UPPER BOUNDS FOR COMPLEXITY
OF SOME 3-DIMENSIONAL MANIFOLDS

S. ANISOV

ABSTRACT. We construct pseudominimal spines of T2-fibered over S spaces M (A)
with monodromy A € SL(2,Z) that have c¢(.A) + 5 vertices, which seems to be the
smallest possible number; this is equivalent to triangulating M(A) into c(A) + 5
tetrahedra. The function ¢(A) is an integer-valued lift to SL(2,Z) of the (unique)
epimorphism of the modular group to Zj. Algebraic properties of the complexity
¢(A) are discussed and an algorithm for its calculating is presented. As a byproduct,
we construct pseudominimal special spines of lens spaces, which have small number
of vertices.

§1. INTRODUCTION

The notion of complezity of three-dimensional manifolds was introduced by
S. Matveev in 1990, see [7]. This complexity is a natural “filtration” on the set
of compact 3-manifolds. It is additive with respect to taking the connected sum
of manifolds, and for any k € Z there are only finitely many compact prime 3-
manifolds of complexity at most k; they can be enumerated by a simple algorithm
(however, most of them appear many times in the list obtained, for example, in the
list in [9, §5.2]). Note that for any compact prime 3-manifold M different from S3,
RP3, L3 1, and S? x S* (the last one contains a nontrivial but non-splitting sphere),
the complexity ¢(M) is nothing but the minimal possible number of tetrahedra in a
singular triangulation of M. On the other hand, these four manifolds are the only
closed prime manifolds of complexity 0.

The problem of evaluating the complexity of 3-manifolds is unresolved and
appears to be very difficult. The only manifolds of known complexity are those
with complexity less than or equal to 7. Their lists in [9] and [11] are obtained by
enumeration of all special spines of closed orientable 3-manifolds of small complexity
(by the algorithm mentioned above), followed by determining which of the spines
obtained are equivalent (that is, are spines of the same manifold). This “equivalence
problem” is difficult.

Obviously, any almost simple spine (or singular triangulation) of a manifold M
provides an upper bound for ¢(M). There is an algorithm for simplification of a
given spine, see [8]; for all manifolds from [9] and [11], this algorithm is efficient,
that is, stops at a minimal spine of a manifold. There is no proof of efficiency of
this algorithm in the general case, although one can, of course, use it to find quite
reasonable upper bounds for ¢(M).

This research was supported by FCT-Portugal through the Research Units Pluriannual Funding
Program, and by EPSRC, Grant GR K99015, via Isaac Newton Institute, Cambridge.
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Much less is known about lower bounds. Clearly, ¢(M) > 7 whenever M is not
homeomorphic to any manifold from tables in [9, 11]. Also, one can easily show that
c(M) > b1(M, G)—1 for any commutative group G; here b; is the first Betti number.
However, in most cases these estimates are very inadequate. Up to now, the only
known way to prove that ¢(M) = k for some k > 0, where M is a closed prime
three-manifold, is to construct a special spine of M with k vertices (or a singular
triangulation of M with k tetrahedra) and verify that M is not homeomorphic to
any manifold of lower complexity.

Here we study 3-manifolds that can be fibered over the circle with torus fiber,
and lens spaces. We present “reasonable” special spines of these manifolds, thence
giving upper bounds for their complexity. The conjecture that arised about the
complexity of the total spaces of torus fiberings is very similar to S. Matveev’s
conjecture about the complexity of the lens spaces. Further discussion of these
conjectures will appear soon.

The paper is organized as follows: in §2, we give necessary definitions, following
mainly [9]. In §3 we deal with a purely algebraic statement arised from a conjecture
about complexity of the lens spaces. To construct “good” spines of the T?-fibered
spaces in §6, we need some preliminary results on #-curves in the torus discussed
in §4 and some auxiliary algebraic results presented in §5. As a byproduct, the
techniques developed in §§4-6 allows us to construct in §7 pseudominimal spines of
lens spaces in a clearer way than it was done in [8, 9].

Acknowledgements. The idea to relate §-curves and their flips (studied in [2])
to spines of fibered spaces and their complexity is due to V. Turaev. R. Fernandes
suggested a simplification of the original proof of Theorem 3. The author would also
like to thank Yu. Baryshnikov, Yu. Burman, V. Nikulin, M. Polyak, V. Vassiliev,
and especially S. Matveev for many useful discussions. This paper was started
at Instituto Superior Técnico (Lisbon, Portugal) and finished at Isaac Newton
Institute (Cambridge, U.K.). The author thanks both Institutes for their kind
hospitality, and the former Institute for the support of S. Matveev’s visit, which
was very important for this work.

§2. DEFINITIONS

In this section we follow the papers [7, 9]. By K denote the 1-dimensional
skeleton of the tetrahedron, which is nothing but the clique (that is, the total
graph) with 4 vertices. Note that K is homeomorphic to a circle with three radii.

Definition 1. A compact 2-dimensional polyhedron is called almost simple if the
link of each of its points can be embedded in K. An almost simple polyhedron
P is said to be simple if the link of each point of P is homeomorphic to either
a circle or a circle with a diameter or the whole graph K. A point of an almost
simple polyhedron is non-singular if its link is homeomorphic to a circle, it is said
to be a triple point if its link is homeomorphic to a circle with a diameter, and it
is called a wvertex if its link is homeomorphic to K. The set of singular points of a
simple polyhedron P (i.e., the union of the vertices and the triple lines) is called
its singular graph and is denoted by SP.

It is easy to see that any compact subpolyhedron of an almost simple polyhedron
is almost simple as well. Neighborhoods of non-singular and triple points of a simple
polyhedron are shown in Fig. 1a,b; Fig. 1c—f represent four equivalent ways of
looking at vertices.
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FIGURE 1. Nonsingular (a) and triple (b) points; ways of looking at
vertices (c—f)

Definition 2. A simple polyhedron P with at least one vertex is said to be special if
it contains no closed triple lines (wihtout vertices) and every connected component
of P\ SP is a 2-dimensional cell.

Definition 3. A polyhedron P C Int M is called a spine of a compact 3-dimen-
sional manifold M if M \ P is homeomorphic to dM x (0,1] if &M s 0 or to an
open 3-cell if 9M = 0. In the other words, P is a spine of M if a manifold M with
boundary (or punctured at one point closed manifold M) can be collapsed onto P.
A spine P of a 3-manifold M is said to be almost simple, simple, or special if it is
an almost simple, simple, or special polyhedron, respectively.

Definition 4. The complezity ¢(M) of a complact 3-manifold M is the minimal
possible number of vertices of an almost simple spine of M. An almost simple spine
with the minimal possible number of vertices is said to be a minimal spine.

Theorem 1 [3]. Any compact 3-manifold has a special spine.

Theorem 2 {7]. Let M be a compact orientable prime 3-manifold with incompress-
ible (or empty) boundary and without essential annuli. If c(M) > 0 (that is, if M is
different from (possibly punctured) S3, RP3, L3 1, and S? x S*), then any minimal
almost simple spine of M is special.

