HOMOLOGY OF SPACES OF KNOTS IN ANY DIMENSIONS

V.A. VASSILIEV

I shall describe the recent progress in the study of cohomology rings of spaces of
knots in R”, H*({knots in R"}), with arbitrary n > 3. ” Any dimensions” in the title
can be read as dimensions n of spaces R"”, as dimensions ¢ of the cohomology groups
H', and also as a parameter for different generalizations of the notion of a knot.

An important subproblem is the study of knot invariants; in our context they
appear as O0-dimensional cohomology classes of the space of knots in R?. It turns out
that our more general problem is never less beautiful. In particular, nice algebraic
structures arising in the related homological calculations have equally (or maybe
even more) compact description, of which the classical ”zero-dimensional” part can
be obtained by easy factorization; see especially §2.5.

There are many good expositions of the theory of related knot invariants (for some
references see [11]); therefore I shall deal almost completely with results in higher (or
arbitrary) dimensions.

1. MAIN CONSTRUCTION

We consider both the standard compact knots, i.e. smooth embeddings S! — R",
and the long knots, i.e. embeddings R' — R" coinciding with a standard linear
embedding outside some compact subset in R!, see Fig. 1.

The study of the latter space is more essential, because the algebraic structure of
the cohomology ring of the space of standard knots is built of that of the similar ring
for long knots (which plays here the role of the ”coefficient ring”) and the topological
nontriviality of the circle S! and certain its configuration spaces.

Let us denote by K the space of all smooth maps S! — R" (respectively, of maps
R! — R™ with such boundary conditions). This is a linear (respectively, an affine)
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space. The discriminant ¥ C K is the set of all maps which are not smooth embed-
dings, i.e. have either self-intersections or singular points. The space of knots is the

difference K\ X.

1.1. Arnold’s reduction. It is convenient to study the cohomology group of the
space of knots by a sort of the Alexander duality,

(1) H(K\Y) >~ Hpooi1(D).

The bar in the notation H, means that we consider Borel-Moore homology, i.e. the
homology group of the one point compactification, and noo is the notation for the
dimension of K. Of course, the whole right-hand part in (1) is, strictly speaking,
senseless. However it can be given some strict sense by means of appropriate finite-
dimensional approximations to the space IC, see §1.8: roughly speaking, the elements
of this group are the semialgebraic cycles of codimension i + 1 in K. A reduction
like (1) was used first by V.I. Arnold [4] (in the finitedimensional situation of the
standard discriminant varieties in the space of polynomials in C!) and is very use-
ful in the whole theory of discriminants. Indeed, the discriminant sets of singular
maps are singular varieties, stratified in the correspondence with the classifications
of (multi)singularities, and (as we shall see in our special case) a lot of their topolog-
ical properties can be expressed in the terms of these stratifications.

1.2. Simplicial resolutions. Further, it is convenient to study the topology of dis-
criminants by means of the simplicial (or, more generally, conical) resolutions. These
resolutions provide topological spaces homotopy equivalent to initial ones (in partic-
ular having the same homology groups), but having more transparent homological
structure which is easier to calculate. An important illustration of this method comes
from the theory of plane arrangements.

Let us consider a finite collection of affine planes (of arbitrary dimensions) in R™,

(2) L:GM,

and suppose that we need to calculate the cohomology group of its complement R™\ L
(or, equivalently, the Alexander dual group H,(Y)).

The resolutions of three line arrangements shown in the lower part of Fig. 2 are
given in its upper part. On the first step we take these lines separately, and then add
some furniture spanning the points of separated lines arising from one and the same
point below. For two left pictures all standard constructions of simplicial resolutions
give essentially one and the same space. Namely, if we have a double intersection
point of the arrangement then we mark the corresponding two points on separated
lines and join them by a segment. However, there are two main different ways to
resolve the right-hand arrangement.
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F1GURE 2. Simplicial resolutions of line arrangements

One of them (modelling the combinatorial formula of inclusions and exclusions)
will first join by segments all pairs of intersection points of any two planes (indepen-
dently on whether these points belong to some planes more or not). Then over all
triple intersection points of the arrangement we obtain a triple of segments forming
a triangle ”without interior part”, which will be filled on the next step; on the next
step the preimages of quadruple points (if any) will be filled by tetrahedra, etc. We
shall call this resolution (and its generalizations) the naive resolution, in contrast
with the economical one, which provides the upper right-hand picture in Fig. 2 and

is based on the notion of the order complex of a partially ordered set (=poset), cf.
24].

Definition 1. Given a poset (A,>), the corresponding order complex P(A) is the
simplicial complex, whose vertices are the points of the set A, and the simplices span
all the sequences of such points monotone with respect to the partial order.

An important family of posets is provided by the theory of plane arrangements.
Given such an arrangement (2), for any subset I of the set of indices {1,...,N}
denote by L; the plane (,.; L;. All planes of the form L; are (not canonically) called
the strata of the arrangement L. The set of all strata is a poset (by inclusion); let
P(L) be the corresponding order complex. The order complexes of three arrange-
ments of Fig. 2 are shown in Fig. 3; here the vertex labeled by (12) denotes the
intersection plane (point) of the first and the second planes (lines) labeled by (1) and
(2) respectively.

The economical simplicial resolution of the arrangement L will be defined as a sub-
set of the direct product P(L) x R™. For any nonempty stratum Ly, let A(I) C P(L)
be the order subcomplex subordinate to Ly, i.e. the subcomplex of P(L) consisting of
only those simplices all whose vertices correspond to planes containing L; (or coincid-
ing with L;). This is a compact contractible space: indeed, all its maximal simplices

have the common vertex {L;}. Then the resolved arrangement L is defined by the
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FI1GURE 3. Order complexes for line arrangements

formula
(3) L=[J(A() x L;) c P(L) x R™,

union over all geometrically distinct strata Lj.

