind;(z) is half-integer if z is a regular point of $(c;), and

1 The last condition was not stated explicitly in [V93].
2In [V93] V.Vassiliev defined the index differently to make all the constructed invariants integer-
valued functions of integer variables.



integer if z is a selfintersection of ¢(c;). Denote by Ind(z, ) the k-dimensional
vector (ind;(z),...,indx(z)).

If z is a simple intersection of the i-th component ¢; and j-th component c;,
let ¢;;{z) be equal to 1 if the orientation given by the tangent frame (. (c:),%z(c;))
coincides with the orientation of R?, and to —1 otherwise.

To any regular k-ornament ¢ and numbers ¢ and j, such that 1 <i < j <k,
there corresponds the following integer-valued function I:;(by, .. ., bx) of half-integer
arguments:

Lij(by, .-, bi) () = > oij ().

z€¢(ri)Nd(cy)
irld,(:b'):b( ,1Slsk

Theorem 1 (See [V93, Theorem 3]) Forany 1 < i< j<kandby,... b €

Z/2 the function Iij(b1,...,bx) is an invariant of ornaments.
In fact, I;j(b1, - - ., bx) is non-trivial only when b; and b; are not integer, and all
the other b; are integer.
For any k integer nonnegative exponents f= (f1,...,5) we can define the
functions M;;(8) of k-ornaments as follows:
M;(8) = S P b Ly, k)
by,....ba€li]2
= Z <r,~j(:l:)ind1(ar:)ﬁ1 g -indk(m)ﬁ"
zE(ci)Ng(c;)
= Y oy@nde),
zEd(ei)nd(c;)

where 1 < ¢ < j < k. Obviously, M;;(f) are invariants. These inder momenta
invariants are the simplest finite-order invariants (see theorem 2 below).

Remark. Each invariant of ornaments is obviously an invariant of doodles.

2.2.3 Singular points and degeneration modes

Definition 4 (See [V93])

O. A point z € R? is a singular point of complexity j of a regular quasiornament
é : Cr = R2,if $~1(z) consists of exactly j+1 points, at least three of which belong
to different components of Ci. The complezity compl(¢) of a regular quasiornament
¢ is the sum of the complexities of all its singular points.

D. The definition of complexity of a regular quasidoodle is the same, except the
assertion ‘different components of ’ omitted.

Definition 5 (See [V93])

O. Suppose that a regular quasiornament ¢ has m singular points z!,...,z™. A
degeneration mode of ¢ is an order of marking of all the points of their pre-images,
satisfying the following conditions. On any step we mark either some three points
of ¢~!(z'), belonging to three different components of Cy (if none of the points of
¢~1(z') is already marked), or one point (if three or more points of ¢~!(z!) are
already marked).

D. The definition of a degeneration mode of a regular quasidoodle is the same, except
the assertion ‘three different components of’ omitted.



2.2.4 Characteristic numbers

The characteristic numbers, assigned to regular quasiornaments and their degener-
ation modes by invariants, are numbers, defined inductively by the complexity of
quasiornaments.

The characteristic number, assigned to an ornament (whose only degeneration
mode is empty), is the value of the invariant of the ornament. The last step of the
degeneration mode of the k-quasiornament is either marking of a triple of points
on different components ¢;, ¢; and ¢, 1 < j < {, or marking a single point on ¢;.
Consider a local transversal perturbation of the I-th component of the k-quasior-
nament ¢ in a small neighborhood of one of the marked points, i.e. a shift of a
small piece of the image ¢(¢;) through the intersection point z, transversally to the
tangent to ¢(c;) in z. The perturbed quasiornaments are of smaller complexity than
the initial one, and belong to two different equivalence classes. One of them can be
called ‘positive’ and the other ‘negative’. Namely, if # is a triple intersection of ¢(c;),
#(c;), and ¢(c;), then the ‘positive’ k-quasiornaments are those with greater value of
oi;(z) ind;(z), and if z is a more complicated intersection, then the ‘positive’ k-qua-
siornaments are those with greater value of ind;(z). The characteristic number of
the given k-quasiornament and the degeneration mode is defined as the difference
of the characteristic numbers of the ‘positive’ and ‘negative’ k-quasiornaments for
the degeneration modes, obtained from the given one by removing the last step.

The same definition remains for quasidoodles, except two additions: it is neces-
sary to define, which of the pictures, participating in the moves O} and O2 (fig. 1),
are positive, and which are negative. If z is a selfintersection of the j-th component
and the image of the I-th component passes through z (the move 03%), then the
positive quasidoodle is the one with greater value of ind;(z). For moves O} the
routing along the component in its positive direction induces cyclic order of the
edges of the little ‘vanishing’ triangle. Routing the triangle in this order induces
the direction of each edge, which may coincide or not with its native direction (as
a part of the oriented curve). Positive quasidoodles are those with even number of
edges, for which the two directions coincide (see [A93]).

2.2.5 Finite-order invariants

Definition 6 (See [V93]) An invariant of ornaments (doodles) is an invariant of
order ¢ if all characteristic numbers, assigned by it to any regular quasiornament
(quasidoodle) of complexity > 7 vanish.

Theorem 2 (See [V93, Theorem 4]) M;;(f) is an invariant of order |B| + 1,
where 1B = B + ...+ Bk.

3 New Vassiliev invariants of doodles

The invariants of doodles, constructed below, are just modified invariants of orna-
ments from [M98]. They ‘generalize’ both invariants of ornaments given by theorem
2 and invariants of knot and curves constructed in [PV94, P94].

3.1 Arrow diagrams

Definition 7 An arrow diagram or oriented Gauss diagram of length n is C}, sup-
plied with a collection of n arrows, connecting n pairs of different points of Cj.
The diagram is non-degenerated if all 2n points are different. Two diagrams are
tsomorphic if one can be mapped onto the other by a diffeomorphism C} ~ Cj
preserving each circle of Cy, its orientation and directions of the arrows.
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Figure 3: A non-trivial 1-doodle and its arrow diagram
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Figure 4: Allowed moves of arrow diagrams. Unchanged arrows and circles are not
shown. The orientations of the circles are arbitrary.

Definition 8 The arrow diagram ADiag(¢) of a regular (quasi-)doodle ¢ : Cx —
R? is a diagram, the arrows of which goes from z: € Cy to z; € Cj if and only
if ¢(z;) = ¢(x;) and the tangent map ¢, maps the pair of positive tangent vectors
(t(=i),t(x;)) to a positive tangent frame.

Definition 8 can be applied to (quasi-)doodles on any oriented surface. The
arrow diagram of a regular doodle is obviously non-degenerated. The diagram of
a regular quasidoodle is degenerated, but any two arrows can have at most one
common endpoint. From now on by ‘arrow diagram’ we usually mean the class
of isomorphic diagrams and omit ‘non-degenerated’ considering the diagrams of
doodles. It will not cause any confusion. The diagrams may be also thought as 1-
dimensional cell complexes with each 1-cell oriented and k oriented circles marked
and numbered.

Example. A 1-doodle and its arrow diagram are shown in fig. 3.

Let us define equivalence of arrow diagrams in a way, guaranteeing that the
diagrams of equivalent doodles are equivalent. The equivalence is defined by the
following allowed moves, corresponding to allowed local moves of doodles, shown in
fig. 4 and 1 respectively.

