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Abstract.

We discuss the theory of characteristic classes of manifolds, Poincaré dual to
singular sets of smooth maps. We review the proof of the existence of Thom polyno-
mials and present some methods of computation of these polynomials. Our approach
is based on the study of classifying spaces of singularities and their geometric
properties.
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1. Thom polynomials

Theorems of global singularity theory express global topological in-
variants (of manifolds, bundles, etc.) in terms of the geometry of
singularities of some differential geometry structures. A classical exam-
ple is the Hopf theorem expressing the Euler characteristic of a manifold
via singular points of a vector field on it. Another example is the Maslov
class of a Lagrange submanifold in the cotangent bundle defined as the
_cohomology class Poincaré dual to the (properly co-oriented) critical set
of the projection to the base of the bundle, see e.g. [1]. Many results in
this theory are formulated as theorems on existence and computation
of so called Thom polynomials. In these notes we explain the definition
of these polynomials based on the notion of the classifying space of
singularities. This approach makes the ‘existence theorem’ trivial and
also gives some ideas on computing these polynomials.

1.1. THEOREM ON THE EXISTENCE OF THOM POLYNOMIAL
Many classification problems in singularity theory can be formulated

as the problem of classification of orbits for some Lie group action. In
the case of singularities of maps consider the space

V=J'(R™R) (1)
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of K-jets at the origin of map germs (R™,0) — (R",0). We consider
this space together with the action of the Lie group

G = JEDMF(E™) x JEDiff(R™) (2)
of K-jets of left-right changes at the origin. _

Definition. A singularity class is any G-invariant subset ¥ C V.

If f: M™ — N™ is a generic smooth map then the singularity locus
Y(f) C M consisting of points with the given local singularity type X
has the same codimension as X C V. Moreover if the singularity class
¥ C V is an algebraic subvariety then the singularity locus X(f) carries
a fundamental Zy-homology class and its Poincaré dual cohomology
class is well defined.

THEOREM 1 (Thom, [21, 9]). For any algebraic singularity class © C =
V' there ezists a universal polynomial Ps (called Thom polynomial)
in Stiefel-Whitney classes w1 (M), ...,wm(M), f*wi(N),..., ffwa(N),
such that for any generic map f : M — N the cohomology class
Poincaré dual to the singularity locus X(f) is given by this polynomial,

[2(f)] = Pe(w(M), f*'w(N)) € H*(M, Z).

1.2. GENERICITY CONDITION

The genericity condition in the theorem above is formulated as follows.
Consider the smooth fiber bundle £ — M whose fiber E, over a
point z is isomorphic to V and consists of all K-jets of map germs
(M, z) = (N, f(z)). The structure group of this bundle can be reduced
to G, and up to an isomorphism of G-bundles, it is independent of the
representative f in the same homotopy class of smooth maps M — N.
The singularity class ¥ gives rise to a well-defined subvariety X(E) C F
in the jet bundle E. If ¥ is locally algebraic then so XL(F) is and the
codimension of ¥ in V' is equal to that of X(E) in E. Therefore its dual
cohomology class [3Z(E)] € H*(E, Zz) is always well defined. The map
f defines a natural section s; of the bundle F whose value at a point
z € M is the K-jet of the map f itself at this point. A reformulation
of Theorem 1 claims that for any (generic or not) map f there is an
equality
Pa(w(M), f*w(N)) = s¢[S(E)] € H* (M, Zy).

If ¥ is algebraic then the space E admits a Whitney stratification such
that 3(F) is the union of several strata.
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Definition. The map f : M — N is called transversal if the jet
extension section sy : M — FE is transversal to each stratum of the
stratification of F.

The generic maps of Theorem 1 are those which are transversal. By
the transversality theorem, any generic section s : M — E is transver-
sal. Moreover by the strong version of this theorem due to Thom the
transversality condition for the section sy can be achieved by some
small perturbation of the map f, i.e. within the class of ‘integrable’
sections.

