
HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONSV.A. VASSILIEVI shall des
ribe the re
ent progress in the study of 
ohomology rings of spa
es ofknots in Rn , H�(fknots in Rng), with arbitrary n � 3. "Any dimensions" in the title
an be read as dimensions n of spa
es Rn , as dimensions i of the 
ohomology groupsH i, and also as a parameter for di�erent generalizations of the notion of a knot.An important subproblem is the study of knot invariants; in our 
ontext theyappear as 0-dimensional 
ohomology 
lasses of the spa
e of knots in R3 . It turns outthat our more general problem is never less beautiful. In parti
ular, ni
e algebrai
stru
tures arising in the related homologi
al 
al
ulations have equally (or maybeeven more) 
ompa
t des
ription, of whi
h the 
lassi
al "zero-dimensional" part 
anbe obtained by easy fa
torization; see espe
ially x2.5.There are many good expositions of the theory of related knot invariants (for somereferen
es see [11℄); therefore I shall deal almost 
ompletely with results in higher (orarbitrary) dimensions. 1. Main 
onstru
tionWe 
onsider both the standard 
ompa
t knots, i.e. smooth embeddings S1 ! Rn ,and the long knots, i.e. embeddings R1 ! Rn 
oin
iding with a standard linearembedding outside some 
ompa
t subset in R1 , see Fig. 1.The study of the latter spa
e is more essential, be
ause the algebrai
 stru
ture ofthe 
ohomology ring of the spa
e of standard knots is built of that of the similar ringfor long knots (whi
h plays here the role of the "
oeÆ
ient ring") and the topologi
alnontriviality of the 
ir
le S1 and 
ertain its 
on�guration spa
es.Let us denote by K the spa
e of all smooth maps S1 ! Rn (respe
tively, of mapsR1 ! Rn with su
h boundary 
onditions). This is a linear (respe
tively, an aÆne)Talk delivered at the Royal So
iety Dis
ussion Meeting "Topologi
al Methods in the Physi
alS
ien
es".
Figure 1. A long knot1



2 V.A. VASSILIEVspa
e. The dis
riminant � � K is the set of all maps whi
h are not smooth embed-dings, i.e. have either self-interse
tions or singular points. The spa
e of knots is thedi�eren
e K n �.1.1. Arnold's redu
tion. It is 
onvenient to study the 
ohomology group of thespa
e of knots by a sort of the Alexander duality,(1) ~H i(K n �) ' �Hn1�i�1(�):The bar in the notation �H� means that we 
onsider Borel{Moore homology, i.e. thehomology group of the one point 
ompa
ti�
ation, and n1 is the notation for thedimension of K. Of 
ourse, the whole right-hand part in (1) is, stri
tly speaking,senseless. However it 
an be given some stri
t sense by means of appropriate �nite-dimensional approximations to the spa
e K, see x1.8: roughly speaking, the elementsof this group are the semialgebrai
 
y
les of 
odimension i + 1 in K. A redu
tionlike (1) was used �rst by V.I. Arnold [4℄ (in the �nitedimensional situation of thestandard dis
riminant varieties in the spa
e of polynomials in C 1) and is very use-ful in the whole theory of dis
riminants. Indeed, the dis
riminant sets of singularmaps are singular varieties, strati�ed in the 
orresponden
e with the 
lassi�
ationsof (multi)singularities, and (as we shall see in our spe
ial 
ase) a lot of their topolog-i
al properties 
an be expressed in the terms of these strati�
ations.1.2. Simpli
ial resolutions. Further, it is 
onvenient to study the topology of dis-
riminants by means of the simpli
ial (or, more generally, 
oni
al) resolutions. Theseresolutions provide topologi
al spa
es homotopy equivalent to initial ones (in parti
-ular having the same homology groups), but having more transparent homologi
alstru
ture whi
h is easier to 
al
ulate. An important illustration of this method 
omesfrom the theory of plane arrangements.Let us 
onsider a �nite 
olle
tion of aÆne planes (of arbitrary dimensions) in Rm ,(2) L = N[i=1Li;and suppose that we need to 
al
ulate the 
ohomology group of its 
omplement RmnL(or, equivalently, the Alexander dual group �H�(�)).The resolutions of three line arrangements shown in the lower part of Fig. 2 aregiven in its upper part. On the �rst step we take these lines separately, and then addsome furniture spanning the points of separated lines arising from one and the samepoint below. For two left pi
tures all standard 
onstru
tions of simpli
ial resolutionsgive essentially one and the same spa
e. Namely, if we have a double interse
tionpoint of the arrangement then we mark the 
orresponding two points on separatedlines and join them by a segment. However, there are two main di�erent ways toresolve the right-hand arrangement.
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Figure 2. Simpli
ial resolutions of line arrangementsOne of them (modelling the 
ombinatorial formula of in
lusions and ex
lusions)will �rst join by segments all pairs of interse
tion points of any two planes (indepen-dently on whether these points belong to some planes more or not). Then over alltriple interse
tion points of the arrangement we obtain a triple of segments forminga triangle "without interior part", whi
h will be �lled on the next step; on the nextstep the preimages of quadruple points (if any) will be �lled by tetrahedra, et
. Weshall 
all this resolution (and its generalizations) the naive resolution, in 
ontrastwith the e
onomi
al one, whi
h provides the upper right-hand pi
ture in Fig. 2 andis based on the notion of the order 
omplex of a partially ordered set (=poset), 
f.[24℄.De�nition 1. Given a poset (A;>), the 
orresponding order 
omplex P (A) is thesimpli
ial 
omplex, whose verti
es are the points of the set A, and the simpli
es spanall the sequen
es of su
h points monotone with respe
t to the partial order.An important family of posets is provided by the theory of plane arrangements.Given su
h an arrangement (2), for any subset I of the set of indi
es f1; : : : ; Ngdenote by LI the plane Ti2I Li. All planes of the form LI are (not 
anoni
ally) 
alledthe strata of the arrangement L. The set of all strata is a poset (by in
lusion); letP (L) be the 
orresponding order 
omplex. The order 
omplexes of three arrange-ments of Fig. 2 are shown in Fig. 3; here the vertex labeled by (12) denotes theinterse
tion plane (point) of the �rst and the se
ond planes (lines) labeled by (1) and(2) respe
tively.The e
onomi
al simpli
ial resolution of the arrangement L will be de�ned as a sub-set of the dire
t produ
t P (L)�Rm . For any nonempty stratum LI , let �(I) � P (L)be the order sub
omplex subordinate to LI , i.e. the sub
omplex of P (L) 
onsisting ofonly those simpli
es all whose verti
es 
orrespond to planes 
ontaining LI (or 
oin
id-ing with LI). This is a 
ompa
t 
ontra
tible spa
e: indeed, all its maximal simpli
eshave the 
ommon vertex fLIg. Then the resolved arrangement eL is de�ned by the
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Figure 3. Order 
omplexes for line arrangementsformula(3) ~L =[ (�(I)� LI) � P (L)� Rm ;union over all geometri
ally distin
t strata LI .For two left arrangements in the bottom row of Fig. 2, the 
orresponding graphsdrawn above them 
an be 
onsidered as the pi
tures of su
h resolutions as well, es-pe
ially if we distinguish the middle points of the inserted segments. These segments
an be 
onsidered as produ
ts �(I) � LI for two-element sets I, so that LI are theinterse
tion points of some two lines, and the order sub
omplex �(I) is the union oftwo segments joining the 
orresponding vertex to two verti
es 
orresponding to thesetwo lines.The obvious proje
tion P (L) � Rm ! Rm de�nes a map p : ~L ! L. This mapis proper and semialgebrai
, and all its �bers are di�erent spa
es of the form �(I),therefore it is a homotopy equivalen
e. Moreover, its extension to the map of one-point 
ompa
ti�
ations ~L! L is also a homotopy equivalen
e, in parti
ular de�nesan isomorphism of Borel{Moore homology groups. But why is the resolved spa
e ~Lbetter than the initial one?1.3. The �ltration. There is a natural in
reasing �ltration(4) F1 � � � � � Fn�1 = ~Lon the resolved spa
e ~L: its term Fp equals the union like (3) but over the strata of
odimension � p only. The di�eren
e Fp n Fp�1 is the union of produ
ts ��(I) � LIover all strata LI of 
odimension exa
tly p, where ��(I) is equal to �(I) less the link��(I) of �(I), i.e. the union of simpli
es not 
ontaining the minimal vertex fLIg.Indeed, the set ��(I) � LI belongs to the lower term Fp�1 of the �ltration. This�ltration 
an be extended to a �ltration f �F0 � �F1 � : : :g of the 
ompa
ti�
ation ~L:its term �F0 
onsists of the added point, and other terms �Fp are just the 
losures ofthe similar terms of the �ltration on ~L.



