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1. Introduction

These lecture notes were written for the American Mathematical Society
(AMS) Short Course on Quantum Computation to be held 17-18 January
2000 in conjunction with the Annual Meeting of the AMS in Washington,
DC in January 2000. The notes are intended for readers with some math-
ematical background but with little or no exposure to quantum mechanics.
The purpose of these notes is to provide such readers with enough back-
ground in quantum mechanics to begin reading the literature on quantum
computation, quantum cryptography, and quantum information theory.

The paper was written in an informal style. Whenever possible, each
new topic was begun with the introduction of the underlying motivating
intuitions, and then followed by an explanation of the accompanying math-
ematical finery. Hopefully, once having grasped the basic intuitions, the
reader will find that the remaining material easily follows.

Since this paper is intended for a diverse audience, it was written at
varying levels of difficulty and sophistication, from the very elementary to
the more advanced. A large number of examples have been included. An
index and table of contents are provided for those readers who prefer to
“pick and choose.” Hopefully, this paper will provide something of interest
for everyone.

Because of space limitations, these notes are, of necessity, far from a
complete overview of quantum mechanics. For example, only finite dimen-
sional Hilbert spaces are considered, thereby avoiding the many pathologies
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that always arise when dealing with infinite dimensional objects. Many
important experiments that are traditionally part of the standard fare in
quantum mechanics texts (such as for example, the Stern-Gerlach exper-
iment and Young’s two slit experiment) have not been mentioned in this
paper. We leave it to the reader to decide if these notes have achieved their
objective.

Updated versions of this paper will be posted on the Los Alamos National
Laboratory Quantum Physics Archives at:
http://xxx.lanl.gov/archive/quant-ph
and on the author’s website at:

http : //www.csee.umbc.edu/ lomonaco/Publications.html
http : //www.csee.umbc.edu/ lomonaco/ams/ShortCourse. html

The final version of this paper together with all the other lecture notes of
the AMS Short Course on Quantum Computation will be published as a
book in the AMS PSAPM Series.

Comments on, criticisms of, and suggestions for this paper are welcome.
Please email them to:

Lomonaco@UMBC.EDU
with the subject heading:

Rosetta

2. The classical world

2.1. Introducing the Shannon bit.

Since one of our objectives is to discuss quantum information, we begin
with a brief discussion of classical information.

The Shannon bit is so well known in our age of information that it needs
no introduction. As we all know, it is like a very decisive individual. It is
either 0 or 1, but by no means both at the same time. It has become so
familiar to us that we take many of its properties for granted. For example,
we take for granted that it can be copied.
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2.2. Polarized light: Part I. The classical perspective.

Since we will use the quantum polarization states of light as a concrete
illustration of underlying quantum mechanical principles, we also begin with
a brief discussion of polarized light from the classical perspective.

Light waves in the vacuum are transverse electromagnetic (EM) waves
with both electric and magnetic field vectors perpendicular to the direction
of propagation and also to each other. (See figure 1.)

Figure 1. A linearly polarized electromagnetic wave.

If the electric field vector is always parallel to a fixed line, then the EM
wave is said to be linearly polarized. If the electric field vector rotates
about the direction of propagation forming a right-(left-)handed screw, it is
said to be right (left) elliptically polarized. If the rotating electric field
vector inscribes a circle, the EM wave is said to be right-or left-circularly
polarized.

3. The quantum world

3.1. Introducing the qubit — But what is a qubit?

Many of us may not be as familiar with a quantum bit of information,
called a qubit. Unlike its sibling rival, the Shannon bit, the qubit can be
both 0 and 1 at the same time. Moreover, unlike the Shannon bit, the
qubit can not be duplicated!. As we shall see, qubits are like very slippery,
irascible individuals, exceedingly difficult to deal with.

One example of a qubit is a spin % particle which can be in a spin-up state
|1) which we label as “1”, in a spin-down state |0) which we label as “0”, or
in a superposition of these states, which we interpret as being both 0 and
1 at the same time. (The term “superposition” will be explained shortly.)

IThis is because of the no-cloning theorem of Wootters and Zurek[47]. A proof of the
no-cloning theorem is given in Section 10.8 of this paper.
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Another example of a qubit is the polarization state of a photon. A
photon can be in a vertically polarized state |]). We assign a label of “1”
to this state. It can be in a horizontally polarized state |«<). We assign a
label of “0” to this state. Or, it can be in a superposition of these states.
In this case, we interpret its state as representing both 0 and 1 at the same

time.

