
HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONSV.A. VASSILIEVI shall desribe the reent progress in the study of ohomology rings of spaes ofknots in Rn , H�(fknots in Rng), with arbitrary n � 3. "Any dimensions" in the titlean be read as dimensions n of spaes Rn , as dimensions i of the ohomology groupsH i, and also as a parameter for di�erent generalizations of the notion of a knot.An important subproblem is the study of knot invariants; in our ontext theyappear as 0-dimensional ohomology lasses of the spae of knots in R3 . It turns outthat our more general problem is never less beautiful. In partiular, nie algebraistrutures arising in the related homologial alulations have equally (or maybeeven more) ompat desription, of whih the lassial "zero-dimensional" part anbe obtained by easy fatorization; see espeially x2.5.There are many good expositions of the theory of related knot invariants (for somereferenes see [11℄); therefore I shall deal almost ompletely with results in higher (orarbitrary) dimensions. 1. Main onstrutionWe onsider both the standard ompat knots, i.e. smooth embeddings S1 ! Rn ,and the long knots, i.e. embeddings R1 ! Rn oiniding with a standard linearembedding outside some ompat subset in R1 , see Fig. 1.The study of the latter spae is more essential, beause the algebrai struture ofthe ohomology ring of the spae of standard knots is built of that of the similar ringfor long knots (whih plays here the role of the "oeÆient ring") and the topologialnontriviality of the irle S1 and ertain its on�guration spaes.Let us denote by K the spae of all smooth maps S1 ! Rn (respetively, of mapsR1 ! Rn with suh boundary onditions). This is a linear (respetively, an aÆne)Talk delivered at the Royal Soiety Disussion Meeting "Topologial Methods in the PhysialSienes".
Figure 1. A long knot1



2 V.A. VASSILIEVspae. The disriminant � � K is the set of all maps whih are not smooth embed-dings, i.e. have either self-intersetions or singular points. The spae of knots is thedi�erene K n �.1.1. Arnold's redution. It is onvenient to study the ohomology group of thespae of knots by a sort of the Alexander duality,(1) ~H i(K n �) ' �Hn1�i�1(�):The bar in the notation �H� means that we onsider Borel{Moore homology, i.e. thehomology group of the one point ompati�ation, and n1 is the notation for thedimension of K. Of ourse, the whole right-hand part in (1) is, stritly speaking,senseless. However it an be given some strit sense by means of appropriate �nite-dimensional approximations to the spae K, see x1.8: roughly speaking, the elementsof this group are the semialgebrai yles of odimension i + 1 in K. A redutionlike (1) was used �rst by V.I. Arnold [4℄ (in the �nitedimensional situation of thestandard disriminant varieties in the spae of polynomials in C 1) and is very use-ful in the whole theory of disriminants. Indeed, the disriminant sets of singularmaps are singular varieties, strati�ed in the orrespondene with the lassi�ationsof (multi)singularities, and (as we shall see in our speial ase) a lot of their topolog-ial properties an be expressed in the terms of these strati�ations.1.2. Simpliial resolutions. Further, it is onvenient to study the topology of dis-riminants by means of the simpliial (or, more generally, onial) resolutions. Theseresolutions provide topologial spaes homotopy equivalent to initial ones (in parti-ular having the same homology groups), but having more transparent homologialstruture whih is easier to alulate. An important illustration of this method omesfrom the theory of plane arrangements.Let us onsider a �nite olletion of aÆne planes (of arbitrary dimensions) in Rm ,(2) L = N[i=1Li;and suppose that we need to alulate the ohomology group of its omplement RmnL(or, equivalently, the Alexander dual group �H�(�)).The resolutions of three line arrangements shown in the lower part of Fig. 2 aregiven in its upper part. On the �rst step we take these lines separately, and then addsome furniture spanning the points of separated lines arising from one and the samepoint below. For two left pitures all standard onstrutions of simpliial resolutionsgive essentially one and the same spae. Namely, if we have a double intersetionpoint of the arrangement then we mark the orresponding two points on separatedlines and join them by a segment. However, there are two main di�erent ways toresolve the right-hand arrangement.
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Figure 2. Simpliial resolutions of line arrangementsOne of them (modelling the ombinatorial formula of inlusions and exlusions)will �rst join by segments all pairs of intersetion points of any two planes (indepen-dently on whether these points belong to some planes more or not). Then over alltriple intersetion points of the arrangement we obtain a triple of segments forminga triangle "without interior part", whih will be �lled on the next step; on the nextstep the preimages of quadruple points (if any) will be �lled by tetrahedra, et. Weshall all this resolution (and its generalizations) the naive resolution, in ontrastwith the eonomial one, whih provides the upper right-hand piture in Fig. 2 andis based on the notion of the order omplex of a partially ordered set (=poset), f.[24℄.De�nition 1. Given a poset (A;>), the orresponding order omplex P (A) is thesimpliial omplex, whose verties are the points of the set A, and the simplies spanall the sequenes of suh points monotone with respet to the partial order.An important family of posets is provided by the theory of plane arrangements.Given suh an arrangement (2), for any subset I of the set of indies f1; : : : ; Ngdenote by LI the plane Ti2I Li. All planes of the form LI are (not anonially) alledthe strata of the arrangement L. The set of all strata is a poset (by inlusion); letP (L) be the orresponding order omplex. The order omplexes of three arrange-ments of Fig. 2 are shown in Fig. 3; here the vertex labeled by (12) denotes theintersetion plane (point) of the �rst and the seond planes (lines) labeled by (1) and(2) respetively.The eonomial simpliial resolution of the arrangement L will be de�ned as a sub-set of the diret produt P (L)�Rm . For any nonempty stratum LI , let �(I) � P (L)be the order subomplex subordinate to LI , i.e. the subomplex of P (L) onsisting ofonly those simplies all whose verties orrespond to planes ontaining LI (or oinid-ing with LI). This is a ompat ontratible spae: indeed, all its maximal simplieshave the ommon vertex fLIg. Then the resolved arrangement eL is de�ned by the
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Figure 3. Order omplexes for line arrangementsformula(3) ~L =[ (�(I)� LI) � P (L)� Rm ;union over all geometrially distint strata LI .For two left arrangements in the bottom row of Fig. 2, the orresponding graphsdrawn above them an be onsidered as the pitures of suh resolutions as well, es-peially if we distinguish the middle points of the inserted segments. These segmentsan be onsidered as produts �(I) � LI for two-element sets I, so that LI are theintersetion points of some two lines, and the order subomplex �(I) is the union oftwo segments joining the orresponding vertex to two verties orresponding to thesetwo lines.The obvious projetion P (L) � Rm ! Rm de�nes a map p : ~L ! L. This mapis proper and semialgebrai, and all its �bers are di�erent spaes of the form �(I),therefore it is a homotopy equivalene. Moreover, its extension to the map of one-point ompati�ations ~L! L is also a homotopy equivalene, in partiular de�nesan isomorphism of Borel{Moore homology groups. But why is the resolved spae ~Lbetter than the initial one?1.3. The �ltration. There is a natural inreasing �ltration(4) F1 � � � � � Fn�1 = ~Lon the resolved spae ~L: its term Fp equals the union like (3) but over the strata ofodimension � p only. The di�erene Fp n Fp�1 is the union of produts ��(I) � LIover all strata LI of odimension exatly p, where ��(I) is equal to �(I) less the link��(I) of �(I), i.e. the union of simplies not ontaining the minimal vertex fLIg.Indeed, the set ��(I) � LI belongs to the lower term Fp�1 of the �ltration. This�ltration an be extended to a �ltration f �F0 � �F1 � : : :g of the ompati�ation ~L:its term �F0 onsists of the added point, and other terms �Fp are just the losures ofthe similar terms of the �ltration on ~L.