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 5Theorem 1. This �ltration homotopi
ally splits into the wedge of 
orresponding quo-tient spa
es: there is a homotopy equivalen
e(5) ~L � �F1 _ ( �F2= �F1) _ : : : _ ( �FN�1= �FN�2):This theorem was proved in [71℄; for an equivalent (and obtained simultaneously)result in the terms of the "naive" resolution see [61℄.In parti
ular, we have the splitting of the Borel{Moore homology group of �L (or,whi
h is the same by the Alexander duality, of the 
ohomology group of Rm n L):(6) Hm�i�1(Rm n L) ' �Hi(L) � �Hi(~L) '' � �Hi( ��(I)� LI) � �Hi�dim LI (�(I); ��(I));here ~H� denotes the homology group redu
ed modulo a point, and summation is overall strata LI of the arrangement.This expression was obtained �rst by Goresky and Ma
pherson [32℄ by a di�erentmethod. It implies that the homology groups of Rm n L are 
ompletely determinedby dimensions of spa
es LI .The splitting (5) implies that even the stable homotopy type of this 
omplementaryspa
e depends on these data only.1.4. Geometri
al interpretation. The formula (6) has the following dire
t real-ization (see [71℄, [43℄). Suppose an Eu
lidean metri
 is �xed in Rm . Consider a
onstant ve
tor �eld V ("power") in Rm in general position with respe
t to L. Forany k-dimensional simplex of the order sub
omplex �(I)=��(I) (i.e. for a de
reas-ing sequen
e of k + 1 strata LI1 � LI2 � : : : � LIk � L) and for any point x 2 LI
onsider the sequen
e of k + 1 rays in Rm issuing from x, namely the traje
toriesof x in the planes Rm ; LI1 ; : : : ; LIk under the a
tion of this power. (We 
an realizeV as the gradient �eld of a generi
 linear fun
tion � : Rm ! R, then these rayswill be the traje
tories of gradients of restri
tions of � to these planes.) As V is ingeneral position, these rays are linearly independent, and their 
onvex hull is linearlyhomeomorphi
 to an (k + 1)-dimensional o
tant with origin at x. Su
h o
tants overall x 2 LI sweep out an (i + 1 + dim LI)-dimensional wedge in Rm .If we have a 
y
le � of the 
omplex �(I)=��(I), then the sum of (uniformlyoriented) 
orresponding wedges is a relative 
y
le in Rm( mod L), and the relativehomology 
lass r� of the latter 
y
le depends on the 
lass of � in H�(�(I); ��(I))only.Finally we take the 
lass in H�(Rm nL) Poin
ar�e{Lefs
hetz dual to r� in Rm nL,i.e. de�ned by interse
tion indi
es with the relative 
y
le r�.This realization depends on the 
hoi
e of the dire
tion V , but not very mu
h. Twoelements in �H�(Rm ; L), 
orresponding in this way to one and the same 
lass � 2



6 V.A. VASSILIEVH�(�(I); ��(I)) via di�erent generi
 fun
tions 
an di�er by elements of lower �ltra-tion only, i.e. by a sum of similar 
lasses 
oming from the summandsH�(�(J); ��(J))
orresponding to planes LJ stri
tly 
ontaining LI .Moreover, if all strata LI have 
odimensions � 2 in all greater strata LJ , then theisomorphism (6) is 
anoni
al: in this 
ase the spa
e of generi
 (in the desired sense)ve
tors V is path-
onne
ted.By analogy with the knot theory, su
h realizations of elements of H�(Rm n L) 
anbe 
alled their 
ombinatorial expressions.1.5. Multipli
ation in 
ohomology. Unfortunately the usual homotopy type ofthe 
omplement of an arrangement 
annot be determined by the dimensional data.The most developed 
ase is that of 
omplex hyperplane arrangements. In this 
asethe multipli
ative stru
ture of the integral 
ohomology ring of the 
omplement isdetermined by the dimensional data: the dire
t expression was obtained by Orlikand Solomon [45℄ with the help of some ideas from pioneering works of Arnold andBrieskorn [3℄, [16℄. However even in this 
ase (and even for 
entral, i.e. passingthrough the origin, arrangements in C 3) the fundamental group of the 
omplement isnot determined by these data: there exist pairs of arrangements with equal dimensionsof all strata but with di�erent fundamental groups, see [49℄.For arbitrary (not hyperplane) 
omplex arrangements the 
ohomology ring of the
omplement is also de�ned by the dimensional data: in the 
ase of rational 
oeÆ
ientsthis was proved in [23℄, and in the more 
ompli
ated integral 
ase in [26℄ with thehelp of some ideas from [69℄.Still, something good 
an be said even in the most general 
ase of an arbitraryarrangement of real aÆne planes of arbitrary (may be di�erent) dimensions in Rm : thegraded ring asso
iated with the �ltered ringH�(Rm nL) also is de�ned by dimensionaldata (and some information on mutual orientations of all planes LI).Indeed, the splitting (6) is not 
anoni
al: the summands in the se
ond line of (6)related to some stratum LI de�ne well some elements of the �rst line only up to lowerterms of the �ltration (more pre
isely, only up to elements of similar terms L~I withL~I 6=� LI). However, let us rewrite the equation (6) as that for asso
iated gradedgroups:(7) GrH�(Rm n L) �= �Hm���1�dim LI (�(I); ��(I))The splitting in this formula is already 
anoni
al (up to the 
hoi
e of orientationsof planes LI), and the multipli
ation in the asso
iated graded ring is as follows.Let us 
onsider two strata LI ; LJ � L and two 
y
les A;B of the quotient 
om-plexes �(I)=��(I) and �(J)=��(J), dim A = u, dim B = v, represented by linear
ombinations of simpli
es of sub
omplexes �(I);�(J) with boundaries in ��(I) and��(J) only. The shu�e produ
t A�B of these 
y
les is de�ned as follows (see [69℄).