Anyone who has worn polarized sunglasses is familiar with the polariza-
tion states of light. Polarized sunglasses eliminate glare by letting through
only vertically polarized light, while filtering out the horizontally polarized
light. For that reason, they are often used to eliminate road glare, ie.,
horizontally polarized light reflected from the road.

3.2. Where do qubits live? — But what is a qubit?

But where do qubits live? They live in a Hilbert space H. By a Hilbert
space, we mean:

A Hilbert space H is a vector space over the complex numbers C with
a complex valued inner product

(——):HxH-C
which is complete with respect to the norm

llull = v/(u,u)

induced by the inner product.

Remark 1. By a complex valued inner product, we mean a map
(= —):HxH-—-C
from H x H into the compler numbers C such thal:
1) (u,u) =0 if and only if u =10
2) (u,v) = (v,u)*

3) (0 + ) = (1,9) + (3, 0)
4) (u, W) = A(u,v)

where *’ denotes the complex conjugate.

Remark 2. Please note that (Au,v) = A*(u,v).
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3.3. A qubitis.. 2

A qubit is a quantum system & whose
state lies in a two dimensional Hilbert space H.

4. The beginnings of quanturmn mechanics

4.1. A Rosetta stone for Dirac notation: Part I. Bras, kets, and
bra-(c)-kets.

The elements of H will be called ket vectors, state kets, or simply
kets. They will be denoted as:
| label )

where ‘label’ denotes some label.

Let H* denote the Hilbert space of all Hilbert space morphisms of H into
the Hilbert space of all complex numbers C, i.e.,

‘H* = Home (H,C).

The elements of H* will be called bra vectors, state bras, or simply bras.
They will be denoted as:

(label |

where once again ‘label’ denotes some label.

Also please note that the complex number
(labely | (| labels ))

will simply be denoted by
{labely | labely)

*Barenco et al in [1] define a qubit as a quantum system with a two dimensional Hilbert
space, capable of existing in a superposition of Boolean states, and also capable of being
entangled with the states of other qubits. Their more functional definition will take on
more meaning as the reader progresses through this paper.
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and will be called the bra-(c)-ket product of the bra (label; | and the ket
| labels ).

There is a monomorphism (which is an isomorphism if the underlying
Hilbert space is finite dimensional)
RN
defined by
| label ) — ( | label ), —)

The bra ( |label ), —) is denoted by (label |.

Hence,
(IabEh | Zabelg} = (l labell ) y | labelg ))

Remark 3. Please note that (A |label )T = A* (label|.

The tensor product® H ® K of two Hilbert spaces H and K is simply
the “simplest” Hilbert space such that

1) (h1+h2)®k=h1®k+h2®k, for all h, hy, ho € ‘H and for all k, ki,
ke € K, and

2) h® (k1 + ko) = h® k1 + h ® kg for all h, hy, hy € H and for all k, k1,
ky € K.

N Ah®K)=(M)@k=h®(\k) forall A€ C, heH, ke K.

Remark 4. Hence, || |label) || = +/{ label | label } and ( labely | labely ) =
(| labely }, | labely ) .

It follows that if { e1,e2,... ,em } and { f1, fo,... , fn } are respectively
bases of the Hilbert spaces H and K, then{ e; ® f; | 1<i<m,1<j<n}
is a basis of H ® K.

Finally, if | label; ) and | labely ) are kets respectively in Hilbert spaces H;
and Hs, then their tensor product will be written in any one of the following

3Readers well versed in homological algebra will recognize this informal definition as a
slightly disguised version of the more rigorous universal definition of the tensor product.
For more details, please refer to [7], or any other standard reference on homological algebra.
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three ways:
| labely ) ® l labelg)

| labely ) | labels )

| labely , labels )
4.2. Quantum mechanics: Part I. The state of a quantum system.

The states of a quantum system Q are represented by state kets in a
Hilbert space H. Two kets |a) and |3) represent the same state of a quantum
system Q if they differ by a non-zero multiplicative constant. Le., |a) and
|B) represent the same quantum state Q if there exists a non-zero A € C
such that

la) = X|B)
Hence, quantum states are simply elements of the manifold
HI"=CP"

where n denotes the dimension of H, and CP" denotes complex projective
n-space.