For two left arrangements in the bottom row of Fig. 2, the corresponding graphs
drawn above them can be considered as the pictures of such resolutions as well, es-
pecially if we distinguish the middle points of the inserted segments. These segments
can be considered as products A(I) x L; for two-element sets I, so that L; are the
intersection points of some two lines, and the order subcomplex A([]) is the union of
two segments joining the corresponding vertex to two vertices corresponding to these
two lines. .

The obvious projection P(L) x R™ — R™ defines a map p : L — L. This map
is proper and semialgebraic, and all its fibers are different spaces of the form A(I),
therefore it is a homotopy equivalence. Moreover, its extension to the map of one-

point compactifications L — Lisalsoa homotopy equivalence, in particular defines

an isomorphism of Borel-Moore homology groups. But why is the resolved space L
better than the initial one?

1.3. The filtration. There is a natural increasing filtration
(4) FLC---CF, =1L

on the resolved space L: its term F, equals the union like (3) but over the strata of
codimension < p only. The difference F, \ F, ; is the union of products A(I) x L,
over all strata L; of codimension exactly p, where A(I) is equal to A(I) less the link
OA(I) of A(I), i.e. the union of simplices not containing the minimal vertex {L;}.
Indeed, the set OA(I) x L; belongs to the lower term F, ; of the filtration. This
filtration can be extended to a filtration {Fy C F; C ...} of the compactification L:
its term Fj consists of the added point, and other terms F), are just the closures of
the similar terms of the filtration on L.
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Theorem 1. This filtration homotopically splits into the wedge of corresponding quo-
tient spaces: there is a homotopy equivalence

(5) L~ F v (By/F)V ...V (Fy 1/Fx 2).

This theorem was proved in [71]; for an equivalent (and obtained simultaneously)
result in the terms of the "naive” resolution see [61].

In particular, we have the splitting of the Borel-Moore homology group of L (or,
which is the same by the Alexander duality, of the cohomology group of R™ \ L):

H;(L) = Hy(L) ~

Hmi (R \ L) (1
OH, dim 1, (A1), 0A(7));

(6) ~ @H;(A(I) x Lp)

1

here H, denotes the homology group reduced modulo a point, and summation is over
all strata L of the arrangement.

This expression was obtained first by Goresky and Macpherson [32] by a different
method. It implies that the homology groups of R™ \ L are completely determined
by dimensions of spaces Lj.

The splitting (5) implies that even the stable homotopy type of this complementary
space depends on these data only.

1.4. Geometrical interpretation. The formula (6) has the following direct real-
ization (see [71], [43]). Suppose an Euclidean metric is fixed in R™. Consider a
constant vector field V' ("power”) in R™ in general position with respect to L. For
any k-dimensional simplex of the order subcomplex A(I)/OA(I) (i.e. for a decreas-
ing sequence of k + 1 strata L;, D Ly, D ... D L;, D L) and for any point € L;
consider the sequence of £ + 1 rays in R™ issuing from x, namely the trajectories
of z in the planes R™ L;,, ..., L; under the action of this power. (We can realize
V as the gradient field of a generic linear function # : R™ — R, then these rays
will be the trajectories of gradients of restrictions of 6 to these planes.) As V is in
general position, these rays are linearly independent, and their convex hull is linearly
homeomorphic to an (k + 1)-dimensional octant with origin at z. Such octants over
all z € L; sweep out an (i + 1+ dim L;)-dimensional wedge in R™.

If we have a cycle o of the complex A(I)/OA(I), then the sum of (uniformly
oriented) corresponding wedges is a relative cycle in R™( mod L), and the relative
homology class Va of the latter cycle depends on the class of a in H,(A(I), 0A(I))
only.

Finally we take the class in H*(R™ \ L) Poincaré-Lefschetz dual to Va in R™ \ L,
i.e. defined by intersection indices with the relative cycle Va.

This realization depends on the choice of the direction V', but not very much. Two
elements in H,(R™, L), corresponding in this way to one and the same class a €
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H.(A(I),0A(I)) via different generic functions can differ by elements of lower filtra-
tion only, i.e. by a sum of similar classes coming from the summands H, (A(J), 0A(J))
corresponding to planes Lj strictly containing L.

Moreover, if all strata L; have codimensions > 2 in all greater strata L;, then the
isomorphism (6) is canonical: in this case the space of generic (in the desired sense)
vectors V is path-connected.

By analogy with the knot theory, such realizations of elements of H*(R™ \ L) can
be called their combinatorial expressions.

1.5. Multiplication in cohomology. Unfortunately the usual homotopy type of
the complement of an arrangement cannot be determined by the dimensional data.

The most developed case is that of complex hyperplane arrangements. In this case
the multiplicative structure of the integral cohomology ring of the complement is
determined by the dimensional data: the direct expression was obtained by Orlik
and Solomon [45] with the help of some ideas from pioneering works of Arnold and
Brieskorn [3], [16]. However even in this case (and even for central, i.e. passing
through the origin, arrangements in C*) the fundamental group of the complement is
not determined by these data: there exist pairs of arrangements with equal dimensions
of all strata but with different fundamental groups, see [49].

For arbitrary (not hyperplane) complex arrangements the cohomology ring of the
complement is also defined by the dimensional data: in the case of rational coefficients
this was proved in [23], and in the more complicated integral case in [26] with the
help of some ideas from [69].

Still, something good can be said even in the most general case of an arbitrary
arrangement of real affine planes of arbitrary (may be different) dimensions in R™: the
graded ring associated with the filtered ring H*(R™ \ L) also is defined by dimensional
data (and some information on mutual orientations of all planes Lj).

