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ABSTRACT

In this paper we study the stability of the equilibria of the dynamical system consisting of
a rigid body and a conducting, inviscid (or viscous), incompressible fluid. We assume that
the body is perfectly conducting. First we show that the total energy of the system has a
critical point in a static equilibrium, then we calculate the second variation of the energy
at the critical point and prove that the positive definiteness of the second variation gives
both necessary and sufficient condition for linear stability. The general theory is applied
to two particular problems, namely: the stability of a circular cylinder in a magnetostatic
equilibrium with circular lines of the magnetic field and the stability of an arbitrary cylinder
in an irrotational magnetic field (which is homogeneous at infinity). Finally, we extend
the theory to the case of a viscous fluid with finite conductivity and show that the results
obtained for an ideal fluid remain valid in this case.

1. INTRODUCTION

In this paper we study the stability of equilibria of the dynamical system that consists
of a rigid body and a conducting incompressible fluid in magnetic field. For simplicity, we
consider the two-dimensional problem. We assume that the body is perfectly conducting.
The fluid may be inviscid or viscous. We consider both the perfectly conducting fluid and
the fluid with finite conductivity. External forces (such, for example, as gravity force) may
be applied to the system as a whole.

* Also at Department of Mathematics, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong.



We study the stability of static equilibria of this mechanical system. For the stability
analysis we use the energy method of Arnold (Arnold 1965): first we show that the total
energy of the system has a critical point in a static equilibrium, then the second variation
of the energy at the critical point is calculated. It is well-known that this equilibrium
is stable to small perturbations if the second variation of the energy evaluated in this
equilibrium is positive definite. This assertion is an analogue of the Lagrange theorem of
classical mechanics.

We also prove the converse Lagrange theorem stating that an equilibrium of the system
is unstable provided that the second variation of the energy (evaluated in this equilibrium)
can take negative values. The proof is constructive rather than abstract: we explicitly
construct a functional that grows exponentially with time by virtue of linearized equations
of motion. We obtain an explicit formula that gives the dependence of the perturbation
growth rate upon the equilibrium considered and the initial data for the perturbation. We
obtain also the upper and lower bounds for growing solutions of the linearized problem and
identify the initial data corresponding to the perturbation with maximum growth rate.

Thus, the stability analysis leads to the conclusion that the positive definiteness of
the second variation is both necessary and sufficient condition for (linear) stability.

The general theory developed in the paper is applied to two simple particular pro-
blems. We consider (i) a circular cylinder in a magnetostatic equilibrium with circular
lines of magnetic field and (ii) the equilibrium of an arbitrary (two-dimensional) body in
an irrotational magnetic field (which is homogeneous at infinity). In the former case, the
system is always stable. In the latter case, the stability of the system depends on the
orientation of the body relative to the magnetic field at infinity: if in the equilibrium the
principal axis of the virtual-mass tensor which corresponds to a minimum virtual mass
is parallel to the magnetic field at infinity, the equilibrium is stable and if this axis is
perpendicular to the magnetic field at infinity, the equilibrium is unstable.

The effects of viscosity and finite conductivity on the stability of the system is also
discussed. We show that the stability criteria obtained for an inviscid fluid remain valid
for a viscous (but still perfectly conducting) fluid and for a viscous fluid with finite conduc-
tivity. In particular, we prove the converse Lagrange theorem for a viscous fluid and give
a priori estimates of (exponentially) growing solutions of the linearized problem.

The results of the present paper may be viewed as development and generalization
of the ideas and results contained in the papers by Arnold (1965, 1966), Moffatt (1986),
Vladimirov & Rumyantsev (1989, 1990), Vladimirov & Ilin (1994, 1998, 1999), Davidson
(1998) and Gubarev (1995, 1999).

We conclude this introduction with a simple example that inspired us to develop this
theory.

Consider an elliptic cylinder in a magnetostatic equilibrium of an inviscid, incompres-
sible, and perfectly conducting fluid. We assume that in this equilibrium, the magnetic
field is irrotational and homogeneous at infinity. The lines of the magnetic field coincide
with the streamlines of the analogous irrotational flow of an inviscid fluid past the elliptic
cylinder (with zero circulation of the velocity around it). We assume that the centre of
the ellipse is fixed, but the ellipse is free to rotate. It is evident from the symmetry of the
problem that there are two equilibrium positions of the cylinder: (i) the longer axis is pa-
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rallel to the magnetic field at infinity (see Fig. 1a) and (ii) the longer axis is perpendicular
to the magnetic field at infinity (see Fig. 1b). These equilibria correspond to zero torque
exerted by the fluid on the cylinder.

The natural question is whether these equilibria are stable or unstable. The answer
to this question is a prior: unclear. However, as we show below, it can be obtained using
simple physical arguments.

First, we consider the case (i) (Fig. la). If we slightly perturb the equilibrium by
turning the ellipse about its centre, the magnetic field lines around the ellipse stretch,
so that the magnetic field in magnetic tubes near the body increases due to magnetic
flux conservation. Therefore, this perturbation results in an increase in the magnetic
energy. This means that the energy has a local minimum in the basic equilibrium and, as
a consequence, this equilibrium is stable.

In the case (ii) (Fig. 1b), a similar perturbation leads to contraction of the magnetic
field lines, thus reducing the magnetic field. This corresponds to a decrease in the magnetic
energy and, therefore, to a local maximum of the magnetic energy in the basic equilibrium.
The latter, in turn, may result in instability.

Thus, the above arguments provide certain evidence that the equilibrium of an elliptic
cylinder with the longer axis parallel to the magnetic field at infinity is stable to small
perturbations and the equilibrium of the cylinder with the longer axis perpendicular to
the magnetic field at infinity is unstable. This conclusion is based on purely physical
arguments and, certainly, needs mathematical justification. First, our arguments deal with
the static situation. To prove the stability, we need to consider dynamic perturbations with
nonzero velocity. Second, the absence of the energy minimum in an equilibrium does not
automatically imply instability and requires more careful treatment (a classical example
from finite-dimensional mechanics when the system has no minimum in an equilibrium
but this equilibrium is stable may be found in Arnold, 1978). The general theory that
we develop in this paper is applied, in particular, to the problem of stability of an elliptic
cylinder and gives a rigorous proof of the above-formulated stability criterion.

The outline of the paper is as follows. First, we consider the case of a perfectly
conducting inviscid fluid. In §2 we discuss the equations of motion for the dynamical
system considered. In §3 we show that the energy of the system has a stationary value
on the set of all ‘isomagnetic’ states of the system. In §4 we calculate the corresponding
second variation of the energy, discuss the relation between this second variation and the
linearized equations, and obtain general sufficient conditions for linear stability. In §5 we
show that if the condition obtained in §4 is not satisfied, the equilibrium considered is
unstable. Two particular examples of stable and unstable equilibria of the system are
presented in §6. The effect of viscosity is discussed in §7. Here we show that all the results
obtained in §§4-6 are also valid for viscous fluid. Finally, in §8 we consider the case of a
fluid with finite conductivity and prove that, for the basic equilibria that are compatible
with the equations of resistive magnetohydrodynamics, the results of §§4—7 remain valid
for fluids with finite conductivity.