Convention: Since a quantum mechanical state is represented by a state
ket up to a multiplicative constant, we will, unless stated otherwise,
choose those kets |a) which are unit normal, i.e., such that

{a]a) =1 |la}] =1

4.2.1. Polarized light: Part II. The quantum mechanical perspective.

As an illustration of the above concepts, we consider the polarization
states of a photon.

The polarization states of a photon are represented as state kets in a two
dimensional Hilbert space H. One orthonormal basis of H consists of the
kets

|©®) and |O)

which represent respectively the quantum mechanical states of left- and
right-circularly polarized photons. Another orthonormal basis consists of
the kets

1) and &)
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representing respectively vertically and horizontally linearly polarized pho-
tons. And yet another orthonormal basis consists of the kets

|7} and |N\)

for linearly polarized photons at the angles = 7/4 and § = —7/4 off the
vertical, respectively.

These orthonormal bases are related as follows:

7Y = 1D +1e) {I/) = Flo)+F o)
Ny = H(D == Ny = o)+ o)
D = HUIA+IN) D = Z(o)+0)
=) = (1A =1N) =) = Z(0)~|0)
0) = Z (D —ile) {|o> = A+
0 = Z (D) +ile) o) = FIA+FIN

The bracket products of the various polarization kets are given in the
table below:

[ T [I=) [IA] I\I) [ o) [[0)]

il BN FAE A A
Gl R A I
ZlFI A BN
Nlml-sml 0] [F]%
Ol#lH[|F[F ] L]0
O H[-#151F [0 ]!
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In terms of the basis {|]),|—)} and the dual basis {(]|, («+|}, these kets
and bras can be written as matrices as indicated below:

M = (10), m = (5)

(o = (0 1), |+)

Il
Ny

(= K1), 10 =

4
(= (1 1), I’\>=715(_1>
> i
O = &1t = %(2)
$
Lo = F0 =) 10 = H(})

1 i
ro-(F)e( Z)-3|
v ) 2| !
and the projection operator |O) (O] is:

o= (1o 0-3(1 1)

4.3. A Rosetta stone for Dirac notation: Part II. Operators.

An (linear) operator or transformation O on a ket space H is a
Hilbert space morphism of H into H, i.e., is an element of

Homg (H,H)

The adjoint OF of an operator O is that operator such that
(oT | labely ) , | labels )) = (|labely ), © | labely )

for all kets | label; ) and |labely ).
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In like manner, an (linear) operator or transformation on a bra space H*
is an element of

Homg (H*, H*)

Moreover, each operator @ on H can be identified with an operator, also
denoted by O, on ‘H* defined by

(labely | — (label, | O
where (label; | O is the bra defined by
({labely | O) (| labely)) = (labely | (O] labels))
(This is sometimes called Dirac’s associativity law.) Hence, the expression
(labely | O | labely)

is unambiguous.

Remark 5. Please note that
(O label))! = (label| O

4.4. Quantum mechanics: Part II. Observables.

In quantum mechanics, an observable is simply a Hermitian (also
called self-adjoint) operator on a Hilbert space H, i.e., an operator O
such that

0o'=0.

An eigenvalue a of an operator A is a complex number for which there is

a ket |label) such that
Allabel) = a|label) .
The ket |label) is called an eigenket of A corresponding to the eigenvalue
a.
An important theorem about observables is given below:

Theorem 1. The eigenvalues a; of an observable A are all real numbers.
Moreover, the eigenkets for distinct eigenvalues of an observable are orthog-
onal.

Definition 1. An eigenvalue is degenerate if there are at least two linearly
independent eigenkets for that eigenvalue. Otherwise, it is non-degenerate.
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Notational Convention: If all the eigenvalues a; of an observable A
are nondegenerate, then we can and do label the eigenkets of A with
the corresponding eigenvalues a;. Thus, we can write:

A |CLZ) = a; ]ai)
for each eigenvalue a;.
Convention: In this paper, unless stated otherwise, we assume that the

eigenvalues of observables are non-degenerate.