Al Deletion of an arrow of some of the circles, whose ends are neighboring (i.e.
are not separated by the ends of other arrows).

A}, The move opposite to AL,.



AL, Annihilation of two arrows of some of the circles, if the beginning of each arrow
is a neighbor of the end of the other one.

A%, The move opposite to AL ,.

A%, Annihilation of two arrows connecting two circles, if the beginning of each
arrow is a neighbor of the end of the other one.

A%, The move opposite to A% ,.

Like in fig. 1, the upper index of a move denotes the number of participating
circles, and the lower one denotes the jump of the number of arrows. The equivalence
class of its arrow diagram is obviously an invariant of the doodle.

Proposition 1 (Maximum principle) For each sequence of allowed moves of ar-
row diagrams there exrists a sequence of moves with the same ends, such that the
length of each intermediate diagram does not exceed the maximum of the lengths of
the end diagrams.

Proof. The unwanted local maximum of the length can occur between two moves
M and N of the types A%, and A*, respectively. It is easy to see, that if none of
the arrows born at Af dies at N, then M and N can be permuted; otherwise M
and N can be either removed from the sequence or changed to a single move. In
any case the number of pairs ‘birth before death’ decreases. If the given sequence
consists of m moves, in < ( %)2 such steps it will be transformed to a sequence of
< m moves with no inner local maximums of the length. O

Corollary 1 Among arrow diagrams equivalent to the diagram of a doodle there is
a unique diagram of a minimal length. The sequence of moves turning the diagram
to such a minimal diagram does not contain moves of the type A% ,. There exists an
algorithm producing the minimal diagram equivalent to a given one. In particular,
there exists an algorithm checking the equivalence of two given diagrams.

O
So, it is easy to check equivalence of the diagrams of doodles; but not of doodles
themselves.

Example. In fig. 3 the arrow diagram is minimal, hence the doodle is non-trivial.

Remark. A doodle in R? cannot be reconstructed from its full arrow diagram
unless its exterior contour is marked on the diagram. A disconnected doodle cannot
be reconstructed from its arrow diagram even in S?, see fig. 5.

3.2 Finite-order invariants, generated by arrow diagrams

The following notation is used below. An arrow diagram X is denoted by (z!,...,z"),
where z! = [mf.,,:c;.,], I =1,...,n are all its arrows, =}, € cy and :c;., € cji are the
beginning and the end of the I-th arrow, 1 < #*, ' < k. The length of the diagram
X is denoted by L(X)=n.

Arrow diagrams are 1-dimensional cell complexes. Let us consider continuous
maps of a non-degenerated diagram X into an arrow diagram Y, which restriction
to each circle ¢; is a map onto itself, homotopic to the identical map, and monotonic
(maybe not strictly monotonic, if the diagram Y is degenerated), and restriction
to each arrow is a homeomorphism onto another arrow. Let us call a class of
homotopy equivalence of such maps a representation of an arrow diagram X in an

arrow diagram Y.
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Figure 5: Nonequivalent 7-doodles with the same arrow diagram. The three-
component subdoodle is moved as a whole within the four-component one.

Given a representation p: X = Y, let o,(z') be equal to 1 if the direction of
the arrow p(z'), induced from the direction of ', coincides with its native direction
in Y, and to —1 otherwise. Denote by o(u) the product

L(X)
o(w) = [] oul='), (1)
=1
and by (X,Y) the sum
(X, Y)y= Y o (2)
wX-=Y
over all representations p: X = Y.
Given a regular doodle ¢, let us define {X, ¢} by

L(X)

(X,¢) =(X,ADiag¢y = > ][] oule") (3)

u:X —+ADiag ¢ I=1

Remark. Practically the same construction is used in [P94] for invariants of plane
curves. The only difference is that instead of the arrow diagram X a chord diagram
with an additional regular point (base point) marked on each circle is considered.
In such an approach for some, but not for all, diagrams X the expression given by
formula (3) is independent of the choice of the base points.

Proposition 2 If X is a minimal arrow diagram, then (X,-) is an invariant of
doodles.

Proof. We need to check, that the allowed local moves of the doodles do not change
(X, ). To do this, it is enough to verify, that moves of the types A%, (three pairs
of types) of the arrow diagrams of doodles do not change (X, -). This is elementary.
0

Remark. Since (X, ¢) depends on ADiag(¢) only, it cannot distinguish doodles
with the same arrow diagram, for instance, doodles in R?, which are equivalent in
s2,

This class of invariants can be easily generalized. Let X be an arrow diagram

of length n and F be a function of £ x n half-integer variables. Given a doodle ¢,
let us define ((X, F), ¢) as the sum

(R, 8= Y. o(w)F(Ind(é(x(z")), ),...,Ind(6(u(z")), ¢))  (4)

w:X — ADiag(¢)



over ail representations p : X — ADiag(¢).

Theorem 3 If X is a minimal arrow diagram of n arrows and F is a function of
k x n half-integer variables, then {(X, F),-) is an invariant of doodles.

Proof. This theorem is a special case of theorem 4 below. O

Example. All invariants M;;(f) are defined by formula (4) for arrow diagrams of
length 1.

The function ind.(-) of a closed curve and a point in R? (see paragraph 2.2.2)
can be extended by linearity to a pairing defined on pairs of 1-cycles and 0-chains
(similarly, to a pairing of 1-cycles and O-cycles in S?). Hence for each arrow diagram
X, comnsidered as a 1-dimensional cell complex, regular doodle ¢ and representation
g 1 X — ADiag(¢) the pairing ind o(¢y o px ® ¢u 0 prs) 1 Z1(X) x Co(X) = Z/2 is
defined. We have already used this pairing in formula (4), where the 1-cycles are
circles of the arrow diagram. To extend it to arbitrary cycles, we need to generalize
the definition of index (page 4) to all cycles in the image of a regular doodle.

Definition 9 Let ¢ be a regular doodle, £ be a closed piecewise smooth curve,
&(S') C ¢(Ck). Then the index indg(z) of a point # € R? is the same as defined on
page 4 if z ¢ £(S?) or z is a regular point of £, and is the arithmetical mean of the
indices of the points of four adjacent areas of R?\ ¢(S?) if z is a vertex of £.

This definition agrees obviously with the old definition when £ is a component
of ¢. The value of ind¢ (#) is quarter-integer in general.

Theorem 4 Let X be a minimal arrow diagram with arrows {z!,...,z"}, and
E={€1,...,&m} a set of 1-cycles in X. If F is a function of m x n variables v},
i=1,...,n,1=1,...,m, actually depending only on those v}, for which the cycle
& does not pass along the arrow z*, then the sum

(XEF).¢)= 3 o(WFlindgue($u(")). -, indguen) (@(n(z"))))
; #:X—+ADiag(¢) (5)

over ail representations X — ADiag(¢) is an invariant of doodles in R2.

Proof. We need to check, that the allowed local moves of the doodles do not change
((X,E,F),). Let us consider a move of the type O},. All the summands of
formula (5) remain unchanged, and several new summands may appear, where g
maps at least one arrow of X to the two newborn arrows y; and y» in ADiag(¢),
corresponding to the newborn intersection points z; and z9. In fact, 1 cannot map
two arrows to both y; and ys, because the diagram X is minimal. On the other
hand, if a representation p; maps an arrow z to y;, there exists a representation
po mapping = to ys, and coinciding with g, on the other arrows. The directions
of 1 and y; are opposite, and for any cycle £ not passing along 2 indg(,, (¢))(21) =
indg(u,(e))(22), s0 the two new summands of (5) annihilate.