2. BASIC EQUATIONS

Consider a dynamical system consisting of an incompressible, homogeneous, inviscid
and perfectly conducting fluid and a perfectly conducting rigid body. For simplicity, we
consider the two-dimensional problem. Let D be a domain on (z,y)-plane that contains
both the fluid and the rigid body, and let D(t) be a domain occupied by the body (Dy(t) C
D). The domain Dy(t) = D — Dy(t) is completely filled with a fluid, its boundary 0D(t)
consists of two parts: the inner boundary 0Dy (t) representing the surface of the rigid body
and the outer boundary 0D which is fixed in space.

Motion of the body is described by the radius-vector R(¢) of its centre of mass and
by the angle ¢(¢) which determines orientation of the body on the plane.

The equations of motion of the fluid are the standard equations of the ideal magne-
tohydrodynamics which, with help of the flux function a(z,y,t) (h = Va x k), may be
written as

u; 4 (u- V)u = —Vp — (V2a)Va, (2.1)
at+(u-V)a=0, V-u=0. (2.2)

Motion of the rigid body obeys Newton’s equations of classical mechanics:

Mvw =MR = | (p+(Va)*/2)ndl - 9T/0R, (2.3)
8Dy

I0=1¢= ke {(x-R)x n}(p + (Va)z/z) dl — BI1/84. (2.4)

Here M is the mass of the body, I is the moment of inertia of the body, n is the unit
normal vector which is always directed outward with respect to domain Dy occupied by
the fluid, II(R, ¢) is the potential of an external force applied to the body.

Boundary conditions are

u-n=0, 6-Va=0 on 0D,
u-n={w+Qkx(x—R)]}-n, 6-Va=0 on 0Ds. (2.5)

Here o is the unit vector tangent to the corresponding boundary.
The conserved total energy of the system is given by

E = E¢ + Ep = const, (2.6a)
1
Es= ——/ (u? + (Va)?) dzdy, (2.6b)
2 Jp,
_1 2 1.2



BASIC STATE. An exact steady solution of (2.1)-(2.5) whose stability will be investigated
represents a static equilibrium of the system is given by

R=w=0, ¢=0=0; (2.7a)
u=0, a=A(x) in Dyo. (2.7b)

The flux function A(x) in (2.7b) is a solution of the problem:
VP +(V2A)VA=0 in Djy, 0-VA=0 on 9Dy and 9D. (2.8)
Taking curl of (2.8), we obtain
k- (V(V24) x VA) =0. (2.9)

This implies that the functions V2A(x) and A(x) are (at least) locally dependent in Dyq.
Note that, in view of (2.8),

P =const on 0Dy and 0D. (2.10)

In the equilibrium (2.7), the total force and torque exerted on the body by the fluid are
balanced by the external force and torque applied to the body:

Y P

OL/oR [ = /a L 3(VAPnd. (2.11a)
_ [ 1 2

OI1/d¢ |R7¢=0_ /a o (TAk: (xx mydl. (2.11b)

3. VARIATIONAL PRINCIPLE

In this section, following the procedure of Vladimirov & Ilin (1999) we shall show
that the equilibrium state (2.7) has an extremal value of the energy in comparison with
all isomagnetic states of the system. Isomagnetic states of the system are, by definition,
the states that can be obtained by displacement of fluid particles from their position in
the basic state (2.7), the value of the flux function a(x) in every fluid particle being
unchanged. This variational principle may be viewed as the generalization of Moffatt’s
variational principle (Moffatt 1986) to the case of a variable flow domain.

For convenience, we introduce the notation q = (¢1,92,93) = (R1,Re,4) and q =
(g1, 42, 43) = (w1, w2, ) which will be used along with R, w, ¢, and Q. Greek indices «
and B take values 1, 2, and 3. In what follows, summation over repeated Greek indices is
implied.

To formulate the variational principle, we introduce the family of transformations

x = i(x: 6) y o= Qa(f) ? (3'1)
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depending on a parameter € > 0. Functions X(x, €) and §,(€) are twice differentiable with
respect to € and the value € = 0 corresponds to the equilibrium (2.7):

%(x,0) =x, §.(0)=0. (3.2)

The transformations defined by equations (3.1)—(3.2) may be interpreted as a ‘virtual
motion’ of the system ‘body + fluid’ where € plays the role of a ‘virtual time’, X(x, €) is the
position vector at the moment of ‘time’ ¢ of a fluid particle whose position at the initial
instant € = 0 was x (in other words, x (x € Dyg) serves as a label to identify the fluid
particle, while X(x, €) represents its trajectory) and where the functions g, (€) determine
the position and orientation of the rigid body at the moment of ‘time’ €. In such a motion,
the domain Do = D;(0) evolves to a new one Dy (e) which is completely determined by
the position and orientation of the rigid body, i.e. by gu/(e).

Functions g, (€) are arbitrary, function X(x, €) represents integral curves of the ordinary
differential equation iz

— =f(%9), (3:3)

i.e. X(x,€) denotes the solution X(e) of (3.3) with initial value X(0) = x. In (3.3), f(X,€)
is a vector field that satisfies the conditions

V-£=0 in Dy, fn=0 on 8D, f-n:[fie-l-d-)ekx(i—f{)]-n on 0D, (3.4)

and is otherwise arbitrary. From here on, subscript € denotes ordinary (or partial, if
appropriate) derivative with respect to e. In terms of ‘virtual motion’, functions f(X,¢),
R. and ¢, have a natural interpretation as the ‘virtual velocities’ of the fluid and the
rigid body. The conditions (3.4) mean that in the ‘virtual motion’ the fluid remains
incompressible and that there is no fluid ‘low’ through the rigid boundaries.

"~ Also, we introduce functions #(%,¢), a(%,¢), and g, () such that the value ¢ = 0
corresponds to the equilibrium (2.7), i.e.

= A(x), dale)

= 0. (3.5)

i(xe)| =0, axe i

e=0

Functions &a(e) are arbitrary, and (X, €) is an arbitrary vector field satisfying the condi-
tions

V.i=0 in Dy, @i-n=0 on 8D, i-n= (v~v—|—§~2k>< (i—f{)) n on 8Dy (3.6)
Function a(X, €) is defined as a solution of the equation

Ge+f-Va=0, (3.7)
such that @(X,€)|e=o = A(x). Equation (3.7) means that the flux function a is considered
as a passive scalar advected by the ‘virtual flow’, so that the ‘virtual evolution’ of the

magnetic field is the same as its evolution in a real flow. Another meaning of the equation
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(3.7) is that the value of the flux function in every fluid particle is conserved in the ‘virtual
motion’. Solutions of Eq. (3.7) define isomagnetic states of the system.