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 7If LI and LJ are not transversal (i.e. belong to some proper plane in Rm) or haveno interse
tion points, then A�B = 0. Now suppose that LI and LJ are transversaland LK = LI \ LJ 6= ; (we 
an take K = I [ J). Let a � A and b � B besome two simpli
es with u + 1 and v + 1 verti
es respe
tively, i.e. some de
reasingsequen
es of strata of L having fLIg and fLJg as their last elements. Considerall �u+v+2u+1 � possible shu�es of these sequen
es, i.e. all (nonmonotone) sequen
es ofu + v + 2 strata in whi
h all elements of a and b appear preserving their ordersin the sequen
es a and b. To any su
h shu�e a monotone sequen
e 
orresponds:any element � of the shu�e 
oming from the sequen
e a (respe
tively, b) shouldbe repla
ed by the interse
tion of the 
orresponding stratum with the last stratum
oming from the sequen
e b (respe
tively, a) and staying before � in the shu�e. Theobtained monotone sequen
e is by de�nition an (u + v + 1)-dimensional simplex ofthe order 
omplex LK . The shu�e produ
t of our simpli
es a and b is de�ned asthe sum of all su
h simpli
es taken with signs equal to parities of the 
orrespondingshu�es (i.e. the numbers of transpositions redu
ing them to the simple 
on
atenationof sequen
es a and b) multiplied by one sign more, whi
h depends on multi-indi
esI; J and K only and is de�ned by the 
omparison of the �xed 
oorientation of theplane LK in Rm with the ordered pair of 
oorientations of LI and LJ . The shu�eprodu
t of 
y
les A and B is de�ned by linearity. It is a relative 
y
le de�ning anelement of the summand in the right-hand part of (7) 
orresponding to the stratumLK ; this element depends only on homology 
lasses of A and B in the summands
orresponding to LI and LJ .Theorem 2 (
f. [69℄, [29℄, [25℄, [26℄). The isomorphism (7) 
ommutes the shu�eprodu
t in its right-hand part and the multipli
ation in its left part obtained fromthe usual 
ohomologi
al multipli
ation. If all strata LI have 
odimensions � 2 in allgreater strata LJ , then the same is true for the isomorphism (6) and the multipli
ationin the ring H�(Rm n L) itself, and not in its graded ring only.This is a 
orollary of the expli
it 
onstru
tion des
ribed in x1.4. Given two strataLI , LJ and 
lasses � 2 H�(�(I); ��(I)), � 2 H�(�(J); ��(J)), we 
an realize
orresponding elements in the left part of (6) with the help of dire
tions VI , VJ inRm that are in general position if LI and LJ have nonempty transversal interse
tion;if not then these dire
tions should be opposite to one another and transversal to aplane separating or 
ontaining these strata.1.6. All the same in the spa
e of 
urves. The dis
riminant in the spa
e of 
urvesK also is a union of planes: for any pair of points a; b in R1 we 
onsider the planeL(a; b) � K 
onsisting of all maps f : R1 ! Rn su
h that f(a) = f(b) if a 6= b orf 0(a) = 0 if a = b. Any point of the dis
riminant belongs to at least one su
h plane.Then we take the order 
omplex of all possible interse
tions(8) L(a1; b1) \ L(a2; b2) \ :::



8 V.A. VASSILIEVand limit positions of su
h interse
tions (all of them are aÆne planes in K whose
odimensions are multiples of n), supply it with a natural topology, and de�ne thesimpli
ial resolution in exa
tly the same way as previously, i.e. as a subset of thedire
t produ
t of this order 
omplex and the spa
e K. Then we de�ne the �ltrationon this resolution by the 
odimensions (divided by n) of these planes and 
onsiderthe arising spe
tral sequen
e.The unique serious diÆ
ulty here appears from the fa
t that some points of �belong to in�nitely many planes L(a; b): for instan
e a map f sending a segment ofR1 into one point or sending two segments of R1 into one and the same ar
 in Rn . Itis impossible to 
arry out the standard 
onstru
tion of the order 
omplex 
ountingsu
h in�nite obje
ts. (There is a more re�ned 
onstru
tion of 
oni
al resolutions,whi
h helps us in some troubles of this kind, see e.g. [67℄, [65℄ and x3.1 below, butin the 
ase of knots this diÆ
ulty remains very serious.)Therefore we restri
t ourselves to the 
ase of �nite interse
tions: for any d we
onsider only the poset �d of planes (8) of 
odimension � nd in K, 
onstru
t the
orresponding order 
omplex, and de�ne the general order 
omplex � as the dire
tlimit of su
h 
omplexes over d ! 1; the numbers d de�ne a natural in
reasing�ltration on them. Any term �d of this �ltration is �nite-dimensional, and anydi�eren
e �d n �d�1 is naturally divided in a �nite family of �nite-dimensional 
ells,so that its one-point 
ompa
ti�
ation is a �nite 
ell 
omplex.The homologi
al study of this �ltered 
omplex is a major problem in the theory of�nite type 
ohomology groups of knot spa
es (and the theory of �nite type invariantsis its part 
onsidering only the 
ells of two upper dimensions in any term of the�ltration).Indeed, the resolved dis
riminant � � ��K 
an be naturally proje
ted to both �and K. The �rst proje
tion indu
es a natural �ltration F1 � F2 � : : : on it from the�ltration f�dg on �. The restri
tion of this proje
tion to the di�eren
e Fd n Fd�1 isa lo
ally trivial bundle over �d n �d�1 whose �bers are subspa
es of 
odimension ndin K. Thus the "Borel{Moore homology group of �nite 
odimension" of Fd n Fd�1 isredu
ed (via some sort of the Thom isomorphism) to the usual (�nite-dimensional)homology group of the base (in parti
ular is �nitely generated). This allows us to
al
ulate in prin
iple all the (�nite 
odimension) homology groups of spa
es Fd. The�nite type homology 
lasses of � are nothing else than dire
t images of their elementsunder the se
ond proje
tion � ! �, and the �nite type 
ohomology 
lasses of thespa
e of knots are their Alexander duals. The "order" (i.e. the �ltration) of these
lasses is de�ned by our �ltration of the resolved dis
riminant.The 
ellular stru
ture of terms �d n �d�1 (and hen
e also of Fd n Fd�1) togetherwith in
iden
e 
oeÆ
ients of 
ells is expli
itly des
ribed in [59℄, [57℄. It 
onsists of the
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 QQ�� s� � � � HHH���� ��HHH��� ����sFigure 4. Examples of generalized 
hord diagramsenumeration of di�erent families of planes (8) and the simpli
ial stru
ture of insertedorder 
omplexes.1The families of planes (8) are 
lassi�ed and depi
ted in the terms of (generalized)
hord diagrams, see Fig. 4: any parti
ular plane L(a; b) is depi
ted by an ar
 (
hord)
onne
ting the points a; b of the line R1 or the 
ir
le S1, and �nite 
olle
tions of su
hplanes (giving planes (8) as their interse
tions) by 
olle
tions of su
h 
hords or more
ompli