One exception to the above notational convention is the measurement
operator

i) (]

for the eigenvalue a;, which is the outer product of ket |a;) with its adjoint
{as], where we have assumed that |a) (and hence, (a;|) is of unit length. It
has two eigenvalues 0 and 1. 1 is a nondegenerate eigenvalue with eigenket
la;). 0 is a degenerate eigenvalue with corresponding eigenkets { |a;) } i

An observable A is said to be complete if its eigenkets |a;) form a basis
(hence, an orthonormal basis) of the Hilbert space H. Given a complete
nondegenerate observable A, then any ket |¢) in H can be written as:

i) = lai) (i | ¥)

Thus, for a complete nondegenerate observable A, we have the following
operator equation which expresses the completeness of A,

> lai) el =1
i
In this notation, we also have

A= Zai a:} {as| ,

where once again we have assumed that |a;) and (a;| are unit normal for all
z:

Example 1. The Pauli spin matrices

(01 (0 —i (1 0
1=\ 10) 22\ . o)’ BTlo <1

are examples of observables that frequently appear in quantum mechanics
and quantum computation. Their eigenvalues and eigenkets are given in
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the following table:

Pauli Matrices || Eigenvalue/Eigenket ||
o 01 V2 VA R!
1 1 0 1 -y _ 1 1

V2 vz \ -1

op+iy _ 1 (1
_(O—z’) +1 ﬁ_ﬁ()

4.5. Quantum mechanics: Part III. Quantum measurement — Gen-
eral principles.

In this section, A will denote a complete nondegenerate observable with
eigenvalues a; and eigenkets |a;) . We will, on occasion, refer to { |a;) } as
the frame (or the basis) of the observable A .

According to quantum measurement theory, the measurement of an
observable A of a quantum system Q in the state 1)) produces the eigen-
value a; as the measured result with probability

Prob(Value a; is observed) = ||{a; | W,

and forces the state of the quantum system @ into the state of the corre-
sponding eigenket |a;).

Since quantum measurement is such a hotly debated topic among physi-
cists, we (in self-defense) quote P.A.M. Dirac([15]:
“A measurement always causes the (quantum mechanical) system
to jump into an eigenstate of the dynamical variable that is being
measured.”

Thus, the result of the above mentioned measurement of observable A of
a quantum system Q which is in the state |1) before the measurement can
be diagrammatically represented as follows:

First Second
Meas. of A 2 Meas. of A
) = S los) (o | 9) - aila) "~ lag) MO

Prob= ||(a; | ¥)|? Prob=1
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Please note that the measured value is the eigenstate a; with probability
| {aj| %) |*. Ifthesame measurement is repeated on the quantum system
Q after the first measurement, then the result of the second measurement is
no longer stochastic. It produces the previous measured value a; and the
state of Q remains the same, i.e., |a;) .

The observable
|las} (il

is frequently called a selective measurement operator (or a filtration)
for a;. As mentioned earlier, it has two eigenvalues 0 and 1. 1 is a nonde-
generate eigenvalue with eigenket |a;), and 0 is a degenerate eigenvalue with

eigenkets {[aj)}j#.

Thus,
Meas. of |a;) {ai
9 — 1=,
Prob = |{a; | )|
but for 7 # 1,

Meas. of |a;) (as
|'¢,[)> - y 0- |aj) =0
Prob = ||(a; | ¥)]|

The above description of quantum measurement is not the most general
possible. For the more advanced quantum measurement theory of proba-
bilistic operator valued measures (POVMs) (aka., positive operator
valued measures), please refer to such books as for example [26] and [40].

4.6. Polarized light: Part III. Three examples of quantum mea-
surement.

We can now apply the above general principles of quantum measurement
to polarized light. Three examples are given below:*

*The last two examples can easily be verified experimentally with at most three pair
of polarized sunglasses.
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Example 2.
i Vertically
Vertical polarized
Polaroid 1
Rt. Circularly %;ZT Prob =3 photon
polarized photon = D
1 e
[0 = &5 (1) +il)) _ .
Measurement op. Prob=4  No photon
1) (1l
Example 3. A vertically polarized filter followed by a horizontally polarized
filter.
Vert. Horiz.
Entangled polar. polar, No
photon Vert. flter photon

filter .
Prob = ||a|* polar. Prob=1
a|l) + Ble) = ' photon = — 0
N

Norm2a1ized 820 that }I)

Example 4. But if we insert a diagonally polarized filter (by 45° off the
vertical) between the two polarized filters in the above example, we have:

Bk } }
1) =25 (17 +1N) @ S =D+l " e
= = =

1D (T |7 (/] 3} (]

where the input to the first filter is a|]) + 3 |<).
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4.7. A Rosetta stone for Dirac notation: Part III. Expected values.