Assuming that € is small, we define the first and the second variations of the fluid
velocity u, the flux function a and the coordinates and velocities of the rigid body R, ¢,
w, {2 as follows

1
ox=f €, O0u=1u, e, O*u= -l €,
e=0 €= 2 ==
1
da = a. . 020 = =@ 2, etc. 3.8
a=a o € a 20, o € (3.8)

Note that éx has a clear physical meaning: it is the infinitesimal Lagrangian displacement
of the fluid element whose position in the unperturbed state was x. The first and the
second variations of the energy (2.6) considered as a functional of (%, €), a(%,€), R(e),
w(e), #(€), and Q(e) are, by definition,

6FE = dE/de L€ 6’E = —;—d2E/d62 . €. (3.9)
The first variation of F is
0E =0E¢+ 0Es.
(From (2.6¢) it follows that
oIl
0Fy, = Mw - 5w+IQ<FQ+a—R 6R+—¢6¢ (3.10)

Since w = 0 and £ = 0 in the equilibrium (2.7), we obtain

o1l
6By = o 5R+%5¢ (3.11)

To calculate 6 F'¢, we first note that

4 F.dzdy + / F(f-n)dl
de JB (o)

8Dy (¢)

F(x,e)dzdy = /:

Dy (e)

for any function F(X,e¢) (this follows from the formula for the rate of change of material
volume integral; see e.g. Batchelor, 1967). Using this formula, we find

d

I E; = VA-Vidzdy + / %(VA)Z(f -n)d!

e=0 Dio 9Dso

Substituting (3.7) into this equation, we obtain

d

de

. Ey = /Dfo (—VA -V(f- VA))d:cdy —|—/a %(VA)z(f -n)dl.

Do
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By using Egs. (2.8), Green’s theorem and the boundary condition (3.4), this can be
transformed to

da
de

1 . .
_Br=- /av,,o 5(VA)? [RE + ek X x)] ndl. (3.12)

Finally, from (3.8), (3.11), and (3.12), it follows that

or=21 sm Wiy E

2
= o= 5 -~ 2(V4) [5R+ 56 (k x x)] ‘ndl. (3.13)

The comparison of (3.13) with (2.11) shows that E = 0. Thus, we have proved that
the equilibrium state (2.7) has an stationary value of the energy in comparison with all
isomagnetic states of the system. This result is a natural generalization of the variational
principle of Moffatt (1986) who considered magnetostatic equilibria of a perfectly conduc-
ting fluid in a fixed domain.

4. THE SECOND VARIATION

Let us now calculate the second variation of the energy at the critical point. We have

'62E = §°E; + 6°Ep . (4.1)
For §2E;, we obtain
§ By = S M(5w)? + S1(50) + 8711, (4.2)
where e
6’ = 2 902905 09a09p- (4.3)

Here the second order partial derivatives of II(q) are evaluated at q = 0.
It is shown in Appendix that

6*E; =% /D {(5u)2 +(Véa)® + (6x - VA)(0x - V)VzA}dwdy

2 2
- 1/ {((Sr -m)(dr - V)~I-—I— — H—6¢(5R -a’)} di, (4.4)
2 Jopy, 2 2
where dr = 6R + d¢ (k x x) and da = —x - VA. Combining Eqs. (4.2) and (4.4), we
obtain

52E =-;~ /D fo{(au)2+ (Vda)? + (6x-VA)(6x-V)V2A}da:dy
- %/BD {(6r - n)(or - V)H72 = H;agb(an.a)}dl

1 9211
2 09,043

1 1
+ 5M((SW)2 + 51(59)2 + 8qadap. (4.5)
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One can see that the second variation (4.5) is split into parts: the quadratic form of
the variations of the coordinates and velocities of the rigid body and the volume integral
containing the variations of the velocity and the magnetic field. Unlike to the case of a
rigid body in a steady flow of an ideal fluid, the second variation does not involve the cross
terms in which the variations of both the body and the fluid are present.

Circular cylinder. If the body is a circular cylinder, then no torque is exerted on the body
by the fluid, so that angular coordinate ¢ can be ignored. In this case, the second variation
(4.5) simplifies to

6°E = % /D m{(au)z + (Véa)? + (0x - VA)(0x - V)VZA}dxdy

1 8%
2 0R;0R;

1 H? 1 )
_ —/ (GR-1)(0R - V) dl + = M(6w)? +
D40 2 2

> SRR, . (4.6)

Linearized equations. The remarkable fact is that if variations éx, du, IR and ¢ are
considered as the infinitesimal perturbations of the equilibrium (2.7), whose evolution is
governed by appropriate linearized equations, then 2E is an invariant of these equations
(Arnold 1965a,b, 1966; see also Holm et al. 1985, Vladimirov 1987). To make this state-
ment more precise, we shall formulate the linearized problem.

Let &(x,t), R(t), and ¢(t) be an infinitesimal perturbation of the equilibrium (2.7).
The perturbation velocity of the fluid u(x,t), the perturbation flux function a(x,t), and
the perturbation velocities of the body w(t) and Q(¢) are given by

u=¢, a=-€-V4, w=R, Q=4

The evolution of the perturbation is governed by the equations of motion linearized in a
neighbourhood of the equilibrium (2.7):

w = —Vp— (V2A)\Va— (V%)VA, a=—€ VA, V-u=V-£=0, (4.7)
. H?2
MRi=/ {p—i—VA-Va+aV2A+(r-V)—}m-dl
D40 2

H? 011 011
_ = podl— =2 Ry — : 48
B 2 ¢ OR0R; * 8R¢8¢¢ (48)

. H?2
1$= {p+VA-Vat+aV?A+(r V)= }n- (e x )l
9Dpo 2

o211 0211

" 5o o o
where r = R + ¢(k X x). Boundary conditions for € are

En=r-n on 9Dy, € n=0 on OD. (4.10)

9



As was mentioned above, the second variation (4.6) is conserved by the linearized equations.
This means that we have the following invariant of (4.7)—(4.10) (this fact may be verified
by direct calculation of the time-derivative of E):

E=T+1I,
~ 1 ' 2 1 2 1 2
T=-MR*+ -I¢"+ &, dzdy
2 2 2 Jp,
fie = / ((Va)2-l— (X VA)(E-V)VZA)dxdy
2 Dso
1 H?2 H? 1 0%
- ——/ {(r n)(r- V)— - —qﬁ( )} dl + - —5—08g.0q3. (4.11)
2 Jop,, 2 8g,0qp

Here T and II correspond to the second variations of the kinetic energy and the potential
energy of the system (the magnetic energy being considered as a part of the potential
energy). For brevity, we shall call them the kinetic energy and the potential energy of the
linearized equations.