1.3. COMPLEX VERSION

There is a complex version of Theorem 1 where smooth maps of smooth
manifolds are replaced by holomorphic maps of complex analytic mani-
folds, Zs-cohomology by integer cohomology, Stiefel-Whitney classes by
the corresponding Chern classes, etc. In the complex case the transver-
sality condition is open but not necessarily dense. For any map f the
characteristic class represented by the corresponding Thom polynomial
can be defined as

Pg(c(M), f*c(N)) = st[Z(B)]- ®3)
It can be interpreted as follows.

o If the section sy is transversal then Pg(c(M), f*c(N)) = [Z(f)]-

¢ The equality (3) can be applied if the singularity locus X(f) has the
‘expected codimension’. In this case the components of X(f) should
be taken with multiplicities prescribed by the scheme structure of

2(f) = 571 (S(E)).

e If the codimension of X(f) is less than that expected, then
the Poincaré dual of Pg(c(M), f*c(N)) can be represented by
some closed singular chain in X(f). It follows, in particular, that

Po(c(M), f*¢(N)) # 0 implies £(1) # .

e In any case one may neglect the holomorphic structure on M and
consider a generic C*®-perturbation s : M — E of the section s;.
Then Ps(c(M), f*¢(N)) is Poincaré dual to the singularity locus
%(s) (which is a real locally analytic co-oriented subvariety in M).

In many problems there is a correspondence between the classifica-

tions of real and complex singularities: every complex singularity has a
real representative and the real codimension of a real singularity class
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is equal to the complex codimension of its complexification. There is no
d priori proof of this statement. Moreover there are counterexamples
that show that this is not always the case. All known counterexamples
are very degenerate and have a very large codimension, see e.g. [24]. So
we can formulate a general complezification principle ([4]) which should
be proved in each particular case independently: the Thom polynomial
of a real singularity can be obtained from the Thom polynomial of the
corresponding complex singularity by replacing the Chern classes by
the corresponding Stiefel-Whitney classes and reducing all coefficients
modulo 2. :

1.4. CLASSIFYING SPACE OF SINGULARITIES AND DETERMINATION
OF THOM POLYNOMIALS

The characteristic classes dual to singularity loci of a smooth map
f : M — N are defined using an auxiliary (V,G)-bundle £ — M,
see (1), (2). This bundle can be induced from the universal classifying
(V,G)-bundle BV — BG. The construction of the classifying space
BV presented below is used also in Borel’s definition of equivariant
cohomology for the G-space V.

Consider the classifying principal G-bundle EG — BG, i.e. a con-
tractible space EG with a free action of the group G. This action
extends to the diagonal action on the product space V x EG.

Definition. ([11, 12]). The classifying space of singularities BV is the
total space of the (V, G)-bundle associated with the classifying principal
bundle EG — BG,

BV =V xg EG = (V x EG)/G.

The projection to the second factor BV — EG/G = BG is a bundle
with fiber isomorphic to V' and structure group G. Since the space V
is contractible the projection BV — BG induces an isomorphism of
(co)homology groups,

H*(BV,Zy) = H*(BG, Zs).

On the other hand each singularity class ¥ C V defines a sub-
space BY = ¥ xg EG C BV. If ¥ is an algebraic subvariety then
codimpgy BY = codimy ¥ and the cohomology class dual to BX is well
defined.

Definition. The Thom polynomial of the singularity class ¥ is the

cohomology class Py € H*(BV,Z2) = H*(BG,Z3) dual to the locus
BX C BV.
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The Lie group G of jets of left-right changes is contractible to its
subgroup GL(m) x GL(n) of linear changes and hence to its maximal
compact subgroup O(m) x O(n). Therefore the Thom polynomial is an
element of the ring

H*(BG,Zs) = H*(BO(m) x BO(n), Za) = Zafwi, - - .y} ..., wl]

of polynomials in Stiefel-Whitney classes.

Remark. The classifying spaces BG, BV, etc. have infinite dimen-
sions and thus the definition above should be clarified. The simplest
way to overcome this difficulty is to replace the classifying principal
bundle EG — BG by a finite dimensional smooth principal bundle
EGy — BGpy with N-connected total space EGpy. Then we get
isomorphisms HP(BGy,Z3) = HP(BG,Zz) for all p < N and can
set

Py = [2 X G EGN] € HC(V X@ EGN,Zz) & HC(BGN,ZZ) =

= HC(BGv ZZ))

where ¢ = codimX¥. This cohomology class is independent of the
choice of the finite dimensional approximation EGy provided that
N > codim ¥.

Remark. In [19] Szics and Rimdnyi used an alternative approach to
the definition of the classifying space of singularities based on Sziics’s
idea of gluing the classifying spaces of symmetry groups of singularities.
They considered only simple singularities, and the very clear topology
of the classifying space does not follow from their construction. It
should be noticed nevertheless that their construction works as well
for the case of multisingularities, see [17, 18, 20] for some applications.
It is an interesting problem to find an 4 priori construction for the
classifying space of multisingularities and to describe its topology (the
work [19] implies that it should be related to cobordism theory).