The average value (expected value) of a measurement of an observable
A on a state |a) is:

(4) = (o] A]a)

Zlaf) {as] =1,

For, since

we have

(4) = (a| Ala) = (af (Zlai)(ai!)A D lag)(ag) | lay =3 (e | ai) (asl Alay) (a; | @)

i j i3
But on the other hand,
(a;] Alas) = aj{a: | aj) = aibi;
Thus,
(A=) (a|adaifa] @)= Zaz I{a: | e)I?
i
Hence, we have the standard expected value formula,
= z a;Prob (Observing a; on input |a))

%

4.8. Quantum Mechanics: Part IV. The Heisenberg uncertainty
principle.

There is, surprisingly enough, a limitation of what we can observe in the
quantum world.

From classical probability theory, we know that one yardstick of uncer-
tainty is the standard deviation which measures the average fluctuation
about the mean. Thus, the uncertainty involved in the measurement of a
quantum observable A is defined as the standard deviation of the observed
eigenvalues. This standard deviation is given by the expression

Uncertainty(A) = <(AA)2>

where

AA=A—(A)
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Two observables A and B are said to be compatible if they commute,
ie., if
AB = BA.

Otherwise, they are said to be incompatible.

Let [A, B], called the commutator of A and B, denote the expression
[A,B]=AB - BA

In this notation, two operators A and B are compatible if and only if [A, B] =
0.

The following principle is one expression of how quantum mechanics places
limits on what can be observed:

Heisenberg’s Uncertainty Principle®

((aa?) ((2B)?) > 1 14, B)P

This if A and B are incompatible, i.e., do not commute, then, by mea-
suring A more precisely, we are forced to measure B less precisely, and vice
versa. We can not simultaneously measure both A and B to unlimited
precision. Measurement of A somehow has an impact on the measurement
of B, and vice versa.

4.9. Quantum mechanics: Part V. Dynamics of closed quantum
systems: Unitary transformations, the Hamiltonian, and Schrédinger’s
equation.

An operator U on a Hilbert space H is unitary if
=g,
Unitary operators are of central importance in quantum mechanics for many

reasons. We list below only two:

e Closed quantum mechanical systems transform only via unitary trans-

formations
e Unitary transformations preserve quantum probabilities

SWe have assumed units have been chosen such that # = 1.
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Let |1(t)) denote the state as a function of time ¢ of a closed quantum
mechanical system @ . Then the dynamical behavior of the state of Q is
determined by the Schrédinger equation

. 0
it 19(8)) = H () |

where 7 denotes Planck’s constant divided by 27, and where H denotes an
observable of @ called the Hamiltonian. The Hamiltonian is the quantum
mechanical analog of the Hamiltonian of classical mechanics. In classical
physics, the Hamiltonian is the total energy of the system.

4.10. The mathematical perspective.

From the mathematical perspective, Schrédinger’s equation is written as:
d

SU(0) = -2 HOU®),

where
l(2)) = U%(0)) ,

and where —~%H (t) is a skew-Hermitian operator lying in the Lie algebra of
the unitary group. The solution is given by a multiplicative integral, called
the path-ordered integral,

U() = ,$ e 0,

which is taken over the path —% H(t) in the Lie algebra of the unitary group.
The path-ordered integral is given by:

0
tgoe_%H(t)dt — T}LI{}OHB_%HUC%)%
k=n
= fim [e—%ff(n-%)‘e—%ﬂ((n—l)-i). .e—%H(l-%).e—%H(&ﬁ)]

n—oo

Remark 6. The standard notation for the above path-ordered integral is

t
Pexp »-%fH(t)dt
0

If the Hamiltonian H(t) = H is independent of time, then all matrices
commute and the above path-ordered integral simplifies to

; § g .
tgoe—%Hdt — elo —FHIt _ o~ FHE
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Thus, in this case, U(t) is nothing more than a one parameter subgroup of
the unitary group.

5. The Density Operator

5.1. Introducing the density operator.

John von Neumann suggested yet another way of representing the state
of a quantum system.

Let |¢) be a unit length ket (i.e., (% | ¥ ) = 1) in the Hilbert space H
representing the state of a quantum system®. The density operator p
associated with the state ket |¢) is defined as the outer product of the ket
|4 (which can be thought of as a column vector) of the bra (¢| (which can
be thought of as a row vector), i.e.,

o= %) (¥

The density operator formalism has a number of advantages over the ket
state formalism. One advantage is that the density operator can also be
used to represent hybrid quantum/classical states, i.e., states which are a
classical statistical mixture of quantum states. Such hybrid states may also
be thought of as quantum states for which we have incomplete information.