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 5Theorem 1. This �ltration homotopially splits into the wedge of orresponding quo-tient spaes: there is a homotopy equivalene(5) ~L � �F1 _ ( �F2= �F1) _ : : : _ ( �FN�1= �FN�2):This theorem was proved in [71℄; for an equivalent (and obtained simultaneously)result in the terms of the "naive" resolution see [61℄.In partiular, we have the splitting of the Borel{Moore homology group of �L (or,whih is the same by the Alexander duality, of the ohomology group of Rm n L):(6) Hm�i�1(Rm n L) ' �Hi(L) � �Hi(~L) '' � �Hi( ��(I)� LI) � �Hi�dim LI (�(I); ��(I));here ~H� denotes the homology group redued modulo a point, and summation is overall strata LI of the arrangement.This expression was obtained �rst by Goresky and Mapherson [32℄ by a di�erentmethod. It implies that the homology groups of Rm n L are ompletely determinedby dimensions of spaes LI .The splitting (5) implies that even the stable homotopy type of this omplementaryspae depends on these data only.1.4. Geometrial interpretation. The formula (6) has the following diret real-ization (see [71℄, [43℄). Suppose an Eulidean metri is �xed in Rm . Consider aonstant vetor �eld V ("power") in Rm in general position with respet to L. Forany k-dimensional simplex of the order subomplex �(I)=��(I) (i.e. for a dereas-ing sequene of k + 1 strata LI1 � LI2 � : : : � LIk � L) and for any point x 2 LIonsider the sequene of k + 1 rays in Rm issuing from x, namely the trajetoriesof x in the planes Rm ; LI1 ; : : : ; LIk under the ation of this power. (We an realizeV as the gradient �eld of a generi linear funtion � : Rm ! R, then these rayswill be the trajetories of gradients of restritions of � to these planes.) As V is ingeneral position, these rays are linearly independent, and their onvex hull is linearlyhomeomorphi to an (k + 1)-dimensional otant with origin at x. Suh otants overall x 2 LI sweep out an (i + 1 + dim LI)-dimensional wedge in Rm .If we have a yle � of the omplex �(I)=��(I), then the sum of (uniformlyoriented) orresponding wedges is a relative yle in Rm( mod L), and the relativehomology lass r� of the latter yle depends on the lass of � in H�(�(I); ��(I))only.Finally we take the lass in H�(Rm nL) Poinar�e{Lefshetz dual to r� in Rm nL,i.e. de�ned by intersetion indies with the relative yle r�.This realization depends on the hoie of the diretion V , but not very muh. Twoelements in �H�(Rm ; L), orresponding in this way to one and the same lass � 2



6 V.A. VASSILIEVH�(�(I); ��(I)) via di�erent generi funtions an di�er by elements of lower �ltra-tion only, i.e. by a sum of similar lasses oming from the summandsH�(�(J); ��(J))orresponding to planes LJ stritly ontaining LI .Moreover, if all strata LI have odimensions � 2 in all greater strata LJ , then theisomorphism (6) is anonial: in this ase the spae of generi (in the desired sense)vetors V is path-onneted.By analogy with the knot theory, suh realizations of elements of H�(Rm n L) anbe alled their ombinatorial expressions.1.5. Multipliation in ohomology. Unfortunately the usual homotopy type ofthe omplement of an arrangement annot be determined by the dimensional data.The most developed ase is that of omplex hyperplane arrangements. In this asethe multipliative struture of the integral ohomology ring of the omplement isdetermined by the dimensional data: the diret expression was obtained by Orlikand Solomon [45℄ with the help of some ideas from pioneering works of Arnold andBrieskorn [3℄, [16℄. However even in this ase (and even for entral, i.e. passingthrough the origin, arrangements in C 3) the fundamental group of the omplement isnot determined by these data: there exist pairs of arrangements with equal dimensionsof all strata but with di�erent fundamental groups, see [49℄.For arbitrary (not hyperplane) omplex arrangements the ohomology ring of theomplement is also de�ned by the dimensional data: in the ase of rational oeÆientsthis was proved in [23℄, and in the more ompliated integral ase in [26℄ with thehelp of some ideas from [69℄.Still, something good an be said even in the most general ase of an arbitraryarrangement of real aÆne planes of arbitrary (may be di�erent) dimensions in Rm : thegraded ring assoiated with the �ltered ringH�(Rm nL) also is de�ned by dimensionaldata (and some information on mutual orientations of all planes LI).Indeed, the splitting (6) is not anonial: the summands in the seond line of (6)related to some stratum LI de�ne well some elements of the �rst line only up to lowerterms of the �ltration (more preisely, only up to elements of similar terms L~I withL~I 6=� LI). However, let us rewrite the equation (6) as that for assoiated gradedgroups:(7) GrH�(Rm n L) �= �Hm���1�dim LI (�(I); ��(I))The splitting in this formula is already anonial (up to the hoie of orientationsof planes LI), and the multipliation in the assoiated graded ring is as follows.Let us onsider two strata LI ; LJ � L and two yles A;B of the quotient om-plexes �(I)=��(I) and �(J)=��(J), dim A = u, dim B = v, represented by linearombinations of simplies of subomplexes �(I);�(J) with boundaries in ��(I) and��(J) only. The shu�e produt A�B of these yles is de�ned as follows (see [69℄).