Similarly, a move of the type O_lH cannot add new summands because of the
minimalness of X. O

The proof of theorem 4 can be applied as well to the following theorem, where
the assertion of minimalness of the diagram X is relaxed.

10



Theorem 5 Let X be an arrow diagram with arrows {z!,...,z"}, E= {&1,.. .. €ém}
a set of l-cycles n X, and F a function of m x n variables vj, 2 = 1,...,n,
l=1,...,m, such that

e F depends only on those vf, for which the cycle & does not pass along the
arrow £, and

o for any doodle ¢ and representation p : X — ADiag(d) if ¢ o u maps some
arrow(s) to the vertex (both vertices) of a loop or segment, vanishing at moves

O%,, then F(indg(u(e,)) (6(p(21))), - - ., indgu(en)) (#(1(z"™)))) = 0.

Then the sum (§) is an invariant of doodles.

O

3.3 Order of invariants

Theorem 6 If X is an arrow diagram, = is a set of l-cycles in X, and F is a
polynomial, then ((X,E, F), ") in theorems 4 and § is an invariant of order deg(F)+
L(X).

Corollary 2 IfX is a minimal arrow diagram and F is a polynomial, then (X, F), )
is an invariant of order deg(F) + L(X).

0

Corollary 3 If X is a minimal arrow diagram, then (X, ') is an invariant of order

L(X).

O
Corollary 3 allows one to go from the classification of doodles by their arrow
diagrams to classification by finite-order invariants.

Example. If ¢ is the 1-doodle shown in fig. 3, then the diagram ADiag(¢) is
minimal, and (ADiag(¢),-) is an invariant of order 8, distinguishing ¢ from the
trivial 1-doodle ((ADiag(¢), ¢) = 8).

Proof of theorem 6. The proof essentially repeats the proof of lemma 31 and theo-
rem 7 in [M97], so the technical details, such as which perturbations of the quasi-
doodles are good enough, are omitted. Generic perturbations are good.

Each summand of the sum (5) can be considered separately. It is not necessarily
an invariant of doodles, but it is a local invariant in a small neighborhood of any
quasidoodle, and the characteristic numbers are defined like for global invariants.

Let ¢’ be a regular quasidoodle and ¢ a perturbation of ¢’ (see paragraph 2.2.4).
Then there exists a representation pggr : ADiag(¢) — ADiag(¢'), close to identity
on Cj and preserving the directions of all arrows.

The summand

F(indg(u(e,)) (B(p(2)), - - -, indgu(en )y ($(u(")))) (6)

with g close to a representation p' : X — ADiag(¢’) defines a local invariant of
regular doodles in a neighborhood of ¢’. It vanishes on the doodles ¢, for which
there is no such representation g : X — ADiag(¢) (‘perturbation of x’’), that
pos o p = p'. The sign o(p) is omitted since it is the same for all p close to p’.

The proof is done inductively in the complexity of quasidoodles. The inductive
assumption is as follows.

For any representation p : X — ADiag(¢#) denote by n(u) the number of arrows
of X going to simple intersection points of ¢.

11



Then the characteristic number assigned to a degeneration mode of ¢ by a local
invariant (6) is equal to a sum

Z p;(indy; e,y (w5 (2h)), . . ., indy ¢, (5 (™)), (7)

where v; stands for ¢; o u;, the doodles ¢; are perturbations of ¢, representations
#; : X — ADiag(¢;) are perturbations of x, and p; are polynomials, such that for
each summand in (7)

deg(p;) + n(v;) < deg(F) + n — compl(4), (8)

where n(v;) is the number of arrows of X going to simple intersection points of ¢;.
Now the induction base (compl(¢) = 0, i.e. ¢ is an docdle) is trivial: j = 1,
p1 = F,¢1 = ¢, and p1 = p. The induction step is elementary and described below.
Then if compl(¢) > deg(F)+n, then the left hand side of (8) is negative, and hence
the sum (7} vanishes.
Each summand

p(ind,,(el)(y(ml)), coindye,y (v(2™)))

of (7) may be treated separately at the induction step. The step splits into several
cases. First it depends on the type of the last step of degeneration.

Marking a triple of points i.e. the perturbation is a passing through a triple
point of ¢. The following subcases are possible, depending on the number of
arrows, going into a small neighborhood of the triple point.

0 The characteristic number is zero.

1 Each of the m x n arguments ind,(¢,)(v(2')) of polynomial p either re-
mains unchanged when passing from negative to positive perturbations,
or changes by 1 (if ' goes to a vertex of the vanishing triangle, and
v(&;) passes it opposite side). Hence the characteristic number is equal
to the value of a ‘discrete partial derivative’ of p, which is a polynomial
of degree deg(p) — 1, taken on a perturbation of the quasidoodle.

2 or 3 The representation y and the map » are defined only for positive or
only for negative perturbations. Then the characteristic number is equal
to the value of p with shifted arguments on the unperturbed quasidoodle,
but n(r) decreases at least by 2.

Marking a single point i.e. the perturbation is a passing of a local branch of a
doodle through a multiple point. The following objects need to be watched:

e The multiple point gq.
e The running local branch b.
¢ The local branches b4, ...,b,, passing through 4.

e The intersections ¢1,...,qs; of b1,...,bs and b.
If v maps no arrow to ¢,q,...,¢s, then the characteristic number is zero.
If ¥ maps exactly one arrow to ¢,qu,...,¢s, then the characteristic number

is the difference of the values of the polynomial p in two points, some of
whose m x n coordinates coincide, and some of the coordinates differ by 1.
Such a sum of ‘discrete partial derivatives’ is a polynomial of degree deg(p) —
1, taken on a perturbation of the quasidoodle. If ¥ maps more than one
arrow to ¢,q1, ..., ¢s, then it is defined only for positive or only for negative
perturbations. Then the characteristic number is equal to the value of p with
shifted arguments on the unperturbed quasidoodle, but n(v) decreases at least
by 1.

12



In any case the condition (8) remains true. O

4 Finite-order invariants classify doodles

The arrow diagram, being considered as a cell complex, can be connected or not.
Obviously, for any doodle ¢ the diagram ADiag(¢) is connected if and only if the
image ¢{Ck) is connected.

The case of connected doodles in S? is studied first. Then the case of connected
doodles in R? and the general case are considered.

4.1 Strongly connected doodles in S?

The following lemma and theorem are almost obvious (see [M98] for more details).
They reduce classification of connected doodles in S2 to classification of their dia-
grams.

Lemma 1 Let ¢ and + be regular doodles in the sphere S? with connected images
#(Cyx) and ¥(Cy) and the same arrow diagram. Then the map Yo ¢~ : ¢(Cx) —
¥%(Ck) can be extended to an orientation-preserving diffeomorphism S? — S2.

O

Theorem 7 A connected doodle in the sphere S? is determined up to equivalence
by its arrow diagram.

|
Now we see, to what extent the equivalence of diagrams can be lifted up to
equivalence of doodles.