1.5. ProOOF OF THEOREM 1

Let f : M — N be a smooth map and E — M be the associated
(V, G)-bundle whose fiber over a point z € M consists of all K-jets of
map germs (M, z) — (N, f(z)). This bundle, like any other G-bundle,
can be induced from the classifying space BG by some continuous map
K : M — BG. This map extends to the map & : £ — BV of total
spaces of (V, G)-bundles. Thus we get the diagram of maps

ML g F BV
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The maps in this diagram induce both characteristic classes and par-
titions by singularity classes. Hence the induced homomorphism of
cchomology groups

H*(BG,Z) &5 H*(B,Z:) - H*(M,Z,)

sends the Thom polynomial of ¥ to the corresponding polynomial in
Stiefel-Whitney classes of M and N, and the cohomology class dual to
the singularity locus BX to the cohomology class dual to the singularity
locus (f). O

1.6. STABILIZATION

One of the most important invariants of a map germ y = f(z), f :
(R™,0) — (R™**,0) is the local algebra Qf = my/f*m,. This is the
quotient algebra of the algebra of function germs (R™,0) — (R, 0) over
the ideal generated by the components f; of the germ f.

Definition. Two map germs f : (R™,0) — (R™** 0) and f' :
(R™,0) — (R™ % 0) (with the same k and possibly different m,m’)
are called stably equivalent if they have isomorphic local algebras,
Q5 = Qp. A class ¥ of singularities is called stable if it contains
together with each map germ f any map germ stably equivalent to
it. (Do not confuse with the notion of a stable singularity!)

The stabilization allows us to compare singularities of map germs of
manifolds of different dimensions. The codimension of a stable singular-
ity class of map germs (R™,0) — (R™+* 0) given by some collection of
local algebras does not depend on m (but it does depend on k). There-
fore for each k we get an independent problem of stable classification
of map germs (R™,0) — (R™*% 0) for all m.

THEOREM 2 (cf. [5]). The Thom polynomial of any stable class
of singularities can be expressed as a polynomial in the relative
Stiefel- Whitney classes w;y(f*TN — T M) defined as the homogeneous
components of the expression

. A4 fro (V) + froa(V) + ...
WTTN =TM) = 0 () + w00 + .

Proof. First note that the proof of Theorem 1 implies that the
statement can be extended to a generic section of any (V, G)-bundle
over M, not necessary related to a map M — N. A (V,G)-bundle
and a section may be given by a family of germs of manifolds F,,
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F,, and of map germs E; — F, depending on the point z € M. In
particular, to any map f : M — N we associate the family of map
germs fr : (M,z) — (N, f(z)), z € M. The Stiefel- Whitney classes
in this extended version of Theorem 1 are those of the vector bundles
U, ToE; and U, ToF; respectively.

Now a map germ z — f(z) is stably eqdivalent to the map germ
(z,2) » (f(z),2) where z = (21,...,2) is any number of additional
variables. This observation may be globalized as follows. The jet ex-
tension of a map f : M — N may be considered as the family of
map germs fz : (M,z) = (N, f(z)) depending on the point € M.
Consider an arbitrary vector bundle U — M. Then we may construct
a new family of map germs

fexid: (M x Ug,z x 0) = (N x Uy, f(z) x0).

The map germs of the new family are stably equivalent to those of
the original one. Therefore the singularity loci and their cohomology
classes coincide for both families. By the extended version of Theorem 1
mentioned above the cohomology class dual to the locus of singularity
¥ is given by P(w(TM & U),w(f*TN @ U)). We may chose the bundle
U arbitrary. For example, we can chose it in such a way that the bundle
TM & U is trivial. Then w(f*TN & U) = w(f*TN — TM) and we get

Py(w(TM),w(f*TN)) = Ps(L,w(f*TN — TM)). o

Theorem 2 implies that for computing Thom polynomials of a stable
class of singularities it is sufficient to consider the case when the target
space is a fixed Euclidean space N = R".