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 7If LI and LJ are not transversal (i.e. belong to some proper plane in Rm) or haveno intersetion points, then A�B = 0. Now suppose that LI and LJ are transversaland LK = LI \ LJ 6= ; (we an take K = I [ J). Let a � A and b � B besome two simplies with u + 1 and v + 1 verties respetively, i.e. some dereasingsequenes of strata of L having fLIg and fLJg as their last elements. Considerall �u+v+2u+1 � possible shu�es of these sequenes, i.e. all (nonmonotone) sequenes ofu + v + 2 strata in whih all elements of a and b appear preserving their ordersin the sequenes a and b. To any suh shu�e a monotone sequene orresponds:any element � of the shu�e oming from the sequene a (respetively, b) shouldbe replaed by the intersetion of the orresponding stratum with the last stratumoming from the sequene b (respetively, a) and staying before � in the shu�e. Theobtained monotone sequene is by de�nition an (u + v + 1)-dimensional simplex ofthe order omplex LK . The shu�e produt of our simplies a and b is de�ned asthe sum of all suh simplies taken with signs equal to parities of the orrespondingshu�es (i.e. the numbers of transpositions reduing them to the simple onatenationof sequenes a and b) multiplied by one sign more, whih depends on multi-indiesI; J and K only and is de�ned by the omparison of the �xed oorientation of theplane LK in Rm with the ordered pair of oorientations of LI and LJ . The shu�eprodut of yles A and B is de�ned by linearity. It is a relative yle de�ning anelement of the summand in the right-hand part of (7) orresponding to the stratumLK ; this element depends only on homology lasses of A and B in the summandsorresponding to LI and LJ .Theorem 2 (f. [69℄, [29℄, [25℄, [26℄). The isomorphism (7) ommutes the shu�eprodut in its right-hand part and the multipliation in its left part obtained fromthe usual ohomologial multipliation. If all strata LI have odimensions � 2 in allgreater strata LJ , then the same is true for the isomorphism (6) and the multipliationin the ring H�(Rm n L) itself, and not in its graded ring only.This is a orollary of the expliit onstrution desribed in x1.4. Given two strataLI , LJ and lasses � 2 H�(�(I); ��(I)), � 2 H�(�(J); ��(J)), we an realizeorresponding elements in the left part of (6) with the help of diretions VI , VJ inRm that are in general position if LI and LJ have nonempty transversal intersetion;if not then these diretions should be opposite to one another and transversal to aplane separating or ontaining these strata.1.6. All the same in the spae of urves. The disriminant in the spae of urvesK also is a union of planes: for any pair of points a; b in R1 we onsider the planeL(a; b) � K onsisting of all maps f : R1 ! Rn suh that f(a) = f(b) if a 6= b orf 0(a) = 0 if a = b. Any point of the disriminant belongs to at least one suh plane.Then we take the order omplex of all possible intersetions(8) L(a1; b1) \ L(a2; b2) \ :::



8 V.A. VASSILIEVand limit positions of suh intersetions (all of them are aÆne planes in K whoseodimensions are multiples of n), supply it with a natural topology, and de�ne thesimpliial resolution in exatly the same way as previously, i.e. as a subset of thediret produt of this order omplex and the spae K. Then we de�ne the �ltrationon this resolution by the odimensions (divided by n) of these planes and onsiderthe arising spetral sequene.The unique serious diÆulty here appears from the fat that some points of �belong to in�nitely many planes L(a; b): for instane a map f sending a segment ofR1 into one point or sending two segments of R1 into one and the same ar in Rn . Itis impossible to arry out the standard onstrution of the order omplex ountingsuh in�nite objets. (There is a more re�ned onstrution of onial resolutions,whih helps us in some troubles of this kind, see e.g. [67℄, [65℄ and x3.1 below, butin the ase of knots this diÆulty remains very serious.)Therefore we restrit ourselves to the ase of �nite intersetions: for any d weonsider only the poset �d of planes (8) of odimension � nd in K, onstrut theorresponding order omplex, and de�ne the general order omplex � as the diretlimit of suh omplexes over d ! 1; the numbers d de�ne a natural inreasing�ltration on them. Any term �d of this �ltration is �nite-dimensional, and anydi�erene �d n �d�1 is naturally divided in a �nite family of �nite-dimensional ells,so that its one-point ompati�ation is a �nite ell omplex.The homologial study of this �ltered omplex is a major problem in the theory of�nite type ohomology groups of knot spaes (and the theory of �nite type invariantsis its part onsidering only the ells of two upper dimensions in any term of the�ltration).Indeed, the resolved disriminant � � ��K an be naturally projeted to both �and K. The �rst projetion indues a natural �ltration F1 � F2 � : : : on it from the�ltration f�dg on �. The restrition of this projetion to the di�erene Fd n Fd�1 isa loally trivial bundle over �d n �d�1 whose �bers are subspaes of odimension ndin K. Thus the "Borel{Moore homology group of �nite odimension" of Fd n Fd�1 isredued (via some sort of the Thom isomorphism) to the usual (�nite-dimensional)homology group of the base (in partiular is �nitely generated). This allows us toalulate in priniple all the (�nite odimension) homology groups of spaes Fd. The�nite type homology lasses of � are nothing else than diret images of their elementsunder the seond projetion � ! �, and the �nite type ohomology lasses of thespae of knots are their Alexander duals. The "order" (i.e. the �ltration) of theselasses is de�ned by our �ltration of the resolved disriminant.The ellular struture of terms �d n �d�1 (and hene also of Fd n Fd�1) togetherwith inidene oeÆients of ells is expliitly desribed in [59℄, [57℄. It onsists of the