Lemma 2 If ¢ is a connected doodle in S% and an arrow diagram X is obtained
*

from ADiag(¢) by o move of type A*,, then there exists an equivalent to ¢ doodle
¢ with ADiag(¢)) = X.

Proof. Each move of type A*, of ADiag(¢) can be lifted to a homotopy of the
doodle ¢, because the two vanishing arcs (or the vanishing loop) split S2 into two
areas, the smaller one of which is contractible and contains no points of ¢(Cy). This
contraction leads to a doodle with a singular point (tangency or cusp), which can

be eliminated easily, and the desired doodle ¥ will be obtained. O

Definition 10 The doodle is strongly connected if the image of each doodle equiv-
alent to it is connected.

Lemma 3 A doodle ¢ in S? is strongly connected if and only if its minimal arrow
diagram X is connected. If ¢ is strongly connected, then there erists an equivalent

to ¢ doodle ¢ with ADiag(v) = X.

Proof. 'The arrow diagram of the doodle or of any equivalent doodle can be trans-
formed to the minimal diagram by finite number of moves of type A* . Such moves
transform disconnected diagrams to disconnected, so if the minimal diagram of a
doodle is connected, all equivalent diagrams and doodles are connected too. On the
other hand, if ¢ is strongly connected, lemma 2 is applicable to each such move,
and hence the minimal diagram is a diagram of some doodle % equivalent to ¢, and
is connected. 0O
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Lemma 3 follows also immediately from results of [Kh94, Section 2]. Lemma 3
gives us an efficient way to check, if the doodle is strongly connected.

For doodles and curves in S? the index ind¢(z) cannot be defined, but the
difference ind¢(z—y)= ind¢ (z) —ind¢(y) is defined correctly. The following analogue
of theorem 4 and corollary 2 holds.

Theorem 8 Let X be a minimal arrow diagram with arrows {z',...,z"}, and
E={l1,...,&m} a set of 1-cycles in X. If F is a function of m x (’;) variables v’
1<i<j<n,l=1,...,m, actually depending only on those v;’, for which the
cycle & does not pass along the arrows ' and z7, then the sum

(XEF),¢= Y, o(WF(indsgue)(d(n(z?) — ¢u(z)),. -,

u:X—ADiag(¢)

indg(u(en)) (B(r(=") — (u(="""))  (9)

over all representations X — ADiag(4) is an invariant of doodles in S2. If F is a
polynomial, then ((X,Z, F),-) is an invariant of order deg(F) 4+ L(X).

Proof. All the calculations in the proofs of theorems 4 and 6 are local and do not
depend on the topology of the ambient oriented 2-manifold. O

The boundary of each component of the complement of the image of a doodle
consists of several canonically oriented non-selfintersecting piecewise-smooth closed
curves. The pre-image of such a curve in the arrow diagram of the doodle is a
1-cycle. The set of all such cycles is determined by the arrow diagram unambigu-
ously. Indeed, the positive orientation of each such cycle is defined by its regular
point and the direction in it in the following way. The running point moves along
the components of the arrow diagram; every time it meets an endpoint of an arrow,
it jumps to its other endpoint and goes on along the other (or, maybe, the same)
component in the same (positive or negative) direction as before if it has jumped
along the arrow, and in the opposite direction otherwise. And conversely, the di-
rections of the arrows can be reconstructed by the set of pre-images in the arrow
diagram of the canonically oriented boundary components.

The following lemma expresses these reasoning in terms of indices.

Lemma 4 Lei € be a connected 1-cycle in the arrow diagram ADiag(¢) of a con-
nected doodle ¢ in 82, passing none of the arcs the arrow diagram twice, and z*
be an arrow out of €. The image of € is the canonically oriented boundary of a
component of the complement to the image of ¢ if and only if

indg(e) (¢(2) — ¢(2?)) =0 for any arrow x ¢ £, and
indg(¢) (¢(2) — ¢(2')) = ﬂ%_wl for any arrow x € €,

where n(€, z) is how many times £ meets x, i.e. either 1 or 2 (see fig. 6).

Proof. In other words, the image of £ turns left at each intersection point met, and
all the other intersection points remain to its right. O

The goal of this section is to express the equations of lemma 4 via polynomial
function of theorem 8 and to construct a finite-order invariant, which checks whether
the diagrams of two given strongly connected doodles, and hence the doodles them-
selves, are equivalent. Unfortunately, only half-integer values of indices ind. (- — -)
are allowed in theorem 8. A technical trick allows one to formulate a substitution
of lemma 4 in terms of half-integer indices.

To keep track of the elementary technical details below it is helpful to have in
mind the following well-known facts.
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Figure 6: The boundary of an area can pass an intersection point either once or
twice. The intersection point belongs to the closure of either three or four areas.

Proposition 3

The components of the complement to the image of a regular doodle ¢ can be painted
in two colors in such a way, that any two components of the same color have no
common arc.

If a running point goes along such a doodle and turns right or left at each intersection
point it passes, then the color of the area to its left (or to its right) remains the same.

Proof. 'The color of a point & depends on Zle ind;(z)(mod2) only. O

The intersection point of a doodle in S? belongs to the closure of either 3 or 4
areas of 82\ ¢(C%) the complement (see fig. 6). We call such points 3-points and
4-points, respectively. A 3-point is necessarily a selfintersection point, and the ‘big’
area approaches it in two opposite quadrants.

Given an arrow z of the diagram of a regular doodle ¢, denote by £;(2), £2(2), . ..
the pre-images of the canonically (‘counterclockwise’) oriented boundaries of the
neighboring to ¢(z) areas. Denote by £(z) the pre-image of the boundary of the
union of these areas . If ¢(zx) is a 4-point, we suppose &;(z) numbered in a counter-
clockwise cyclical order, and denote by &;;(z) the boundary of the union of the i-th
and the j7-th one.

Proposition 4 If the diagram ADiag(¢) is connected and minimal, then for each
arrow x there exists such an arrow y(z), that

indy(e(a)) (6(2) - 6(y(2))) = 1. (10)
If é(z) is a 4-point, then also

ind e)) ($(2) ~ $(4(2))) = e ($(2) — $(3(2)) =
indg. e(e (8(2) = (@) = indgus(eon($(2) — 83(@) = 5 (1)

Proof. Since the Euler characteristics of S2 is equal to 2 and a connected regular
doodle with n Intersections has 2n arcs, its complement consists of » + 2 areas.
First, we eliminate the degenerated case, when ¢(£(z)) is not a curve. Indeed, since
ADiag(¢) is minimal, there are exactly 4 different arcs incident to ¢(z). All the 4
second vertices of the arcs may coincide, but then the image of ¢ is diffeomorphic
to the union of two big circles on the sphere, and ADiag(¢) is not minimal. Hence
#(£(z)) is a connected closed piecewise-smooth curve on S%, which possibly passes
some arcs and vertices more than once.
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Now we suppose that the cycle ¢(£(z)) is incident to all n—1 intersections except
¢(z), calculate the total number of arcs and will come to a contradiction. ¢(£(z))
has at least n — 1 arcs. There are at least (n+ 2) —4 = n — 2 areas, not incident to
#(z), and the boundary of each area consists of at least 3 arcs, because ADiag(¢)
is minimal. So the total number of ‘left sides’ of the arcs, is at least

2 x4 (the four arcs incident to &)

+ n-1 (the arcs of ¢(£(z)))
+ 3(n—2) (the other arcs)
= 4n+1 > 2 x 2n. The contradiction.

