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1. Introduction and main results.

Consider the contact space R?®*1. Two germs at 0 € R of curves 71,72 : (R,0) —
(R?+1,0) are called equivalent (resp. contact equivalent) if there exists a local
diffeomorphism & : (R,0) — (R,0) and a local diffeomorphism (resp. contactomor-
phism, i.e. a diffeomorphism preserving the contact structure) ¥ : (R?*"+1 0) —
(R?7+10) such that y2 = ¥ oy; 0 &L,

A curve v : R — R?"*! is called integral if v*w = 0, where w is a 1-form
describing the contact structure. This means that the image of « is tangent to the
contact structure at any nonsingular point. By Darboux-Givental’ theorem [1] any
two germs of immersed integral curves are contact equivalent.

Assume now that ; and -y are germs of integral curves at the singular point
0 € R. Is it true that their equivalence implies contact equivalence? Recently V.I.
Arnol’d showed [2] that if n > 2 then the answer is negative even for the simplest
A-singularities: for any k > 1 there exist integral curves vi,...,7¥2x41 Such that
each of them is equivalent to the curve ¢ — (#2,42%*+1 0,...,0) and +; is not contact
equivalent to y; if ¢ # j.

The case n = 1, i.e. the 3-dimensional case, is simpler. In the present paper
we prove several results showing that the contact classification of integral curves in
contact 3-space is very close to the classification of space curves as well as to the
classification of plane curves.

Convention. We work in a fixed category which is either C* or real-analytic.
Throughout the paper by a curve v in R® we mean the germ at 0 € R of a mapping
(R,0) — (R",0). A curve is singular if 0 € R is not an immersed point, i.e.

7'(0) = 0.

Theorem 1. In the set of integral curves in a contact 3-space there exists a subset
E of infinite codimension such that away from this subset the equivalence of two
integral curves implies their contact equivalence.

The set E does not depend on the contact structure. It consists of integral curves
v whose formal series 7 satisfies one of the following conditions:
(1) ¥ = 0;
(ii) 4 is equivalent to (¢9,0,0), ¢ > 2;
(iii) 4 is equivalent to (¢7,¢P,0), where 2 < ¢ < p and the numbers ¢,p have a
common factor > 1.

Theorem 1 is proved in sect.3. The proof is based on Proposition 1 slightly
extending the 3-dimensional case of one of A.B. Givental’s theorems on singu-
lar Legendrian submanifolds [3] and Proposition 2 on integral curves defining the
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orientation of the space.

The classification of space curves was started in [4], see also [5]. Note that
Theorem 1 does not reduce the contact classification of integral curves in contact
3-space to the classification of space curves because the set of space curves that
are equivalent to integral ones is rather complicated subset of the set of all space
curves, see Appendix 2.

On the other hand, the contact classification of simple singularities of integral
curves reduces to the classification of plane curves. Recall that a curve v in R? is
called simple (in the set of all curves in R™) if for some finite k& all curves whose
k-jet is sufficiently close to the k-jet of v belong to a finite set of equivalence classes.

Definition. An integral curve in a contact space is called contact simple in the
set of integral curves (or just contact simple) if for some finite k all integral curves
whose k-jet is sufficiently close to the k-jet of v belong to a finite set of contact
equivalence classes.

Throughout the paper we will use the following notation.

Notation. Given an integral curve v in the contact space (R3, dz —ydz) we denote
by n () its projection to the (z,y)-plane. Given a plane curve u : (z(t),y(t)) we
denote by 7~ (u) = n~1(x(t),y(t)) the integral curve  such that n(y) = p and

~(0) = 0.

Theorem 2.
1. Let v be an integral curve in the contact space (R®,dz — ydx). The following
statements are equivalent:

(i) v is contact simple (in the set of integral curves);
(ii) vy is simple (in the set of all space curves);
(iii) () is simple (in the set of all plane curves).

2. Two contact simple integral curves v1,v2 in the contact space (R3,dz — ydz) are
contact equivalent if and only if the curves w(v1), 7 (y2) are equivalent.

Remarks. The equivalence of (i) and (ii) in Theorem 2 does not follow from
Theorem 1 (Theorem 1 implies only (#4) = (¢)). The second statement in Theorem 2
does not hold for sufficiently deep (but of finite codimension) singularities: there are
contact equivalent integral curves 7,72 in (R®, dz —ydz) such that the plane curves
7(y1), m(y2) are not equivalent, and there are equivalent plane curves pi, u2 such
that the integral curves 7~1(u;), 7~ 1(us2) are not contact equivalent, see Appendix
3.