For example, consider a quantum system which is in the states (each of
unit length)
1) s [ad s oo s 1on)
with probabilities
P1,P2y--+31Pn
respectively, where
p1+pe+...+pn=1

(Please note that the states |;),|ws),...,|¥,) need not be orthogonal.)
Then the density operator representation of this state is defined as

p=p1|%1) (1] + p2le) ol + ... + Pn|¥0n) (¥l

If a density operator p can be written in the form

p= ),

it is said to represent a pure ensemble. Otherwise, it is said to represent
a mixed ensemble.

8Please recall that each of the kets in the set { A|¥) | A € C, A # 0 } represent the same
state of a quantum system. Hence, we can always (and usually do) represent the state of
a quantum system as a unit normal ket, i.e., as a ket such that (¢ |4 ) =1.
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5.2. Properties of density operators.

It can be shown that all density operators are positive semi-definite Her-
mitian operators of trace 1, and vice versa. As aresult, we have the following
crisp mathematical definition:

Definition 2. An linear operator on a Hilbert space 'H is a density oper-
ator if it is a positive semi-definite Hermitian operator of trace 1.

It can be shown that a density operator represents a pure ensemble if
and only if p?2 = p, or equivalently, if and only if Trace(p?) = 1. For all
ensembles, both pure and mixed, Trace(p?) < 1.

From standard theorems in linear algebra, we know that, for every density
operator p, there exists a unitary matrix U which diagonalizes p, i.e., such
that UpU' is a diagonal matrix. The diagonal entries in this matrix are,
of course, the eigenvalues of p. These are non-negative real numbers which
all sum to 1.

Finally, if we let D denote the set of all density operators for a Hilbert
space H, then D is a convex subset of the Lie algebra of the unitary group
associated with H.

5.3. Quantum measurement in terms of density operators.

Let {a;} denote the set of distinct eigenvalues a; of an observable A.
Let P, denote the projection operator that projects the underlying Hilbert
space onto the eigenspace determined by the eigenvalue a;. For example, if
a; is a non-degenerate eigenvalue, then

P, = |a'?3> (a‘il
Finally, let Q be a quantum system with state given by the density operator
p-

If the quantum system @ is measured with respect to the observable A,

then with probability

p;i = Trace (Py,p)

the resulting measured eigenvalue is a;, and the resulting state of Q is given
by the density operator
__ Foply,
Pi=m ———1p ¢
Trace (Pg,p)

Moreover, for an observable A, the averaged observed eigenvalue expressed
in terms of the density operator is:

(A) = trace(pA)
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Thus, we have generalized the following formula to mixed ensembles:

(A) = (Y| A|y) = trace( ) (¥ A)

5.4. Some examples of density operators.

For example, consider the following mixed ensemble of the polarization
state of a photon:

Example 5.

Ket | (1) |17
Prob.

oo
Wt

In terms of the basis |<), |]) of the two dimensional Hilbert space 'H, the
density operator p of the above mized ensemble can be written as:

po= DU+
= 3(0)(x 0)+i( 103 ) (e 1ve)

0ol=1

——
+
ol

N
= =
ol

SRS

Il
ol
ool= el

Example 6. The following two preparations produce mized ensembles with
the same density operator:

Ket |||1) || Ket || 17 [IN)

and

1 1 1

[

For, for the left preparation, we have

po= DA+ zl0) (e

(5)(ro)+3( 7)o 1)
-3(5 1)

And for the right preparation, we have

b=
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po= 3/ NI+ NN
= 43 (3) B0 (0 ) R0 )

o3l 1Y ef L2 _qfd 0
s\11)74\ -1 1 )72 01

There is no way of physically distinguishing mized ensembles prepared in
these two different ways. For the density operator represents all that can be
known about the state of the quantum system.

5.5. The partial trace of a linear operator.

In order to deal with a quantum system composed of many quantum
subsystems, we need to define the partial trace.

Let
O:H — H € Hom¢c (H,H)
be a linear operator on the Hilbert space H.

Since Hilbert spaces are free algebraic objects, it follows from standard
results in abstract algebra’ that

Homec (H,H) 2 H®H",
where we recall that
H* = Homg (H,C) .

Hence, such an operator @ can be written in the form

0= Zaa Iha) ® (ka] )

where the kets |ho) lie in H and the bras (ko lie in M.