Indeed, the splitting (6) is not canonical: the summands in the second line of (6)
related to some stratum L; define well some elements of the first line only up to lower
terms of the filtration (more precisely, only up to elements of similar terms L; with

+
L; O L;). However, let us rewrite the equation (6) as that for associated graded
groups:

(7) GrH*(R™\ L) =~ &H

m—*—1-dim LI(

A(I), 0A(1))

The splitting in this formula is already canonical (up to the choice of orientations
of planes Lj), and the multiplication in the associated graded ring is as follows.

Let us consider two strata Ly, L; C L and two cycles A, B of the quotient com-
plexes A(I)/0A(I) and A(J)/OA(J), dim A = u, dim B = v, represented by linear
combinations of simplices of subcomplexes A(I), A(J) with boundaries in OA(/) and
OA(J) only. The shuffle product A® B of these cycles is defined as follows (see [69]).
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If L; and L; are not transversal (i.e. belong to some proper plane in R™) or have
no intersection points, then A ® B = 0. Now suppose that L; and L; are transversal
and Lx = LyNL; # 0 (we can take K = U .J). Let a C A and b C B be
some two simplices with v + 1 and v + 1 vertices respectively, i.e. some decreasing
sequences of strata of L having {L;} and {L;} as their last elements. Consider
all (“:ﬁQ) possible shuffles of these sequences, i.e. all (nonmonotone) sequences of
u 4+ v + 2 strata in which all elements of a and b appear preserving their orders
in the sequences a and b. To any such shuffle a monotone sequence corresponds:
any element A of the shuffle coming from the sequence a (respectively, b) should
be replaced by the intersection of the corresponding stratum with the last stratum
coming from the sequence b (respectively, a) and staying before A in the shuffle. The
obtained monotone sequence is by definition an (u + v + 1)-dimensional simplex of
the order complex Lg. The shuffle product of our simplices a and b is defined as
the sum of all such simplices taken with signs equal to parities of the corresponding
shuffles (i.e. the numbers of transpositions reducing them to the simple concatenation
of sequences a and b) multiplied by one sign more, which depends on multi-indices
I,J and K only and is defined by the comparison of the fixed coorientation of the
plane Lg in R™ with the ordered pair of coorientations of L; and Lj;. The shuffle
product of cycles A and B is defined by linearity. It is a relative cycle defining an
element of the summand in the right-hand part of (7) corresponding to the stratum
Lg; this element depends only on homology classes of A and B in the summands
corresponding to L; and L.

Theorem 2 (cf. [69], [29], [25], [26]). The isomorphism (7) commutes the shuffle
product in its right-hand part and the multiplication in its left part obtained from
the usual cohomological multiplication. If all strata L; have codimensions > 2 in all
greater strata Ly, then the same is true for the isomorphism (6) and the multiplication
in the ring H*(R™ \ L) itself, and not in its graded ring only.

This is a corollary of the explicit construction described in §1.4. Given two strata
Ly, Ly and classes a € H,(A(I),0A(I)), B € H.(A(J),0A(J)), we can realize
corresponding elements in the left part of (6) with the help of directions V7, V; in
R™ that are in general position if L; and L; have nonempty transversal intersection;
if not then these directions should be opposite to one another and transversal to a
plane separating or containing these strata.

1.6. All the same in the space of curves. The discriminant in the space of curves
K also is a union of planes: for any pair of points a,b in R! we consider the plane
L(a,b) C K consisting of all maps f : R! — R" such that f(a) = f(b) if a # b or
f'(a) = 0if a = b. Any point of the discriminant belongs to at least one such plane.
Then we take the order complex of all possible intersections

(8) L(ay,b1) N L(ag, by) N ...
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and limit positions of such intersections (all of them are affine planes in K whose
codimensions are multiples of n), supply it with a natural topology, and define the
simplicial resolution in exactly the same way as previously, i.e. as a subset of the
direct product of this order complex and the space K. Then we define the filtration
on this resolution by the codimensions (divided by n) of these planes and consider
the arising spectral sequence.

The unique serious difficulty here appears from the fact that some points of X
belong to infinitely many planes L(a,b): for instance a map f sending a segment of
R! into one point or sending two segments of R! into one and the same arc in R™. It
is impossible to carry out the standard construction of the order complex counting
such infinite objects. (There is a more refined construction of conical resolutions,
which helps us in some troubles of this kind, see e.g. [67], [65] and §3.1 below, but
in the case of knots this difficulty remains very serious.)

Therefore we restrict ourselves to the case of finite intersections: for any d we
consider only the poset A4 of planes (8) of codimension < nd in K, construct the
corresponding order complex, and define the general order complex A as the direct
limit of such complexes over d — oo; the numbers d define a natural increasing
filtration on them. Any term ¢4 of this filtration is finite-dimensional, and any
difference ¢g4 \ ¢4 1 is naturally divided in a finite family of finite-dimensional cells,
so that its one-point compactification is a finite cell complex.

The homological study of this filtered complex is a major problem in the theory of
finite type cohomology groups of knot spaces (and the theory of finite type invariants
is its part considering only the cells of two upper dimensions in any term of the
filtration).

Indeed, the resolved discriminant o C A x K can be naturally projected to both A
and IC. The first projection induces a natural filtration F; C F5 C ... on it from the
filtration {¢4} on A. The restriction of this projection to the difference F,; \ F, ; is
a locally trivial bundle over ¢4 \ ¢4 1 whose fibers are subspaces of codimension nd
in IC. Thus the ”Borel-Moore homology group of finite codimension” of F, \ F; ; is
reduced (via some sort of the Thom isomorphism) to the usual (finite-dimensional)
homology group of the base (in particular is finitely generated). This allows us to
calculate in principle all the (finite codimension) homology groups of spaces Fy. The
finite type homology classes of ¥ are nothing else than direct images of their elements
under the second projection ¢ — X, and the finite type cohomology classes of the
space of knots are their Alexander duals. The ”order” (i.e. the filtration) of these
classes is defined by our filtration of the resolved discriminant.