If E(t) is positive definite, then 1/ E(t) can be taken as the norm of the perturbation.

In this case, the conservation of E(t) implies the stability of the equilibrium (2.7): E(t) =
E(0).

Note that the kinetic energy T is always positive definite, so that the positive defi-
niteness of F is completely determined by the potentlal energy II. The linear stability
problem thus reduces to the analysis of the potential energy of the linearized equations.

Remark. The theory developed above deals with isomagnetic perturbations for which the
perturbation flux function a(x,t) is given in terms of §(x, ¢) by the equation a = —§- VA.
This restriction may, however, be discarded. It can be shown that the integral similar to
(4.11) and given by

I=T+1I,
~ 1 =y 1 29 1 9
T=-MR"“+ _I¢"+ - u” dzdy
2 2 2 D0
~ 1/ 9 (VzA)
== Va)* + —=——a* |dzdy
3 oy, (V9" 4 )
1 H? H? 1 0%
- —/ {(r n)(r- V)—— - —¢(R o)}dl—i— Lo 0gadgs  (4.11a)
2 JoD,0 2 0g,04qp

is conserved by the linearized equation that are the same as Eqgs. (4.7)—(4.9) except that
the equation a = —€ - VA is replaced by

a:+u-VA=0.

In fact, up to the change of notation, this expression coincides with the second variation
of the conserved (Energy—Casimir) functional

1
I:; {v®+ (Va)® + F(a)} dzdy + 2Mw + I92+H(R b)
Dy
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where F'(a) is a certain, specially chosen function.
Therefore, most of the results obtained below are valid not only for isomagnetic per-
turbation but also for nonisomagnetic perturbations.

Potential energy. Consider now the functional II(¢). It may be written in the form

~ 1
I=I14+Q, Q= §QaﬁQaQB

_ 1 2, V(V?4) ,
I= 5 /Dfn{(Va) + vA ° }da:dy, (4.12a)
where the coefficients Qqp (o, 8 =1,2,3) are
0 H2 0211 .
Qij = _-/BDbo nia—:l;j?dl + OR.OR, for 4,7=1,2;
H? H?2 d H?
Qiz = Q3i = »/61),,0 {0’,’7 —ni{(k X x) 5 V}T _ (a-.x)ami 7} di
01 ,
+28Ri3¢ for 1=1,2;
2 2
Qs3 = —/ 0 ) {kxx) vy Ea+ 20 (4.12b)
8Dy0 2 o¢

Now we decompose the perturbation flux function a into two parts:
a=v+x. (4.13)

Here 9 corresponds to the acyclic irrotational part of the magnetic field and is the unique
solution of the following boundary-value problem:

Vi) =0 in Dgo, @-Vyp=0 on 0D,
Y=-r-VA on 0Dy, f. n-Vydl =0, (4.14)
8Dyo

and y is an arbitrary function satisfying the boundary conditions: - Vx = 0 on 8D and
x = 0 on 0Dyg. This decomposition is the same as that which is usually used to prove
Kelvin’s minimum energy theorem in fluid mechanics (see e.g. Batchelor 1967).
Consider now the integral
|

L =2 (Va)?dzdy.
2 Dso

Substituting (4.13) into this integral, integrating by parts, and using (4.14) and the boun-

dary conditions for x, we obtain

1

n= /D {(V)? + (Vx)? }dzdy. (4.15)
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;From (4.14), we have

[ owrsay= [ pw-ve) (4.16)

8Dpo

It follows from (4.14) that function 1 can be presented in the form

Y = Yaqa- (4.17)
with 9, (o =1,2,3) being the solutions of the problems
Via=0 in Djy, 0-Vipo=0 on 9D,
Yo =ga on 0Dy, }{ n- Vi, dl = 0. (4.18)
8Dy
Here
gi=-n;(n-VA) for i=1,2; g3s=—(6-x)(n-VA). (4.19)
Substitution of (4.17) into (4.16) yields

/ (V’lﬁ)2d$dy = CaﬁQaQﬂa Caﬂ = 'lpa (n . Vtﬁg) (4.20)
Dyo Do

Note that the 3 x 3 matrix of the coefficients C,g is symmetric and depends only on the
form of the body and the magnetic field in the basic equilibrium (2.7). B
It follows from Eqs. (4.12), (4.15), and (4.20) that the potential energy II(¢) can be

written as

nI=1+Q, -

T _ 1 2 V(V2A) 2

I=3 Dm((vx) + e )dmdy,

~ 1~ 1

Q= §Qaﬁqaﬂm = E(Qaﬁ + Cop)qadp- (4.21)

Evidently, the sufficient condition for IT to be positive definite is

V(V2A .
——%A—) 2 0 in 'Df(): (4220,)
Di1>0, Dy>0, D3>0, (4.225)

where Dy, Dy, and D3 are the principal minors of the matrix of the coefficients Qaﬂ, i.e.

D, =Q D, =d Qu Qe B Qu Q12 Qus
1 = 11, 2 = det 0 Qg |’ Dy=det | Q21 Q2 Q2 |-
" Q31 @32 33

Thus, we have obtained the following general stability criterion: the equilibrium state (2.7)
is linearly stable if the inequalities (4.22) are satisfied.
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5. INSTABILITY OF THE SYSTEM IF 62E HAS NO SIGN

The result of the preceding section says that the sufficient condition for linear stabi-
lity of the equilibrium state (2.7) is that the second variation of the energy in this state
or, equivalently, the potential energy of the linearized equations is positive definite. An
important question which arises in this context is whether this condition is necessary for
stability. In other words, the question is whether the equilibrium is unstable under the
condition that the second variation can take negative values. In this section, we shall
answer this question.