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 9� � � � �Æ  QQ�� s� � � � HHH���� ��HHH��� ����sFigure 4. Examples of generalized hord diagramsenumeration of di�erent families of planes (8) and the simpliial struture of insertedorder omplexes.1The families of planes (8) are lassi�ed and depited in the terms of (generalized)hord diagrams, see Fig. 4: any partiular plane L(a; b) is depited by an ar (hord)onneting the points a; b of the line R1 or the irle S1, and �nite olletions of suhplanes (giving planes (8) as their intersetions) by olletions of suh hords or moreompliated objets. For instane, seven pitures of Fig. 4 denote the following planesrespetively: a plane L(a; b), a 6= b; a plane L(a; a); a plane L(a; ) \ L(b; d) wherea < b <  < d 2 R1 ; a plane L(a; b) \ L(b; ) � L(b; ) \ L(; a) � L(; a) \ L(a; b)where a < b < ; a plane of odimension 3n onsisting of maps gluing together some�xed four points of R1 ; a plane L(a; a) \ L(b; b); a ertain plane of odimension 5n.The order omplex arising over the plane of third type is just a segment (or, morepreisely, the union of two segments joining the vertex orresponding to the planeL(a; )\L(b; d) with two verties orresponding to planes L(a; ) and L(b; d), f. theleft piture of Fig. 2). The order omplex arising over the fourth piture oinideswith that shown in the upper right part of Fig. 2. The order omplex over the �fthpiture is two-dimensional and is equal to the one over the graph given in the lowerpart of Fig. 5 (not ontaining the segments with endpoint (1234)), the whole thispiture presents the orresponding poset (more preisely, only its primitive edges).The theory of these resolutions is related very muh to the graph theory. Forinstane, let us resolve in the naive way the stratum of � onsisting of maps R1 ! Rnwith unique k-fold sel�ntersetion point. This stratum onsists of intersetions of �k2�planes L(ai; aj), 1 � i < j � k. These planes orrespond to the verties of theinserted simplex. They are onveniently desribed by the edges onneting somepairs (i; j) of k numbered points, while the faes of this simplex are the olletions ofsuh edges, i.e. just the graphs on these k verties (without double edges or loops).Some of these faes belong to the lower term of our �ltration of the disriminant:they are exatly the faes orresponding to the non-onneted graphs. Thereforewe obtain naturally the omplex of onneted graphs, f. [61℄. This omplex arises1in [59℄, I have used the "naive" resolution like the seond from the right upper piture in Fig. 2:in this (equivalent) approah the study of inserted order omplexes is replaed by the study ofinserted simplies redued modulo their subomplexes lying in the lower terms of the �ltration, f.[61℄



10 V.A. VASSILIEV

(12) (13) (14) (23) (24) (34)
(123) (124) (134) (234) (12)(34) (13)(24) (14)(23)s s s s s s s

ssssssBBBBBBB
BBeeeeeeeee

BBBBBBBBBeeeeeee
ee��������� ZZZZZZZZZ

ZZZBBBBBBBBB,,,,,,,,
,,,"""""""""""""""����������

����
(1234)u

���������������������� 






 llllllll
HHHHHHHHHHHHHHBBBBBBB

Figure 5. Poset and order omplex for a quadruple pointalso in the naive resolution of the "diagonal" plane arrangement in Rkn onsistingof all ordered olletions of k points in Rn at least two of whih oinide. Anotherimportant related omplex is that of two-onneted graphs, see [63℄, [10℄, [51℄, [52℄.On the other hand, the order omplex arising from the eonomial resolution of thesame stratum leads (after ombining together some simplies) to the graph-omplexof trees due to Kontsevih.For the study of knot invariants in R3 it is enough to onsider only the simplesthord diagrams like the ones in the �rst and the third pitures of Fig. 4, i.e. withall di�erent endpoints. More preisely, suh hord diagrams (and the orrespondingells) generate the homology groups responsible for knot invariants, while the relationsbetween them are desribed in the terms of similar diagrams allowing either oneasterisk as in the seond piture, or one triple point as in the fourth one.However, for the alulation of higher ohomology groups of spaes of knots theonsideration of more ompliated diagrams like the �fth and the last ones is absolutelyneessary.1.7. The spetral sequene and its onvergene. The alulation of homologygroups (of �nite �ltration) of the resolved disriminant (or of the ohomology lassesin K n � Alexander dual to them) an be presented by a ohomologial spetralsequene with the support in the seond quadrant, see Fig. 6. Its initial term E1 isgiven by(9) Ep;q1 ' �Hn1�p�q�1(F�p n F�p�1) ' �Hp(n+1)�q�1(��p n ��p�1; A):Here A is the orientation sheaf of the n(1 + p)-dimensional aÆne bundle (F�p nF�p�1)! (��p n��p�1). If n is even then this sheaf is isomorphi to Z (as the bundle
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Figure 6. The spetral sequeneis orientable) but for n odd is, generally, not. The order omplexes �d do not dependon n, thus for di�erent numbers n of the same parities the olumns Ep;�1 of spetralsequenes alulating the ohomology of spaes of knots in Rn oinide anoniallyup to a shift along the q-axis; in the ase of Z2-oeÆients the same is true also forn of di�erent parities.If n is greater than 3 then there are only �nitely many nonzero ells on any diagonalfp+q = onstg. Using the mahinery of �nite dimensional approximations, it is easyto prove that in this ase the in�nitely degenerate strata of � do not ontribute tothe alulation of ohomology lasses, therefore if n � 4 then our spetral sequeneonverges exatly to the ohomology group H�(K n �) of the spae of knots in Rn .For the most intriguing ase n = 3 this is not the ase (or at least is not proved).Something good an be a priori said on the lower diagonal fp + q = 0g responsiblefor the knot invariants: any nonzero element of the group E�i;i1 atually de�nes anontrivial knot invariant of �ltration i (modulo the group of invariants of smaller�ltration). This �ltration has a transparent geometrial desription in the terms of�nite di�erenes, see [13℄, [12℄ or x0.2 in [59℄. However for the elements of terms Ep;q1on higher diagonals it is not known whether the in�nitely degenerate strata will notspoil them. Any suh element de�nes a (p+q)-dimensional ohomology lass of Kn�(again, modulo the elements of lower �ltration), but we annot be sure a priori thatthis lass is not trivial, i.e. that the orresponding yle in the disriminant is not aboundary.1.8. Justi�ations and approximations. Using the Weierstrass approximationtheorem, we an hoose a perfet (in some sense) system of �nite dimensional aÆneapproximating subspaes fK�g, � !1, of the spae of urves K. The orresponding