The cellular structure of terms ¢4 \ ¢4_1 (and hence also of Fy \ Fy 1) together
with incidence coefficients of cells is explicitly described in [59], [57]. It consists of the
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FiGURE 4. Examples of generalized chord diagrams

enumeration of different families of planes (8) and the simplicial structure of inserted
order complexes.!

The families of planes (8) are classified and depicted in the terms of (generalized)
chord diagrams, see Fig. 4: any particular plane L(a, b) is depicted by an arc (chord)
connecting the points a, b of the line R! or the circle S*, and finite collections of such
planes (giving planes (8) as their intersections) by collections of such chords or more
complicated objects. For instance, seven pictures of Fig. 4 denote the following planes
respectively: a plane L(a,b), a # b; a plane L(a,a); a plane L(a,c) N L(b,d) where
a<b<c<deR, aplane L(a,b) N L(b,c) = L(b,¢) N L(c,a) = L(c,a) N L(a,b)
where a < b < ¢; a plane of codimension 3n consisting of maps gluing together some
fixed four points of R!; a plane L(a,a) N L(b,b); a certain plane of codimension 5n.

The order complex arising over the plane of third type is just a segment (or, more
precisely, the union of two segments joining the vertex corresponding to the plane
L(a, c) N L(b,d) with two vertices corresponding to planes L(a, ¢) and L(b, d), cf. the
left picture of Fig. 2). The order complex arising over the fourth picture coincides
with that shown in the upper right part of Fig. 2. The order complex over the fifth
picture is two-dimensional and is equal to the cone over the graph given in the lower
part of Fig. 5 (not containing the segments with endpoint (1234)), the whole this
picture presents the corresponding poset (more precisely, only its primitive edges).

The theory of these resolutions is related very much to the graph theory. For
instance, let us resolve in the naive way the stratum of ¥ consisting of maps Rt — R
with unique k-fold selfintersection point. This stratum consists of intersections of (]2“)
planes L(a;,aj), 1 < i < j < k. These planes correspond to the vertices of the
inserted simplex. They are conveniently described by the edges connecting some
pairs (7, ) of k numbered points, while the faces of this simplex are the collections of
such edges, i.e. just the graphs on these k vertices (without double edges or loops).
Some of these faces belong to the lower term of our filtration of the discriminant:
they are exactly the faces corresponding to the non-connected graphs. Therefore
we obtain naturally the complex of connected graphs, cf. [61]. This complex arises

Lin [59], I have used the "naive” resolution like the second from the right upper picture in Fig. 2:
in this (equivalent) approach the study of inserted order complexes is replaced by the study of
inserted simplices reduced modulo their subcomplexes lying in the lower terms of the filtration, cf.
[61]
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FIGURE 5. Poset and order complex for a quadruple point

also in the naive resolution of the ”diagonal” plane arrangement in R*" consisting
of all ordered collections of k points in R™ at least two of which coincide. Another
important related complex is that of two-connected graphs, see [63], [10], [51], [52].
On the other hand, the order complex arising from the economical resolution of the
same stratum leads (after combining together some simplices) to the graph-complex
of trees due to Kontsevich.

For the study of knot invariants in R® it is enough to consider only the simplest
chord diagrams like the ones in the first and the third pictures of Fig. 4, i.e. with
all different endpoints. More precisely, such chord diagrams (and the corresponding
cells) generate the homology groups responsible for knot invariants, while the relations
between them are described in the terms of similar diagrams allowing either one
asterisk as in the second picture, or one triple point as in the fourth one.

However, for the calculation of higher cohomology groups of spaces of knots the
constderation of more complicated diagrams like the fifth and the last ones is absolutely
necessary.

1.7. The spectral sequence and its convergence. The calculation of homology
groups (of finite filtration) of the resolved discriminant (or of the cohomology classes
in £ \ ¥ Alexander dual to them) can be presented by a cohomological spectral
sequence with the support in the second quadrant, see Fig. 6. Its initial term F; is
given by

(9) EP =~ Hyoopgq1(Fp \ Fp1) = Hppnir)—g1(d—p \ ¢—p-1, 4).

Here A is the orientation sheaf of the n(oco + p)-dimensional affine bundle (F_, \
F 1) = (¢—p\d_p_1). If nis even then this sheaf is isomorphic to Z (as the bundle
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FiGURE 6. The spectral sequence

is orientable) but for n odd is, generally, not. The order complexes ¢4 do not depend
on n, thus for different numbers n of the same parities the columns E¥™ of spectral
sequences calculating the cohomology of spaces of knots in R™ coincide canonically
up to a shift along the g-axis; in the case of Zs-coefficients the same is true also for
n of different parities.

If n is greater than 3 then there are only finitely many nonzero cells on any diagonal
{p+q = const}. Using the machinery of finite dimensional approximations, it is easy
to prove that in this case the infinitely degenerate strata of ¥ do not contribute to
the calculation of cohomology classes, therefore if n > 4 then our spectral sequence
converges ezxactly to the cohomology group H*(K \ X) of the space of knots in R".