Consider the functional

W=W;+W,, Wy=[ §&&drdy, Wy=MR R+I¢d, (5.1)
Djo

which is an analogue of the virial of classical mechanics.
Let us differentiate W with respect to t assuming that &(x, t), R(¢), and ¢(¢) represent
a solution of Eqgs. (4.7)-(4.10). We have

Wi = fD . {ef +&- (-Vp— (V?A)Va — (Vza)VA)}dxdy
- /D (€ - V- (09 - V- (aV%a) + a6 V)V?A + Va- V(- VA))dady

~ [ (&~ - vae vw?;&) dady

+ / (r-n) (—p —~VA-Va = aV2a) di. (5.2)
9Dy
Also, we have
. H2
Wb=/ (p+VA-Va—(R-VA)VzA—I-(R—V)—)(r-n)dl
Do 2
H? : : 0211 o211 0211
— —¢R-0)dl + MR? + I¢” - RiRy—2——Rip— —¢°.(5.3
/avw g #R-9) T T AR Tox el L)
It follows from (5.2) and (5.3) that
W = & dzdy — / ((Va)2 + (- VA)E- V)VZA) dzdy
Dyo Dyo

+/m>,,o {(R.n)(R- V)I—Izj = H72¢(R-a)}dl+MR2

0211 H211 9’11
RiRy — 2 R;¢ — 547

.
1 = SRaR, 5R:0%

¢ (5.4)
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Comparing (4.11) and (5.4), we find that
W = 2(T — ) = 4T — 2E. (5.5)

(From (5.1), it is evident that W can be presented in the form

W =1/2
where
L=MR?+1¢%+ | € dzdy, (5.6)
Dyo
so that Eq. (5.5) can be written as
L =8T —4E. (5.7)

Now we assume that E is not positive definite, i.e. there exist a perturbation £, R, R, ¢,
¢ such that E < 0. It follows from (5.7) that for this perturbation,

L>8T. (5.8)
Using the Schwartz inequality, one can obtain
L?>8TL. (5.9)

Combining inequalities (5.8) and (5.9), we find that

L> PEZ or,'equivalently, % (%) > 0. (5.10)
Finally, integrating (5.9) over time twice, we obtain
L(t) > L(0)e* (5.11)
with .
A= L(0)/L(0). (5.12)

Further, we note that initial values for &,, R and <b can be chosen independent of initial
values for €, R and ¢. Now we choose them such that A, given by (5.12), is positive: A > 0.
Then, inequality (5.11) shows that the quantity L, which is quadratic in the perturbation,
grows at least exponentially with time, and this proves instability of the equilibrium (2.7),
provided that the second variation of the energy (4.11) can take negative values. This
assertion is nothing but the converse Lagrange theorem for this dynamical system.
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6. EXAMPLES

6.1 The stability of a circular cylinder in a magnetostatic equilibrium with circular lines
of magnetic field

Let D¢ be an annulus which in polar coordinates is defined by the inequality r; < r <
r9. In the basic state (2.7), the magnetic field has only azimuthal component

H = (0, Ho(r)) or,equivalently, a= A(r) with A'(r)= Ho(r). (6.1)
And let

= (&) (6.2)

We also assume that II(R) = 0. Then, the energy of the linearized equations (4.12) reduces
to
1

_ 1, = 1
E=c | A&+ +9(r)&+m5) +rg'(r)e’} dedy + SMR® + orHG(a)R?,  (6.3)
Dyo

where g(r) = HZ/r2.
We introduce a ’stream function’ x(r, 8) for the field &(r, 8):

1
= ;XG y = —Xr> (6.4)

and present it in the form of Fourier series in 6

Re el

X(r,8) = Y (em(r)e™ + x5 (r)e™*™) . (6.5)

m=0

Substitution of this into (6.3) and standard manipulations yield the expression

E= Z Ixml2+—|xm|2+~—Ho|xm Xm /7|?
Dso =0

+(m2—1)m—2H2| |2)dzd +ivR2. (66)
7'2 0 Xm y 2 . .

Here primes denote derivatives with respect to r, while dots denote derivatives with respect
to time. ~

Evidently, E given by (6.6) is always positive. We, therefore, may conclude that the
circular cylinder in the equilibrium with circular H-lines is always stable.

6.2 The stability of a body in an irrotational magnetic field

Consider a perfectly conducting cylinder of arbitrary cross-section placed in a magne-
tostatic equilibrium with homogeneous magnetic field Ho = —Hpi (Hy = const, Hy > 0).
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Since the cylinder is perfectly conducting, the magnetic field cannot penetrate into it, so
that the initial (homogeneous) magnetic field is distorted by the field produced by surface
currents in the cylinder to satisfy the boundary condition of no normal magnetic field at
the body surface. The resulting magnetic field is irrotational, i.e. there are no currents
in the fluid. We assume that the total electric current through the cylinder (i.e. in the
direction perpendicular to the (z,y) plane) is zero and, therefore, the circulation of the
magnetic field along any closed curve in the (z,y) plane that encircles the cylinder is also
zero. In addition, we assume that the centre of the ellipse is fixed, but the ellipse is free
to rotate about the centre.
The equilibrium magnetic field H(x) can be presented as

H= Ho + V(p()
where the potential p(x) is the (unique) solution of the following boundary-value problem:

VZpo=0 in Dy,
n-chg = —n'H() on 8Df0,
[Vpo| =0, as |x|— o0,

V(po -dl =0. (6.7)
Do

The boundary value problem (6.7) is exactly the same as the hydrodynamic problem of
an irrotational flow past a cylinder moving with the constant velocity —Hg provided that
@o is treated as the potential for the velocity field. It is well-known (see e.g. Batchelor
1967) that no force is exerted on the body by the fluid if the circulation of velocity is zero.
It can be shown that this is also true for the analogous magnetostatic problem. Using
this analogy, it can be shown that the total torque exerted on the body by the magnetic
pressure is zero provided that one of the principal axes of body’s virtual-mass tensor is
parallel to the magnetic field at infinity Hy.

We study the stability of the equilibrium without external forces (i.e. II = 0). And,
therefore, we assume that one of the principal axes of body’s virtual-mass tensor is parallel
to Hg. After standard but lengthy manipulations using the irrotational character of the
basic state and the boundary condition for the perturbation magnetic field

h-n=0-V[(r-n)(H-06)] on 0Dy

(which is equivalent to the condition a = —r-V A), formula (4.21) for the ‘potential energy’

® can be simplified to

~ 1 1
fi=3 [ (VxPdady+ 3 HEumm — g (62)
2 Jp,q 5

where p17 and pgo are the virtual-mass coefficients corresponding to a motion of the body
along the z- and y-axes respectively.
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It follows from (6.8) that if in the equilibrium the principal axis of the virtual-mass
tensor which corresponds to a minimum virtual mass is parallel to the magnetic field at
infinity, then this equilibrium is stable; if this azis is perpendicular to the magnetic field
at infinity, the equilibrium is unstable. In particular, this result confirms the heuristic
conclusion on the stability of an elliptic cylinder formulated in Introduction.