So there exists an arrow y(z), different from « and all arrows of £(z). Then
indg(¢(z)) (#(z) — #(y(z))) = 1 by definition of £(x). The equalities (11) are also
obvious. O

Let now ¢(z) be a 3-point of a connected minimal doodle ¢. The boundary of
the neighboring to ¢(z) area A, touching ¢(z) in two quadrants, is the union of two
cycles ¢(£4(z)) and @(é_(=)): ‘positive’ and ‘negative’. The orientation of each of
them is determined by the orientation of the doodle component near ¢(z), and coin-
cides or is opposite to the canonical boundary orientation for ¢(é4+(z)) or ¢(é—(z)),
respectively. Since ¢ is minimal, there exist arrows y;(z) in &4 () and y_(z) in
£_ (=), different from z. The closure of the area A splits the rest of the sphere to
‘positive’ and ‘negative’ sets, depending on the sign of indg(¢, (z)+¢_ (2)) (#(x) — *).
#(£4+ (z)) forms the clockwise oriented boundary of the positive set, and ¢(é_(z))
forms the counterclockwise oriented boundary of the negative set. For instance,
&(y(z)) belongs either to the positive or to the negative set; then either

indy (e, (2)) (8(y- (2)) —8(y())) = 1 and indg(s_(c)) ($(y+(2)) —$(y(2))) = 0, (12)

or

indy (e () ($(y-(2)) — 8(y(2))) = 0 and indy(e_(2))($(y+(2)) — ¢(y(2))) = —(113 |

respectively.

Proposition 5 Let p1 be a representation of a connected minimal diagram ADiag(¢)
in a diagram ADiag(1) with the same number of arrows. Then y is an isomorphism
if and only if for each arrow z in ADiag(¢)

indy(u(e,;(2))) (Y (1(2)) — P(p(y(2))) = indg(e,;(2)) (¢(2) — ¢(y(x)))
if ¢(z) is a 4-point, and

indy (e ())) (P (4(37 (7)) — Y(1(y(2)))) = indy(ey (2))(8(v5 (2)) — ¢(v(=)))
if () is a 3-point.

Proof. The ‘ounly if’ part follows immediately from lemma 1. To prove the ‘if’ part
let us consider 3-points and 4-points separately.

4-point. Let us take an arrow z in ADiag(¢), such that ¢(z) is a 4-point, and con-
sider the boundaries ¢(u(£1(2))),. .., ¥(1(éa(z))). Being the boundaries, ¢(&;(z))
are almost non-selfintersecting (they may pass an intersection point twice, but since
both the local branches change their direction at this point, they can be smoothed
to avoid the intersection), do not pass through ¢(y(z)), and

ind(e, e (6(2) — $(u(2))) = 7.
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Since p induces a bijection of the set of intersections of ¢ to the set of intersections
of 4, all the same properties hold for ¥*(u(&;(2))), except that

indyu(c o) ((1(2)) = (u(3(2)) = o(2) (5 — 51,

where &; = 1 if ¥(u(y(z))) belongs to the component A;(z) of 82 \ ¥(u(&i(z))),
touching #(x(z)) from the inner angle, and J; = 0 otherwise.
But

1 = indyeu(e)) (Plu(e)) — P(p(y(z))))
= > indyue e (B(z)) — ¢uly(2)))

i=1

4 1
= Z"u(m)(_ -
= ouE)(1- &),

This means either o,(z) =1 and E?zl 8; =0, or oy(z) = —1 and Z?zl i =2

In the latter case ¥(u(y(z))) belongs to the intersection A;(x) N Aj(x) of two
components, for which §; = d; = 1, and ¥ (u(x)) does not belong. Two subcases
should be considered.

e If i and j are not adjacent, then &;(z) and &(z) cannot have common arc
because of proposition 3. This means that ¥(u(&:(z))) and ¥(x(&i(z))) have
no common arcs and cannot cross each other, because each of them turns
right or left at each intersection point. Hence the interior parts of A;(z) and
Aj(z) have no common points, and cannot contain ¥(u(y(z))) both.

e If : and j are adjacent, then

indg(e,;(2)) (¢(z) — d(y(2)))

= indy(ue:; () (Y ((2)) — P(p(y(2))))
indg(uge, o) ($(1(2)) — $(0(2)
+indy ue; (o) (B k() = Dlu(

= 0u(@)((5 ~ ) +oule)(G - 8) =

1
2

(2))))

ﬁd

MIOD

The contradiction is obtained in the both subcases, so g, (x) = 1.

3-point. Like ¢(&;(z)) in the previous case, ¢(£+(z)) and ¢(£-(z)) are almost non-
selfintersecting and almost non-mutual-intersecting, so ¢(u(¢+ (z))) and ¥ (p(é-(z)))
are. The latter two cycles split the rest of sphere into three sets, depending on the
sign of indy e, (o) .. () ($((#)) — ). The cycles {u(€.+ (2))) and Y(u(e- (2)))
form the boundaries of the ‘positive’ and ‘negative’ sets. The assertion of the propo-
sition together with formula (12) or (13) guarantees, that 1 (p(€4(z))) is the bound-
ary of the positive area. Considering a small neighborhood of the point ¥(u(z)) one
can easily see, that ¢¥(u(€4(x))) is the boundary of the positive area if and only if
ou(z) =1
It is shown o, (z) = 1. The arrow z is arbitrary, so u preserves the directions of all
arrows of ADiag(¢) and is an isomorphism. O
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Remark. More careful analysis allows to relax the assertion of proposition 5:
¥ o o ¢~ 1 should preserve only the one non-zero indye,)(. . .) for a 3-point & and
three indg(e,,)(. . .), indg(g,,)(. . .) and indg(e,,)(. . ) for a 4-point.

For an arbitrary representation p of a connected minimal diagram ADiag(¢) in
a diagram ADiag(+") with the same number n of arrows, and arbitrary cycle & and
arrows z and y in ADiag(¢)

| indy(u(e)) (¥ (n(z)) — P(u®)) <n+1,

because the complement to the image of the doodle ¥ consists of n+2 areas. Denote
by pn the polynomial of degree 2(n + 1), such that p,(1) = 1 and p,(i) = 0 for
all other integer 7, || < n + 1. Similarly, denote by g, the polynomial of degree
2(n+1)—1, such that ¢,,() = 1 and ¢, (é) = 0 for all other half-integer i, |i] < n+1.