For the most intriguing case n = 3 this is not the case (or at least is not proved).
Something good can be a priori said on the lower diagonal {p + ¢ = 0} responsible
for the knot invariants: any nonzero element of the group E_ " actually defines a
nontrivial knot invariant of filtration ¢ (modulo the group of invariants of smaller
filtration). This filtration has a transparent geometrical description in the terms of
finite differences, see [13], [12] or §0.2 in [59]. However for the elements of terms E2:?
on higher diagonals it is not known whether the infinitely degenerate strata will not
spoil them. Any such element defines a (p+ ¢)-dimensional cohomology class of £\ X
(again, modulo the elements of lower filtration), but we cannot be sure a priori that
this class is not trivial, i.e. that the corresponding cycle in the discriminant is not a
boundary.

1.8. Justifications and approximations. Using the Weierstrass approximation
theorem, we can choose a perfect (in some sense) system of finite dimensional affine
approximating subspaces {/C, }, v — oo, of the space of curves . The corresponding



12 V.A. VASSILIEV

rings H*(K, \ ¥) converge to the ring H*(K \ ¥). Also, we can assume that all
planes IC, are in general position, in particular transversal to the natural stratification
of ¥. Then for any particular v the cohomological spectral sequence calculating
H*(K, \ ) and constructed from the simplicial resolution of ¥ N /C, also looks as in
Fig. 6 (although it will have only finitely many nontrivial columns). The stabilization
of spectral sequences means the following. For any natural s there exists v such
that terms EP? p > —s, of all our spectral sequences calculating cohomology of
K, \ %, K,i1 \ X, etc. are canonically isomorphic, and the images of differentials
d": EP9 — EPTraTH < g acting from these cells to the right also coincide. Thus
the limit spectral sequence EP? = lim,, ., EP9(v) is well defined.

A very important role in the birth of this theory was played by the V. Arnold’s
problem on the stable cohomology ring of complements of discriminants of complex
hypersurface singularities, see [5]. Being still of finite dimensional nature, this prob-
lem forced me to look for the homology classes arising uniformly in ”very highdimen-
sional” discriminant varieties, and also to think on the nature of their stabilization,
see [58].

2. FURTHER RESULTS AND PROBLEMS

2.1. Kontsevich integral.

Theorem 3. For anyn > 3, our spectral sequence with complex coefficients stabilizes
at the first term:

(10) B3 e ~ BT

This theorem was proved by Kontsevich about 1994 and is surely true. Its published
part proves the stabilization of the diagonal responsible for knot invariants, i.e. the
equality (10) for n = 3 and p+¢q = 0, see [37], [20]. For an arbitrary n > 3, almost the
same integral proves the identity (10) on the lower boundary of the spectral sequence,
i.e. for cells EP4 with ¢ + (n — 2)p = 0, but for the upper cells the proof uses some
extra efforts.

A great problem is whether the same is true over the integers.

I conjecture that in the case of long knots this is true, and moreover the homotopy
splitting (5) of any finite term F, of the filtration of the one-point compactification
of our resolved discriminant holds in some precise sense, see e.g. [64].

Another great achievement coming from the Kontsevich’s works is an integral rep-
resentation for the cohomology classes.

A spectral sequence similar to (but easier than) the one outlined in §§1.4-1.5 allows
us to calculate the cohomology groups of spaces Y* of continuous maps X — Y where
X is an m-dimensional finite cell complex and Y an m-connected one. Indeed, Y is
homotopy equivalent to the space RY \ A where N is sufficiently large and A is a
closed conical subset of codimension > m + 2. Then we consider the vector space
of all continuous maps X — RY, define the discriminant in it as the space of all
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FIGURE 7. Arrow diagrams

maps whose images intersect A, resolve this discriminant as previously and obtain
a spectral sequence converging to the cohomology group of the complement of this
discriminant, i.e. of the space (RN \ A)¥ ~ YX see [56], [57]. This spectral sequence
extends the Anderson’s spectral sequence [2] to the case when X is not a smooth
manifold, and is isomorphic to it if X is. It provides some information also if YV is
only (m — 1)-connected, but in this case we cannot be sure that it calculates all the
cohomology groups of Y, in full analogy with the discussion at the end of §1.7. If
X is a circle, then it is covered by the Adams—Eilenberg—Moore spectral sequence [1],
[27] (calculating in particular the cohomology of loop spaces). The ”deRhamization”
of the latter spectral sequence is known as the theory of iterated path integrals, see
[19], [35]. The Kontsevich’s integral (and possibly also its more smart versions proving
Theorem 3 in full generality) can be considered as its extension to the problems ”of
second order”, see §2.4 below.

2.2. Combinatorial expressions. The most well-studied part of this theory is, of
course, that of knot invariants. Shortly after its appearance, different combinatorial
formulas for these invariants were developed. They express the values of invariants
in the terms of the geometrical disposition of the knot, see e.g. [39], [17] and [48].
The most convenient formulas of this kind were announced and partly proved by
M. Polyak and O. Viro in [46], [47], see also [54], [55].

These formulas are described in terms of arrow diagrams, i.e. pictures like the ones
shown in Fig. 7.

Let us fix a direction in R?® transverse to the common direction ”at infinity” of our
long knots. Given a generic long knot f : R' — R3 (see Fig. 1), the value of the left
picture in Fig. 7 on it is equal to the number of 4-configurations (a < b < ¢ < d) C R
(counted with appropriate signs) such that the point f(a) lies above f(c) with respect
to the chosen direction, and f(d) lies above f(b). It turns out (see [46]) that this
value actually is a knot invariant, namely it coincides with the unique invariant of
filtration 2.

M. Goussarov has proved a wonderful theorem:

Theorem 4 (see [33]). Any invariant of finite filtration of long knots in R® can be
represented by a finite linear combination of arrow diagrams.