12 V.A. VASSILIEVrings H�(K� n �) onverge to the ring H�(K n �). Also, we an assume that allplanes K� are in general position, in partiular transversal to the natural strati�ationof �. Then for any partiular � the ohomologial spetral sequene alulatingH�(K� n�) and onstruted from the simpliial resolution of � \K� also looks as inFig. 6 (although it will have only �nitely many nontrivial olumns). The stabilizationof spetral sequenes means the following. For any natural s there exists � suhthat terms Ep;q1 , p � �s, of all our spetral sequenes alulating ohomology ofK� n �, K�+1 n �, et. are anonially isomorphi, and the images of di�erentialsdr : Ep;qr ! Ep+r;q�r+1r , r � s, ating from these ells to the right also oinide. Thusthe limit spetral sequene Ep;qr � lim�!1Ep;qr (�) is well de�ned.A very important role in the birth of this theory was played by the V. Arnold'sproblem on the stable ohomology ring of omplements of disriminants of omplexhypersurfae singularities, see [5℄. Being still of �nite dimensional nature, this prob-lem fored me to look for the homology lasses arising uniformly in "very highdimen-sional" disriminant varieties, and also to think on the nature of their stabilization,see [58℄. 2. Further results and problems2.1. Kontsevih integral.Theorem 3. For any n � 3, our spetral sequene with omplex oeÆients stabilizesat the �rst term:(10) Ep;q1 =C ' Ep;q1 =C :This theorem was proved by Kontsevih about 1994 and is surely true. Its publishedpart proves the stabilization of the diagonal responsible for knot invariants, i.e. theequality (10) for n = 3 and p+q = 0, see [37℄, [20℄. For an arbitrary n � 3, almost thesame integral proves the identity (10) on the lower boundary of the spetral sequene,i.e. for ells Ep;q with q + (n � 2)p = 0, but for the upper ells the proof uses someextra e�orts.A great problem is whether the same is true over the integers.I onjeture that in the ase of long knots this is true, and moreover the homotopysplitting (5) of any �nite term �Fd of the �ltration of the one-point ompati�ationof our resolved disriminant holds in some preise sense, see e.g. [64℄.Another great ahievement oming from the Kontsevih's works is an integral rep-resentation for the ohomology lasses.A spetral sequene similar to (but easier than) the one outlined in xx1.4{1.5 allowsus to alulate the ohomology groups of spaes Y X of ontinuous mapsX ! Y whereX is an m-dimensional �nite ell omplex and Y an m-onneted one. Indeed, Y ishomotopy equivalent to the spae RN n � where N is suÆiently large and � is alosed onial subset of odimension � m + 2. Then we onsider the vetor spaeof all ontinuous maps X ! RN , de�ne the disriminant in it as the spae of all



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 13� �?��6 � �� �� �6??Figure 7. Arrow diagramsmaps whose images interset �, resolve this disriminant as previously and obtaina spetral sequene onverging to the ohomology group of the omplement of thisdisriminant, i.e. of the spae (RN n�)X � Y X , see [56℄, [57℄. This spetral sequeneextends the Anderson's spetral sequene [2℄ to the ase when X is not a smoothmanifold, and is isomorphi to it if X is. It provides some information also if Y isonly (m� 1)-onneted, but in this ase we annot be sure that it alulates all theohomology groups of Y X , in full analogy with the disussion at the end of x1.7. IfX is a irle, then it is overed by the Adams{Eilenberg{Moore spetral sequene [1℄,[27℄ (alulating in partiular the ohomology of loop spaes). The "deRhamization"of the latter spetral sequene is known as the theory of iterated path integrals, see[19℄, [35℄. The Kontsevih's integral (and possibly also its more smart versions provingTheorem 3 in full generality) an be onsidered as its extension to the problems "ofseond order", see x2.4 below.2.2. Combinatorial expressions. The most well-studied part of this theory is, ofourse, that of knot invariants. Shortly after its appearane, di�erent ombinatorialformulas for these invariants were developed. They express the values of invariantsin the terms of the geometrial disposition of the knot, see e.g. [39℄, [17℄ and [48℄.The most onvenient formulas of this kind were announed and partly proved byM. Polyak and O. Viro in [46℄, [47℄, see also [54℄, [55℄.These formulas are desribed in terms of arrow diagrams, i.e. pitures like the onesshown in Fig. 7.Let us �x a diretion in R3 transverse to the ommon diretion "at in�nity" of ourlong knots. Given a generi long knot f : R1 ! R3 (see Fig. 1), the value of the leftpiture in Fig. 7 on it is equal to the number of 4-on�gurations (a < b <  < d) � R1(ounted with appropriate signs) suh that the point f(a) lies above f() with respetto the hosen diretion, and f(d) lies above f(b). It turns out (see [46℄) that thisvalue atually is a knot invariant, namely it oinides with the unique invariant of�ltration 2.M. Goussarov has proved a wonderful theorem:Theorem 4 (see [33℄). Any invariant of �nite �ltration of long knots in R3 an berepresented by a �nite linear ombination of arrow diagrams.Formally speaking, any ohomology lass of �nite �ltration of the spae of knots inRn , n � 3, also should have ombinatorial representations (although maybe formu-lated in terms of more ompliated onditions whose total omplexity it is diÆultto estimate); the strength of the previous theorem onsists in the fat that in the