Theorem 2 and the known classification of simple plane curves [6] lead to the
classification of contact simple integral curves. The classification of singular simple
curves (C,0) — (C2,0) in [6] easily implies the classification of singular simple
curves (R,0) — (R%,0). The list of normal forms includes four series

(tz’ t2k+1), (1k:)

(t3, t3k+1 + (:tl)it3k:+2+3i), (2k,1§)



(t3’ t3k;+2 + (il)i+1t3k+4+3i), (3k,1.)

where k > 1, 1€ {0,1,...,k — 1}, and 8 sporadic curves
(4,85 £¢7), (¢4, ¢°), (4,7 £19), (467 £¢13), (¢4,¢7). (5)

The normal forms (2 x—1) and (3gx—1) can be simplified - they are equivalent to
(¢3,t3%+1) and (¢, t3%+?) respectively.

Theorem 3.
1. A singular integral curve vy in a contact 3-space is contact simple if and only if
one of the following holds:

(1) the 3-jet of v is different from zero and 7y is not infinitely degenerated;

(i) the 5-jet of v is equivalent to (t*,1°,0);

(111) the 6-jet of v is equivalent to (t*,t%,0) and v is not infinitely degenerated;
(iv) the 7-jet of v is equivalent to (t4,¢7,0).

2. Any contact simple singular integral curve in (R%, dz —ydzx) is contact equivalent
to one and only one curve of the form n~1(u), where u is a plane curve of the list

(1-5).

The infinitely degenerated curves in Theorem'3 are those whose formal series is
equivalent to (t2,0,0) or to (t3,0,0) or to (t4,15,0).

The set of integral curves which are not contact simple has codimension 8 in the
space of all integral curves, see Appendix 1. Corsequently, the germ at any point
of any curve of a generic [-parameter family of globally defined integral curves is
contact simple provided that [ < 6.

Remark. The conditions (i)-(iv) in Theorem 3 do not involve the contact structure.
This corresponds to Theorem 2 which implies that if y is an integral curve with
respect to two contact structures then the property of v of being contact simple
does not depend on the choice of contact structure.

The proof of Theorems 2 and 3 is based on Theorem 4 below having an inde-
pendent significance for the contact classification of integral curves, not necessarily
simple. We need the following notation.

Notation. Given two integers 1 < ¢ < p denote by T'(q, p) the set of all integers
s > p which cannot be expressed in the form s = o319 + asp with integers a; > —1
and as > 0.

It is easy to see that the set T'(g,p) is empty if and only if either (g,p) =
(2,2r+1),7>1,0r (g,p) = (3,4), or (¢,p) = (3,5). The set T(g, p) is finite if and
only if the numbers ¢ and p are mutually prime (have no common factor > 1). For
example, the set T'(3,7) consists of the only number 8, the set T'(4,5) consists of
the only number 7, the set T'(5,6) consists of two numbers 8,9, and the set 7°(6,7)
consists of 6 numbers 9, 10,11,16,17, 23.
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Theorem 4. Let v be a singular integral curve in the contact space (R?,dz — ydz).
Assume that the formal series of v is not zero and is not equivalent to (¢,0,0),q >
2. Then

1. v is contact equivalent to an integral curve of the form w=1(t9, f(t)), where
() =t? + o(t?)), 2 < g < p, and p is not divisible over q;

2. If s> p and s & T'(q,p) then v is contact equivalent to an integral curve of the
form w=1(t9, g(t)), where g(t) = 7°~* f(t) + o(t°).

3. The formal series of v is contact equivalent to the formal series

a e+ Y aitt ] (6)
i€T'(g,p)

4. If q and p are mutually prime then the set T(q,p) is finite and the normal form
(6) holds in analytic and smooth categories.

Remark. The normal form (6) is, in general, preliminary - it contains contact
equivalent integral curves unless the set T'(q,p) is empty.