Remark. The formal definition of the classifying space given above
admits a very simple geometrical realization of this space. We present
a construction for a version of the classifying space which takes into
account the stabilization used in Theorem 2. For fixed &, K choose large
integers m, N >> 0 and consider the Euclidean space RN+7 = RN x R",
n = m + k. Denote by G, (RVN*™) the manifold of all K-jets of germs
at 0 of m-dimensional submanifolds in (RVN+" 0). This manifold is
homotopy equivalent to the Grassmannian G, (RY*") (since the space
of germs of submanifolds with a fixed tangent plane is contractible) and
the Zos-cohomology ring of this space is generated by Stiefel-Whitney
classes. The points of this space are classified according to the singular-
ities of the projection to the coordinate plane R* C RY x R". Denote
by ¥ C Gm(RM1™) the collection of points for which this projection
belongs to the given stable class ¥ of singularities. The cohomology
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class dual to this cycle
[£] € H*(Gm(RV*™), Zs)

(or, more exactly, the expression of this class in terms of the multi-
plicative generators of the cohomology ring of the Grassmannian) may
be taken as an independent definition of thé Thom polynomial. This
construction reduces the problem of finding Thom polynomials to the
study of the geometry of Grassmannians.

Remark. Similar stabilizations allow one to compare singularities in
the spaces of different dimensions exist for other problems of singu-
larity theory. For instance, the stable classification of critical points
of functions is related to Lagrange singularities and leads to Lagrange
characteristic classes, see [22, 14] and Section 3.4 below.

2. Computing Thom polynomials

A large number of Thom polynomials for various kinds of singularities
were found by different authors, see [2, 17] and references therein.
As an example of computation of Thom polynomials, we present sev-
eral proofs of the classical formulas for the Thom-Porteous classes.
These proofs illustrate different methods which can be used for other
classes. In this section by cohomology we mean cohomology with
Zo-coefficients.

2.1. THOM-PORTEQUS CLASSES

Let E, F be two vector bundles of ranks m,n = m+ & respectively over
a smooth manifold M and f : E — F be a generic morphism of vector
bundles. Denote by X; C M the set of points € M where the rank
of the linear map f, : E, — F; is at most m — d (i.e. the dimension
of the kernel of f, is at least d; we assume that d > max(0, —k)). The
classes dual to the loci X4 are called Thom-Porteous classes.

THEOREM 3 ([16]). Generically $4 is a subvariety of codimension
d(d+k) and its Thom polynomial is given by [Z4] = Ag gri(w(F — E)),
where for a formal series a =1+ a1 + as + ... we denote

Gg  Ggy1 o0 Ggip-1

Qg1 a - Q 4p—2
q q q+p
Apgla) = . : ’ .
Gg—p+1 Gq-p+2 *°°  GOg
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In particular, let f : M — N be a generic smooth map. Set £ =
TM, F = f*T'N. Then the formula of Theorem 3 expresses the Thom
polynomial for the locus ¥4(f) consisting of points z € M where the
rank of the differential df; : Ty M — Ty(;)N is at most m —d.

In the case of Thom-Porteous classes the singularity type is de-
termined by 1-jet of the map and it is sufficient to set K = 1.
The classifying space is the Grassmann manifold G,(RY*"), where
N,m > 0, n =m+ k. The cycle ¥4 is formed by the m-planes whose
projections to the fixed subspace R* have rank at most m — d. Equiva-
lently, it is formed by planes whose intersections with the fixed subspace
RY are at least d-dimensional. Theorem 3 is equivalent therefore to the
equality _

[Zd] = Baasr(w(—E)) € H*(Gn(RYH™)), (4)

where E denotes the m-dimensional tautological vector bundle on the
Grassmannian.

2.2. SCHUBERT CALCULUS

The cohomology group of the Grassmannian has two natural bases. The
first is given by monomials in Stiefel-Whitney classes and the second
by classes of Schubert cells. The Schubert basis is more geometric and
in many cases it is possible to express the cohomology classes given by
particular cycles on the Grassmannian via Schubert cells. The passage
between the two bases is described by the Giambelli formula ([8]).