Recall that a 3-manifold M is called prime if it cannot be represented as a
connected sum M = M;#M, with M;, M, both different from S3.

Remark 1. In this paper, we consider lens spaces L; 4, ¢ > 3, and the total spaces
of torus bundles over the circle. All these manifolds satisfy the assumptions of
Theorem 2.

Remark 2. Starting from a special spine P of a manifold M, one can triangulate M

into n tetrahedra, where n is the number of vertices of P. This singular triangula-

tion has the only vertex somewhere inside M \ P, its edges are dual to the 2-cells

of P, and triangles are dual to the edges of P. On the other hand, given a singular
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triangulation of M containing n tetrahedra, one can easily obtain a special spine of
the manifold M punctured at all vertices of the triangulation. It was shown in [7]
that puncturing does not affect the complexity. Thus for a manifold M satisfying
assumptions of Theorem 2 (in particular, for any prime manifold without bound-
ary), its complexity c¢(M) is equal to the minimal possible number of tetrahedra in
a singular triangulation of M, provided that ¢(M) > 0.

Remark 3. Let a special spine P of a manifold M without boundary have n vertices.
Since each vertex of the graph SP has degree 4, P contains 2n edges. Since the
Euler characteristic of any 3-manifold equals zero and M \ P is a 3-cell, we have
the equality n — 2n + f — 1 = 0, which implies f = n + 1, where f stands for
the number of 2-dimensional “faces” of P. It follows from the construction of
Remark 2 that the groups w1 (M) and H; (M) have at most f generators. Therefore,
f=1=c(M)2>b(M)-1.

§3. EXAMPLE: LENS SPACES

Definition 5. Let p, g be coprime positive integers. The Euclid complexity E(p, q)
is the number of subtractions (not divisions!) that the Euclid algorithm takes to
convert the pair (p, ¢) into the pair (0,1). It is easy to see that E(p, ¢) equals the
sum of the denominators of the continued fraction representing any of the rational
numbers p/q and ¢/p.

A good exposition of the Euclid algorithm and continued fraction theory can be
found in [5, 17].

Conjecture 1 [7, 9]. The complexity of the lens space Ly 4 is equal to ¢(Lpq) =
E(p,q) — 3.

Pseudominimal special spines of the spaces L, , with E(p, g) — 3 vertices were
constructed in (8, 9]. Pseudominimality of a spine means that no simplification move
can be applied to it; for exact definitions, see [9]. In §7 we present another construc-
tion of these spines. Note that the manifolds L, , and L, ,_4 are homeomorphic,
and so are the manifolds L, ;, and L,, ., where 0 < ¢,r < p and ¢r =1 mod p. So
Conjecture 1 implies that E(p,q) = E(p,p — ¢q) and E(p,q) = E(p,r) for p,q,r as
above; if these corollaries did not hold, Conjecture 1 would fail automatically. How-
ever, they are true. Indeed, E(p, q) = E(q,p—¢)+1and E(p,p—q) = E(p—q,q)+1,
which implies E(p, ¢) = E(p,p — q)- The second corollary is a true statement, too,
but this is far less obvious.

Theorem 3. Let 0 < ¢, < p and gr = +1 mod p. Then E(p,q) = E(p,r).

Proof. We can suppose that p > 3. Let us introduce two row transformation

matrices
1 1 1 0
me(ll) i me(19)
Obviously, we have

+1{a b\ (aftc b*d 11f{a b\ [ a b
Ry (c d)_( c d and R c d) \Nazxec bxd/’
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Consider the expansion of p/q in a continued fraction

g =n; + !
! ng + ————
R |
+__
Nk
Set U = Ry'R;-™*!. . _R{™R;™R;™, where ¢ = 1 for k odd and ¢ = 2 for k
even; note that n; > 1 and ny > 2. It is easy to see that U takes vector (p,q)T to
(1,0)T (where T stands for transposing): R;™ takes (p,q)T to (p — n19,4)T and
so forth, according to the Euclid algorithm, the only exception being that at the
last step we apply R;* to (1,1)T, not Ry, in order to convert (1,1)T to (1,0)7,
not to (0,1)7T.
First suppose that gr = —1 mod p, thus gr = sp — 1 for some positive integer s.
Since 1 < g<pand1l<r < p, we have s < g and s < r. Let us consider the

inverse matrix
U= RY'RY*RT® ... RQ"‘IRg. (1)

U—l: p r
q s/

Indeed, equation (1) implies that U~! has the following properties:
1) the first column of U~! is (p, q)T;
2) the determinant of U~ equals 1;
3) the second column entries of U~ are positive, and
4) they do not exceed the corresponding first column entries.

We proclaim that

Property 1 follows from the construction of the sequence involved in (1), and
property 2 is obvious. It is clear that both second column entries of U~! are
nonnegative; they are both positive, because the right hand side of (1) contains both
R, and R;. The last property holds for Ry and survives under left multiplications
by R; and Rz. The first two properties imply that the second column of U~! is
(r + mp,s + mq)™T for some s € Z, and the last two properties show that in fact
m=0.

Note that F(p,q) = ni + n2 + ...+ ni equals the sum of the exponents in (1).

Since RT = R, and R} = Ry, for the transposed inverse matrix (U~!)T we have
(2 )= =rmp R RPRR (2

where ng > 2 and ny > 1. This yields the sequence of n1 +ng + ...+ nx = E(p, q)
subtractions that converts the pair (p,r) into the pair (1,0). Such a sequence is
unique up to a possible application of several subtractions R; to the column (1,0)7
(clearly, R; does not change it); it is nothing but the Euclid algorithm provided
that there are no those “fake” subtractions. This condition is satisfied, because the
last subtraction (the inversed rightmost one in (2), or the leftmost one in a similar
expression for UT) is Ry, not R;. Therefore E(p,q) = E(p,r) for ¢gr = —1 mod p.

In the case gr = 1 mod p, note that g(p —r) = -1 modpand 0 < p— 7 < p.
Consequently, E(p,q) = E(p,p—1) = E(p,r). O

Theorem 3 means that Conjecture 1 passes a nontrivial “sanity test”.
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§4. B-CURVES
Let us recall some definitions and results from [2]'.

Definition 6. A #-curve L C T? is a graph with two vertices and three edges (not
loops) connecting these vertices, embedded in 72 in such a way that the edges are
pairwise non-homotopic; this is equivalent to the condition that the complement
T?\ L is a 2-dimensional cell.

FiGURE 2. A f-curve

Up to an isotopy, any two f-curves can be taken to one another by a linear
automorphism of the torus, see [2]. Another way to change the isotopy class of a
f-curve is to apply a sequence of flips.

Definition 7. A flip along an edge of a trivalent graph (in particular, of a §-curve)
is an invertible restructuring of the graph that acts on a neighborhood of this edge
as shown on Fig. 3. A flip does not change the graph outside of this neighborhood.