In sect.2 we prove the first three statements of Theorem 4. This allows us to
prove Theorem 1 in sect.3. The fourth statement of Theorem 4 and Theorems 2 and
3 are proved in sect.4. The Appendix 1 is devoted to adjacencies and codimension of
singularities. In Appendix 2 we analyze how the space curves equivalent to integral
ones are placed in the set of all space curves. In Appendix 3 we show that for
sufficiently deep singularities neither the contact equivalence of integral curves in
(R3,dz — ydz) implies the equivalence of their projections to the (z,y)-plane, nor
the equivalence of the projections implies the contact equivalence of the integral
curves.

Acknowledgments. I am thankful to I. Bogaevsky who called my attention to
the paper [3]. The work on the present paper was fulfilled when I was visiting the
Isaac Newton Institute, Cambridge, UK, within the Singularity Theory Program. I
would like to thank the Organizers of the Program and to the Staff of the Institute
for excellent scientific atmosphere and working conditions.

2. Proof of Theorems 4 (statements 1-3).

The first statement easily follows from the existence of the following local contac-
tomorphisms:
T =Y, Yy ——T, 22— Y,
axm+1

(m+1)’
The third statement is a corollary of the second one, so we will concentrate on the

proof of the second statement.
The assumption s & T'(q, p) means that s can be expressed in the form

T—z,y—>ytaz™, z—o 2+ m>1, a€cR

§= (ﬂl _1)q+:32p7 :617132 € {051521}
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H =czPryP2 ceR,

o OHO 9HO (. oH\ &
Oy Oz Oz By yay 0z

The vector field X vanishes at the origin, therefore it generates a flow ¥* of local
diffeomorphisms. A simple calculation shows that the Lie derivative of the 1-form
dz — ydz along X is equal to zero. Therefore X is a contact vector field - the
diffeomorphisms ¥* are contactomorphisms (moreover, they preserve the form dz —
ydz).

Denote ¥ = ¥!. We will show that the contactomorphism ¥ and a suitable
reparametrization ¢ — ®(¢) brings the curve v = 7~ 1(t9, f(¢)), f(t) = t? + o(tP))
to the required form 7=1(t9, j¥~1f(t) + o(¢t*)). The curve w(¥ o) has the form

&(t) = 17— cfat* TP + o(t"TIF), y(t) = f(t) + cBut” + o(t°).

Make a reparametrization of ¢ bringing z(¢) back to the form ¢?9. This reparametri-
zation has the form

t—t+ (cﬂz/q)ts_p"'l + o(ts_p‘H).

It brings y(¢) to the form §(¢) = f(t)+(c/q)(aB1+pB2)t°+0(t°). Since gB1+pPs # 0
then for a suitable ¢ we have §(t) = 751 f(t) +0o(¢*). B

3. Proof of Theorem 1. Integral curves orienting R®.

At first we will reformulate Theorem 1. We will denote by (w) the contact
structure described by a contact 1-form w. By a symmetry of a curve v : (R,0) —
(R3,0) we mean a local diffeomorphism ¥ : (R?,0) — (R3,0) preserving the image
of v. Theorem 1 is equivalent to the following statement.

Theorem 1,a. Any singular curve v in R® which is integral with respect to a local
contact structure (wo) has the following property provided that v does not belong to
the set E of infinite codimension in Theorem 1: if v is also integral with respect to
a local contact structure (w1) then there exists a local symmetry of v bringing (w;)

to (wo)-

The first step in proving Theorem 1,a is the following statement slightly exten-
ding the 3-dimensional case of one of A.B. Givental’s theorem on singular Legen-
drian manifolds. Recall that any contact structure (w) on R® defines a canonical
orientation on R3. Fix a volume form € on R3. Two local contact structures
(wo) and (wy) define the same orientation if the numbers (wo A dwg)/Q(0) and
(w1 A dwy)/$2(0) have the same sign.

Proposition 1 (cf. [3], Theorem 1'.) The conclusion of Theorem 1,a holds
provided that v € E and the local contact structures (wo) and (w1) define the same
orientation of R3.

Theorem 1,a is a direct corollary of Proposition 1 and the following statement.
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Proposition 2. Any singular integral curve v € E has at least one of the following
properties:

(a) v admits an orientation reversing symmetry - a local symmetry ¥ such that
det¥’'(0) < 0,

(b) v defines an orientation of R3 in the following sense: if v is an integral curve
with respect to two contact structures then these contact structures define the same
orientation of R3.