Thus, the standard trace of a linear operator
Trace : Homg (H,H) — C

"See for example [28].
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is nothing more than a contraction, i.e.,

Trace(O) = Zaa( ks | B )

We can generalize the Trace as follows:

Let ‘H now be the tensor product of Hilbert spaces Hi, Ha, ... ,Hn, i€,

L
H=(R)H;
j=1

Then it follows once again from standard results in abstract algebra that

Homg (H,'H) & é (H; @ H;) .

=1

Hence, the operator O can be written in the form

0= Zaa ® |hcx,j) ® (ka,jl )
[+ i=1

where, for each j, the kets |hq,;) lie in H; and the bras (kq,;| lie in 7 for
all a.

Next we note that for every subset 7 of the set of indices J = {1,2,... ,n},
we can define the partial trace over 7, written

Tracer : Homg ®'Hj,®7{j — Homg ® Hj, ® H;

Jjeg jeg jeg-I jegJ-T

as the contraction on the indices Z, i.e.,

Tracer (O) = Zaa H( kai | hej ) ® | ha,;j ) (ko |

jex jeJ-1

For example, let H; and Hg be two dimensional Hilbert spaces with se-
lected orthonormal bases {|01},|11)} and {|0p),|10)}, respectively. Thus,
{]0100) , |0110},|1100),|1110)} is an orthonormal basis of H = H; ® Hp .
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Let p € Homg (H,H) be the operator

= (|0100)\;§|1110)) & ((0100|\;§(11101)

= % (10100) {0100] — 0100) (1110| — [1110) (0100 + |1110) {1110|)

which in terms of the basis {|010p) ,|0110) ,|1100),|1110)} can be written as
the matrix

100 -1
1 000 O
P=3 000 0]°
-1 00 1

where the rows and columns are listed in the order |0;0p), |0110), |1100),
[1110)

The partial trace Traceg with respect to Z = {0} of p is
p1 = Tracey(p)
1
= §T'raceg (|0100) (0100] —_ |0100) (1110| - |1110> (0100] + Il]_lg) (lllgl)

= %((Uomu) |01) (01] — (10]00) |01) {11] = (00| Lo} [11) (01] + (10|10} |11} {11])

I
= 5 (101) (O] =[01) (1])
which in terms of the basis {|01),]|11)} becomes

1/1 0
P1=TT(IC€0(p)=§(O 1) )

where the rows and columns are listed in the order |01), |11} .

5.6. Multipartite quantum systems.

One of the advantages of the use of density operators instead of kets to
represent the state of a quantum system is that they provide us with a means
of dealing with multipartite quantum systems.

Definition 3. Let Qi, Qs, ... , Qn be quantum systems with underlying
Hilbert spaces Hy, Ha, ... , Hn, respectively. The global quantum systermn Q
consisting of the quantum systems Qy, Qy, ... , Q, s called a multipartite
quantum system. FEach of the quantum systems Q; (7 =1,2, ... ,n)is
called a constituent “part” of Q@ . The underlying Hilbert space H of Q
is the tensor product of the Hilbert spaces of the constituent “parts,” i.e.,

i
Jj=1
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If the density operator p is the state of a multipartite quantum system
Q, then the state of each constituent “part” Q; is the density operator p;
given by the partial trace

pj =Traceg_g; (p)
where J ={1,2, ... ,n} is the set of indices.
Obviously, much more can be said about the states of multipartite sys-
tems and their constituent parts. However, we will forego that discussion

until after we have had an opportunity introduce the concepts of quantum
entanglement and von Neumann entropy.

5.7. Quantum dynamics in density operator formalism.

Under a unitary transformation U, a density operator p transforms ac-
cording to the rubric:

p— UpUT
Moreover, in terms of the density operator, Schrédinger’s equation® becomes:
inl = [H,g] ,
where [H, p| denotes the commutator of A and p, i.e.,
[H,p] = Hp— pH
5.8. The mathematical perspective.

From the mathematical perspective, one works with ip instead of p be-
cause ip lies in the Lie algebra of the unitary group. Thus, the density oper-
ator transforms under a unitary transformation U according to the rubric:

ip— Ady(ip) ,

where Ady denotes the big adjoint representation.

From the mathematical perspective, Schridinger’s equation is in this case
more informatively written as:

aip) 1 .
ot~ godin(i)

where ad_; ;; denotes the little adjoint representation. Thus, the solu-
[
tion to the above form of Schrédinger’s equation is given by the path ordered

integral:
L= ( t g oe%(adiy(‘))dt) Po

8Schradinger’s equation determines the dynamics of closed quantum systems. However,
non-closed quantum systems are also of importance in quantum computation and quantum
information theory. See for example the Schumacher’s work on superoperators, e.g., [44].
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where p; denotes the density operator at time £ = 0.