DX

Ficure 3. A flip

For any two 6-curves L, Ly, there exists a sequence of flips (and isotopies) that
takes Ly to Lo, see [1, 2]. Now let us recall how one can find the minimal number
of flips required for such a sequence.

For a @-curve L, there are three unoriented (or six oriented) cycles in 7 (T?)
formed by pairs of edges of L. These cycles also can be represented by the three
1-cells of the singular triangulation of T2 dual to the cell decomposition defined
by L. The six points in the lattice Z%? = 7,(T?) = H1(T2,Z) corresponding to
these cycles are the vertices of some convex centrally symmetric hexagon W (L).

Definition 8. The hexagon W(L) is said to be associated to a f-curve L. A
hexagon W with the vertices in Z? is called admissible if it is associated to some
f-curve. The standard hezagon is the hexagon Wy with the vertices £(1, 0), £(0, 1),
and £(1, —1), see Fig. 4. It is associated to the §-curve shown on Fig. 2 (under a
natural choice of a parallel and a meridian of T2 as a basis of H,(T?) = Z?).

1We do not follow the notation of [2] here.



Theorem 4 [2].
1) A hezagon W (with vertices at lattice points), centrally symmetric with respect
to the origin O, is admissible if and only if it has the following properties:

a) if X and Y are nonopposite vertices of W, then the area of the triangle
OXY equals 1/2;
b) if X, Y, and Z are three consecutive vertices of W, then 07 = 07 + 07

Properties a) and b) are equivalent. The origin is the only interior lattice point
of an admissible hexagon W. The vertices of W are the only lattice points on its
boundary.

2) Two @-curves L and L' are isotopic if and only if W(L) = W(L'). For any
two @-curves L and L' there exists an operator A € SL(2,Z) such that AL is isotopic
to L' and AW (L)) =W(L').

3) Let O-curves L and L' differ by the flip along an edge e. Then associated
hexagons W and W' have in common two pairs of opposite vertices that correspond
to cycles o and u dual to two other edges. The remaining pair of the vertices is
+(o + u) for one of the hezagons W, W' and (o — p) for the other one.

Since a #-curve has three edges, three different flips can be applied. Fig. 4 shows
how they change the standard hexagon W,. The result of a flip transformation
of an arbitrary admissible hexagon can be represented by the same picture with
another coordinate system, because any admissible hexagon is SL(2, Z)-equivalent

to Wo.
; W, % W

FIGURE 4. Action of three flips on the standard hexagon

According to the second part of Theorem 4, we can study sequences of flips that
convert an admissible hexagon W7 into another admissible hexagon W rather than
sequences of flips that take a f-curve L; into another 6-curve Ly. So it is natural
to introduce a graph I' that has the admissible hexagons as its vertices and flips as
its edges; the number of flips required to convert W, into W, equals the distance
between the corresponding vertices of I'. Clearly, I is a trivalent graph. It turns out
that T is a tree, see [2]. More information about I' can be found at [15, Ch. II, §1].

Definition 9. A leading vertex of an admissible hexagon W is its vertex that is
the most distant from the origin with respect to the quadratic form Q(z,y) =
z? + zy + y2.

The standard hexagon W is a unit regular hexagon with respect to Q(z,y). Any
other admissible hexagon has only one pair of opposite leading vertices.

Theorem 5 [2]. Let (p,q) be a leading vertez of an admissible hexagon W # W.
Suppose that p > 0 and ¢ > 0. Then d(W,Wy) = E(p, q), where d(W,Wy) stands
for the distance between W and Wy in T’ and E(p, q) is the Euclid complezity, see
Definition 5 above.
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In fact, the steps (flips) of the only way from (the vertex of I' corresponding
to) Wy to (the vertex corresponding to) W in I' are in a natural one-to-one cor-
respondence with the steps (subtractions) of the Euclid algorithm applied to the
pair (p,q). There is an algorithm that constructs the path from W to Wy: start
at W and apply the flip that decreases the length of a hexagon; such a flip is unique
unless the hexagon is Wy. The numbers p, g are coprime by virtue of the first part
of Theorem 4, and for any pair of coprime numbers (p, ¢), there exists exactly one
admissible hexagon with a leading vertex at (p, ¢), cf. [2]. For the detailed proof of
Theorem 5, see [2].

If the coordinates (p, q) of a leading vertex of W are both negative, one should
consider the opposite vertex, or rotate the coordinate system by w. If pg <
0, one should rotate the coordinate system by +#/3 (we consider “triangular”
coordinates shown on Fig. 4 rather than rectangular coordinates), that is, to apply

the coordinate change <O or its inverse, to make both coordinates of one

1 1
of the leading vertices positive. Then Theorem 5 may be applied. This gives
the following simple answer: d(W,Wp) = E(|p|, |¢|) — 1 whenever pg < 0, where
(p, q) is a leading vertex of W. The —1 summand can be explained as follows: if, for
example, p < 0 and g > 0, the process of converting W into Wy by flips corresponds
to the converting of the unordered pair (—p, q) to the pair (1,1), not to (0,1), by
subtractions according to the Euclid algorithm (since we can consider (—1,1) as a
leading vertex of Wy); of course, this takes one subtraction less.

Definition 10. For a matrix A € SL(2,Z) we define its complezity ¢(A) by putting
c(A) = d(Wy, AW)).

To calculate the number ¢(A4), find a leading vertex (p, q) of the hexagon AW,.
Then we get c¢(4) = E(|pl,|q|) if pg > 0 or ¢(4) = E(|pl,|q]) —1if pg < 0. In
particular, if AWy = W, (there are six matrices A with this property), we get
c(A) =0.

§5. ON SL(2,Z), ¢(A), AND c(.A)

Since all admissible hexagons are SL(2, Z)-equivalent and the action of this group
preserves the existence of a flip connecting two given hexagons (thus, there is
an action of SL(2,Z) on the graph I'), we have d(W;,W,) = d(BW,, BW;) for
B € SL(2,Z). In particular,

C(A—l) = d(WQ, A_1W0) = d(AW(), AA_IW(]) = d(WO, AW()) = C(A) (3)

and c(A) = d(Wy, AWy) = d(BWy, BAWy), which may be different from d(BWj,
ABW,;) = d(W, AW). Thus we have c¢(A) = d(W, BAB~'W) for any admissible
hexagon W = BWj.

It is not true that ¢(A) = d(W, AW) for any admissible hexagon W. This means
that the number ¢(A) is not a conjugacy class invariant, contrary to a statement
contained implicitly in [2].

171 100 10 —17
—989 —169) and B = (_17 29>. Note that A, B €
SL(2,Z). By a straightforward calculation, we obtain c¢(A) = 13, while for a

1 1) we have ¢(A4") = 1.

Example. Let A =

conjugate matrix A’ = B~1AB = (0 ]
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The following problem arises: find the minimal value of c(A) over the whole
conjugacy class of A in SL(2,7Z).