7. EFFECT OF VISCOSITY

In this section we shall show that the results obtained in previous sections are also
valid for viscous (but still perfectly conducting) fluids. In this case, the governing equation
are

u; + (u-Viu=-Vp- (Via)Va+vV3u, (7.1)

as+(u-V)a=0, V-u=0, (7.2)

Mw = MR = { (p + (Va)2/2)n —v(n- V)u} dl - 8I1/8R, (7.3)
8D,

O=1§= /ap {(p+(Ve)?/2)n - v(n-V)u} -[lox (x - R)]di - O11/09, (7.4

where v is the kinematic viscosity.
Boundary conditions (2.5) for velocity are replaced by no-slip conditions on rigid

boundaries
u=0 on 0D, u=w+Qkx(x—R)] on 0Dy, (7.5)

while boundary conditions for magnetic field remain the same (see Egs. (2.5)).
The corresponding linearized (in a neighbourhood of the equilibrium (2.7)) equations
are given by (cf. Egs. (5.1)-(5.3))

w; = —Vp — (V2A)Vd' — (V% )VA+ vV, a,=—-u-V4, V-u'=0, (7.6)
.. 2

ME! =/ (pf +VA-Va - (r' - VAVZA+ (¢ - V)H—)n.,-dl

9Dyo 2

H? / 211 B21I
[ Eged-v n-Vuldl— —2—— R, — 24 (1.7
/617,,0 2 ¢ aD,,o( ) OR;OR; * 3Ri3¢¢ 1)

s 2
I¢: (pl+vAval_(r/’vA)va_{_(r’.V)_I_;_.)n(kXX)dl
8Dso

%11 0211
— kxx)-(n-V)udl— ———R; ——=¢'. (7.8
o[ exx)-m VIl - g R -G (1)

Here primes refer to infinitesimal perturbations of the corresponding quantities, r’' =

R’ + ¢'(k x x). Boundary conditions for the linearized equations (7.6)—(7.8) are

u =0, 6-Va’'=0 on 9D,
W =R +¢kxx], o' =-1r'-VA on 8D,. (7.9)
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;From here on, primes will be dropped for simplicity of the notation.
Quantity E given by Eq. (4.11a) is not an invariant of the linearized equations (7.6)-
(7.9). It can be shown, however, that F satisfies the equation

E=-D, D=v
Dso 8$k axk

dzdy. (7.10)

Integral D represents the rate of the energy dissipation due to viscosity and, evidently, is
always nonnegative. Therefore, E(t) < E(0), so that if £ is positive definite for a given
equilibrium (2.7), then this equilibrium is linearly stable. Thus, the equilibria of the system
that are stable in the framework of inviscid model are also stable in the case of a viscous
fluid.

Let us show now that the results of Section 5 also remain valid, i.e. inviscid instability
implies viscous instability, which is a priori unclear, because, usually, sufficiently large
viscosity stabilizes fluid flows.

First, we introduce the field of (infinitesimal) Lagrangian displacements of fluid par-
ticles by the formula

& =u in Dy. (7.11a)
For viscous fluid, the field (x,t) must satisfy the conditions (cf. Eq. (4.10))
E€=0 in 0D, €=R+¢kxx] on 0D, (7.11b)

Further, it can be shown that, for Egs. (7.6)-(7.9), (7.11), the virial equality (5.7)
takes the form ) 3 o
=87 -4E-¢G, (7.12)
where _
0&; &
Dso 8xk 8$k

G=v dzdy. (7.13)

Following Vladimirov and Rumyantsev (1990), we introduce the functional
X=L+G. (7.14)

Then Eq. (7.12) is rewritten as _ B 5
X =87 — 4E. (7.15)

Multiplying Eq. (7.15) by a constant factor (—s/2) and adding the result to Eq. (7.10),
we obtain

E, = 2sE, — 4sT, — D,, (7.16)
where
~ 1 1,
E, =T, +1I,, II; =H+§sG+ 38 L, (7.17)
~ 1 hd ]. 2 1 M 2 1 4 2 ]. 2
To=T—=-sL+-s’L=-MR—-sR)*+ =I(¢—s¢)°+ = (& — s§)“dzdy,(7.18)
2 2 2 2 2 Jps,
. Ou; 0&; Ou; 9&;
_ _ 2 — (I i i

Dy=D—sG+s’G=v /D . ( oo~ ° 6$k) ( o Ba:k) dzdy. (7.19)
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Let s > 0. Then, since T, and D; are always non-negative, it follows from (7.16) that
E; < 2sKE;.
Integrating this inequality over time, we obtain
E,(t) < E4(0)e*. (7.20)

Note that (7.20) holds for any solution of the linearized problem (7.6)-(7.9) and for any
positive s.

As in section 5, we assume that F can take negative values, i.e. there exists a set Z
such that

IM<0 for {£x),R,d}€ 2,
II>0 for {§x),R,¢}¢Z. (7.21)

We shall show that under this condition there exist solutions of the linearized problem
(7.6)-(7.9) that grow with time, and we shall obtain a lower bound for these solutions.
If the set Z is not empty, we can take the initial values for &(x,t), R(t), ¢(¢) such that

{€(x,0),R(0),¢(0)} € Z,

and therefore, 5
11(0) < 0. (7.22)

Let us show that under condition (7.22) it is always possible to choose E,(0) < 0 (if it
is so then exponential growth of perturbations follows directly from inequality (7.20)).
According to Egs.(7.17)-(7.19) we have

1

= 5(6(0) - L(0)).

E,(0) = s2M(0) + sA(0) + E(0), A(0)
We choose the initial data u(x,0) for the velocity field such that T(0) < |TI(0)|, and hence
E(0) < 0. Then E,(0) is a quadratic polynomial of s with a positive coefficient L(0) at s
and with a negative constant term FE(0). Therefore the conditions s > 0 and E;(0) < 0
determine the interval of admissible values of s:

0<s< Sy, (7.23a)
where B ]
_ A0 A(0)\2  E(0)]*

s=-a0*|G®) ~z0) (7.230)

Obviously, S; > 0 for any initial data which are consistent with condition E(0) < 0.
We now show that E;(0) < 0 implies exponential growth with time of the solutions of
the problem (7.6)-(7.9). From the fact that 75 > 0 and the definition of I, it follows that

Eq(t) = Tu(t) + I, () > TI(¢).
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This and the inequality (7.20) yield
I1(t) < E,(0) exp(2st). (7.24)

For any s from the interval defined by (7.23) this inequality means that the potential
energy H( ) is exponentially decreasing with time from its negative initial value H(O) S0
that, in absolute value, II is growing. Evidently, the condition (7.22) can be satisfied only
if either I or @ (which enter the expression (4.12) for II), or both of them can take negative
values.

In the first case, there exist a subdomain D; of Dgg (D1 C Dyo) such that

V(V2A
(V—AZ<0 for XEDl,
72
%ZO for x €Dy \ D1 (7.25)

We introduce the function F'(x) such that

V(V2A)/VA, x€D,
F= { h €D\ Dy, (7.26)
(Note that F(x) can be identically equal to zero if the set D; is empty.)
Since F'{x) < 0, we have
1
[>=—1 / |F(x)| € VA)2dzdy. (7.27)
2 /Do

It is well-known that any real quadratic form can be transformed to its principal axes
by a certain orthogonal matrix N, i.e.