Formally speaking, any cohomology class of finite filtration of the space of knots in
R, n > 3, also should have combinatorial representations (although maybe formu-
lated in terms of more complicated conditions whose total complexity it is difficult
to estimate); the strength of the previous theorem consists in the fact that in the
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case of invariants we can use only conditions of a very special kind. To find the
combinatorial formulas for other cohomology classes a € H*(K \ X) effectively, it is
convenient to consider such a combinatorial formula as a semialgebraic relative cycle
in K (mod X), such that « equals the linking number with the boundary of this cycle
m .

It is natural to construct such cycles by induction over our spectral sequence. For
an illustration, let us consider again the theory of plane arrangements and their
complements. In the case of the line arrangement shown in Fig. 2 left, the entire
group E21* appears from the unique crossing point L(;5). This group is nontrivial
only for x = —1, is isomorphic to Z and generated by the homology class of the
segment A(1,2) modulo its endpoints (lying in Fy). The splitting formula (5) means
that we can extend this relative cycle in Fy (mod F}) to a (Borel-Moore) cycle in
entire L. However, to be able to define the value of this generating element on any
0-dimensional cycle in R? \ L we need to choose such an extension explicitly. Then
we project it to L and get a cycle there. Finally, we need to choose a relative cycle in
R? (mod L) whose boundary coincides with this cycle. Then we call this relative cycle
”a combinatorial formula”: its value on a point in R?* \ L is equal to the multiplicity
of this cycle in the neighborhood of this point.

If we have a more complicated plane arrangement, then we can construct this
extension step by step over our filtration. Our starting element vy € Equ is represented
by a cycle with closed supports in F, \ F,_; (or, equivalently, by a relative cycle in
F,/F, 1). We take its first boundary d (), which is a cycle in F, ; \ F, 5. Then we
span it, i.e. construct a chain 4; C F,_; \ F,_5 such that 0%, = d;(vy) there. Then
we take the boundary of 7+ 4; in the space F, 5\ F,,_3 and span it there by a chain
¥2, etc. The splitting formula (5) ensures that all this sequence of choices can be
accomplished. Moreover, a precise final result of this sequence is known since [71]:
see §1.4. It appears if we span our cycles in the most obvious way: by the trajectories
of generic flows.

The case of knots (say, of long knots) is very similar to that of plane arrangements.
For instance, here is a heuristic interpretation of the Polyak—Viro arrow diagram for-
mulas. A knot invariant can be considered as a relative cycle of full dimension noc
in the space of curves K (mod X): its value at a knot f equals the multiplicity of the
cycle in a neighborhood of f in K. All strata of the discriminant which can generate
(finite-type) homology classes of this dimension are defined by ordinary chord dia-
grams only: all points a;,b; in (8) should be different. At them, the corresponding
planes L(a;, b;) meet normally, so that the corresponding order subcomplexes A(-)
are simplices (or, more precisely, their first barycentric subdivisions). I do not know a
suitable analog of a globally defined vector field V' from §1.4 on the space K. However,
in the construction of §1.4 we could use not the one vector V' but just a generic fam-
ily of such vectors, one for each stratum L;, whose trajectories span them in greater
strata. In the case of knots, when the planes L(a;, b;) in (8) are defined by conditions
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f(a;) = f(b;), it is natural to take a vector field preserving the projection of our knot
to R? but increasing all the differences z(b;) — 2(a;), where z is some coordinate in
R3, say the one normal to the "blackboard” plane R?. To make this formula correct
we need to order the endpoints of any chord, i.e. to call one of them a; and the
other b;. Thus the arrow diagrams appear. The union of wedges emanating from the
point f as in §1.4 will then consist of curves with the same projection to R? but with
f(b;) "above” f(a;). The knot theory is very nonlinear (in contrast to the theory of
plane arrangements), in particular such wedges corresponding to chord diagrams of
the same topological type but with different configurations of points a;, b; can have
intersections in K. The algebraic multiplicity of such an intersection at some point
¢ € K\ X is exactly the value (in the Polyak-Viro sense) of the arrow diagram on
the corresponding knot.

Of course, everything is not so easy. Indeed, the strata corresponding to different
chord diagrams have common boundaries as the endpoints of different chords tend to
one another. Some additional trouble comes from singular maps with nongeneric pro-
jections to R?. Therefore the wedges constructed as above have some extra boundary
components. Constructing the combinatorial formulas we need to span these bound-
aries by some other chains in IC or try to choose the orientations of arrows in such a
way that these boundaries of different wedges annihilate. The Goussarov’s theorem
means (in our terms) that it is always possible to choose the orientations of arrows in
such a way that for the spanning chain we can take sums of similar wedges emanating
from the strata (8) of lower complexity.

The above heuristic speculations are helpful also in the case of higher dimensions
(in any of senses indicated in the preface), i.e. in constructing the combinatorial
expressions of higher-dimensional cohomology classes of spaces of knots in R*, n > 3.

In [68], natural classes of semialgebraic subvarieties in K and in different terms
F; \ F;_; of the filtration were introduced, of which (some of) these spanning chains
can be built.

2.2.1. Example: Teiblum—Turchin cocycle and its realization. The first positive di-
mensional cohomology class of finite filtration of the space of long knots in R? was
calculated by my students, D. M. Teiblum and V. E. Turchin, about 1995. It is a
class of dimension 1 and filtration 3. (Accordingly to [59], there are no cohomol-
ogy classes of filtration < 2 other than the simplest knot invariant.) However, this
calculation was quite implicit: they have calculated just the corresponding group
E; 34~ 7Z of the spectral sequence in the terms of generalized chord diagrams. Tt is
clear from the shape of the spectral sequence that this group survives and the final
group E_3* also is isomorphic to Z, so that its generator can be extended to a well
defined 1-dimensional cohomology class of the space of knots.