ated obje
ts. For instan
e, seven pi
tures of Fig. 4 denote the following planesrespe
tively: a plane L(a; b), a 6= b; a plane L(a; a); a plane L(a; 
) \ L(b; d) wherea < b < 
 < d 2 R1 ; a plane L(a; b) \ L(b; 
) � L(b; 
) \ L(
; a) � L(
; a) \ L(a; b)where a < b < 
; a plane of 
odimension 3n 
onsisting of maps gluing together some�xed four points of R1 ; a plane L(a; a) \ L(b; b); a 
ertain plane of 
odimension 5n.The order 
omplex arising over the plane of third type is just a segment (or, morepre
isely, the union of two segments joining the vertex 
orresponding to the planeL(a; 
)\L(b; d) with two verti
es 
orresponding to planes L(a; 
) and L(b; d), 
f. theleft pi
ture of Fig. 2). The order 
omplex arising over the fourth pi
ture 
oin
ideswith that shown in the upper right part of Fig. 2. The order 
omplex over the �fthpi
ture is two-dimensional and is equal to the 
one over the graph given in the lowerpart of Fig. 5 (not 
ontaining the segments with endpoint (1234)), the whole thispi
ture presents the 
orresponding poset (more pre
isely, only its primitive edges).The theory of these resolutions is related very mu
h to the graph theory. Forinstan
e, let us resolve in the naive way the stratum of � 
onsisting of maps R1 ! Rnwith unique k-fold sel�nterse
tion point. This stratum 
onsists of interse
tions of �k2�planes L(ai; aj), 1 � i < j � k. These planes 
orrespond to the verti
es of theinserted simplex. They are 
onveniently des
ribed by the edges 
onne
ting somepairs (i; j) of k numbered points, while the fa
es of this simplex are the 
olle
tions ofsu
h edges, i.e. just the graphs on these k verti
es (without double edges or loops).Some of these fa
es belong to the lower term of our �ltration of the dis
riminant:they are exa
tly the fa
es 
orresponding to the non-
onne
ted graphs. Thereforewe obtain naturally the 
omplex of 
onne
ted graphs, 
f. [61℄. This 
omplex arises1in [59℄, I have used the "naive" resolution like the se
ond from the right upper pi
ture in Fig. 2:in this (equivalent) approa
h the study of inserted order 
omplexes is repla
ed by the study ofinserted simpli
es redu
ed modulo their sub
omplexes lying in the lower terms of the �ltration, 
f.[61℄
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Figure 5. Poset and order 
omplex for a quadruple pointalso in the naive resolution of the "diagonal" plane arrangement in Rkn 
onsistingof all ordered 
olle
tions of k points in Rn at least two of whi
h 
oin
ide. Anotherimportant related 
omplex is that of two-
onne
ted graphs, see [63℄, [10℄, [51℄, [52℄.On the other hand, the order 
omplex arising from the e
onomi
al resolution of thesame stratum leads (after 
ombining together some simpli
es) to the graph-
omplexof trees due to Kontsevi
h.For the study of knot invariants in R3 it is enough to 
onsider only the simplest
hord diagrams like the ones in the �rst and the third pi
tures of Fig. 4, i.e. withall di�erent endpoints. More pre
isely, su
h 
hord diagrams (and the 
orresponding
ells) generate the homology groups responsible for knot invariants, while the relationsbetween them are des
ribed in the terms of similar diagrams allowing either oneasterisk as in the se
ond pi
ture, or one triple point as in the fourth one.However, for the 
al
ulation of higher 
ohomology groups of spa
es of knots the
onsideration of more 
ompli
ated diagrams like the �fth and the last ones is absolutelyne
essary.1.7. The spe
tral sequen
e and its 
onvergen
e. The 
al
ulation of homologygroups (of �nite �ltration) of the resolved dis
riminant (or of the 
ohomology 
lassesin K n � Alexander dual to them) 
an be presented by a 
ohomologi
al spe
tralsequen
e with the support in the se
ond quadrant, see Fig. 6. Its initial term E1 isgiven by(9) Ep;q1 ' �Hn1�p�q�1(F�p n F�p�1) ' �Hp(n+1)�q�1(��p n ��p�1; A):Here A is the orientation sheaf of the n(1 + p)-dimensional aÆne bundle (F�p nF�p�1)! (��p n��p�1). If n is even then this sheaf is isomorphi
 to Z (as the bundle
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Figure 6. The spe
tral sequen
eis orientable) but for n odd is, generally, not. The order 
omplexes �d do not dependon n, thus for di�erent numbers n of the same parities the 
olumns Ep;�1 of spe
tralsequen
es 
al
ulating the 
ohomology of spa
es of knots in Rn 
oin
ide 
anoni
allyup to a shift along the q-axis; in the 
ase of Z2-
oeÆ
ients the same is true also forn of di�erent parities.If n is greater than 3 then there are only �nitely many nonzero 
ells on any diagonalfp+q = 
onstg. Using the ma
hinery of �nite dimensional approximations, it is easyto prove that in this 
ase the in�nitely degenerate strata of � do not 
ontribute tothe 
al
ulation of 
ohomology 
lasses, therefore if n � 4 then our spe
tral sequen
e
onverges exa
tly to the 
ohomology group H�(K n �) of the spa
e of knots in Rn .For the most intriguing 
ase n = 3 this is not the 
ase (or at least is not proved).Something good 
an be a priori said on the lower diagonal fp + q = 0g responsiblefor the knot invariants: any nonzero element of the group E�i;i1 a
tually de�nes anontrivial knot invariant of �ltration i (modulo the group of invariants of smaller�ltration). This �ltration has a transparent geometri
al des
ription in the terms of�nite di�eren
es, see [13℄, [12℄ or x0.2 in [59℄. However for the elements of terms Ep;q1on higher diagonals it is not known whether the in�nitely degenerate strata will notspoil them. Any su
h element de�nes a (p+q)-dimensional 
ohomology 
lass of Kn�(again, modulo the elements of lower �ltration), but we 
annot be sure a priori thatthis 
lass is not trivial, i.e. that the 
orresponding 
y
le in the dis
riminant is not aboundary.1.8. Justi�
ations and approximations. Using the Weierstrass approximationtheorem, we 
an 
hoose a perfe
t (in some sense) system of �nite dimensional aÆneapproximating subspa
es fK�g, � !1, of the spa
e of 
urves K. The 
orresponding
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onverge to the ring H�(K n �). Also, we 
an assume that allplanes K� are in general position, in parti
ular transversal to the natural strati�
ationof �. Then for any parti
ular � the 
ohomologi
al spe
tral sequen
e 
al
ulatingH�(K� n�) and 
onstru
ted from the simpli
ial resolution of � \K� also looks as inFig. 6 (although it will have only �nitely many nontrivial 
olumns). The stabilizationof spe
tral sequen
es means the following. For any natural s there exists � su
hthat terms Ep;q1 , p � �s, of all our spe
tral sequen
es 
al
ulating 
ohomology ofK� n �, K�+1 n �, et
. are 
anoni
ally isomorphi