1 1~ . .
Q= EQaﬁQa‘L@ = EQaﬁQaQﬂa q= Nq,

where
i A 00
Q=NTQN=[ 0 X 0},
0 0 A3

and A1, Az, and Az are eigenvalues of the matrix with elements Qqg. If @ can take negative
values, then at least one of the eigenvalues is negative. Let

l
— 1 § : ~2
Q_ = —E i I)‘C’l|qa (728)

Here | is the number of negative eigenvalues, and we assumed that the eigenvalues are
indexed starting from negative ones.
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Evidently,
Q>0-. (7.29)

It follows from (4.12a), (7.27)—(7.29) that

4
1 1 N

>3 [ 1PG|€ VA oty — 5 3 Dal. (7.30)
2 Jpse 27

Combining inequalities (7.24) and (7.30), we find that
J(t) > |Es(0)] exp(2st) (7.31)
with

l

1 1

723 [ IPEIE VA dedy + 5 3 ol (7.32)
fo 1

o=

Inequality (7.32) holds for any s from the interval (7.23) and gives us the lower bound for
the solutions of the linearized problem. Inequality (7.32) means that a positive definite
quadratic (in perturbations) functional J grows exponentially with time, and this fact, in
turn, implies linear instability of the equilibrium (2.7). This proves the converse Lagrange
theorem for this dynamical system.

It also follows from Eq. (7.32) that the lower bound for growth rate of the solutions
of the problem (7.6)-(7.9) is given by the constant S; — § where ¢ is any number from
the interval (7.23); in particular, § may be an arbitrarily small number. Note that S;
is completely determined by the initial data for perturbations. The upper limit for the
growth rate corresponds to the maximum value of the parameter S for all possible initial
fields &(x,0), R(0) and #(0). Following exactly the same procedure as that in Vladimirov
& Rumyantsev (1990) and Vladimirov & Ilin (1998), it can be shown that the maximum
growth rate S* (that corresponds to the most unstable perturbation) is given by the formula

S*= sup S, (7.33a)
€R¢lez

where )
3

(7.33b)

__G() G(0) \* _ 2M(0)
2= "oy [(zM(m) " M)

The problem of maximizing S3 is a quite complicated one. However, it can be solved
numerically for any given particular system.

8. Effect of finite conductivity

In this section we consider a more realistic situation when the fluid has finite conduc-
tivity (but the body is still perfectly conducting). In this case, the governing equation are
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the same as Eqs. (7.1)—(7.4) except for the equation for the flux function a which now has
the form 1
at+ (u-V)a= ;Vza (8.1)

where o is the electric conductivity of the fluid.

Boundary conditions for velocity and magnetic field (7.5) are still valid. In addition to
these conditions, for the fluid with finite conductivity we must prescribe two more boundary
conditions on perfectly conducting rigid surfaces 0Dy and 0Dp. These additional conditions
are given by

nx (E+Vxh)=0 on 0Dy, (8.2a)
nxE=0 on 0D, (8.2a)

where E is the electric field and V is the velocity of the body surface (note that, in view
of (7.5), V = u). This conditions follow from the condition that (in the reference frame
relative to which the surface is fixed) the tangential component of the electric field is zero.
Combining (8.2) with Ohm’s law for the fluid

j= % (E4+uxh),
we find that n X j = 0 on 9Dy and 9D or, in terms of flux function a,
V2 =0 on 0D, and OD. (8.3)
In the case of finite conductivity, the equilibrium flux function A(x) satisfies the equation
VZA=0 in Dy (8.4)

rather than Eq. (2.8), so that only irrotational equilibrium magnetic fields are possible. In
particular, the equilibria with irrotational magnetic field that were considered in Section
6 are possible for the fluid of finite conductivity.

The linearized equations are given by (cf. Egs. (7.6)—(7.8))

1
u=-Vp — (Vza,')VA + vV, a,=—u'-VA+ ;Vza', V-u'=0, (85a)
. H?
ME! :/ (o' + VA Vo' + (V) mad
Dyo 2

H? / 0211 6211
— — ¢o;dl — v n-Vu,dl — ———=—R}, — ———¢', (8.5b
/;,Dw 2 ¢ aDw( ) OR,0Ry, * BRi8¢¢ (8.50)

. , AN :
Ip=| (F+VA-Vd'+(r V)= )0 (ke x x)di
ODyo 2

0211 o211
= (- V)u'dl — = ' :
V/ano(kXX) (n-V)u'd 550 kRk 8¢2¢ (8.5¢)

22



Here, as before, primes refer to infinitesimal perturbations of the corresponding quantities,
r' = R'+¢'(kxx). Boundary conditions for u’ and a’ are the conditions (7.9) supplemented

by the conditions
V%' =0 on 0D, and 8D. (8.6)

JFrom here on, primes will be omitted. ~
It can be shown by direct calculation that the ‘energy’ E given by Eq. (4.11a) satisfies
the equation

E':—D, D=v

i Ou; 1
Oui Oui 44y 4 1 / (V%a)? dedy. (8.7)
Do awk a.fb'k 22 Dyo

This equation is the same as Eq. (7.10) except that now D contains an additional term
due to resistive dissipation of energy.

Now we introduce the field of Lagrangian displacements of fluid particles defined by
Eqgs. (7.11). In the case of finite conductivity, the relation a = —€- VA is no longer valid.
Formal integration of the equation for a yields

a(x,7) = ~£(x,1) - VA(x) + Sg(x,1) (8.8)
where .
g(x,t) = / Via(x, t)dt' + go(x). (8.9)
0
Note that, according to (8.8) and.(8.9),
go(x) = a(x, 0) +&(x,0) - VA(x).

It can be shown that, for Egs. (7.6)-(7.9), (7.11), the virial equality (7.12) has the same
form

L =8T—-4E -G, (8.10)
except that now G is given by
G=v 06 & jpay+ L / g2dzdy. (8.11)
Djo 0Tk 0T o Jps0

Using Egs. (8.7)—(8.10), one can repeat the arguments of Section 7 to obtain the inequality
(7.31), this proves that the equilibrium (2.7) is linearly unstable provided the ‘potential
energy’ (4.12) can take negative values.

Thus, we have shown that necessary and sufficient conditions for linear stability ob-
tained in Section 6 for a body in an irrotational magnetic field are also valid in the case of
a viscous fluid with finite conductivity.
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9. CONCLUSION

In this paper we have established the variational principle for equilibria of a rigid
perfectly conducting body in an inviscid, perfectly conducting fluid with magnetic field. We
have calculated the corresponding second variation of the energy of the system and showed
that an equilibrium is stable if the second variation is positive definite and unstable if the
second variation is indefinite in sign, so that the positive definiteness of the second variation
gives us the necessary and sufficient condition for linear stability. As an application of the
general theory, we have considered two simple particular examples. We have shown (i)
that a circular cylinder in a magnetostatic equilibrium with circular lines of magnetic field
is always stable and (ii) that the equilibrium of an arbitrary cylinder in an irrotational
magnetic field (which is homogeneous at infinity) is stable if the principle axis of its virtual-
mass tensor which corresponds to a minimum virtual mass is parallel to the magnetic field
at infinity and unstable if it is perpendicular to the magnetic field at infinity.