However, the fact that this class is nontrivial does not follow from the general
considerations, cf. the discussion in §1.7. This fact was proved in [68] by means of
an explicit combinatorial formula, see Fig. 8 and the following theorem.
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FiGure 8. Combinatorial formula for Teiblum-Turchin cocycle

Let us choose a direction ”to the right” in the "blackboard” plane R? (i.e. in the
quotient of the spaces R® by the direction chosen previously).

Theorem 5 (see [68]). The value of the Teiblum—Turchin cocycle on any generic loop
in the space KC of long knots (i.e. on a closed 1-parametric family of such knots) is
equal mod 2 to the number of points of this loop such that one of three holds (cf. Fig.
8):

a) there are five points a < b < c < d < e in R' such that f(a) is above f(d), and
f(e) is above f(c) and f(b);

b) there are four points a < b < ¢ < d in R' such that f(a) is above f(c), f(b) is
below f(d), and the projection of the derivative f'(b) to R? is directed to the right;

c) there are three points a < b < c in R' such that f(a) is above f(b) but below f(c),
and the "exterior” angle in R? formed by projections of f'(a) and f'(b) contains the
direction "to the right” (i.e. this direction is equal to a linear combination of these
projections, and at least one of coefficients in this combination is nonpositive).

(These points of the loop in K should be counted with multiplicities equal to the
numbers of different point configurations in R' for which the corresponding condition
a), b) or c) is satisfied.)

This statement remains true if we replace R® by any R*, n > 3, R by R* !, a
generic loop in the space of knots by a generic (3n — 8)-dimensional cycle, and the
1-dimensional Teiblum—Turchin cocycle by its (3n — 8)-dimensional stabilization, see
discussion in §1.7.

Further, let us consider the connected sum of two equal (long) trefoil knots in R?
and a path in the space of knots connecting this knot with itself as in the proof
of the commutativity of the knot semigroup: we shrink the first summand, move it
"through” the second, and then blow up again.

Proposition 1. This closed path in the space of long knots has exactly seven inter-
section points (counted with multiplicities) with the union of three varieties indicated
i items a, b and c of the previous theorem.
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But the Teiblum—Turchin cocycle is a well-defined integral cohomology class, thus
its value on (the integral homology class of) this loop is not equal to zero, and the
group generated by this cocycle is free.

Remark 1. I cannot yet reprove the Goussarov’s theorem in this way: the combi-
natorial formulas for knot invariants obtained by the straightforward application of
our algorithm can include some varieties in X more complicated than just the vari-
eties given by arrow diagrams, cf. Theorem 5. The construction of spanning cycles
participating in this algorithm leaves many choices, e.g. how to order the endpoints
a;, b; of a chord. The Goussarov’s theorem implies that it is possible to choose these
possibilities in such a way that all the awkward varieties will be cancelled. I hope
that a deeper understanding of its proof will help to formulate the exact rule for this.

Also, in all situations more complicated than that of invariants I do have, strictly
speaking, not an algorithm (i.e. something definitely converging to an answer), but
just a collection of tricks which succeed to give such answers in particular problems
like that of the Teiblum-Turchin cocycle or the one considered in the next subsection.

Remark 2. The virtual knots introduced by L. Kauffman in 1997 and applied in [33]
to the construction of combinatorial formulas can be identified as another (extremely
big) class of subvarieties of the space of curves K.

2.3. Cohomology of spaces of compact knots. A similar theory exists for the
space of compact knots S! — R". There is a one-to-one correspondence between
invariants of compact and long knots in R?, but in higher dimensions many extra
cohomology classes of spaces of compact knots arise from the topological nontrivi-
ality of the circle. For instance, already in filtration 1 we have two such classes of
dimensions n — 2 and n — 1 (with coefficients in Z,, and if n is even then also with
integer coefficients). The combinatorial formulas for all such classes of filtrations 1
and 2 were found in [68]. E.g. the (n—2)-dimensional class of filtration 1 is Alexander
dual to the variety in K formed by all maps f : S' — RY gluing together some two
opposite points of S!, see [63].

The corresponding combinatorial formula consists of two varieties distinguished by
the following conditions (referring to a circular coordinate S* ~ R/27Z in S):

a) there is a point a € [0, 7) such that f(«) is above f(a + 7) with respect to the
chosen direction;

b) the projection of the point f(0) to R*! lies "to the right” from the projection
of f(m).

As usual, all of this theory can be literally extended to the spaces of links, i.e.
embeddings of a disjoint union of finitely many circles.

2.4. Theories of further orders. The knot theory is a theory of the second degree
of complexity in the same way as the problem mentioned in the end of §2.1 is of degree
one: the forbidden discriminant set in the knot theory is defined by a condition on
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F1GURE 9. Simplest invariants of knots and doodles

the simultaneous behavior of our map R' — R" at some two points, while in the
theory of generalized loop spaces any point is responsible for its own behavior only.

The typical example of a problem of order 3 is the study of invariants of plane
immersed curves S* — R? without triple self-intersection points.

This problem was raised by V.I. Arnold [8], [9], who indicated also the simplest such
invariant distinguishing homotopic immersions. This is the strangeness Alexander
dual to the fundamental cycle of the whole discriminant variety of curves having
forbidden triple points.

Similarly to the case of knots, this variety is swept out by the 3-parametric family
(parametrized by three-point configurations in S') of flat manifolds of codimension
4 in entire space of plane curves (these manifolds form open dense subsets in the
planes also parametrized by triples of points and distinguished by the condition that
the images of these three points should coincide). It follows easily that this discrim-
inant variety is the image of a smooth orientable manifold, in particular carries a
fundamental cycle.

A similar problem formulated in [61], [62] and studied in [36], [42], [43], [66] a.o.,
concerns the classification of allsmooth plane curves S' — R? (not necessarily immer-
sions) without triple points or singularities obtained as their degenerations. (Since
[36], they are called doodles.)