, and the images of di�erentialsdr : Ep;qr ! Ep+r;q�r+1r , r � s, a
ting from these 
ells to the right also 
oin
ide. Thusthe limit spe
tral sequen
e Ep;qr � lim�!1Ep;qr (�) is well de�ned.A very important role in the birth of this theory was played by the V. Arnold'sproblem on the stable 
ohomology ring of 
omplements of dis
riminants of 
omplexhypersurfa
e singularities, see [5℄. Being still of �nite dimensional nature, this prob-lem for
ed me to look for the homology 
lasses arising uniformly in "very highdimen-sional" dis
riminant varieties, and also to think on the nature of their stabilization,see [58℄. 2. Further results and problems2.1. Kontsevi
h integral.Theorem 3. For any n � 3, our spe
tral sequen
e with 
omplex 
oeÆ
ients stabilizesat the �rst term:(10) Ep;q1 =C ' Ep;q1 =C :This theorem was proved by Kontsevi
h about 1994 and is surely true. Its publishedpart proves the stabilization of the diagonal responsible for knot invariants, i.e. theequality (10) for n = 3 and p+q = 0, see [37℄, [20℄. For an arbitrary n � 3, almost thesame integral proves the identity (10) on the lower boundary of the spe
tral sequen
e,i.e. for 
ells Ep;q with q + (n � 2)p = 0, but for the upper 
ells the proof uses someextra e�orts.A great problem is whether the same is true over the integers.I 
onje
ture that in the 
ase of long knots this is true, and moreover the homotopysplitting (5) of any �nite term �Fd of the �ltration of the one-point 
ompa
ti�
ationof our resolved dis
riminant holds in some pre
ise sense, see e.g. [64℄.Another great a
hievement 
oming from the Kontsevi
h's works is an integral rep-resentation for the 
ohomology 
lasses.A spe
tral sequen
e similar to (but easier than) the one outlined in xx1.4{1.5 allowsus to 
al
ulate the 
ohomology groups of spa
es Y X of 
ontinuous mapsX ! Y whereX is an m-dimensional �nite 
ell 
omplex and Y an m-
onne
ted one. Indeed, Y ishomotopy equivalent to the spa
e RN n � where N is suÆ
iently large and � is a
losed 
oni
al subset of 
odimension � m + 2. Then we 
onsider the ve
tor spa
eof all 
ontinuous maps X ! RN , de�ne the dis
riminant in it as the spa
e of all
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t �, resolve this dis
riminant as previously and obtaina spe
tral sequen
e 
onverging to the 
ohomology group of the 
omplement of thisdis
riminant, i.e. of the spa
e (RN n�)X � Y X , see [56℄, [57℄. This spe
tral sequen
eextends the Anderson's spe
tral sequen
e [2℄ to the 
ase when X is not a smoothmanifold, and is isomorphi
 to it if X is. It provides some information also if Y isonly (m� 1)-
onne
ted, but in this 
ase we 
annot be sure that it 
al
ulates all the
ohomology groups of Y X , in full analogy with the dis
ussion at the end of x1.7. IfX is a 
ir
le, then it is 
overed by the Adams{Eilenberg{Moore spe
tral sequen
e [1℄,[27℄ (
al
ulating in parti
ular the 
ohomology of loop spa
es). The "deRhamization"of the latter spe
tral sequen
e is known as the theory of iterated path integrals, see[19℄, [35℄. The Kontsevi
h's integral (and possibly also its more smart versions provingTheorem 3 in full generality) 
an be 
onsidered as its extension to the problems "ofse
ond order", see x2.4 below.2.2. Combinatorial expressions. The most well-studied part of this theory is, of
ourse, that of knot invariants. Shortly after its appearan
e, di�erent 
ombinatorialformulas for these invariants were developed. They express the values of invariantsin the terms of the geometri
al disposition of the knot, see e.g. [39℄, [17℄ and [48℄.The most 
onvenient formulas of this kind were announ
ed and partly proved byM. Polyak and O. Viro in [46℄, [47℄, see also [54℄, [55℄.These formulas are des
ribed in terms of arrow diagrams, i.e. pi
tures like the onesshown in Fig. 7.Let us �x a dire
tion in R3 transverse to the 
ommon dire
tion "at in�nity" of ourlong knots. Given a generi
 long knot f : R1 ! R3 (see Fig. 1), the value of the leftpi
ture in Fig. 7 on it is equal to the number of 4-
on�gurations (a < b < 
 < d) � R1(
ounted with appropriate signs) su
h that the point f(a) lies above f(
) with respe
tto the 
hosen dire
tion, and f(d) lies above f(b). It turns out (see [46℄) that thisvalue a
tually is a knot invariant, namely it 
oin
ides with the unique invariant of�ltration 2.M. Goussarov has proved a wonderful theorem:Theorem 4 (see [33℄). Any invariant of �nite �ltration of long knots in R3 
an berepresented by a �nite linear 
ombination of arrow diagrams.Formally speaking, any 
ohomology 
lass of �nite �ltration of the spa
e of knots inRn , n � 3, also should have 
ombinatorial representations (although maybe formu-lated in terms of more 
ompli
ated 
onditions whose total 
omplexity it is diÆ
ultto estimate); the strength of the previous theorem 
onsists in the fa
t that in the
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ase of invariants we 
an use only 
onditions of a very spe
ial kind. To �nd the
ombinatorial formulas for other 
ohomology 
lasses � 2 H�(K n �) e�e
tively, it is
onvenient to 
onsider su
h a 
ombinatorial formula as a semialgebrai
 relative 
y
lein K (mod �), su
h that � equals the linking number with the boundary of this 
y
lein �.It is natural to 
onstru
t su
h 
y
les by indu
tion over our spe
tral sequen
e. Foran illustration, let us 
onsider again the theory of plane arrangements and their
omplements. In the 
ase of the line arrangement shown in Fig. 2 left, the entiregroup E12;� appears from the unique 
rossing point L(12). This group is nontrivialonly for � = �1, is isomorphi
 to Z and generated by the homology 
lass of thesegment �(1; 2) modulo its endpoints (lying in F1). The splitting formula (5) meansthat we 
an extend this relative 
y
le in �F2 (mod �F1) to a (Borel{Moore) 
y
le inentire ~L. However, to be able to de�ne the value of this generating element on any0-dimensional 
y
le in R2 n L we need to 
hoose su
h an extension expli
itly. Thenwe proje
t it to L and get a 
y
le there. Finally, we need to 
hoose a relative 
y
le inR2 (mod L) whose boundary 
oin
ides with this 
y
le. Then we 
all this relative 
y
le"a 
ombinatorial formula": its value on a point in R2 n L is equal to the multipli
ityof this 
y
le in the neighborhood of this point.If we have a more 
ompli
ated plane arrangement, then we 
an 
onstru
t thisextension step by step over our �ltration. Our starting element 
 2 E1p;q is representedby a 
y
le with 
losed supports in Fp n Fp�1 (or, equivalently, by a relative 
y
le in�Fp= �Fp�1). We take its �rst boundary d1(
), whi
h is a 
y
le in Fp�1 n Fp�2. Then wespan it, i.e. 