Definition 11. The complezity of an operator A € SL(2, Z) is the minimal possible
complexity of matrices that represent A in all possible bases of the lattice Z?:

. _ . -1
¢(A) = min o(d) =  min B AoB),

where Ag is any matrix representing A and ~ denotes conjugacy in SL(2,Z). In
other words, ¢(A) = mind(W, AW) over all admissible hexagons W. A matrix A
of an operator A in some basis is said to be a minimal matrix of A if ¢(A) = c¢(A),
that is, if c(A4) < ¢(A4’) for any matrix A’ conjugated to A. An admissible hexagon
W is called minimal for A if d(W, AW) = c(A).

In this section, we study the sequence {c(.A*)}. Properties of this sequence
depend on the trace of A. Recall (see [4, §0]) that the operator A is called
elliptic if |tr A] < 2. In this case trA = 0 or trA = £1, and the equation
A? — (tr A)A + (det A)] = 0 implies either A> = —I or A* + I = 0, because
det A = 1. Thus elliptic operators are periodic of period 3, 4 or 6, and so are the
sequences {c(A*)}; both eigenvalues of an elliptic operator are roots of unity. If
tr A = 42, we say that A is a parabolic operator. In this case (A + I)? = 0 and
A is SL(2,Z) conjugated to either ((1] 711) or (_(1) _nl), where n € Z. So A
is either a periodic operator (if n = 0) or, up to a sign, a power of the Jordan
block ((1) i), both eigenvalues of a parabolic operator equal +1. Finally, A is
hyperbolic if | tr A| > 2. In this case the eigenvalues of A are different real numbers,
and A is a hyperbolic rotation. Also see [13, §5].

Lemma 1. ¢(AB) < c(A) + ¢(B). Moreover, c(AB) = c¢(A) + ¢(B) mod 2.

Proof. By definition, c(A) = d(Wo, AWy), c(AB) = d(Wy, ABW,), and ¢(B) =
d(Wo, BWy) = d(AWy, ABWy). Since d is a metric on I', the triangle inequality
d(Wo, ABWy) < d(Wy, AWp) + d(AWy, ABW,) holds. Since the graph I' is a tree,
we have d(Wy, ABWy) = d(Wy, AW,) + d(AW,y, ABWy) — 2k, where k € Z>o, see
Fig. 5. U

ABW,

5 k\:}"

AWy
FiGURE 5. Additivity of parity for the distance on a tree

Theorem 6. Reduction of c(A) modulo 2 coincides with the unique epimorphism
of the modular group SL(2,Z)/{xI} to Zj.

Proof. Lemma 1 implies that this reduction is a homorphism of SL(2,Z) to Z..
It is an epimorphism since it takes (1 1) to 1. It is an epimorphism of the

0 1
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modular group G = SL(2,Z)/{£I}, because c(A) = ¢(—A): the hexagon AW, is

centrally symmetric, whence AW, = —AWj. Such an epimorphism ¢ is unique.
Indeed, it is defined by its values ¢(S) and ¢(T') on the elements S = <(1) _(1))
and T = (é }), which generate the modular group, see [14, Ch. VII, §1]. The

relation (ST)% =1 in G implies that ¢(S) = ¢(T) in Z,. Since ¢ is not identically
zero, we have ¢(S) = (T)=1. O

Let us explain how to find a minimal matrix of an operator A. Let A be its
matrix in some basis, Wy be the standard hexagon in this basis, W = AW,
and Wo,W1,..., W4y = W be the shortest path from Wy to W in I Then
W = AWy, AW, ..., AW a) = AW = A*W), is the shortest path from W to AW
in I'. Both W,(4)_1 and AW} are neighbors of a trivalent vertex W of I'. Compare
them.

Theorem 7. Any matriz A with ¢(A) <1 is minimal. A matriz A with c¢(4) > 1
ts minimal if and only if W ay_1 # AW

Proof. If ¢(A) = 0, the matrix A is minimal. Let ¢(4) = 1, whence ¢(A) < 1. It
follows from eq. (3) and Lemma 1 that ¢(B71AB) = c(A) + 2¢(B) = ¢(4) = 1
(mod 2). So ¢(.A) is odd, thus ¢(A) # 0 and A is minimal.

Suppose that W, 4)_; = AW;. The operator A takes Wy to AW, = W,(4)_1.
We have c(A) < d(W1, AW1) = d(W1, Wea)-1) = c(A) — 2 (unless c(4) < 1), i.e.,
the matrix A is not minimal. This proves the “only if” part of the Theorem.

Suppose that the matrix A is not minimal. This implies that the standard
hexagon W, is not minimal. Let V be a minimal hexagon for the operator .A. By
7o denote the path from V to AV in T of length c(.A). For any k € Z let vy, = A*y
be the path from A*V to A**!V in T (recall that T carries an action of SL(2,Z)).
Put v = |J 7. Note that any vertex of I' on <y represents a minimal hexagon, so

keT
Wy € T'\ v. We have to consider three cases.

Case 1: ¢(A) > 1. Then two vertices of v neighboring with A*V, k € Z, are
different because of the “only if” statement proven above. So <y is homeomorphic
to a line, because two neighbors of any interior vertex of any 7, are different, too
(since 7 is the shortest path from A*V to A**1V), and the graph T is a tree.

By WUy denote the shortest path from Wy to «y (that is, Uy is the first point of
7 belonging to any path from Wy to a point of v). Then W U and AW AU are the
shortest paths from W and AW to -y, where W = AWy and U = AU,. Obviously,
these paths end at different points of y: if Uy € 7, then U € yx41 and AU € g po.
Since I is a tree, the paths Wy Uy, W U, and AW AU are mutually disjoint. This
means that Wy Uy U W is the shortest path from Wy to W and W U AU AW is the
shortest path from W to AW, see Fig. 6. The leg WU = A(W,Up) of this path is
not empty. Consequently, the penultimate vertex of the path WyW coincides with
the first (different from W) vertex of the path W AW, which proves the statement
of the “if” part of the Theorem.

Case 2: ¢(A) = 1. Let V be a minimal hexagon for A. If A2V # V, then
AR+2V £ ARV for any k € Z, all the 7 are different, v is homeomorphic to a line,
and we can repeat the argument of Case 1. If A’V = V', we have A*V =V for k
even and A*V = AV for k odd. Without loss of generality, it can be assumed that
the path from Wy to V does not pass through AV. The transformation A takes this
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FIGURE 6. Paths WoW and W AW overlap

path to the path from W = AWy, to AV, which does not pass through V. So the
shortest path from Wy to W is Wy V AV W, and thus it contains the edge V AV.
Similarly, the path from W to AW also contains that edge. Therefore, these two
paths overlap, which proves the Theorem in the case ¢(A) = 1.