The property (a) (resp. (b)) holds if the formal series of v is equivalent (resp. not
equivalent) to (t9,t7,0).

In terms of normal form (6) the property (b) holds if the set T'(g, p) is not empty
and at least one of the coefficients a; is not zero. The first occurring singularity of
integral curves defining orientation of the space is the singularity 7~ 1(¢3,t7 +¢8) in
the contact space (R, dz — ydz). This singularity has codimension 6 in the set of
all germs of integral curves.

Proof of Proposition 1. We will say that two contact structures can be joined
by a segment of contact structures if there exists 1-forms wo and w; describing
these contact structures such that the form w, = wo + s(w1 — wo) is contact for all
s € [0,1].

Lemma 1. Two local contact structures on R3 can be ]ozned by a segment of contact
structures if and only if they define ‘the same ofientation of R®.

Let wg and'w; be the 1-forms in Proposition 1, ws; = wo + $(w1 — wp). Lemma 1
allows to assume without loss of generality that the 3-form w; Adw, does not vanish
as s € [0;1]. Define a family X, of vector fields by the relation

X | (ws Adws) = ws A (w1 — wo) = wo Awy, s € [0,1]. (7)

The assumption v ¢ E implies that the image of v is smooth at all points except
the origin. Since wp and w; annihilate any vector tangent to the image of v then
by (7) the vector field X, is tangent to the image of v at any point except the
origin. Using again that 4 ¢ F we obtain that X,(0) = 0 for all s € [0,1]. In fact,
if X,(0) # 0 for some s then the tangency of X, to the image of v implies that the
image of -y belongs to a smooth curve which is possible only in the case v € E.

The given properties of X, allow to construct a path of local diffeomorphisms ¥,
by the system of ODE’s d‘I’s = X,(¥,), Yo = id and to conclude that ¥, preserves
the image of «y for any s € [O 1]. Now we show that ¥%(ws) = (wg). Denote by Lx,
the Lie derivative along the vector field X,.

Lemma 2. Lx, ws + w1 —wo = hyw, for some family hy of functions.
Denote A(s) = ¥iw,. Differentiating by s and using Lemma 2 we obtain
Al(s) = ¥ (Lx,ws + w1 — wo) = QsA(s), Qs = hs(¥s).

It follows that ,
A(s) = R,A(0), R, = elo 9.
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Therefore ¥iws; = Rywo which means that ¥ (w;) = (wp). To prove Proposition 1
it remains to prove Lemmas 1 and 2.

Proof of Lemma 2. The relation (7) implies that (X, |ws)dws = A; Aw, for some
1-form ;. It follows that (X, ]|ws)ws A dws = 0 and consequently X |ws = 0 for all
s. Then (7) leads to the relation (Lx,ws -+ w1 — wp) A ws = 0. Since w,(0) # 0 we
obtain the required relation.

Proof of Lemma 1. It is clear that if the orientations defined by the local
contact structures are different then these contact structures cannot be joined by
any continuous path of contact structures. Assume that the orientations are the
same. Fix a volume form € such that (woAdwg)/2(0) > 0 and (w1 Adw1)/2(0) > 0.

Consider the function
F(s,1) = (wsr A dws ) /2(0),

Ws,r = wo + S(Twy — wp).

To prove the Lemma we will show that there exists * # 0 such that F(s,r*) > 0
for all s € [0,1]. We will use the relation

%—Z(O, ) = (—2wqo A dwo + (wo A dwy + w1 A dwg)) /Q(0).

Let @ = (wo A dwy + w1 A dwp)(0). If @ # 0 then there exists r = r* such that
%(0, 7*) > 0. Since the function F(s,r*) is quadratic with respect to s and takes
positive values as s = 0 and s = 1 then F(s,r*) > 0 for all s € [0,1]. If # = 0 then
F(s,m) = ((1 - 8)%wo A dwo + s?r?wy A dw) /9(0), therefore F(s,r) > 0 for all s
and all7 #0. B

Proof of Proposition 2. At first assume that v ¢ £ and the formal series of «y is
equivalent to (t9,t?,0). In this case, by the definition of the set E, the numbers ¢
and p are mutually prime and by Weierstrass-Malgrange preparation theorem -y is
equivalent to (¢7,P,0) in the analytic or smooth category. The latter curve has an
orientation reversing symmetry (z,y, 2) — (z, v, —2).