In the case of Theorem 3, the cycle 4 C G (BN*") is the closure
of the Schubert cell denoted by (d + k,...,d + k) (d entries) in the
Schubert calculus. The formula (4) is a particular case of the Giambelli
formula. O

2.3. RESOLUTIONS OF SINGULARITIES

Another direct method of proving Theorem 3 uses resolutions of sin-
gularities. This method may be used for proving Giambelli formulas
as well as for finding Thom polynomials for other singularities. Con-
sider the product space G4(RY) x G (RV+"), where we identify RY
with a fixed N-subspace in R¥Y*". Consider the submanifold Z C
G4(RN) x G (RV+7) formed by pairs (K, L) € Ga(RY) x Gp(RN ™)
such that K C L. Then £, is the image of Z under the projection

7 : Gg(RY) X Gr(RV1™) = Gr(RVF™)

to the second factor. Moreover the restriction 7}z : Z — X4 is one-
to-one over an open dense set, so that [X4] = w[Z], where =, :
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H*(Ga(RY) X Grn(RVN*)) = H*(Gpr (RNVT?)) is the Gysin homomor-
phism. So the problem is split into two: computing the class [Z] and
computing the homomorphism ..

For the first problem we note that the cycle Z may be identified with
the zero section of the bundle Hom(K,RV*" /L), where we denote by
K, L the tautological bundles on the two Grassmannians. Therefore [Z]
is the top Stiefel-Whitney class of this bundle,

[Z] = wa(n k) (Hom (K, RV*" /L)) = Ag n i (w(—K — L))

The last equality can by proved purely algebraically using, for example,
the splitting principle.

Now we compute the homomorphism 7. Denote by @ = RY /K the
universal (N — d)-dimensional quotient bundle on G4(R"). Then

N—d
ws(—K — L) =we(@—L) = Y wn-d-i(Q)ws—(n—a)+i(—L).
=0 :

Substituting this in the determinant Ay 1 we obtain

[Z] = Agnk(@(Q — L)) = (wn-a(@)* Agasi(w(=L)) + ...,

where the dots denote terms whose degree in w;(Q) is strictly less than
d(N — d) = dim G4(R"). The Gysin homomorphism vanishes on these
terms for dimensional reasons and thus

[Zd] = m[2] = m((wn-a(@))?) Aggrr(w(—L)).

It remains to note that the equality m.((wy—g(Q))%) = 1 reflects the
fact that given d generic lines in RY, there exists a unique d-plane
containing them. O

2.4. SYMMETRIES OF SINGULARITIES

Recently R. Riményi [17] invented a new method for finding Thom
polynomials. His method reduces this problem to the linear algebra
problem of inverting a large matrix. In general it requires less compu-
tations for computing particular Thom polynomials, though it usually
does not give closed formulas for series of singularity classes. The main
idea is very simple. Since the Thom polynomials are universal, every
example where we may compute both the Stiefel-Whitney classes and
the class dual to the singularity locus gives linear relations on the
coefficients of the Thom polynomial. If the number of examples is
large enough then these relations should be sufficient to determine the
polynomial completely.
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Many examples may be produced in the following way. Let ¥ be
an orbit of the action of the equivalence group G on the jet space V.
Then as a test manifold we can take a tubular neighborhood U of the
submanifold BY in the classifying space BV (it can be identified with
the total space of a normal bundle of BE). The test manifold in this case
is homotopy equivalent to BX = (X xEG)/G-= (pt xEG)/Gxz = BGsx,
where Gy is the ‘symmetry group’ of the singularity X, the stationary
group of any point pt € ¥ (or a maximal compact subgroup in it).
Moreover the normal bundle of B may be identified with the space of
the universal bundle over BGy associated with the action of G5 on any
Gz-invariant transversal slice to . The locus of the singularity ¥ for
this test manifold is the zero section of the normal bundle and hence its
dual coincides with the Euler class of the bundle. It is usually not dif-
ficult to describe explicitly the homomorphism H*(BG) — H* (BGg)
and to compute the corresponding Euler class.

In the particular case of Thom-Porteous singularities the a,rguments
above can be reduced to the following. Consider vector bundles K, L
of ranks d, d + k respectively with Stiefel-Whitney classes a; = w;(K),
b; = wj(L) over some smooth base B. Let the test manifold M be
the total space of the bundle Hom(K, L) over B. The singularity locus
¥4(M) in this case is the zero section of the bundle M — B. Therefore

[Ed(M)] = wd(d+k) (HOIII(K, L))
= Agair(w(L — K)) € H*(B) = H*(M).