onstru
t a 
hain ~
1 � Fp�1 n Fp�2 su
h that �~
1 = d1(
) there. Thenwe take the boundary of 
 + ~
1 in the spa
e Fp�2 nFp�3 and span it there by a 
hain~
2; et
. The splitting formula (5) ensures that all this sequen
e of 
hoi
es 
an bea

omplished. Moreover, a pre
ise �nal result of this sequen
e is known sin
e [71℄:see x1.4. It appears if we span our 
y
les in the most obvious way: by the traje
toriesof generi
 
ows.The 
ase of knots (say, of long knots) is very similar to that of plane arrangements.For instan
e, here is a heuristi
 interpretation of the Polyak{Viro arrow diagram for-mulas. A knot invariant 
an be 
onsidered as a relative 
y
le of full dimension n1in the spa
e of 
urves K (mod �): its value at a knot f equals the multipli
ity of the
y
le in a neighborhood of f in K. All strata of the dis
riminant whi
h 
an generate(�nite-type) homology 
lasses of this dimension are de�ned by ordinary 
hord dia-grams only: all points ai; bi in (8) should be di�erent. At them, the 
orrespondingplanes L(ai; bi) meet normally, so that the 
orresponding order sub
omplexes �(�)are simpli
es (or, more pre
isely, their �rst bary
entri
 subdivisions). I do not know asuitable analog of a globally de�ned ve
tor �eld V from x1.4 on the spa
e K. However,in the 
onstru
tion of x1.4 we 
ould use not the one ve
tor V but just a generi
 fam-ily of su
h ve
tors, one for ea
h stratum LI , whose traje
tories span them in greaterstrata. In the 
ase of knots, when the planes L(ai; bi) in (8) are de�ned by 
onditions



HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS 15f(ai) = f(bi), it is natural to take a ve
tor �eld preserving the proje
tion of our knotto R2 but in
reasing all the di�eren
es z(bi) � z(ai), where z is some 
oordinate inR3 , say the one normal to the "bla
kboard" plane R2 . To make this formula 
orre
twe need to order the endpoints of any 
hord, i.e. to 
all one of them ai and theother bi. Thus the arrow diagrams appear. The union of wedges emanating from thepoint f as in x1.4 will then 
onsist of 
urves with the same proje
tion to R2 but withf(bi) "above" f(ai). The knot theory is very nonlinear (in 
ontrast to the theory ofplane arrangements), in parti
ular su
h wedges 
orresponding to 
hord diagrams ofthe same topologi
al type but with di�erent 
on�gurations of points ai; bi 
an haveinterse
tions in K. The algebrai
 multipli
ity of su
h an interse
tion at some point� 2 K n � is exa
tly the value (in the Polyak-Viro sense) of the arrow diagram onthe 
orresponding knot.Of 
ourse, everything is not so easy. Indeed, the strata 
orresponding to di�erent
hord diagrams have 
ommon boundaries as the endpoints of di�erent 
hords tend toone another. Some additional trouble 
omes from singular maps with nongeneri
 pro-je
tions to R2 . Therefore the wedges 
onstru
ted as above have some extra boundary
omponents. Constru
ting the 
ombinatorial formulas we need to span these bound-aries by some other 
hains in K or try to 
hoose the orientations of arrows in su
h away that these boundaries of di�erent wedges annihilate. The Goussarov's theoremmeans (in our terms) that it is always possible to 
hoose the orientations of arrows insu
h a way that for the spanning 
hain we 
an take sums of similar wedges emanatingfrom the strata (8) of lower 
omplexity.The above heuristi
 spe
ulations are helpful also in the 
ase of higher dimensions(in any of senses indi
ated in the prefa
e), i.e. in 
onstru
ting the 
ombinatorialexpressions of higher-dimensional 
ohomology 
lasses of spa
es of knots in Rn , n � 3.In [68℄, natural 
lasses of semialgebrai
 subvarieties in K and in di�erent termsFi n Fi�1 of the �ltration were introdu
ed, of whi
h (some of) these spanning 
hains
an be built.2.2.1. Example: Teiblum{Tur
hin 
o
y
le and its realization. The �rst positive di-mensional 
ohomology 
lass of �nite �ltration of the spa
e of long knots in R3 was
al
ulated by my students, D. M. Teiblum and V. E. Tur
hin, about 1995. It is a
lass of dimension 1 and �ltration 3. (A

ordingly to [59℄, there are no 
ohomol-ogy 
lasses of �ltration � 2 other than the simplest knot invariant.) However, this
al
ulation was quite impli
it: they have 
al
ulated just the 
orresponding groupE�3;41 � Z of the spe
tral sequen
e in the terms of generalized 
hord diagrams. It is
lear from the shape of the spe
tral sequen
e that this group survives and the �nalgroup E�3;41 also is isomorphi
 to Z, so that its generator 
an be extended to a wellde�ned 1-dimensional 
ohomology 
lass of the spa
e of knots.However, the fa
t that this 
lass is nontrivial does not follow from the general
onsiderations, 
f. the dis
ussion in x1.7. This fa
t was proved in [68℄ by means ofan expli
it 
ombinatorial formula, see Fig. 8 and the following theorem.