Assume now that v ¢ E and the formal series of 7y is not equivalent to (7,7, 0).
We will show that in this case any two contact structures (wo) and (w;) such that
Y*wg = y*w; = 0 define the same orientation of R3.

There is no loss of generality to assume that wg = dz — ydz. By Theorem 4 there
exist integers 1 < ¢ < p < s such that p is not divisible over ¢ and s € T'(q, p) and
the projection of v to the (z,y)-plane has the form =z = t9,y = ¢ + at® + o(t*),
a 7 0. Then v has the form

z=2z(t) =t?, y=y(t) =t +at® + o(t?), z = 2(t) = btPTL 4 ct*19 + o(¢°19)
with b= ¢/(p+ q) and ¢ = ag/(s + q). Let
w1 = A(z,y, 2z)dz + B(z,y, z)dy + C(z,y, z)d=z.
Then

F(t) = A(z(t),y(t), 2()z'(t) + B(x(t), y(t), 2(1)y'(£) + C(x(2), y(2), 2(1))#'(t) = 0.
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We will express some coefficients of the formal series F'(t) = fit + fat?> +--- of F(t)
in terms of the coefficients of the formal series of A, B,C. Using the inequalities
1 < g < p < s, the condition that p is not divisible over g, and the condition that
s belongs to the set T'(g, p) we obtain

fo-1=14A(0),  fp—1=pB(0),

04 0B
frtq-1= qa—y(O) +p5;(0) + qC(0),

0A 0B
fstqg-1= aq%(O) + asE(O) + aqC(0).

It follows that A(0) = B(0) = 0. The relations fpiq—1 = fs4q—1 = 0 give a
system of linear equations with respect to %%(0) and 2B(0). The determinant of
the matrix of this system is equal to ga(s — p) # 0, and this system has unique
solution 4(0) = —C(0), 42(0) = 0. Therefore (w1 A dw1)(0) = C*(0)dzdydz
which means that the contact structures (wp) and (w;) define the same orientation
of R3. W

4. Proof of Theorem 4, statement 4, and Theorems 2 and 3.

The fourth statement of Theorem 4 is a corollary of Theorem 1 and the following
well-known fact (see, for example, [4]): if ¢ and p are mutually simple numbers then
a space curve of the form (£9,t? + o(t?), f(t)) is finitely determined (in analytic and
smooth categories) for any function f(t).

Theorem 2 is a corollary of Theorem 3, it can be obtained by comparing the
classification of simple integral curves with the classification of simple plane and
space curves in [4,6]. _

Now we start to prove Theorem 3. Theorem 1 implies that if vy is an integral
curve with respect to two contact structures (wg) and (w1) then it is contact simple
with respect to (wp) if and only if it is contact simple with respect to (w1). Therefore
proving the first statement of Theorem 3 we can assume that wo = dz — ydz.

Assume that ~ satisfies one of the conditions (i)-(iv) of Theorem 3. Then by
Theorem 4 + is contact equivalent to an integral curve m—1(t9,¢P + o(t?)), where
(g,p) is one of the pairs (2,2k + 1), (3,3k + 1), (3, 3k + 2), (4,5), (4,6), (4,7).

In the case (g,p) = (2,2k + 1) the set T'(q,p) is empty and by Theorem 4 7 is
contact equivalent to w—1(t2,¢2k+1).

If (q,p) = (3,4) or (g,p) = (3,5) then the set T'(q,p) is empty and by Theorem
4 v is contact equivalent to 7~ 1(t3,t%) or m=1(¢3,¢°).

In the case (g,p) = (3,3k + 1),k > 2 the set T'(q,p) consists of k¥ — 1 numbers
3k+2+3:,1€ {0,1,...,k—2}. By Theorem 4 + is contact equivalent either to the
curve w—1(¢3,43%*1) or to an integral curve of the form

£ =13, y= t3F+L | qpBR B g (BkH2HBEy o Bkt ct3EH5+3E o(t3k+5+3i)
where i € {0,1,...,k—2},a#0,b=3/(8k+4), c=3a/(3k+ 5+ 3i). It is clear
that this curve is equivalent to

T = t3, y = t3k+1 + Ht3k+2+3i 4 0(t3k+2+3i), 2 = t3k+5+3'£ + O(t3k+5+3’i)7 (8)
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where k = 1 if 7 is even and xk = %1 if ¢ is odd. Note that any integer > 3k + 2+ 34
can be expressed in the form £ -3+ B2 (3k+ 1) + B3 - (3k + 5 + 37). Therefore all
curves of the form (8) are equivalent. By Theorem 1 we obtain that the integral
curve «y is contact equivalent to 7~ 'u, where p has the normal form (2).