14 V.A. VASSILIEVase of invariants we an use only onditions of a very speial kind. To �nd theombinatorial formulas for other ohomology lasses � 2 H�(K n �) e�etively, it isonvenient to onsider suh a ombinatorial formula as a semialgebrai relative ylein K (mod �), suh that � equals the linking number with the boundary of this ylein �.It is natural to onstrut suh yles by indution over our spetral sequene. Foran illustration, let us onsider again the theory of plane arrangements and theiromplements. In the ase of the line arrangement shown in Fig. 2 left, the entiregroup E12;� appears from the unique rossing point L(12). This group is nontrivialonly for � = �1, is isomorphi to Z and generated by the homology lass of thesegment �(1; 2) modulo its endpoints (lying in F1). The splitting formula (5) meansthat we an extend this relative yle in �F2 (mod �F1) to a (Borel{Moore) yle inentire ~L. However, to be able to de�ne the value of this generating element on any0-dimensional yle in R2 n L we need to hoose suh an extension expliitly. Thenwe projet it to L and get a yle there. Finally, we need to hoose a relative yle inR2 (mod L) whose boundary oinides with this yle. Then we all this relative yle"a ombinatorial formula": its value on a point in R2 n L is equal to the multipliityof this yle in the neighborhood of this point.If we have a more ompliated plane arrangement, then we an onstrut thisextension step by step over our �ltration. Our starting element  2 E1p;q is representedby a yle with losed supports in Fp n Fp�1 (or, equivalently, by a relative yle in�Fp= �Fp�1). We take its �rst boundary d1(), whih is a yle in Fp�1 n Fp�2. Then wespan it, i.e. onstrut a hain ~1 � Fp�1 n Fp�2 suh that �~1 = d1() there. Thenwe take the boundary of  + ~1 in the spae Fp�2 nFp�3 and span it there by a hain~2; et. The splitting formula (5) ensures that all this sequene of hoies an beaomplished. Moreover, a preise �nal result of this sequene is known sine [71℄:see x1.4. It appears if we span our yles in the most obvious way: by the trajetoriesof generi ows.The ase of knots (say, of long knots) is very similar to that of plane arrangements.For instane, here is a heuristi interpretation of the Polyak{Viro arrow diagram for-mulas. A knot invariant an be onsidered as a relative yle of full dimension n1in the spae of urves K (mod �): its value at a knot f equals the multipliity of theyle in a neighborhood of f in K. All strata of the disriminant whih an generate(�nite-type) homology lasses of this dimension are de�ned by ordinary hord dia-grams only: all points ai; bi in (8) should be di�erent. At them, the orrespondingplanes L(ai; bi) meet normally, so that the orresponding order subomplexes �(�)are simplies (or, more preisely, their �rst baryentri subdivisions). I do not know asuitable analog of a globally de�ned vetor �eld V from x1.4 on the spae K. However,in the onstrution of x1.4 we ould use not the one vetor V but just a generi fam-ily of suh vetors, one for eah stratum LI , whose trajetories span them in greaterstrata. In the ase of knots, when the planes L(ai; bi) in (8) are de�ned by onditions



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 15f(ai) = f(bi), it is natural to take a vetor �eld preserving the projetion of our knotto R2 but inreasing all the di�erenes z(bi) � z(ai), where z is some oordinate inR3 , say the one normal to the "blakboard" plane R2 . To make this formula orretwe need to order the endpoints of any hord, i.e. to all one of them ai and theother bi. Thus the arrow diagrams appear. The union of wedges emanating from thepoint f as in x1.4 will then onsist of urves with the same projetion to R2 but withf(bi) "above" f(ai). The knot theory is very nonlinear (in ontrast to the theory ofplane arrangements), in partiular suh wedges orresponding to hord diagrams ofthe same topologial type but with di�erent on�gurations of points ai; bi an haveintersetions in K. The algebrai multipliity of suh an intersetion at some point� 2 K n � is exatly the value (in the Polyak-Viro sense) of the arrow diagram onthe orresponding knot.Of ourse, everything is not so easy. Indeed, the strata orresponding to di�erenthord diagrams have ommon boundaries as the endpoints of di�erent hords tend toone another. Some additional trouble omes from singular maps with nongeneri pro-jetions to R2 . Therefore the wedges onstruted as above have some extra boundaryomponents. Construting the ombinatorial formulas we need to span these bound-aries by some other hains in K or try to hoose the orientations of arrows in suh away that these boundaries of di�erent wedges annihilate. The Goussarov's theoremmeans (in our terms) that it is always possible to hoose the orientations of arrows insuh a way that for the spanning hain we an take sums of similar wedges emanatingfrom the strata (8) of lower omplexity.The above heuristi speulations are helpful also in the ase of higher dimensions(in any of senses indiated in the prefae), i.e. in onstruting the ombinatorialexpressions of higher-dimensional ohomology lasses of spaes of knots in Rn , n � 3.In [68℄, natural lasses of semialgebrai subvarieties in K and in di�erent termsFi n Fi�1 of the �ltration were introdued, of whih (some of) these spanning hainsan be built.2.2.1. Example: Teiblum{Turhin oyle and its realization. The �rst positive di-mensional ohomology lass of �nite �ltration of the spae of long knots in R3 wasalulated by my students, D. M. Teiblum and V. E. Turhin, about 1995. It is alass of dimension 1 and �ltration 3. (Aordingly to [59℄, there are no ohomol-ogy lasses of �ltration � 2 other than the simplest knot invariant.) However, thisalulation was quite impliit: they have alulated just the orresponding groupE�3;41 � Z of the spetral sequene in the terms of generalized hord diagrams. It islear from the shape of the spetral sequene that this group survives and the �nalgroup E�3;41 also is isomorphi to Z, so that its generator an be extended to a wellde�ned 1-dimensional ohomology lass of the spae of knots.However, the fat that this lass is nontrivial does not follow from the generalonsiderations, f. the disussion in x1.7. This fat was proved in [68℄ by means ofan expliit ombinatorial formula, see Fig. 8 and the following theorem.