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hin 
o
y
leLet us 
hoose a dire
tion "to the right" in the "bla
kboard" plane R2 (i.e. in thequotient of the spa
es R3 by the dire
tion 
hosen previously).Theorem 5 (see [68℄). The value of the Teiblum{Tur
hin 
o
y
le on any generi
 loopin the spa
e K of long knots (i.e. on a 
losed 1-parametri
 family of su
h knots) isequal mod 2 to the number of points of this loop su
h that one of three holds (
f. Fig.8):a) there are �ve points a < b < 
 < d < e in R1 su
h that f(a) is above f(d), andf(e) is above f(
) and f(b);b) there are four points a < b < 
 < d in R1 su
h that f(a) is above f(
), f(b) isbelow f(d), and the proje
tion of the derivative f 0(b) to R2 is dire
ted to the right;
) there are three points a < b < 
 in R1su
h that f(a) is above f(b) but below f(
),and the "exterior" angle in R2 formed by proje
tions of f 0(a) and f 0(b) 
ontains thedire
tion "to the right" (i.e. this dire
tion is equal to a linear 
ombination of theseproje
tions, and at least one of 
oeÆ
ients in this 
ombination is nonpositive).(These points of the loop in K should be 
ounted with multipli
ities equal to thenumbers of di�erent point 
on�gurations in R1 for whi
h the 
orresponding 
onditiona), b) or 
) is satis�ed.)This statement remains true if we repla
e R3 by any Rn, n � 3, R2 by Rn�1 , ageneri
 loop in the spa
e of knots by a generi
 (3n � 8)-dimensional 
y
le, and the1-dimensional Teiblum{Tur
hin 
o
y
le by its (3n� 8)-dimensional stabilization, seedis
ussion in x1.7.Further, let us 
onsider the 
onne
ted sum of two equal (long) trefoil knots in R3and a path in the spa
e of knots 
onne
ting this knot with itself as in the proofof the 
ommutativity of the knot semigroup: we shrink the �rst summand, move it"through" the se
ond, and then blow up again.Proposition 1. This 
losed path in the spa
e of long knots has exa
tly seven inter-se
tion points (
ounted with multipli
ities) with the union of three varieties indi
atedin items a, b and 
 of the previous theorem.
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hin 
o
y
le is a well-de�ned integral 
ohomology 
lass, thusits value on (the integral homology 
lass of) this loop is not equal to zero, and thegroup generated by this 
o
y
le is free.Remark 1. I 
annot yet reprove the Goussarov's theorem in this way: the 
ombi-natorial formulas for knot invariants obtained by the straightforward appli
ation ofour algorithm 
an in
lude some varieties in K more 
ompli
ated than just the vari-eties given by arrow diagrams, 
f. Theorem 5. The 
onstru
tion of spanning 
y
lesparti
ipating in this algorithm leaves many 
hoi
es, e.g. how to order the endpointsai; bi of a 
hord. The Goussarov's theorem implies that it is possible to 
hoose thesepossibilities in su
h a way that all the awkward varieties will be 
an
elled. I hopethat a deeper understanding of its proof will help to formulate the exa
t rule for this.Also, in all situations more 
ompli
ated than that of invariants I do have, stri
tlyspeaking, not an algorithm (i.e. something de�nitely 
onverging to an answer), butjust a 
olle
tion of tri
ks whi
h su

eed to give su
h answers in parti
ular problemslike that of the Teiblum-Tur
hin 
o
y
le or the one 
onsidered in the next subse
tion.Remark 2. The virtual knots introdu
ed by L. Kau�man in 1997 and applied in [33℄to the 
onstru
tion of 
ombinatorial formulas 
an be identi�ed as another (extremelybig) 
lass of subvarieties of the spa
e of 
urves K.2.3. Cohomology of spa
es of 
ompa
t knots. A similar theory exists for thespa
e of 
ompa
t knots S1 ! Rn . There is a one-to-one 
orresponden
e betweeninvariants of 
ompa
t and long knots in R3 , but in higher dimensions many extra
ohomology 
lasses of spa
es of 
ompa
t knots arise from the topologi
al nontrivi-ality of the 
ir
le. For instan
e, already in �ltration 1 we have two su
h 
lasses ofdimensions n � 2 and n � 1 (with 
oeÆ
ients in Z2, and if n is even then also withinteger 
oeÆ
ients). The 
ombinatorial formulas for all su
h 
lasses of �ltrations 1and 2 were found in [68℄. E.g. the (n�2)-dimensional 
lass of �ltration 1 is Alexanderdual to the variety in K formed by all maps f : S1 ! RN gluing together some twoopposite points of S1, see [63℄.The 
orresponding 
ombinatorial formula 
onsists of two varieties distinguished bythe following 
onditions (referring to a 
ir
ular 
oordinate S1 � R=2�Z in S1):a) there is a point � 2 [0; �) su
h that f(�) is above f(�+ �) with respe
t to the
hosen dire
tion;b) the proje
tion of the point f(0) to Rn�1 lies "to the right" from the proje
tionof f(�).As usual, all of this theory 
an be literally extended to the spa
es of links, i.e.embeddings of a disjoint union of �nitely many 
ir
les.2.4. Theories of further orders. The knot theory is a theory of the se
ond degreeof 
omplexity in the same way as the problem mentioned in the end of x2.1 is of degreeone: the forbidden dis
riminant set in the knot theory is de�ned by a 
ondition on
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 JJJJJJFigure 9. Simplest invariants of knots and doodlesthe simultaneous behavior of our map R1 ! Rn at some two points, while in thetheory of generalized loop spa
es any point is responsible for its own behavior only.The typi
al example of a problem of order 3 is the study of invariants of planeimmersed 
urves S1 ! R2 without triple self-interse
tion points.This problem was raised by V.I. Arnold [8℄, [9℄, who indi
ated also the simplest su
hinvariant distinguishing homotopi
 immersions. This is the strangeness Alexanderdual to the fundamental 
y
le of the whole dis
riminant variety of 
urves havingforbidden triple points.Similarly to the 
ase of knots, this variety is swept out by the 3-parametri
 family(parametrized by three-point 
on�gurations in S1) of 
at manifolds of 
odimension4 in entire spa
e of plane 
urves (these manifolds form open dense subsets in theplanes also parametrized by triples of points and distinguished by the 
ondition thatthe images of these three points should 
oin
ide). It follows easily that this dis
rim-inant variety is the image of a smooth orientable manifold, in parti
ular 
arries afundamental 
y
le.A similar problem formulated in [61℄, [62℄ and studied in [36℄, [42℄, [43℄, [66℄ a.o.,
on
erns the 
lassi�
ation of all smooth plane 
urves S1 ! R2 (not ne
essarily immer-sions) without triple points or singularities obtained as their degenerations. (Sin
e[36℄, they are 
alled doodles.)These problems have lead to the 
al
ulus of triangular diagrams (see [66℄) in thesame way as the knot theory leads to the 