Then, we have extended the theory to the case of viscous (but still perfectly conduc-
ting) fluid and showed that that the stability results obtained for ideal fluid remain valid
for this case. Finally, we have proved that for equilibria of the system that are compatible
with the governing equation for a fluid with finite conductivity, the stability criteria obtai-
ned for a perfectly conducting fluid are also valid for a fluid with finite conductivity. For
example, this is true for equilibria of a cylinder in irrotational magnetic field.
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APPENDIX. DERIVATION OF FORMULA. (4.4)

Here we shall calculate §Ey. First, we show that for any function F'(x, €) the following
equation holds

dZ
2 [ &, e)dadg = /

F. dzdg + /
de? |5 " By

- (2. + 5. - VF) (Fc - m)di+

- [, @Rt [ P(Retdulkx G- R)) -ndi (A1)

where
f.=R.+ ¢c[k x (X —R)]. (A2)

It is well known that the rate of change of a material volume integral is given by the
formula (see e.g. Batchelor 1967)

d

de Dy (e)

- (Fe+ V- (FE) )didg (43)

F(%,¢) didj = /
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where F(X,¢) is an arbitrary sufficiently smooth function and F, = 0F/0¢. Using this
formula one more time, we obtain

d2

de? Dy (e)

[ (s (Rt ) 9 () Jases (4

F(%, €) disdij = /

To proceed further, we need boundary conditions for the function f.(x, €). Differentiation
with respect to € of the boundary conditions (3.4) yields

f..n=0 on 9D, (Ab5a)
f..-n=%f,-n+ q~5€(f'€ — f) . (k X n) —n- (f‘e . 6)f on 3’151,(6). (A5b)

Here we have used the obvious formula n, = ¢.(k x n); ¥, is given by Eq. (A2), and

fee = Rec + dec k X (X — R)+dc k x (% — Re)
= Ree +deck x (X — R)+42k x [k x (% — R)]. (A6)

Applying now the divergence theorem to the integral on the right side of (A4) and taking
account of the boundary conditions (3.4) and (A5), we obtain

2
—d—E /: F(x,e)dzdy = [ F..dzdy + / ) (ZFE +f. VF) (f'E . n)dl
de Dy (e) Dy (e) 8Dy (€)

+ /  P{fentde(f—1) - (kxn) = n- (- V)EpdL (47)
8Dy (e) - .
Consider now the following integral (which appears in Eq. (A7))
I = / ) {(f .VF)(fe-n) — Fn- (% 6)f}dl.
8Dy (e)

Note first that 3 N B
Frfic0i fo = nific0i (F f) — nifuficOiF.

Therefore, the integrand in Z; can be written in the form
(£-VF)(f-n)— Fn- (f.- V)f = (fc - VF)(fe-n) - B
where

B = fienyd; (Ffe) — NiFre [i0: F
= 4 0; [ (Fic fo — Trefi) F] — FicfuOific + Friy fiOife.

It follows from Eq. (A2) that
BiFie =0,  Oifre = Peeintea -
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Therefore,
B=n- curl(F(f x f’e)) + GFf - (n x k).

The first term in this expression integrated over [, 0Dy (e) yields zero, and Z; simplifies to

T, = /6 ﬁb(e){(fe . VF)(f. n) - Féef - (n x k) }dl. (48)

Finally, after substitution of (A8) in (A7) and some manipulations using Eq. (A6), we
arrive at formula (Al).
Now we use formula (Al) to obtain

d2
de?

E'f :/ {ﬁ,f -+ (V&e)z + VA-. Vﬁ,ee}dxdy—*‘
e=0 Dyo

+ /aD {2VA Ve + (Fe - V)(VA)2/2}(1"~E -n)dl+

1

5 | TAP{-(e0)d+ (et duclicx x)) -l (49

iFrom Eq. (3.7), we have

aEG

=—f-VA+f - V(f-VA).

€=

Substituting this into the volume integral in (A9) and integrating by parts, we obtain

I= VA Vi dzdy = I, + I, (A10a)
/.o Y =
where
I = / (f- VA)(f - V)V2Adzdy
Dyso
+ / {(n VA)E-V)(f - VA) — (Fe - n)(f - VA)VzA}dl (A10b)
9Dyo
and
Ty = — / (P+(v4)?) (& -n)a. (A10¢)
9Dyo

Substituting (A5b) into (A10c) and using (2.10), we find that
I, :—/ (VA)z{(ﬁee+q~5€€kxx) -n—ngx-n} dl
8Dyo
- / (P + (VA)z) (&e(f o—R.-0)—n-(F- V)f)dl. (A11)
9Dyo
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It follows from (A8) that the equality
/ {(f VF)(fc-n) — Fn - (f- V)f}dl - / {(fe - VF)(f -n) — F(f -a)&e}dl
9Dyo 9Dyo
holds for any function F'(x). Using this, we find that
T, =— / (VA)2(ﬁE€ + feck X x) -ndl
3Dyo
+ / (VAh(Be-0) + (e m) (E-£) - V)(VAP )AL (A1)
Do

Here we have used (2.10). jFrom (A9), (A10a,b), and (A12), we obtain

d2
| Br= / (ﬁf+(V&€)2+(f-VA)(f—V)VzA)dxdy
e=0 Dso
1 H?. . i i ,
+_/ B o)di+ [ (.-n){(f—£) V}H2d
2 Jop,, 2 8Dyo
2. -
—/ = (Ree-l-qﬁeekxx) -ndl + . (A13)
8Dpo 2

where H = VA x k is the magnetic field in the equilibrium (2.7) and
T =/ [(H-1) @ V)(F VA) + (.- 0)(VA* Vac)
9Dro '
H2
~ (Fe-m)(£- VAV2A+ (Fe - n)(Fe - V) -}, (A14)

Since on 9Dy

VA -Va.=H-Vx(fxH)=H-(H-V)f-H-(f-V)H
=(H-0)@-V)H-f)— (f-V)H? + (f- VA)V?4,

we obtain

13=—/a%(re-n)(re-V)7dz+/mo(re-n){(re—f)-V}H dl.

Finally, substituting this into (A13), we arrive at the formula

52E; =% /D {(6w)? + (V8a)? + (5x - VA)(dx - V) V*A }dady
1 H? H?
~35 /;Dba {(6r -n)(dr - V)—z— - 75¢((5R -a)} di. (A15)
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