16 V.A. VASSILIEV+ +" !� �' $?? 6 � �� �? 62 7! � ���6? -���*HHHj 21'& $%������������Figure 8. Combinatorial formula for Teiblum{Turhin oyleLet us hoose a diretion "to the right" in the "blakboard" plane R2 (i.e. in thequotient of the spaes R3 by the diretion hosen previously).Theorem 5 (see [68℄). The value of the Teiblum{Turhin oyle on any generi loopin the spae K of long knots (i.e. on a losed 1-parametri family of suh knots) isequal mod 2 to the number of points of this loop suh that one of three holds (f. Fig.8):a) there are �ve points a < b <  < d < e in R1 suh that f(a) is above f(d), andf(e) is above f() and f(b);b) there are four points a < b <  < d in R1 suh that f(a) is above f(), f(b) isbelow f(d), and the projetion of the derivative f 0(b) to R2 is direted to the right;) there are three points a < b <  in R1suh that f(a) is above f(b) but below f(),and the "exterior" angle in R2 formed by projetions of f 0(a) and f 0(b) ontains thediretion "to the right" (i.e. this diretion is equal to a linear ombination of theseprojetions, and at least one of oeÆients in this ombination is nonpositive).(These points of the loop in K should be ounted with multipliities equal to thenumbers of di�erent point on�gurations in R1 for whih the orresponding onditiona), b) or ) is satis�ed.)This statement remains true if we replae R3 by any Rn, n � 3, R2 by Rn�1 , ageneri loop in the spae of knots by a generi (3n � 8)-dimensional yle, and the1-dimensional Teiblum{Turhin oyle by its (3n� 8)-dimensional stabilization, seedisussion in x1.7.Further, let us onsider the onneted sum of two equal (long) trefoil knots in R3and a path in the spae of knots onneting this knot with itself as in the proofof the ommutativity of the knot semigroup: we shrink the �rst summand, move it"through" the seond, and then blow up again.Proposition 1. This losed path in the spae of long knots has exatly seven inter-setion points (ounted with multipliities) with the union of three varieties indiatedin items a, b and  of the previous theorem.



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 17But the Teiblum{Turhin oyle is a well-de�ned integral ohomology lass, thusits value on (the integral homology lass of) this loop is not equal to zero, and thegroup generated by this oyle is free.Remark 1. I annot yet reprove the Goussarov's theorem in this way: the ombi-natorial formulas for knot invariants obtained by the straightforward appliation ofour algorithm an inlude some varieties in K more ompliated than just the vari-eties given by arrow diagrams, f. Theorem 5. The onstrution of spanning ylespartiipating in this algorithm leaves many hoies, e.g. how to order the endpointsai; bi of a hord. The Goussarov's theorem implies that it is possible to hoose thesepossibilities in suh a way that all the awkward varieties will be anelled. I hopethat a deeper understanding of its proof will help to formulate the exat rule for this.Also, in all situations more ompliated than that of invariants I do have, stritlyspeaking, not an algorithm (i.e. something de�nitely onverging to an answer), butjust a olletion of triks whih sueed to give suh answers in partiular problemslike that of the Teiblum-Turhin oyle or the one onsidered in the next subsetion.Remark 2. The virtual knots introdued by L. Kau�man in 1997 and applied in [33℄to the onstrution of ombinatorial formulas an be identi�ed as another (extremelybig) lass of subvarieties of the spae of urves K.2.3. Cohomology of spaes of ompat knots. A similar theory exists for thespae of ompat knots S1 ! Rn . There is a one-to-one orrespondene betweeninvariants of ompat and long knots in R3 , but in higher dimensions many extraohomology lasses of spaes of ompat knots arise from the topologial nontrivi-ality of the irle. For instane, already in �ltration 1 we have two suh lasses ofdimensions n � 2 and n � 1 (with oeÆients in Z2, and if n is even then also withinteger oeÆients). The ombinatorial formulas for all suh lasses of �ltrations 1and 2 were found in [68℄. E.g. the (n�2)-dimensional lass of �ltration 1 is Alexanderdual to the variety in K formed by all maps f : S1 ! RN gluing together some twoopposite points of S1, see [63℄.The orresponding ombinatorial formula onsists of two varieties distinguished bythe following onditions (referring to a irular oordinate S1 � R=2�Z in S1):a) there is a point � 2 [0; �) suh that f(�) is above f(�+ �) with respet to thehosen diretion;b) the projetion of the point f(0) to Rn�1 lies "to the right" from the projetionof f(�).As usual, all of this theory an be literally extended to the spaes of links, i.e.embeddings of a disjoint union of �nitely many irles.2.4. Theories of further orders. The knot theory is a theory of the seond degreeof omplexity in the same way as the problem mentioned in the end of x2.1 is of degreeone: the forbidden disriminant set in the knot theory is de�ned by a ondition on
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 JJJJJJFigure 9. Simplest invariants of knots and doodlesthe simultaneous behavior of our map R1 ! Rn at some two points, while in thetheory of generalized loop spaes any point is responsible for its own behavior only.The typial example of a problem of order 3 is the study of invariants of planeimmersed urves S1 ! R2 without triple self-intersetion points.This problem was raised by V.I. Arnold [8℄, [9℄, who indiated also the simplest suhinvariant distinguishing homotopi immersions. This is the strangeness Alexanderdual to the fundamental yle of the whole disriminant variety of urves havingforbidden triple points.Similarly to the ase of knots, this variety is swept out by the 3-parametri family(parametrized by three-point on�gurations in S1) of at manifolds of odimension4 in entire spae of plane urves (these manifolds form open dense subsets in theplanes also parametrized by triples of points and distinguished by the ondition thatthe images of these three points should oinide). It follows easily that this disrim-inant variety is the image of a smooth orientable manifold, in partiular arries afundamental yle.A similar problem formulated in [61℄, [62℄ and studied in [36℄, [42℄, [43℄, [66℄ a.o.,onerns the lassi�ation of all smooth plane urves S1 ! R2 (not neessarily immer-sions) without triple points or singularities obtained as their degenerations. (Sine[36℄, they are alled doodles.)These problems have lead to the alulus of triangular diagrams (see [66℄) in thesame way as the knot theory leads to the hord algebra. E.g., the Arnold's "strange-ness" is an invariant of �ltration 2 and an be depited by a single triangle, see Fig. 9right. However, it is not an invariant of doodles. The simplest invariant of doodles(disovered �rst by A. Merkov [42℄ by di�erent methods) an be naturally depitedby the simplest triangular diagram, whose triangles have no neighboring points inthe irle (see Fig. 9 enter) in the same way as the �rst knot invariant orrespondsto the simplest hord diagram with the same property (see Fig. 9 left or the thirdpiture of Fig. 4).The relation with the graph theory (see page 9) is almost literally replaed bythat with the theory of 3-hypergraphs, and the analogy with the "diagonal" planearrangement by the analogy with the "k-equal" arrangement of planes in Rnm =