(The last equality is an algebraic exercise on the application of the
splitting principle.) The base B can be chosen arbitrary. For example
we can chose B to be (a finite dimensional approximation of) the
product space BO(d) x BO(d + k) of the classifying spaces for d-
and (d + k)-dimensional vector bundles respectively, and K, L to be
the corresponding canonical bundles. We see that the Thom polyno-
mial Ps,(w1,ws,...) has the following property: after the substitution

_ l4ait..4ag L : :
W = TIet e it coincides with Agq.(w). One can verify that

the homomorphism H*(BO) — H*(BO(d) x BO(d + k)) given by

14w +...— Tﬁ_’%}gﬁf— is injective up to degree d(d + k) so the

relation above determines the polynomial completely. l

Remark. There are many results in global singularity theory that
involve classes dual to cycles of multisingularities (see, for example, [2]
and references therein). The method of Riményi may be effectively
applied to this kind of problem as well, see {17, 18].
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3. Universal complex of singularity classes and
characteristic spectral sequence

The singularity classes in real classification problems usually form semi-
algebraic rather than algebraic subvarieties in the jet space. In order
for the cohomology class dual to some union of singularity classes
to be well defined, the (formal) boundary of this union must van-
ish. A similar problem appears when one tries to define an integer
characteristic class dual to some combination of singularity classes.
In this case all singularity classes of this combination must be co-
oriented and the (formal) co-oriented boundary of the combination
must vanish. These observations are formalized in the notions of the
universal complex of singularity classes [22] and the characteristic
spectral sequence [11, 12, 15].

3.1. CLASSIFICATIONS

Consider a classification problem of singularity theory formulated as
the classification of orbits of an equivalence Lie group G acting on a
contractible jet space V. A finite G-classification ([22]) is a finite G-
invariant Whitney stratification of V. If the group G is not connected
then its elements may permute some strata. Unions of strata containing
points of one orbit are called classes.

Some classes may consist of only one orbit. For other classes orbits
may form families (modules). If, for each class, the moduli space of
orbits is smooth and contractible then the G-classification is called
cellular. In this case, a maximal compact subgroup in the stationary
group is independent (up to an isomorphism) of a point of the given
class ¥. This group is called the symmetry group of the class. The
existence of cellular G-classifications for any algebraic action is proved
in [22].

A singularity class ¥ C V is called co-orienteble if it admits
a G-invariant co-orientation in V. For cellular classifications this is
equivalent to the condition that the symmetry group preserves the
orientation. of the normal space to the class.

3.2. CHARACTERISTIC SPECTRAL SEQUENCE

For a given G-classification on V consider the filtration formed by open

subspaces
Fp(V)cR(V)Cc---CV,

where F; is the union of classes of codimension less than or equal to
i. This filtration defines an equivariant spectral sequence E;™* called
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the characteristic spectral sequence. This sequence converges to the
equivariant cohomology HA(V') of V. Since V' is contractible, one has
HE(V) = Hi(pt) = H*(BG).

The reformulation of this definition in the language of classical coho-
mology groups is as follows. The filtration on V induces a corresponding
filtration on the classifying space BV =V xg EG,

Fo(BV)C Fy(BV)C---CBV, F,(BV)=F,(V)xcEG.

The characteristic spectral sequence E,* defined by this filtration
converges to H*(BV) = H*(BG).

This spectral sequence contains all cohomological information on
adjacencies of singularities and their symmetry groups. Its initial term
EP* o HA(Fp(V), Fp1(V)) = H*(Fp(BV), Fp—1(BV)) is isomorphic
to the cohomology group of the Thom space of the normal bundle
of the codimension p smooth manifold Fp(BV) \ Fp_1(BV). It is the
direct sum of the cohomology groups of the corresponding Thom spaces
over all classes of codimension p. In the case of cellular classifications
both the submanifold BY = BGy and its normal bundle (the universal
bundle over BGx; corresponding to the action of Gg on a Gxg-invariant
transversal slice to ¥) may be determined intrinsically in terms of the
singularity class ¥ and its symmetry group Gy. The first differential §;
is given by adjacencies of singularities of neighboring codimensions; the
higher differentials 4, correspond to adjacencies of singularities whose
codimensions differ by r; for details see [11, 12, 15| and the recent
preprint [7].

3.3. UNIVERSAL COMPLEX OF SINGULARITY CLASSES

The cohomology classes corresponding to the fundamental cycles of
singularity loci are described by the row Ej 0 of the spectral sequence.

Definition. The row (E’{’o,él) is called the universal complez of
singularity classes.

The cohomology classes of this complex give rise to well defined
characteristic classes via the canonical homomorphism

Ey* - B ¢ H*(BG).