The case (q,p) = (3,3k + 2),k > 2 is similar. The set T(g,p) consists of & — 1
numbers 3k + 4 + 34,4 € {0,1,...,k — 2}. By Theorem 4 v is contact equivalent
either to the m~1(¢3,#3%%2) or to an integral curve of the form

where ¢ € {0,1,...,k—2},a#0,b=3/(3k+5), c=3a/(3k + 7+ 37). This curve
is equivalent to

where k = 1 if 7 is odd and x = %1 if 7 is even. Since any integer > 3k + 4 + 37 can
be expressed in the form By -3+ B2 - (3k +2) + B3 - (3k + 7 + 3i) then all curves of
the form (9) are equivalent. By Theorem 1 we obtain that the integral curve v is
contact equivalent to m~1u, where 4 has the normal form (3).

Consider now the case (g, p) = (4,5). In this case the set T(g,p) consists of the
single number 7, and by Theorem 4 the integral curve <y is contact equivalent to
7~ 1(t*, 4% + at”). A contactomorphism (z,y,2) — (k1z, k2y, k1k22) and reparame-
trization t — kst with suitable k1, ko, k3 reduce the parameter a to 4-1 unless a = 0.
Therefore -y is contact equivalent to one of the curves (%, 1% & ¢7), =~ 1(¢4,15).

The next case is (¢,p) = (4,6). By Theorem 4 v is contact equivalent to an
integral curve of the form

(t4, 48 4 gy2k+1 +O'(t2k+1), 410 _l"_bt_zk+5+0(t2k+5))? (10)

where k¥ > 3,a # 0,b = 4/(2k + 5). The contact equivalence of v to the curve
7w~ 1(t*,¢2k+1) follows from Theorem 1 and the equivalence of all space curves of
the form (10). The latter can be proved as follows. Any plane curve of the form
(t,t® + at?**1),a # 0 is equivalent to (%, + t2¥+1), see [6]. Therefore any space
curve (10) is equivalent to

The parameter b; can be reduced to zero by a change of coordinates z — z —b1z™y
if k=2mor z = z—bi2™ 2 if k = 2m + 1. The parameter by also can be reduced
to zero by a change of coordinates z — z — (ba/2)y? + (bz/2)x3 (it is essential that
k > 3). It remains to note that the function o(#**7) also reduces to zero since any
integer > 2k + 8 can be expressed in the form £y -4+ (2 - 6 + f5 - (2k + 5) with
nonnegative integers (51, Oz, Os.

Finally, consider the case (g,p) = (4,7). In this case T(g,p) = {9,13} and by
Theorem 4 -y is contact equivalent to an integral curve of the form

(t*, t7 + a1t® + axt3, bot'! + byt! + bat'7) (11)
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where by = 4/11, by = 4a1/13,by = 4ax/17. It is clear that if a; # 0 then the space
curve (11) is equivalent to the curve (t%,t7 £¢%,¢%), and if a; = 0,a2 # 0 then
(11) is equivalent to (t4,¢7 +£¢'3,¢'7). By Theorem 1 the integral curve vy is contact
equivalent to one of the curves 7= (¢4, 47 + %), m~1(¢4, 17 £ ¢13), m 1 (¢4, 7).

Denote by B the set of integral curves that do not satisfy any of the conditions
(i)-(iv) of Theorem 3. To prove Theorem 3 it remains to show that the set B
contains no contact simple curves.

Denote by B; (resp. Bs) the set of integral curves that are contact equivalent to
7= (t%,t° + o(t?)) (resp. m~1(t%,5 + 0(t%))). By Theorem 4 for any integral curve
~ of the set B there exists an integral curve ¥ of the set B; U B, such that j%% is
arbitrary close to j%y. Therefore to prove that B contains no contact simple curves
it suffices to prove that the sets B, and B; contain no contact simple curves.