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 19(Rn)m onsisting of suh olletions (x1; : : : ; xm), xi 2 Rn , that xi1 = � � � = xik forsome set of indies 1 � i1 < � � � < ik � m, see [15℄, [61℄.2.5. The V. Turhin's alulation. The theory of �nite type invariants of knotshas born many beautiful algebrai objets, suh as the Hopf algebra of hord diagramsand graph-omplex of trees, see e.g. [38℄, [12℄.It was shown reently by V. Turhin [53℄ that these strutures are nonseparableparts of more general theories, related with entire ohomology rings of spaes ofknots and formulated in terms of generalized hord diagrams. The orrespondingmultipliative strutures resemble the multipliation disussed in x1.5 (although are,of ourse, muh more ompliated). It was proved in [53℄ that the �rst term ofthe main spetral sequene alulating the rational homology of the spae of longknots in Rn , n � 3, is desribed in terms of the Hohshild homology of the Poissonalgebras operad if n is odd (respetively, of the Gerstenhaber algebras operad if nis even). Namely, the Hohshild homology of these operads is in both ases somepolynomial algebra in in�nitely many even and odd variables. To obtain the �rst termof the spetral sequene in the ase of even n we need to fatorize the orrespondingpolynomial algebra by one odd generator [x1; x2℄. In the ase of odd n we needto fatorize by two generators: one even (equal to [x1; x2℄) and one odd (equal to[[x1; x3℄; x2℄).In partiular, the standard bialgebra of hord diagrams fatorized through the 4-term relations (see [37℄, [12℄) is some subspae in the Hohshild homology of thePoisson algebras operad. To obtain the algebra of �nite order invariants (i.e. oho-mology of degree zero in the ase n = 3) we should fatorize this bialgebra by onegenerator [x1; x2℄. 3. Disussion3.1. Whih method of resolution is better: the naive or eonomial one (seeFig. 2 right)?2In the ase of knot spaes they are more or less equal: the onstrutions areequivalent and the omplexities of related alulations are omparable. But generallythe "eonomial" method (or rather its suitable generalization) is stronger. Indeed,sometimes we need to resolve disriminant spaes swept out by families of planes,in�nitely many of whih pass through one and the same point. The lassial exampleis the determinant variety of all degenerate linear operators (whose Borel{Moorehomology group is Alexander dual to the ohomology group of GLn), or the spae ofsingular algebrai projetive hypersurfaes of a given degree (that arises in the studyof the omplementary spae of nonsingular varieties), et., see [67℄, [65℄. The naturalextension of the "eonomial" onstrution based on the notions of onial resolutions2Asked by the hairman of the session, Prof. N. Hithin FRS



20 V.A. VASSILIEVand ontinuous order omplexes allows us to overome this diÆulty, while the naiveonstrution does not work.On the other hand, sometimes both methods are better. This means that the veryfat that both onstrutions are homotopy and homology equivalent provides inter-esting ombinatorial relations. For instane, the resolutions of diagonal arrangementslike in [3℄ (arising also in the study of some disriminant strata of the spae of knots)is related very muh to the graph theory, and we obtain many natural problems andomparison theorems in its homologial theory, see e.g. [15℄, [61℄, [63℄, [10℄, [51℄, [52℄,et.3.2. Caution. The initial part of the desribed theory, i.e. the study of knot invari-ants of �nite �ltration, beame very popular (see e.g. [11℄) owing, in partiular, tothe fat that its basi de�nitions an be formulated in very elementary terms of �nitedi�erenes, see [13℄, [12℄ and x0.2, 0.4 in [59℄.However the literal translation of these de�nitions to suh problems as e.g. theoriesof higher orders in the sense of x2.4 or the study of higher dimensional ohomologylasses of spaes of knots will not help us to guess adequate geometrial onstrutionsor equally beautiful algebrai strutures. For instane, the group of "order k" (in thissense) invariants of triple points free plane urves will be not �nitely generated forany k. The reason for this onsists in the fat that in these theories the singularities ofdisriminant sets essential for the alulation of ohomology lasses and invariantsare more ompliated than just the normal rossings. Moreover, the indies whihinvariants and ohomology lasses de�ne at all suh essential strata (by some faranalogues of onditions of typef � �+ f � � = f � s �from the theory of knot invariants) in most situations are not salar: they takevalues in ertain homology groups assoiated with these strata, f. [63℄. Thereforethe elementary interpretation of the �ltration, as well as the very de�nition of objetsof �nite type, should be modi�ed adequately in any partiular theory of this sort, f.[62℄, [40℄, [66℄.Notie however the beautiful theory of �nite type invariants of 3-manifolds startedby T. Ohtsuki and extended by S. Garoufalidis, M. Goussarov and others, see [44℄,[31℄, [34℄. In this theory some omparatively lose modi�ation of the basi geomet-rial haraterization of knot invariants of �nite �ltration is very important. Maybethis an be explained by the fat that the lassi�ation of 3-manifolds is a (verynontrivial) quotient of the link theory by the Kirby relations.Unfortunately I annot inlude this theory in the general framework of the dis-riminant theory.I aknowledge the hospitality of the Isaa Newton Institute, Cambridge, wherethis artile was written. During this work I was bene�ted by onversations and
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