Denote by L(¢)= L(ADiag(#)) the number of intersection points of ¢. Given a
representation p : ADiag(¢) — ADiag(y) where ¢ is a minimal doodle L(¢) = n,
we define the integer number P(u, ¢,) as the product

Pué,¥) = [T  ITenlndpquieisn@m @) — bluy(@))

4-points g i=1

x JI  pe(Eindygues e @z () — ¥(u(y(z)), (14)

3-points z

where the signs in the factor corresponding to the pre-image = of a 3-point are

chosen depending on whether (12) or (13) holds for it. The degree of the product

of all polynomials in (14) does not exceed 6n(n + 1). P(p,¢,%¥) = 1 if p is an

isomorphism, and P(p, ¢,v¥) = 0 if L(¢) = L(#) and u is not an isomorphism.
The invariant (¢, -) is defined by a special case of formula (9):

($,9) = > o (1) P(u, 6,%) (15)

p:ADiag(s)—ADiag(¥)

Proposition 6 Let ¢ be a minimal connected doodle in S?, d be the order of the
group of automorphisms of ADiag(¢). Then {(¢,¢) = d, and (¢,¥) = 0 for any
other (i.e. not equivalent to ¢) doodle ¥ with L(¥) < L(¢).

Proof. It follows immediately from formula (15), and proposition 5. The p-th
summand of (15) is equal to 1 if p is an isomorphism, and is equal to 0 otherwise.
For instance, if L(¢) < L(¢), there are no summands at all. O

Corollary 4 If strongly connected doodles ¢ and ¢ in S? with < n intersection
points are not equivalent in S2, they can be distinguished by invariants of order
6n(n+1) +n.

Proof. Let ¢’ and ¢’ be the minimal doodles, equivalent to the doodles ¢ and
¢ respectively. Suppose L(1/) < L(¢). Then (¢',8) = (¢,4") > 0, (¢, 4) =
(¢',¢') =0, L(¢') < n, and the order of (¢, ) is estimated by theorem 8. O

4.2 Doodles in R?

Now we refine theorem 7 and lemmas 1 and 2, to show finite-order invariants clas-
sifying doodles in R2.

Remind that the arrow diagram of a doodle determines the components of the
boundaries of the components of the complement to the image of this doodle (see
section 3.1). Let us supply this diagram with additional information about mutual
position of these boundary components. This boundary information must contain
the following data about each boundary component:
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e whether the component is a piece of the inner or the outer boundary of some
area (i.e. whether it is oriented clockwise or counterclockwise respectively);

e if it is a piece of the inner boundary, which component is the outer boundary
of the same area (or there is no outer boundary, if the area is infinite).

Lemma 5 Let ¢ and ¢ be regular doodles in the plane R? with the same arrow
diagram and boundary information. Then the map o ¢~ : ¢(Cx} —= ¥(Cy) can be
continued to an orientation-preserving diffeomorphism R? — R2.

Theorem 9 4 doodle in the plane R? is determined by its arrow diagram and
boundary information up to equivalence.

The proofs of lemma 5 and theorem 9 repeat the proofs of lemma 1 and theorem
7 with obvious additional technics.

4.2.1 Strongly connected doodles in R?

Let us study the obstacle to prove lemmas 2 and 3 for strongly connected doodles
in R?2. Lemma 2 fails exactly when the vanishing in the move of the type A*,
arc(s) form(s) the boundary of the infinite area. The sequence of moves from the
given strongly connected doodle to an equivalent doodle with minimal diagram in
the proof of lemma 3 either ends successfully, or breaks when only such a move of
type A* , ‘through infinity’ is possible. The doodle obtained is called gquasiminimal;
so its arrow diagram and boundary information are. The boundary information is
simple: all the boundary components are outer boundaries and consist of more than
two arcs each, except one one- or two-arc component, which is the inner boundary
of the infinite area.

The further reasoning repeats the one for connected doodles in $% with slight
changes. Here is the analogue of lemma 4

Lemma 6 Let & be a connected 1-cycle in the arrow diagram ADiag(¢) of a con-
nected plane doodle ¢, passing none of the arcs of the arrow diagram twice. The
image of € is the canonically oriented boundary of a finite component of the com-
plement to the image of ¢ if and only if

indg(ey(¢(2)) = ﬂi’—ml for any arrow x € £, and

indge)(o(2)) =0 for any arrow z ¢ £.

It is the canonically oriented boundary of the infinite component of the comple-

ment to the image of ¢ if and only if

indg(g)(6(2)) = ﬂii)- —1 for any arrowz € &, and

indgey(d(z)) = -1 for any arrow « ¢ €.

a

Again, a trick is required to reconstruct the boundary information from the
half-integer indices. Let X.(¢) and X;(¢) be the sets of ‘external’ and ‘internal’
arrows of the diagram ADiag(¢), i.e. the pre-images of the intersections, incident
and not incident, respectively, to the infinite area. Then proposition 4 and its
proof remain unchanged for a quasiminimal doodle ¢ and z € X.(¢). For z €
Xi(¢) the ‘infinity’ point substitutes ¢(y(z)), i.e. the corresponding summand,
such as indg(¢(z)) (#(¥(2))), is omitted. Similarly, the infinity substitutes the absent
é(y+(2)) or ¢(y—(x)), if any. After this substitution the analogue of proposition 5
looks exactly like proposition 5 itself.
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Proposition 7 Let p be a representation of a connected quasiminimal diagram
ADiag{¢) in a diagram ADiag(vy) with the same number of arrows. Then u is an
isomorphism if and only if for each arrow z in ADiag(¢)

indy (u(e;;2)) (¥ (1(2)) — (p(y(2)))) = indg(e,;2)) (8(2) — S(y(2)))
if () is a 4-point,
indy(u(es () (¥ (Y= (2))) — ¢ (1(y(2))) = indg(e, () (8 (v (2) — ¢(y()))
if $(z) is a 3-point.

Proof. The proof coincides with the proof of proposition 5. O
One more index is preserved, and the representation g preserves not only the
directions of the arrows, but also the boundary information.

Proposition 8 Let p be an isomorphism of the diagram ADiag(¢) of a connected
quasiminimal doodle to a diagram ADiag(y) with the same number of arrows. Let
£(o0) be the pre-image of the canonically (clockwise!) oriented boundary of the
infinite component of R? \ ¢(Ck), and y(co) an arrow of ADiag(¢) out of £(co).
Then Yoo ¢~ can be continued to the equivalence of the doodles if and only if

Indy (u(g(o0))) (¥ (#(y(00)))) = indy(e(o0)) (B(y(00))) = -1

Proof. It follows from lemma 5, because this equation is nothing but the boundary
information, absent in proposition 7: the boundary of the infinite area goes to the
boundary of the infinite area. O

P(p, ¢,) can be defined for a gquasiminimal doodle ¢ by the same formula (14)
and hes the same properties. For a quasiminimal connected doodle ¢ in R? we
define the invariant (¢, -) similarly to formula (15):

(9,9) = > a(p) P (¢, 65 ¥)Pn(— indy (u(e(oo))) (¥ (1(¥(c0)))). (16)

u:ADiag(¢)—ADiag(h)

If ADiag(¢) is not minimal, the last factor guarantees that the product of the
polynomials satisfies the assertion of theorem 5, and the sum is an invariant. The
degree of the product of all polynomials in (15) does not exceed (6n + 2)(n + 1).

Proposition 9 Let ¢ be a quasiminimal (or minimal) connected doodle in R?, d
be the order of the group of automorphisms of ADiag(¢), which can be continued to
automorphisms of ¢ (i.e. preserving the pre-image of the boundary of the infinite
area). Then (¢,¢) = d, and ($,¥) = 0 for any other (i.e. not equivalent to ¢)
doodle ¢ with L(¢) < L(¢).