Among these are, for example, the cohomology classes dual to alge-
braic singularity loci. Below we give an abstract geometric-algebraic
definition of this complex as it appeared in [22].
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In the case of cohomology with Zs-coeflicients, the free generators
of this complex in degree p correspond to the singularity classes of
codimension p. The differential is given by

6% = > (2,9 Q,
codim Q=codim X+1 -

where the incidence coefficients [X,Q] € Zo are defined as follows.
Consider a germ of some (codim )-dimensional transversal T' to the
class @ C V. The points of singularity type ¥ form a collection of
curves in T' going out of the origin. The coefficient [%, ()] is equal to
the parity of the number of these curves.

In the case of integer coefficients, the term of degree p in the univer-
sal complex is freely generated by co-orientable classes (with some fixed
choice of the co-orientations). The coboundary operator is defined in a
similar way, but now the incidence coeflicient [X, 2] is an integer. It is
defined as the algebraic number of curves (together with their signs) of
singularity type X in the transversal T to the singularity class 2. The
sign of every such curve (positive or negative) is defined as follows.
Consider a small sphere in T' centered at the origin. This sphere is
oriented as the boundary of a small ball oriented by the chosen co-
orientation of {2. In a neighborhood of the intersection point with a
curve of singularity ¥ the sphere has an additional orientation as the
germ of a transversal to the singularity class X. The sign is positive
(negative) if the two orientations on the sphere coincide (respectively,
are opposite).

3.4. EXAMPLE: FIBER SINGULARITIES OF FUNCTIONS

A pumber of applications of the notions introduced in this section
to different problems of singularity theory are considered in [22], [23]
and [12]-{15]. In this section we discuss characteristic classes related to
the classification of critical points of functions. Consider the following.
diagram of holomorphic maps of complex analytic manifolds:

w L ¢
I (5)
B

We assume that the differential of « is surjective at every point, so the
fibers of 7 form locally a smooth fibration; C is a complex curve. (The
case when 7 is the trivial bundle and C = CP! is already interesting
enough.) We study singularities of the restrictions of f to the fibers.
Let M C W be the subset of all critical points of such restrictions.
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Generically M is smooth and has codimension n = dim W — dim B. It
can be identified with the zero locus of the section df|y of the bundle
Hom(V, I), where V. C TW is the subbundle of vectors tangent to the
fibers of m and I is the complex line bundle I = f*T'C.

Let © be any class of singularities of functions (an algebraic sub-
variety in some jet space of function germs C*,0 — C,0 which is
invariant with respect to the group of left-right changes of co-ordinates).
We shall use the same letter 2 to denote the class of function germs
C",0 = C,0, n’ # n, stably equivalent to the functions from Q. Recall
that two germs of functions on spaces of possibly different dimensions
are called stably equivalent if after adding suitable non-degenerate
quadratic forms in new variables they can be reduced to each other
by a left-right change of variables.

Define Q(f) C M as the locus of points at which the restriction of f
to the fiber belongs to the given singularity class 2. According to the
general principle of Thom the cohomology class Poincaré dual to the
locus €2(f) is independent of f (provided that genericity conditions for f
analogous to those of Section 1.2 are satisfied) and can be expressed as
a universal polynomial in Chern classes of W, B, C. We claim that this
polynomial can be expressed in terms of some particular combinations
of these classes. Namely, denote u = ¢1(I) = f*a1(TC), ¢; = (V) =
ci(TW — n*TB), and define the classes a; = ¢(V*®I — V) as the
homogeneous components in the expansion of

(14+u)—(14+u)" e +(1+u)"2e5—... L ¢y

l1+a;+ar+...= . (6
1A T+citeat.. +cn ©)
These classes satisfy the relations
‘ aj as
1 1= —..)=1, 7
(1+a1+az+...)( e T ey ) (7)

following from the identity U + U*®I = 0, where U is the formal
difference U = V*®I — V. These relations allow us to expand the
squares of the classes a;, and hence any polynomial in u, a3, as, ... can
be expressed as a linear combination of monomials u*aj'as? .. ., ig > 0,
i € {0,1} (k > 0).

THEOREM 4 ([14]). For any singularity class Q, the class in H*(M)
Poincaré dual to the locus Q(f) can be expressed as a universal polyno-
mial Pq in u,ay,as, . - .. This polynomial (called the Thom polynomial)
is independent of n. _

The Poincaré dual of the locus Q(f) considered as a locus in W is
equal to (u® —u" ey +... £ ¢n) Pa(u,a1,a2,...) € H*(W).