By Theorem 4 an integral curve of the set By is contact equivalent to an integral
curve of the form (¢*,t°+a;t%+at!t, 0)+o(t!!), and an integral curve of the set By
is contact equivalent to an integral curve of the form (%, 6 + a1t8 + a,t%, 0) + o(¢%).
Generic curves of this form are equivalent to (¢%,%° + !0 + at!!,0) + o(t'!) and
(5,16 + 18 + at?, 0) + o(t®) respectively. In these normal forms the parameter a is
the modulus with respect to the RL-equivalence of space curves (see [6}), therefore
the sets By and B do not contain contact simple curves. ll

Appendix 1. Codimension of simple singularities. Adjacencies.

By Theorems 3 and 4 the codimension of contact simple singularities of integral
curves and adjacencies between such singularities are the same as those for plane
curves. .

Given two integers 1 < g < p such that p’is not divisible over g, denote by [g, p]
the singularity class consisting of integral curves which are contact equivalent to the
integral curves of the form 7 ~1(t4,#P+0(t?)). By Theorem 4 the codimension of this
singularity class in the space of all germs of integral curves is equal to 2(¢ — 1) +1,
where ¢t is the number of integers from ¢ to p — 1 (including p — 1) that are not
divisible over g.

In particular, the singularity classes [5,6] and [4,9] have codimensions 8 and 9
respectively. Therefore the set B defined at the end of sect.4 has codimension 8 and
consequently the set of integral curves which are not contact simple has codimension
8. Here and below by codimension we mean the codimension in the space of all
germs of integral curves.

The codimensions of the singularity classes [g, p] containing contact simple inte-
gral curves and the adjacencies between these singularity classes are as follows:

codim|[2,2k + 1] = k — 1, codim[3,3k + 1] = 2k + 2, codim|3, 3k + 2] = 2k + 3,

codim[4,5] = 6, codim[4,6] =7, codim[4,7] = 8,
2,2k +1] ¢— [2,2k +3], [3,3k+ 1] «— [3,3k +2] «— [3,3k +4], k> 1,
[4,5] «— [4,6] «— [4,7],
[3,m] «— [2,m+1], m=4,810,14,16,...,
3,m] «— [2,m], m=5,7,11,13,17,...,
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[4,5] «— [3,5], [4,6]+— [3,7]-

Each of the singularity classes [2,2k + 1], k& > 1, [3,4], and [3, 5] consists of one
orbit with respect to the contact equivalence.

The singularity classes [3,3k + 1] and [3, 3k + 2], k > 2 consist of & orbits corres-
ponding to the normal forms (2)x; and (3)x4, ¢ = 0,...,k — 1. The codimensions
of these singularities are equal to 2k 4+ 2 + ¢ and 2k + 3 + ¢ respectively.

The singularity class [4,5] consists of 3 orbits described by the normal forms
a1 (t4, 85 +17), 771 (t4, % — t7) and w1 (¢*,¢%). The codimension of these singula-
rities is equal to 6,6, 7 respectively.

The singularity class [4, 6] consists, modulo infinitely degenerated curves, of infi-
nite number of singularities described by the normal forms (4)x. The codimension
of these singularities is equal to k + 6.

The singularity class [4, 7] consists of 5 orbits described by the normal forms
a4 67 4+ 1%), w84, 1T — 19), w (e, ¢ +413), oL (eh, 8T — t13), (¢4, 7). The
codimension of these singularities is equal to 8,8,9,9,10 respectively.

The adjacencies within each of the singularity classes [3, 2k + 1], [3, 3k + 2], [4, 5],
[4,6], [4, 7] correspond to the codimension of singularities: the singularity o of co-
dimension a is adjacent to a singularity § of codimension b if and only if a < b.

Appendix 2. Space curves diffeomorphic to integral curves.

This Appendix is devoted to the following question: which curves in a contact
3-space are equivalent to integral curves? By the Darboux theorem on the local
equivalence of all contact structures, this question is equivalent to the following
one: for which space curves 7 : (R,0) — (R3,0) there exists a contact 1-form w on
R3 such that y*w = 07

It is easy to see that all A-singularities - the space curves diffeomorphic to one
of the curves Agy : z = 12,y = t?*t1 2 = 0 - are equivalent to integral curves. In
fact, the curve Ao is integral with respect to the contact structure described by
the 1-form dz + (2k + 1)ydx — 2zdy.