Case 3: ¢(A) = 0. There exists an admissible hexagon V such that AV =V, but
AW,y # Wy because A is not a minimal matrix. Consider paths WV and WV in T,
where W = AW,. Let U be the first (most distant from V) common point of this
paths. Recall that A acts on I'" and takes the path W,V to WV. Thus AU = U,
Wy # U, and A takes the path WoU to WU and the path WU to AW U. So the
paths WoW = WoUW and W AW = WU AW overlap over the leg WU. O

Now we can present an algorithm that finds the number ¢(.4) and a minimal
matrix A of an operator A. Start with any matrix A representing this operator.
Apply the criterion of Theorem 7. If either ¢(A) < 1 or W, (4)_1 # AW, the matrix
A is minimal. Otherwise, let V' be the last common vertex of the paths W W, and
W AW. Then V lies on v and is a minimal hexagon for .A. Choose a basis so that
V is the standard hexagon. The matrix of A in this basis is minimal, and c¢(.A) is
equal to complexity of this matrix.

Corollary. The subgraph v C I" constructed in the proof of Theorem 7 is a line if
and only if the operator A is not periodic. [

This condition holds if and only if either c¢(.A) > 2 or ¢(A) = 1 and A% # —1I.
The line v is the “mainstream” of the action of A on I'. Minimal hexagons for A
are exactly those corresponding to the vertices of the subgraph v C I'. If y is a line,
there are at most 3c¢(A) different minimal matrices for A, because any minimal
hexagon yields 6 different bases (OX; X5, OX3Xj3,...,0XsX;, where X1,..., X
are the vertices of a hexagon and O is the origin), bases that differ by a central
symmetry give the same matrix expression of .4, and hexagons V and AV lead to
the same set of matrices of A.

If ¢(A) = 1, then the minimal matrix for A is either one of Jordan blocks
(i(l) :I:})’ (ié ;1) or the +7/2 rotation matrix (i(l) $(1)> These six
matrices belong to six different conjugacy classes in SL(2,Z). In the case of a
Jordan block, there are three minimal matrices for A and an infinite number of
minimal hexagons (which lie on the line 7). For a rotation, there are three different
minimal matrices (namely, ( —-i _i ), ( —; _i ) , and ((1) _é) in the case of
counterclockwise rotation) and only two minimal hexagons, which have in common
the four lattice points where a positively definite integer quadratic form @ A(?) =
det(7, A7) (for the clockwise rotation, we set Q4(7") = —det(7’, A7")) attains

11



its minimal positive value 1.

If ¢(A) = 0 and A # I, the minimal hexagon is unique; its six vertices are
the six lattice points where a positively definite integer quadratic form Q 4(7") =
+ det(7”, A7) attains value 1. The minimal matrix for A is also unique. Finally,
for A = +1, any admissible hexagon is minimal, while the only minimal matrix is,

10
ofcou.rse,:l:(0 1

two preceding ones; most of them are straightforward.

). We omit the proofs of the statements of this paragraph and

Theorem 8. Let A be a non-periodic operator. Then:

1) for any integer k # 0, A® is a minimal matriz for A* if and only if A is a
minimal matriz for A;

2) c(A*) = |k|c(A) for any k € Z;

3) for any integer k # 0, we have c(A*) = |k|c(A) + b, where b = c(A) — c(A)

s a nonnegative even number.

Proof. 1t follows from the proof of Theorem 7 and Corollary that the path from
Wy to A*W, consists of three legs WoUy, Ug A*Uy, and AUy A¥Wy = AR (UoWo).
If the first leg (and, simultaneously, the last one) is empty (contains no edges),
matrices A and A* are both minimal. Otherwise, neither A nor A* is minimal.
This proves the first statement and shows that the mainstreams of A and 4%
coincide: y(A*) = (A). The second statement of the Theorem follows from the
first one whenever k£ # 0; the case k¥ = 0 is trivial. The third statement follows
from the description of the path from Wy to A*W, in I, see above. [

We conclude the section on SL(2,Z), ¢(A), and ¢(.A) with one more way of looking
at the mainstream v(A). Let A € SL(2,Z) be a hyperbolic rotation, so |tr A| > 2
and eigenvalues of A are different real numbers. Since admissible hexagons are
centrally symmetric, we may assume that the eigenvalues of A are positive. The
eigenvalues and the slopes of eigenvectors are quadratic irrationals, because the
discriminant of the characteristic equation A? — (tr .A)A+det A = 0 equals (tr.4)2—4
and is not equal to a square of an integer whenever |tr.4| > 2. Draw through the
origin two lines l1, [ parallel to eigenvectors. They divide the plane into four parts.
For each of these parts, consider the convex hull of the lattice points inside it. Since
A preserves [;, it preserves the convex hulls hq,..., h4, as well as their boundaries,
which are infinite sequences of segments. The group of the integers acts on dh; by
taking = € Oh; to Az € Oh; for k € Z. An admissible hexagon is minimal for
A (i.e., belongs to v(A)) if and only if its leading vertex (and hence all its other
vertices) lies on some 0h;. The path from a minimal hexagon W € « to its image
AW corresponds to the period of the continued fraction expansion of the slope «o
of I;, which is a quadratic irrational number. An SL(2,Z) coordinate change does
not affect this period: it takes « to got b, where (a b € SL(2,Z), changing
ca+d c d
the beginning of the continued fraction expansion of a quadratic irrational number
without affecting its periodic part. We leave the proofs of these statements to the
reader.

2 1
1 1
of complexity 2. The boundaries of the convex hulls s; are represented on Fig. 7
by dotted lines. The coordinates of their corners in this case are, up to signs, the
12
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FIGURE 7. The mainstream for a hyperbolic rotation

pairs of consecutive Fibonacci numbers. The standard hexagon Wy, drawn in a
bold line, is a minimal hexagon for .A. The hexagons A~'Wy and AW, also belong
to the mainstream y(.A). Since c(A) = 2, there are two orbits of the action of the
group Z on y(.A) defined by the rule k(W) = A*W for k € Z and W € y(A). All
three hexagons on Fig. 7 belong to one of the orbits. Hexagons of the other orbit
can be obtained from them by the 7 /2 rotation around the origin (the eigenvectors
of A, which direct I; and I3, are orthogonal, because AT = A). As k — —oo, the
hexagon A*W looks more and more like the line I;; as k — oo, it looks more and
more like l5. Directions of these lines are points of the projective line RP! = S,
which is the absolute in the Poincaré circle model of the Lobachevskii plane. We
encourage the reader to find the relation between A, (.A), and the geodesic line
that connects these two absolute points. Hint: see [10, §17].

§6. SPINES OF TORUS BUNDLES

From now on, M denotes the total space of an orientable T2-bundle over the
circle and A € SL(2, Z) is the monodromy operator (acting on the one-dimensional
homology group of the fiber containing the base point of M) of the bundle. By
M(.A) denote the manifold M corresponding to the monodromy operator A.

In this section, we construct a pseudominimal special spine of M (A) with ¢(.A)+5
vertices if ¢ > 0 or with 6 vertices if ¢ = 0.

Definition 12 [9]. A 2-dimensional component o of a special polyhedron has a
counterpass if its boundary da passes along some edge of SP in both directions; it
is called a component with short boundary if 0o passes through at most 3 vertices
and visits any of them only once. A special spine of a 3-dimensional manifold is
said to be pseudominimal if it contains neither components with counterpasses nor
components with short boundaries.