For the singularity classes of codimension not greater than 6 the
Thom polynomials are given in Table L
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Tezble I. Thom polynomials of singularities of functions of codim < 6

A2 = a1
As = 3a2 + uas
A4 = 3arext+Baz -+ duas + ula;
Dy = ajaz—2a3 — uas
As = 27aia3+6as  + u(16a1a2—~12a3) — 4ues +.ua;
Dy = 6aiaz—12es +u(daiaz—14a43) — 4u’as
As = 87aza3z+54a1644+78as +
u(127a1a3—53a4) + u*(59a1a2—126a3) — 41ulaz + ula;
Ds = 12a2a03—24a5 + u(ldaia3—40es) + v>(8a1a2—30as) — 8uas
Bs = 9azes—12a1as+6as + 3ucs + u?(3a1a2—6as) — 3utas
Ay = 135a1aga3+465a2a4+264a1a5+522a5 =+ u(516aza3—16a1a4+485a5) 4+
u?(305a163—"70a4) + ©*(190a102—440a3) — 165u*as + udas
D7 = 24aiaza3—24a3a4+48a105—144a6  + u(8aza3+44a1a5—224as5) +

u?(48a123—172a4) + v*(20a102—88a3) — 20uta:
E: = 9a102a3+6az04—42a105+36as + u(2lazaz—6la1as+80as) +
u?(43a4—6aiaa) + u*(Ta1a2—8as) — Tuas
Py = aia2a3—6azast+6aias—4as +
u(7a1a4—4a2a3—10a5) + 'u.2(2a,1a3—8a4) - 2'u.3a.3

This theorem can be formally applied to the case when the manifolds
W,B,C are real and the function f is smooth (with Chern classes
replaced by the corresponding Stiefel-Whitney classes). But in the real
case the Zy-classes u,a; vanish and so. all cohomology classes of sin-
gularities are trivial. Moreover ([12, 15]), for any locally trivial fiber
bundle with compact fibers there exists a real-valued function on the
total space whose restrictions to the fibers have no singularities more
complicated than A,.

The Zy-reductions of the polynomials listed in Table I are non-trivial
when they are considered in the context of the theory of Lagrange and
Legendre singularities, see [22, 23, 11, 14]. Non-trivial classes appear
also if we consider the global singularities of the restriction of f to the
fibers. Assume that in diagram (5) = is a smooth locally trivial bundle
with oriented fibers diffeomorphic to S'. Then the Chern-Euler class
e = c1(m) € H?(B) of the bundle 7 can be interpreted as follows in
terms of the fiber singularities of a generic smooth function f : W — R
on the total space of the bundle.

We study the global minima of the restrictions f, : Wp = S! —
R, b € B. Denote by (ay,...,a;) = (a1,...,a)y C B the locus of
points b € B such that the function f, attains its global minimum at [
consecutive points zj,...,z; on the circle Wy, and has a critical point
of multiplicity a; at z; (i.e. fy is equivalent to (z — z;)®**! near z;).
The numbers a; are odd positive integers; their order is defined up to
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a cyclic permutation. Generically the locus (ay,...,a;) is smooth and
has codimension (3 a;) — 1.

THEOREM 5 ([13]). Ewvery singularity class (ay,-..,a;) C B of even
codimension has a natural co-orientation. For any integer r > 0 there
is a universal (independent of f) linear combination with rational co-
efficients of the classes {a1,...,a;) of codimension 2r such that the
cohomology class dual to this combination is well defined and equals the
characteristic class e of the bundle w. For r < 4 these combinations
are given in Table I1.

Table II. Characteristic classes of codimg < 8 singularities of the global minimum.

—2e = (13) — (3),
12¢? = (1°) — (3,1%) + 2(5),
—-120€° = (17) — (3,1%) + (3%,1) + 2(5,1*) - 5(7),
1680e* = (1) — (3,1°%) +2(5,1%) + 31(32,1%) — L (3,1%,3,1)—
2(3%) - 1(5,3,1) - $£(5,1,3) - $(7,1%) + 14(9) .

In Table II (m!) stands for (m, ..., m) (I times). The universal com-

plex of singularity classes responsible for this problem is closely related
to cyclic homology theory. This relation is studied in [13].

®
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