The normal forms Asx serve for all space curves whose Taylor series starts with
quadratic terms except certain infinitely degenerated curves. The first occurring
singularity with zero 2-jet is represented by the curve v : z = 3,y = t*, 2 = ¢5.
Already this curve is not equivalent to any integral curve. To see this, assume that
y*w = 0, where w = A(z,y, 2)dz + B(z,y, 2)dy + C(z,y, z)dz. Then A(£,14,15) -
3t2 + B(t3,t4,15) - 413 + C(¢3,t%,t°%) - 5t* = 0, and this relation easily implies that
A(0) = B(0) = C(0) = 0. This means that w(0) = 0 and consequently the relation
v*w = 0 holds for no contact 1-form w.

Nevertheless, there are deeper qubical singularities which are equivalent to inte-
gral curves. This is the case, for example, for the space curves z =3,y =t*,2=0
or x = t3,y = t%,z = 0. These curves are integral with respect to the contact struc-
tures described by 1-forms dz + 4ydr — 3xdy and dz + bydx — 3xdy respectively.

Analyzing the normal forms for qubical singularities (space curves with nonzero
3-jet and zero 2-jet) given in [4,5] one can obtain the following result. We will
use the notations from the paper [5]. Any qubical singularity, except infinitely
degenerated ones, can be described by one of the normal forms

Eﬁk;,p,i C = t3, y — t3k+1 + t3k+2+3’b, 2z = t3k+2+3p’
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where k> 1,0<p<k, 0<i:<k—-1.

?

Theorem. The curve Egk pi 07 Eepyap,i 8 RL-equivalent to an integral curve if
and only ifp=1+ 1.

For example, the curve E1z 10 : (¢3,¢7+18,¢!1) is equivalent to an integral curve,
and the curves (£3,¢7,t®) and (¢3,t7 + t8,0), which are equivalent to the normal
forms Fi20,0 and E12 2 respectively, are not equivalent to any integral curve.

We end this Appendix by a similar analysis for the space curves whose 5-jet is
equivalent to (¢*,¢°,0). Any curve with such 5-jet is RL-equivalent to one of the
curves

(t%,¢5,1%) +— (t4¢%,87) «+— (@40 + 1T et —  (#5,85,41)
T
(4,85 4+17,0)  «— (t4,t5,0)*.

Here the arrows mean the adjacencies, and by * are marked those and only those
curves which are equivalent to integral curves.

Appendix 3. Contact equivalence of integral curves
and equivalence of their projections.

In this Appendix we give two examplés showing that

(a) there are contact equivalent integral curves 1,7z in the contact space (R3,dz—
ydx) whose projections m(y1), m(y2) to the (z,y)-plane are not equivalent;

(b) there are equivalent plane curves p;, fiz such that the integral curves
7~ (1), 7~ (p2) in the contact space (R3,dz — ydz) are not contact equivalent.

By Theorem 2 such examples are impossible if y; and <2 are contact simple
curves or if p; and pe are simple curves. The examples below involve nonsimple
singularities of big (but finite) codimension.

Example 1. Consider the integral curves
Yo (2(),y(t), 2(t)) = (@7, 10+t + 21,

Let
#(t) = 2(t), (1) = 2() (1 + az(t)), §(t) = #()/& (1),

where a is a parameter. The curve
Ya i (2(1),5(t), Z(2))

is integral and contact equivalent to the curve <y via the contactomorphism

Z=z, z2=2(1+4ax), §=— =yl +az)+az

4z
dz
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One can calculate that the 19-jet of the plane curve

24t17 4 §t18 n Etlg)

- . vl :t7 “‘t :tlo 11 12 -
w(ve) : Z(2) , (t) +t "+t +a 7 18 1

is equivalent to the 19-jet
14
Y Y GRS BT S IS b S S [
Ta ( A A g 19

and that the 19-jets 7, and 7y are not equivalent unless a = 0. Therefore the curves
7(7v,) and () are not equivalent if a # 0.

Example 2. Consider the plane curves
pr: =0 g =15 4§16 4 417,

It is clear that these curves are equivalent. One can calculate that the 37-jets of
the integral curves 7~!(u1) and m~1(u2) are not equivalent. Therefore the integral
curves 7~ 1(u1) and m~1(uz) are not contact equivalent.
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