These problems have lead to the calculus of triangular diagrams (see [66]) in the
same way as the knot theory leads to the chord algebra. E.g., the Arnold’s ”strange-
ness” is an invariant of filtration 2 and can be depicted by a single triangle, see Fig. 9
right. However, it is not an invariant of doodles. The simplest invariant of doodles
(discovered first by A. Merkov [42] by different methods) can be naturally depicted
by the simplest triangular diagram, whose triangles have no neighboring points in
the circle (see Fig. 9 center) in the same way as the first knot invariant corresponds
to the simplest chord diagram with the same property (see Fig. 9 left or the third
picture of Fig. 4).

The relation with the graph theory (see page 9) is almost literally replaced by
that with the theory of 3-hypergraphs, and the analogy with the ”diagonal” plane
arrangement by the analogy with the ”k-equal” arrangement of planes in R"™ =
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(R™)™ consisting of such collections (z1,...,2y), z; € R*, that z;, = --- = z;, for
some set of indices 1 < iy < --- < i, < m, see [15], [61].

2.5. The V. Turchin’s calculation. The theory of finite type invariants of knots
has born many beautiful algebraic objects, such as the Hopf algebra of chord diagrams
and graph-complex of trees, see e.g. [38], [12].

It was shown recently by V. Turchin [53] that these structures are nonseparable
parts of more general theories, related with entire cohomology rings of spaces of
knots and formulated in terms of generalized chord diagrams. The corresponding
multiplicative structures resemble the multiplication discussed in §1.5 (although are,
of course, much more complicated). It was proved in [53] that the first term of
the main spectral sequence calculating the rational homology of the space of long
knots in R™, n > 3, is described in terms of the Hochschild homology of the Poisson
algebras operad if n is odd (respectively, of the Gerstenhaber algebras operad if n
is even). Namely, the Hochschild homology of these operads is in both cases some
polynomial algebra in infinitely many even and odd variables. To obtain the first term
of the spectral sequence in the case of even n we need to factorize the corresponding
polynomial algebra by one odd generator [z1,xs]. In the case of odd n we need
to factorize by two generators: one even (equal to [z1,xs]) and one odd (equal to
[[1, @3], w2]).-

In particular, the standard bialgebra of chord diagrams factorized through the 4-
term relations (see [37], [12]) is some subspace in the Hochschild homology of the
Poisson algebras operad. To obtain the algebra of finite order invariants (i.e. coho-
mology of degree zero in the case n = 3) we should factorize this bialgebra by one
generator [z, Ts).

3. DiscussioN

3.1. Which method of resolution is better: the naive or economical one (see
Fig. 2 right)??

In the case of knot spaces they are more or less equal: the constructions are
equivalent and the complexities of related calculations are comparable. But generally
the ”economical” method (or rather its suitable generalization) is stronger. Indeed,
sometimes we need to resolve discriminant spaces swept out by families of planes,
infinitely many of which pass through one and the same point. The classical example
is the determinant variety of all degenerate linear operators (whose Borel-Moore
homology group is Alexander dual to the cohomology group of GL,,), or the space of
singular algebraic projective hypersurfaces of a given degree (that arises in the study
of the complementary space of nonsingular varieties), etc., see [67], [65]. The natural
extension of the "economical” construction based on the notions of conical resolutions

2Asked by the chairman of the session, Prof. N. Hitchin FRS
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and continuous order complexes allows us to overcome this difficulty, while the naive
construction does not work.

On the other hand, sometimes both methods are better. This means that the very
fact that both constructions are homotopy and homology equivalent provides inter-
esting combinatorial relations. For instance, the resolutions of diagonal arrangements
like in [3] (arising also in the study of some discriminant strata of the space of knots)
is related very much to the graph theory, and we obtain many natural problems and
comparison theorems in its homological theory, see e.g. [15], [61], [63], [10], [51], [52],
etc.

3.2. Caution. The initial part of the described theory, i.e. the study of knot invari-
ants of finite filtration, became very popular (see e.g. [11]) owing, in particular, to
the fact that its basic definitions can be formulated in very elementary terms of finite
differences, see [13], [12] and §0.2, 0.4 in [59].

However the literal translation of these definitions to such problems as e.g. theories
of higher orders in the sense of §2.4 or the study of higher dimensional cohomology
classes of spaces of knots will not help us to guess adequate geometrical constructions
or equally beautiful algebraic structures. For instance, the group of ”order k£” (in this
sense) invariants of triple points free plane curves will be not finitely generated for
any k. The reason for this consists in the fact that in these theories the singularities of
discriminant sets essential for the calculation of cohomology classes and invariants
are more complicated than just the mormal crossings. Moreover, the indices which
invariants and cohomology classes define at all such essential strata (by some far
analogues of conditions of type

fFERD+F () = ()
from the theory of knot invariants) in most situations are not scalar: they take
values in certain homology groups associated with these strata, cf. [63]. Therefore
the elementary interpretation of the filtration, as well as the very definition of objects
of finite type, should be modified adequately in any particular theory of this sort, cf.
[62], [40], [66].

Notice however the beautiful theory of finite type invariants of 3-manifolds started
by T. Ohtsuki and extended by S. Garoufalidis, M. Goussarov and others, see [44],
[31], [34]. In this theory some comparatively close modification of the basic geomet-
rical characterization of knot invariants of finite filtration is very important. Maybe
this can be explained by the fact that the classification of 3-manifolds is a (very
nontrivial) quotient of the link theory by the Kirby relations.

Unfortunately I cannot include this theory in the general framework of the dis-
criminant theory.

I acknowledge the hospitality of the Isaac Newton Institute, Cambridge, where
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