If a special spine P is not pseudominimal, it is not minimal, because one can
apply simplification moves (see [9]) to P and get an almost simple spine with a
smaller number of vertices. For example, Figure 8 shows the effect of a simplification
move applied to a special spine with a triangular component (the middle horizontal
triangle in the left part of Fig. 8); it is easy to see that the neighborhood of a 2-cell
with short boundary of length 3 in a special polyhedron P looks like the left hand

13



FIGURE 8. A simplification move (left) and the corresponding Pachner
move (right)

side of Fig. 8. This move does not change the spine outside of the fragment shown
on Fig. 8. Note that the spine obtained is special again: the move produces neither
closed triple lines nor non-cellular 2-dimensional components.

Remark. Consider the singular triangulation dual to a special spine with a trian-
gular component. Then the simplification move shown on Fig. 8 corresponds to the
three-dimensional (3, 2) Pachner move [12], which replaces three tetrahedra by two
tetrahedra. In the two-dimensional case, a flip (see Fig. 3) corresponds to the (2, 2)
Pachner move, which switches the diagonal in a quadrilateral formed by two neigh-
boring triangles. Recall that the move shown on Fig. 8 and its inverse are sufficient
to convert any two special spines of the same compact three-dimensional manifold
to one another, see [6]; this fact is crucial for the construction of the Turaev—Viro
invariants [16].

FIGURE 9. Two presentations of another simplification move

Figure 9 represents another simplification move, which is applicable to spines
containing a component with short boundary of length 2; clearly, the neighborhood
of this component looks like the left hand side of Fig. 9. This simplification move
yields a simple, but not necessarily special, spine of the same manifold (provided
that the move had been applied to a simple spine).

To construct a spine of M (A), consider a fiber T2 x {0} and choose a §-curve Lg
in it; by doing so, we also fix a §-curve L; in T2 x {1}; note that W(L,) = AW (Ly).
This choice is equivalent to the choice of some basis in the lattice H;(T?,Z); by A
denote the matrix of A in this basis. Construct a continuous family L; transforming
Ly into L; by isotopy and c(A) flips. Set Po = |J L:; we assume that each L,

tef0,1]
is embedded in 72 x {t}. Note that Py is a simple polyhedron, which is a spine of
some punctured torus bundle. Two-dimensional components of Py come from edges
14



FI1GURE 10. Vertices correspond to flips

of L; as t varies; similarly, one-dimensional components of P, come from vertices
of L;. The ¢(A) flips correspond to the vertices of Py, see Fig. 10.

To minimize the number of vertices, it is natural to choose a basis in Hy (T2, Z) so
that the operator A is minimal for 4. If the operator A is not minimal, Theorem 7
guarantees that the last flip of the first round along the base circle of the fibering
and the first flip of the second round are mutually inverse. This means that the
second simplification move (see Fig. 9) is applicable. Apply it until it is no longer
possible. This process is nothing but the construction of a minimal hexagon for
A by the algorithm described below the proof of Theorem 7. In the following, we
suppose that A is a minimal matrix.

Examples. 1. The only periodic operators A with ¢(.A) > 0 have the minimal
F1
1 0
structed above has one vertex. Consider the two-sheeted covering of the base S!
of the fibering. It induces the two-sheeted covering of the total space by the man-
ifold M(A2?) = M(-I). The preimage of Py under the covering is a polyhedron
in M(—I) with two vertices, which can be cancelled by the second simplification
move in two different ways. This is the only (up to a sign and conjugacy) operator
such that c(A*) < |k|c(A) for k € Z, |k| > 2, see Theorem 8; the other periodic
operators are of complexity 0.
2. If ¢(A) = 0, there are no flips at all. In this case P, contains no vertices and
consists of three orientable annuli and three edges if A = I, of three nonorientable
annuli and one edge if A = —1I, of one nonorientable annulus and one edge if A

matrices ( ) "'This is a very interesting case. The polyhedron P, con-

1 1
(note that RS =1 ), and of one orientable annulus and two edges if A equals R? /3

or R;Ir/s- This exhausts the case ¢(4) = 0.

The polyhedron Py is not a spine of M(A), because the fibered space M(A)
admits a section that does not intersect Py. This section represents a nontrivial
element of the group m1(M(A)), while the complement to a spine of a closed
manifold is a cell and hence cannot contain nontrivial loops. Let us put P, =

Po U (T2 X {O})
Lemma 2. P; is a spine of M(A).

Proof. It is sufficient to show that M(A) \ P; is a 3-dimensional cell. We have

MA\PL=T2x (0,1)\Po=T2x (0,1)\ U L= U (T?x {t}\ L), and
te(0,1) te(0,1)

is equal to the standard hexagon rotation matrix R, 3 = ( ) or its inverse
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Lemma follows. O

Note that Py is not a simple polyhedron. Indeed, its part 72 x {0} contains a
singular subset Lg, which is more complicated than a triple line: three edges of Ly
yield three lines of transversal intersection of two surfaces, and any of two vertices
of Ly gives rise to a transversal intersection of a triple line with one extra surface.

Let us modify the previous construction by gluing 72 x {0} with 72 x {1} along a
homeomorphism 444, where § is a small shift of the torus in a direction transversal
to the edges of Ly, see Fig. 11. Put P, = |J L;U (T? x {0}). Again, P, is a

tefo,1]
spine of M (A).

FIGURE 11. f-curve Ly and its d-shift L, (dashed line) in the fiber
T? x {0} of M(A) :

Lemma 3. P, is a special spine of M (A) with ¢(A) + 6 vertices.

Proof. It is clear from the construction that P, is a simple polyhedron. Its triple
lines are the “trajectories” (as t varies) of the vertices of L; and the ten segments
of Ly and L; shown on Fig. 11, where the torus is represented by a square with
the opposite sides to be identified. There are c¢(.A) vertices of P, that correspond
to ¢(.A) flips between Ly at t = 0 and L, at ¢ = 1, and six other vertices thar are
drawn on Fig. 11. Two of them arise from 72 x {0} and L;, 0 < £ < ¢, and their
neighborhoods in P, look like Fig. 1d. Two other vertices on Fig. 11 arise from
T? x {0} = T? x {1} and L;, 1 — ¢ < t < 1; their neighborhoods look like the
horizontal mirror reflection of Fig. 1d. The last two vertices on Fig. 11 correspond
to two intersection points of Ly and L, and their neighborhoods look like Fig. 1c.
Thus P, is a simple spine of M (A) with ¢(.A) + 6 vertices.

It remains to prove that SP, contains no closed triple lines and all connected
components of Py \ SP, are 2-dimensional cells, cf. Definition 2. First group of
triple lines of SP; is formed by ten arcs in 72 x {0} shown on Fig. 11. Obviously,
they are not closed. The rest 2¢(A) + 2 triple lines are swept by the vertices of the
f-curves Ly C T? x {t}, 0 <t < 1. They end at vertices of P,, too, and thus are
not closed.