Proof. 'The properties of P(u, ¢, ) and proposition 8 guarantee that a summand
of (16) is equal 1 if ¢ o po ¢! is an equivalence of the doodles, and equal to 0
otherwise. O

Corollary 5 If strongly connected doodles ¢ and ¥ with < n intersection points
in R? are not equivalent, they can be distinguished by an invariant of order (6n +
2)(n+1)+n.

Proof. 'The proof coincides with the proof of corollary 4. O
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4.2.2 Generic doodles in R?

The difference between the generic case and the case of strongly connected doodles
is that the (quasi-)minimal doodles are more sophisticated. The skeleton of the
proof is exactly the same.

Again, given a doodle ¢ with non-minimal arrow diagram ADiag ¢, let us keep
trying to apply lemma 2 to the allowed moves of type A*, while possible. If
the doodle is not connected, its connected components (and 1-cycles) are partially
ordered by the following relation: & < f if all intersection points of a belong to a
finite area of R2\ 8. We will process a minimal possible component. After successful
lifting of a move A*, to the corresponding move O, one of the following cases

occurs:

e the component processed has decayed into two non-intersecting curves;

e the component processed has decayed into two components, only one of which
is a curve, not intersecting any other curve;

e the component processed has decayed into two components, none of which is
a curve, not intersecting any other curve;

e the component processed has not decayed.

The connected component of a doodle, formed by one curve, bounding an empty
disk, is called trivial. We can move each trivial component, which might appear in
the first two cases, through the other components far away from all of them.

This minimization process stops when the connected components of the doodle
satisfies the following conditions:

e each pair of arcs, which can vanish in some move of type A* ,, either bounds

the infinite area of the complement to this component, or bounds the finite
area, containing another non-trivial component of the doodle;

e cach non-trivial one-curve component bounds the finite area, containing a
multicurve connected component.

Such a doodle is called guasiminimal.

Two non-trivial one-curve connected components are called eguivalent, if they
bounds the same set of other connected components. There is insignificant, which
of them bounds another one, since they can be moved one through another leaving
the doodle equivalent.

The following obvious analogue of lemma 6 describes the mutual disposition of
the intersection points and 1-cycles via indices.

Lemma 7 Let £ be a connected 1-cycle in the arrow diagram ADiag(¢) of a doo-
dle ¢, passing none of the arcs the arrow diagram twice. The image of & is the
canonically oriented outer boundary of a finite component B of the complement to
the image of ¢ if and only if

indge)(#(z)) = ﬂi’—”l for any arrow z € £,

indgeey(d(z)) =1 for any arrow x & £
in the boundary of a component a < 3,
indgey(#(z)) =0 for any other arrow z.

It is a canonically oriented component of the inner boundary of a component
(finite or infinite) of the complement to the image of ¢ if and only if
indg(ey(#(x)) = ﬂ%ﬂ —1 forany arrowz €,

indg(ey(4(x)) = -1 for any arrow z ¢ £
in the boundary of a component o < 3,
indg(¢)(¢(x)) =0 for any other arrow z.

]
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Only integer-valued conditions are added in lemma 7 to the conditions of lemma
6. This means that no new tricks are needed to encode these conditions into finite-
order invariants. We need only check, that despite the quasiminimal doodle ¢ is
neither connected nor minimal, for any arrow z in ADiag(¢) an arrow y(z) (or
arrows y4(z) and y_(z), see proposition 4 and below) can be either found, or
substituted by infinity. It is easy. If proposition 4, cannot be applied to an arrow
z of the diagram of a connected subdoodle ¢’, then either one of the areas of the
complement to ¢’, not adjacent to ¢(z), is infinite and y(z) can be substituted by
infinity, or one of them encloses another non-trivial component of ¢, and any arrow
of the latter can be taken. yy(z) and y_(z) are treated in the same way.

Let a quasiminimal doodle ¢ : Cx — R? consist of m (m < k) connected com-
ponents ¢',...,¢™ with n',... n™ intersections, and l-cycles £(c0),...,£™(c0)
are the pre-images of their canonically oriented outer boundaries. For each pair
¢ < ¢7 denote by ¥ and £ the pre-images of an intersection point of ¢* and of
the outer boundary of the area of R? \ ¢/, containing ¢°.

We are going to construct an analogue of formula (16). For each multicurve
component ¢° let _ _

P(p,¢,¢) = P(pt|aDiag(s4), 9" ¥)s
and . .
Q" (1, 8, %) = P+ (—indy (u(gi (00))) (¥ (¥ (00))))
(P¥(...) and @*(...) are the factors of formula 16 for ¢?). If ¢* < ¢/, let

R (p, ¢, %) = pri (indy (u(esiy) (B (1(y7)))-

Denote by S the set of such pairs (,7), 1 < i,j < m, that ¢' < ¢/ and there
exists no multicurve component ¢*, such that ¢* < ¢#* < ¢/. S conmsists of no
more than m — 1 pairs. Indeed, each one-curve component may participate only
as the second member of a pair and only once, and in the remaining pairs each
multicurve component can participate as the first member at most once, but the
‘largest’ component(s) do(es) not.
Now let
m

Fu,0,9) = [[(P(1, 6, 9)Q (1,6, 9)) x [ BY(u,0,%).

i=1 (i.4)€s
F(p, ¢,) satisfies the requirement of theorem 5. It is a polynomial of different
indices of shape (indy(u(¢))(¥(u(x))) of degree no more than

f:(b'n" +2)(n + 1) +2(m—1)(n+1) < (6n+8)n+2m+2(m—1)(n+1)

i=1

6n(n+1) 4+ 2m(n +2) — 2
< 6n(n+1)+2k(n+2)-2.

For a quasiminimal doodle ¢ in R? we define the invariant (¢, -} as follows:

(6,0) = > o (W) F (i, 6, %) (17)
p:ADiag(¢)— ADiag(h)

If the doodle ¢ is connected, this formula coincides with formula (16).

Proposition 10 Let ¢ be a quasiminimal doodle in R?, d be the order of the group
of automorphisms of ADiag(¢), which can be continued to automorphisms of ¢.
Then (¢, ¢) = d, and (¢,v) = 0 for any other (i.e. not equivalent to ¢) doodle 1
with L(¥) < L(¢).
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Corollary 6 If k-doodles ¢ and 1 with < n intersection points in R? are not
equivalent, they can be distinguished by a finite-order invariant of order 6n(n+1) +
2k(n+2)—2+n.

The proofs of proposition 10 and corollary 6 repeat the proofs of proposition 9
and corollary 5, respectively.

5 Finite-order invariants of plane curves

By a plane curve we mean a smooth map ¢ : S — R2. The image of a generic
plare curve can have a finite number of double points, where two local branches of
the curve meet transversally; all the other points are regular. The generic homotopy
of a curve is an isotopy of its image everywhere except a finite number of instants,
when the curve has a cusp, a selftangency point or a triple point. Near these instants
a local move of the type O}, Ol,, or O} respectively occurs (see fig. 1).