hord algebra. E.g., the Arnold's "strange-ness" is an invariant of �ltration 2 and 
an be depi
ted by a single triangle, see Fig. 9right. However, it is not an invariant of doodles. The simplest invariant of doodles(dis
overed �rst by A. Merkov [42℄ by di�erent methods) 
an be naturally depi
tedby the simplest triangular diagram, whose triangles have no neighboring points inthe 
ir
le (see Fig. 9 
enter) in the same way as the �rst knot invariant 
orrespondsto the simplest 
hord diagram with the same property (see Fig. 9 left or the thirdpi
ture of Fig. 4).The relation with the graph theory (see page 9) is almost literally repla
ed bythat with the theory of 3-hypergraphs, and the analogy with the "diagonal" planearrangement by the analogy with the "k-equal" arrangement of planes in Rnm =
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onsisting of su
h 
olle
tions (x1; : : : ; xm), xi 2 Rn , that xi1 = � � � = xik forsome set of indi
es 1 � i1 < � � � < ik � m, see [15℄, [61℄.2.5. The V. Tur
hin's 
al
ulation. The theory of �nite type invariants of knotshas born many beautiful algebrai
 obje
ts, su
h as the Hopf algebra of 
hord diagramsand graph-
omplex of trees, see e.g. [38℄, [12℄.It was shown re
ently by V. Tur
hin [53℄ that these stru
tures are nonseparableparts of more general theories, related with entire 
ohomology rings of spa
es ofknots and formulated in terms of generalized 
hord diagrams. The 
orrespondingmultipli
ative stru
tures resemble the multipli
ation dis
ussed in x1.5 (although are,of 
ourse, mu
h more 
ompli
ated). It was proved in [53℄ that the �rst term ofthe main spe
tral sequen
e 
al
ulating the rational homology of the spa
e of longknots in Rn , n � 3, is des
ribed in terms of the Ho
hs
hild homology of the Poissonalgebras operad if n is odd (respe
tively, of the Gerstenhaber algebras operad if nis even). Namely, the Ho
hs
hild homology of these operads is in both 
ases somepolynomial algebra in in�nitely many even and odd variables. To obtain the �rst termof the spe
tral sequen
e in the 
ase of even n we need to fa
torize the 
orrespondingpolynomial algebra by one odd generator [x1; x2℄. In the 
ase of odd n we needto fa
torize by two generators: one even (equal to [x1; x2℄) and one odd (equal to[[x1; x3℄; x2℄).In parti
ular, the standard bialgebra of 
hord diagrams fa
torized through the 4-term relations (see [37℄, [12℄) is some subspa
e in the Ho
hs
hild homology of thePoisson algebras operad. To obtain the algebra of �nite order invariants (i.e. 
oho-mology of degree zero in the 
ase n = 3) we should fa
torize this bialgebra by onegenerator [x1; x2℄. 3. Dis
ussion3.1. Whi
h method of resolution is better: the naive or e
onomi
al one (seeFig. 2 right)?2In the 
ase of knot spa
es they are more or less equal: the 
onstru
tions areequivalent and the 
omplexities of related 
al
ulations are 
omparable. But generallythe "e
onomi
al" method (or rather its suitable generalization) is stronger. Indeed,sometimes we need to resolve dis
riminant spa
es swept out by families of planes,in�nitely many of whi
h pass through one and the same point. The 
lassi
al exampleis the determinant variety of all degenerate linear operators (whose Borel{Moorehomology group is Alexander dual to the 
ohomology group of GLn), or the spa
e ofsingular algebrai
 proje
tive hypersurfa
es of a given degree (that arises in the studyof the 
omplementary spa
e of nonsingular varieties), et
., see [67℄, [65℄. The naturalextension of the "e
onomi
al" 
onstru
tion based on the notions of 
oni
al resolutions2Asked by the 
hairman of the session, Prof. N. Hit
hin FRS
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ontinuous order 
omplexes allows us to over
ome this diÆ
ulty, while the naive
onstru
tion does not work.On the other hand, sometimes both methods are better. This means that the veryfa
t that both 
onstru
tions are homotopy and homology equivalent provides inter-esting 
ombinatorial relations. For instan
e, the resolutions of diagonal arrangementslike in [3℄ (arising also in the study of some dis
riminant strata of the spa
e of knots)is related very mu
h to the graph theory, and we obtain many natural problems and
omparison theorems in its homologi
al theory, see e.g. [15℄, [61℄, [63℄, [10℄, [51℄, [52℄,et
.3.2. Caution. The initial part of the des
ribed theory, i.e. the study of knot invari-ants of �nite �ltration, be
ame very popular (see e.g. [11℄) owing, in parti
ular, tothe fa
t that its basi
 de�nitions 
an be formulated in very elementary terms of �nitedi�eren
es, see [13℄, [12℄ and x0.2, 0.4 in [59℄.However the literal translation of these de�nitions to su
h problems as e.g. theoriesof higher orders in the sense of x2.4 or the study of higher dimensional 
ohomology
lasses of spa
es of knots will not help us to guess adequate geometri
al 
onstru
tionsor equally beautiful algebrai
 stru
tures. For instan
e, the group of "order k" (in thissense) invariants of triple points free plane 
urves will be not �nitely generated forany k. The reason for this 
onsists in the fa
t that in these theories the singularities ofdis
riminant sets essential for the 
al
ulation of 
ohomology 
lasses and invariantsare more 
ompli
ated than just the normal 
rossings. Moreover, the indi
es whi
hinvariants and 
ohomology 
lasses de�ne at all su
h essential strata (by some faranalogues of 
onditions of typef � �+ f � � = f � s �from the theory of knot invariants) in most situations are not s
alar: they takevalues in 
ertain homology groups asso
iated with these strata, 
f. [63℄. Thereforethe elementary interpretation of the �ltration, as well as the very de�nition of obje
tsof �nite type, should be modi�ed adequately in any parti
ular theory of this sort, 
f.[62℄, [40℄, [66℄.Noti
e however the beautiful theory of �nite type invariants of 3-manifolds startedby T. Ohtsuki and extended by S. Garoufalidis, M. Goussarov and others, see [44℄,[31℄, [34℄. In this theory some 
omparatively 
lose modi�
ation of the basi
 geomet-ri
al 
hara
terization of knot invariants of �nite �ltration is very important. Maybethis 
an be explained by the fa
t that the 
lassi�
ation of 3-manifolds is a (verynontrivial) quotient of the link theory by the Kirby relations.Unfortunately I 
annot in
lude this theory in the general framework of the dis-
riminant theory.I a
knowledge the hospitality of the Isaa
 Newton Institute, Cambridge, wherethis arti
le was written. During this work I was bene�ted by 
onversations and
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