Connected components of P, \ SP; also belong to two groups. Four of them, two
hexagonal and two quadrilateral, lie in the fiber T2 x {0}, see Fig. 11. They are
cells. Any other connected component of P; \ SP, intersects any fiber T2 x {t},
a <t < b (where a is equal to either 0 or one of the flip moments, and b is either one
of the flip moments or is equal to 1), along one edge of L;, and does not intersect
other fibers; this implies that this component is a cell. We have proved that the
polyhedron P is special. []
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Corollary. c(M(A)) <c(A)+6. O

0 1
Since ¢(I) = 0, the construction above gives a special spine of 7 with six vertices.
The manifold 73 = M(I) is contained in Table 7 of the preprint [9] under the
name 671. It is shown in [9] that all manifolds of complexity at most 5 are different
from T3. So we have ¢(T®) = 6. The spine that we constructed here does not
differ from the spine 677 from [9, §5.2], while our way of presenting spines differs
significantly from the one used in [9].

Example. Three-dimensional torus can be represented as M(I), I = (1 0).

FIGURE 12. The complement 73 \ P, of the minimal spine P, of T3

The torus T2 can be obtained from the cube by gluing its opposite faces. This
yields a natural cell decomposition of T2 with one vertex, three edges, three
“square” 2-dimensional cells and one 3-dimensional cell. The 2-dimensional skele-
ton skz(7'%) has singular points more complicated than triple lines and vertices of
simple polyhedra. However, the minimal spine of T can be obtained as a small
perturbation of sko(73).

Let the @-curves L, t € [0,1], be very close to the bouquet of a parallel and
a meridian of T2 x {t}, and let the shift § involved in the construction of P; be
very small. Then the 3-dimensional cell T2 \ P, is very close to the 3-dimensional
cube. Figure 12 represents this cell. If we identify opposite faces of this polyhedron
by parallel transports (or, equivalently, tessellate R® into parallel copies of this
polyhedron and consider a quotient over the appropriate lattice Z3), we get the
torus T'3; the image of the boundary of the polyhedron under this gluing is the
minimal spine of T2 close to sko(7T%).

The same construction gives special spines with six vertices for the manifolds

() D)
(3 3) =2 (4 3)) =

The spines constructed in this way are minimal spines of these manifolds, because
all of them are of complexity 6; in fact, all manifolds of complexity up to 5 are
quotient spaces of the sphere S3, see [9].

and
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However, in all other cases (that is, if ¢(A) > 0) the spines with ¢(A) + 6 vertices
are not minimal spines of the manifolds M (A). For example, the spaces

o= ((10)) em=mr (5 2)) e semae(51)

are manifolds of complexity 6, while

(200 (2 2 =e((2 9))-n

and our construction gives their spines with 7 vertices.

This happens because some of the spines with ¢(A) + 6 vertices constructed
above are not pseudominimal whenever ¢(A) > 0. Namely, they have a triangular
component, and the first simplification move (see Fig. 8) can be applied.

Let us return to Fig. 11. Assume that the first flip in the sequence taking
Ly to L, involves the short edge of Ly, that is, the edge that does not intersect
dashed lines on Fig. 11. This condition can be satisfied by an appropriate choice
of the shift § involved in the construction of P,. Then the 2-dimensional cell of P,
adjacent to this edge and not contained in 72 x {0} is a triangle, and we can apply
the first simplification move, which gives a spine of M (A) with a smaller number
of vertices. This spine can be described in other words as follows. Let L’ be the
f-curve obtained after the first of c(.A) flips converting Lg into L;. Glue the square
from Fig. 13 into the torus T2 x {0} € M(A) and embed L; in T2 x {t} for all
t € (0,1), where the family L; contains ¢(.A) —1 flips and connects L' with L;. Note
that the first of ¢(.A) — 1 flips converting L’ into L; is performed along a long edge
of L/, because a flip along the short edge would annihilate with the flip converting
Ly to L'. The new spine P3 has 6 + ¢(A) — 1 = ¢(A) + 5 vertices. So we have
c¢(M(A)) < e(A) + 5 whenever ¢(A) > 0.

FIGURE 13. O-curves L' and L; (dashed) in T2 x {0}

The proof that the spine P; is special repeats the proof of Lemma 3.

Theorem 9.
1) ¢(M(A)) < max(6,c(A) + 5).

2) The spine P3 constructed above is pseudominimal.
Compare the first statement with Corollary of Lemma 3.

Proof. If ¢(A) = 0, then ¢(M(A)) = 6. So we may suppose that c(A) > 0. Since P;
is an almost simple (and even special) spine of M (.A) with ¢(A)+5 vertices, the first
18



statement is obvious. The argument similar to the proof of Lemma 3 shows that
two-dimensional cells of P; have no counterpasses. So we only have to show that
Pz has no components with short boundaries. The four cells contained in 7% x {0}
are pentagons, see Fig. 13. The cells that have no boundary edges in 72 x {0}
have even numbers of edges, namely, 2k — 2, where k is the number of flips from
the vertex where the cell appears to the vertex where the cell disappears (including
both the first flip and the last one). The matrix A involved in the construction of
P; is a minimal matrix of A. This implies that any two consecutive flips in the
sequence involved in the construction are not inverse to one another, that is, k£ > 2
for any cell considered above.

It remains to consider at most 6 two-dimensional cells that have an edge in
T? x {0} = T? x {1} (if A is, up to a sign, a power of a Jordan block, there are
only 5 cells of this type; otherwise, no 2-cell touches both T? x {0} along an edge
of L' and T? x {1} along an edge of L1, so three edges of L’ and three edges of
L1 belong to six different cells of P3 \ T2 x {0}). Two cells of P3 \ T2 x {0} are
adjacent to the long edges of L’ (the edges that intersect dashed lines on Fig. 13).
Each of these cells has at least 4 boundary edges: two segments of a long edge of L’
and two edges (transversal to fibers) that arise from the vertices of L’. The same
argument works for two cells of P3 \ T2 x {0} adjacent to the long edges of L;.
Consider the cell of P; \ T? x {0} adjacent to the short edge of L'. Of course, it
has at least 3 edges: the short edge of L’ and two edges that are trajectories of the
vertices of I’ as t varies. It has at least one more edge: otherwise, the first flip in
the sequence of flips converting L’ to L; is performed along the short edge of L/,
which is impossible by the construction of Ps, see above. For the same reason, the
last flip (which results in L;) cannot be performed along the short edge of Li: by
the minimality of the matrix A, it cannot be cancelled with the flip connecting L
with I/, see Theorem 7. This means that the 2-dimensional cell of P3 \ T2 x {1}
adjacent to the short edge of L, also has more than 3 edges, and P; contains no
components with short boundaries. The Theorem is proved. [

Conjecture 2. The pseudominimal spines of the manifolds M(A) constructed
above are in fact their minimal spines, and the upper bound for complerity given
in Theorem 9 is in fact its ezact value: c(M(A)) = max(6,c(A) + 5) for any
monodromy operator A € SL(2,Z). In other words, any singular triangulation of
M (A) involves at least c(A)+5 tetrahedra if c(A) > 0 and 6 tetrahedra if ¢(A) = 0.