The classification of immersions of a circle to a plane was described by H. Whitney
in [W37]. The result is simple: the only invariant of a curve ¢ is its Whitney index
(= rotation number) ind(¢). The study of homotopy classification of immersions of
a circle to a plane with no selftangencies and triple points was started by V.Arnold
(see [A93]) and is not finished yet. Numerous invariants, most of which are or can be
expressed via finite-order invariants, were constructed. The most famous of them,
namely Arnold invariants J*, J~ and St, are invariants of order 1. 2

On the other hand, the direct application of Vassiliev theory and calculation of
the homology groups of the discriminant has not been undertaken. The difference
between this situation and the situation of ornaments can be explained easily. There
is only one type of forbidden singularity and five types of allowed moves for orna-
ments, and three (in fact, four, since there are two kinds of selftangencies: parallel
and antiparallel) types of forbidden singularities and no allowed moves for curves.
So it is easier to construct an invariant of curves, but more difficult to study the
discriminant.

Here we are going to show that Vassiliev invariants classify plane curves. Like
in the case of doodles, a modification of the construction of invariants, defined
by M.Polyak in [P94], is used. Two things should be done: the classification of
singularities of curves and the definition of the order of invariants be given (at least
in the amount of section 2), and the desired invariants constructed. The second
thing is a simple job, and the first one is long and hard.

To keep the tradition of [A93] and to save ourselves extra troubles, we consider
immersed curves only. The order of singularities, and hence the order of invariants,
defined below, is rather arbitrary, but it allows to apply the theory of ornaments
and doodles with minimal changes.

A singular immersed curve in a finite stratum of the discriminant has finitely
many singular points, each of which has finitely many pre-images: 2 for a generic
selftangency point, and 3 or more otherwise. Let s(z) be the number of pre-images
of such a singular point x, and £(z) be the number of tangent lines to the curve at
the point z. Then the complexity compl(z) of the point & is equal to 2s(z) —#(z)—1
(i.e. the complexity of a selftangency and of a triple point is 2, the complexity of
a triple point with two tangent local branches and of a quadruple point is 3, etc.),

2There is no canonical definition of the order of invariants, or equally, the complexity of singular
points. Some authors define the complexity of any singular point as 1 like in the theory of Vassiliev
knot invariants, where only simple transversal intersections are to be considered. Such a definition
seems to be too rough. More naturally, in the spirit of general Vassiliev theory, is to define the
complexity of a singularity as (a multiple of) the codimension of the subspace of objects (knots,
doodles, curves, ...} with this singularity. Then the complexities of cusps, selftangencies and
triple points are 2, 3 and 4 (or 1, g—' and 2), respectively.
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Figure 7: Both the perturbations of the singular immersion with a quadruple point
with two selftangencies are equivalent.

and the complexity of the curve is equal to the sum of complexities of all its singular
points.

Now we are going to define the degeneration modes and characteristic numbers.
Denote by Pjl¢ : S — R2 x RP! the projectivization of the 1-jet extension of the
immersion ¢. Two kinds of marks, namely s-marks and t-marks, are used below.
There are 5 types of degeneration steps:

1. marking with s-marks a triple of points on the circle S, which ¢ maps to the
same singular point, none of whose pre-images is already marked;

2. marking with both s-marks and ¢-marks a couple of points on the circle S?,
which Pjl¢ maps to the same point, none of whose pre-images is already
marked;

3. marking with s-mark a point on the circle S!, which the curve ¢ maps to a
point, some of whose pre-images are already marked;

4. marking with ¢-marks a couple of points on the circle S, already marked with
s-marks, which Pj'¢ maps to the same point, none of whose pre-images is
already marked with {-marks;

5. marking with ¢-marks a point on the circle S!, already marked with s-marks,
which Pjl¢ maps to a point, some of whose pre-images are already marked
with £-marks.

To define the characteristic numbers as it is done in section 2.2.4 for doodles, one
need to consider the corresponding 5 types of perturbations of singular immersions,
and decide, which perturbations are positive, and which are negative. For degener-
ation steps of the types 1 and 3 this is defined in section 2.2.4; for steps of the type
2 it is defined in [A93]. For steps of the type 5 it can be done easily, but for steps of
the type 4 it is impossible in general: see fig. 7. This means that the corresponding
stratum of the discriminant is not coorientable in the previous stratum. To bypass
this obstacle it is enough to choose any local coorientation and add this choice to
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the definition of the degeneration step. The details are omitted, because the defi-
nition of the order of invariants coincides with definition 6 and does not depend on
the particular choice of the coorientations.

A strict representaiion p of an arrow diagram X in an arrow diagram Y is a
diffeomorphism of their base circles, mapping arrows of X to arrows of Y, pre-
serving the orientation of the base circle and the directions of arrows, defined up
to homotopy equivalence (cf. the definition of representation in section 3.2, where
the directions of the arrows can be changed). Given an arrow diagram X with
n = L(X) arrows {z?,...,2"}, aset Z = {£1,...,&mn} of 1-cycles in it, and function
F of m x n variables, for any regular curve ¢ we define {(X,Z, '), ¢) as the sum

(X,Z,F), )= > Flindgue)($(u")), .-, indsgueny (#(u(z™)))
u:X —ADiag(¢)

(18)
over all strict representations X — ADiag(¢) (cf. formula (5): the signs o(u) are
omitted). Note, that there are absolutely no restrictions, such as minimalness of
the diagram X, since no topological moves are allowed for the curves.

Theorem 10 {(X,Z, F), ) is an invariant of plane curve. If F is a polynomial,
((X,E, F),-) is an invariant of order < deg(F) + L(X).

The proof repeats the proof of theorems 6. The rather strange definition of
complexity of the singular immersion was chosen especially to preserve the estimate
of the order in this theorem.

A curve can be considered as a strongly connected 1-doodle. Like in section 4,
the pre-images of the boundaries of the areas of the complement to the curve in its
arrow diagram are determined uniquely. All these areas has connected boundaries.
For a plane curve the only boundary information (cf. subsection 4.2.1) missed in its
arrow diagram is which of the boundaries is the boundary of the infinite area. We
are going to reconstruct this boundary information from the values of finite-order
invariants of the curve. The boundary information is expressed in via indices in
lemma 6. In fact only one of the equations of this lemma is enough to distinguish
the curves.

Let ¢ be a generic curve with n = L(4) selfintersections, £, be the pre-image
in ADiag(¢) of the canonically oriented boundary of the infinite area of R?\ ¢(S!),
Too be an arrow in &y,. For any cycle £ in ADiag(¢), passing none of the arcs twice,
and any arrow z, indg(e)(¢(2)) € Z/4 and |indye)(¢(x))| < » + 1. Denote by py
the polynomial of degree 2n + 1, such that p¢(1nd¢(5w)(¢(zoo))) =1 and pg(t) =0
for any other ¢ of shape 1nd¢(£m)(¢(:coo)) + 4, where 7 integer and {{| < n+ 1. We
define the invariant of curves (¢, -) by the followmg special case of formula (18):

(¢,9) = > Po(indy (u(e.)) (¥(1(20))))-

p:ADiag(¢)—ADiag(y)
By theorem 10 (¢, ) is an invariant of order 3n + 1.

Theorem 11 Finite-order invariants (¢, -) and Whitney indez classify plane curves.
Two non-equivalent curves with < n selfintersections in each can be distinguished
by an invariant of order 3n + 1.

Proof. The proof coincides with the proofs of proposition 6 and corollary 4. Whit-

ney index is required only to distinguish two curves with no selfintersections (clock-
wise and counterclockwise oriented). O
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