§7. SPINES OF LENS SPACES

Pseudominimal special spines of the lens spaces Lp g4, p > 3, with exactly
E(p,q) — 3 vertices were constructed in [9]. In that paper, spines are presented
by drawing the neighborhood of the singular graph of a spine. This allows to draw
spines on the plane; however, it remains unclear how the spines are embedded into
corresponding manifolds.

In this section, we construct pseudominimal special spines of L, 4, p > 3, with
E(p,q) — 3 vertices, making use of the techniques developed in §§4-6. We omit
some details and proofs.

Consider two solid tori. The meridians of their boundary tori are well defined,
while the parallels are defined modulo meridians only. Let pg, 41 be the meridians
of the tori and o, o1 be their parallels such that the pair of the oriented cycles
(00, po) defines the positive orientation of the boundary of the first torus and the
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pair (o1, u1) defines the negative orientation of the boundary of the second torus.
There is a unique pair of positive integer numbers (7, s) such that r < p, s < p,
and gs —pr = 1. Put A = (i Z and attach the solid tori to one another so

that the induced homomorphism of the one-dimensional homology groups of their
boundary tori has the matrix A (in the bases (oo, 10) and (o1, 11)). We get a closed
orientable 3-manifold that is nothing but Ly, ,.

Note that A € SL(2,Z), ¢(A) = E(p, q), and the parallels oo and o, represent
nontrivial elements of m1(Ly 4) = Zp. This implies that any spine of L, , intersects
these loops. Let us shift g in the interior of the first solid torus and consider
the tubular neighborhood Uy of the shifted curve. Obviously, Up is a solid torus.
Similarly, construct U; as a tubular neighborhood of ¢ shifted inside of the interior
of the second torus. We may assume Uy and U; to be disjoint. Then L,, =
UpU (T? x [0,1]) UU;. Let L;, i = 0,1, be standard (with respect to the bases
(0i, ;) O-curves in the tori 77 = OU;; they are defined up to isotopy. Following
the construction of §6, consider a continuous family L, C T2 x {t} connecting L,
to Ly with ¢(A) flips. Put P, = |J L;. Let D;, ¢ = 0,1, be meridional disks of

telo,1]
the U, intersecting L; transversally at one point. Put P, = DoUTZUPyUTZU D;.

Lemma 4. The polyhedron P, is a special spine of Ly , with three punctures. It
has E(p,q) + 6 vertices.

Proof. The complement L, ,\ P consists of three cells Up\ Do, (T2 x [0, 1])\ Py, and
U1\ D;. There are ¢(A) = E(p, ) vertices in the interior part of Pp. Further, there
are 3 vertices on T2, which correspond to two vertices of Lo and the intersection
point of Ly and 8Dy. Similarly, there are 3 vertices of P; on TZ. It remains to show
that P; is a special polyhedron. This can be proven by analogy with Lemma 3. [

Below we show that one can decrease the number of vertices “inside of Py ” by
one and the number of vertices “near each U;” by four. This gives a spine with
E(p,q)+6—1—4—4= E(p,q) — 3 vertices.

Recall that the parallels o; are defined only modulo meridians y;. Thus, the
f-curves L; are defined only up to powers of the Dehn twists along the meridians,
that is, up to transformations o; — oy + n;u;, n; € Z. By varying ng and n;, one
can decrease the distance in I' between B™ W, and C™ AW, and thus decrease the

number of the vertices inside of Fy; here W is the standard hexagon, B = (} 2)

is the matrix representing the Dehn twist along ug, and C = ABA™! is the matrix
corresponding to the Dehn twist along u;.
Lemma 5. minen d(B™ Wy, CMAW,) = E(p,q) — 1.
Ng,n1C =

Proof. Note that the graph I' contains edges B*Wy B*t1W, and CAW, C*+1AW,
for all u,v € Z. Since I' is a tree, there are mg,m; € Z such that the path
from B™ W, to C™AW, for all ng,n1 € Z consists of the following three legs:
B Wy B™ Wy, B™Wy C™AW,, and C™AW, C™AW,. Now it is obvious that

min _d(B" Wy, C"AWy) = d(B™ Wy, C™AWy). By considering the three legs

non1€Z

of the path from Wy to AWy, one can see that mg = 1 (because p > ¢ > 0),

my = 0 (because both positive and negative Dehn twists along u; do not affect

the leading vertex (p,gq) of AW, and thus increase the distance to Wy), and the
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length of the middle leg of this path is d(BWy, AW,) = d(Wy, AWy) —|mo| — |ma| =
E(p,q)-1. U

N

FIGURE 14. Simplification of Py near T?

By virtue of Lemma 5, we can decrease by one the number of the vertices inside
of Py by another choice of a #-curve Ly. Now we have a special spine of L, , with
three punctures having F(p, ¢) + 5 vertices. The disks Dy and D; are components
with short boundaries. By 7; denote the edge of L; that intersects 0D;. Note
that two other edges of L; form the meridian of T;, the first flip in the sequence
connecting Lo with L; is performed along 7o while the last flip in this sequence
is performed along 7; (flips along other edges are equivalent to meridional Dehn
twists and thus do not lead out of the mainstreams y(B) = {B"W, | no € Z} and
¥(C) = {C™AW, | n1 € Z}, while the path between Lo and L, is the shortest path
that connects these mainstreams). We can apply the following simplification move
in the neighborhood of D;. First, add a parallel copy D; of D;. Second, delete the
lateral surface of the cylinder bounded by D;, D!, and a thin strip of T2. Finally,
delete the cell of P, adjacent to 7;; this cell is triangular, because 7; is the edge
involved in the flip in Py closest to 77, see Fig. 14. So, the first step adds one
vertex on each T, the second step kills two vertices on each T2, and the last step
kills three vertices near each of T2. By P; denote the polyhedron obtained by the
construction above. Obviously, it has F(p, ¢) — 3 vertices. Further, one can see that
two remaining edges of L; (which differ from 7;) form a closed triple line S} and
the complement Ly, , \ P; still consists of three cells, two of which are bounded by
the spheres S? obtained from the torus 77 and their meridional disks D;, D! by
deleting the thin strip bounded by dD; and 8D) from T7?. The circles S} divide the
spheres S? into two disks each; one of the disks contains D;, the other contains D’.
Delete from P; the disks of the S? that contain D). This yields a polyhedron P
with E(p,q) — 3 vertices such that L, .\ P is a cell.

Theorem 10. The polyhedron P is a pseudominimal special spine of L, , with
E(p,q) — 3 vertices. It coincides with the spine of Ly 4 presented in [9]. O

It was shown in [9] that the spines constructed in that paper are pseudominimal.
So it is sufficient to prove only the second statement; we leave it to the reader.
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