6. The Heisenberg model of quantum mechanics

Consider a computing device with inputs and outputs for which we have
no knowledge of the internal workings of the device. We are allowed to
probe the device with inputs and observe the corresponding outputs. But
we are given no information as to how the device performs its calculation.
We call such a device a blackbox computing device.

For such blackboxes, we say that two theoretical models are equivalent
provided both predict the same input/output behavior. We may prefer
one model over the other for various reasons, such as simplicity, aesthetics,
or whatever meets our fancy. But the basic fact is that each of the two
equivalent models is just as “correct” as the other.

In like manner, two theoretical models of the quantum world are said to be
equivalent if they both predict the same results of quantum measurements.

Shortly after Schrédinger proposed his model for the quantum world,
called the Schrédinger picture, Heisenberg proposed yet another, called
the Heisenberg picture. Both models were later proven to be equivalent.

In the Heisenberg picture, state kets remain stationary with time, but
observables move with time. While state kets, and hence density operators,
remain fixed with respect to time, the observables A change dynamically as:

A—s UTAU

under a unitary transformation U = U(t), where the unitary transformation
is determined by the equation

aU
B2 o
Vot

It follows that the equation of motion of the observables is according to the

following equation

., OA
Zﬁa = [A,H]

One advantage the Heisenberg picture has over the Schrodinger picture is
that the equations appearing in it are similar to those of classical mechanics.
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In summary, we have the following table which contrasts the two pictures:

Schrédinger Picture

Heisenberg Picture

Moving Stationary
State ket
[%0) — 1) = U o) |1o)
Moving Stati
Density sl
Operator po+— p=UpUt = Ady (o) Po
Stationary Moving
Sisrarabe Ao Ao — A=UtAgU = Ady1 (Ao)
S Tn—— Stationary Stationary
Eigenvalues a; aj
Moving
Ao =35 a5az)g {(aslo
Stationary
Observable =
Frame Ao = ;5 a5az)g{ajlg A = zj a;|a;), (a;l,
where |a;), = UT|a;),
indd = HOWU i = HEU
Dynamical
Equations ol 5 _— 5
ing ) = HO ) i} = [A, HH))
Measurement of observable Ag Measurement of observable A
produces eigenvalue a; with produces eigenvalue a; with
Measurement probability probability
2 2 2 2
| ((aslo) 1)]" = | ({aslo) [)] | ((asl) 10} = [ ({aslo) 14}|
where

HE = ytg®y
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It follows that the Schridinger Hamiltonian I (5) and the Heisenberg Hamil-
tonian are related as follows:
(8) (H)
8H _ U8H Ut
ot ot

- t
where terms containing % and % have cancelled out as a result of the

Schrédinger equation.
In summary, the Schridinger and Heisenberg pictures can be transformed

into one another via the mappings:

" S—H H H— S ”

Iw(3)> — l¢(ﬂ)> = ’¢(5)> ’¢(H)> — Wa) 4 |w“f)>

A, AH) — T A AHE) A — g AE) [t

Obviously, much more could be said on this topic.

For quantum computation from the perspective of the Heisenberg model,
please refer to the work of Deutsch and Hayden[13], and also to Gottesman’s
“study of the ancient Hittites” :-) [19].

7. Quantum entanglement

7.1. The juxtaposition of two quantum systems.

Let @; and @y be two quantum systems that have been separately pre-
pared respectively in states |¢;) and [1),), and that then have been united
without interacting. Because Q; and Qs have been separately prepared
without interacting, their states |1;) and |1,) respectively lie in distinct
Hilbert spaces H; and H»s. Moreover, because of the way in which @; and
Q9 have been prepared, all physical predictions relating to one of these quan-
tum systems do not depend in any way whatsoever on the other quantum
system.

The global quantum system @ consisting of the two quantum systems &,
and Qs as prepared above is called a juxtaposition of the quantum systems
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Q1 and Qs. The state of the global quantum system Q is the tensor product
of the states |1;) and |¢,). Le., the state of Q is:

[1h1) ® |2ba) € H1 ® Ha

7.2. An example: An n-qubit register Q consisting of the juxtapo-
sition of n qubits.

Let H be a two dimensional Hilbert space, and let { |0), |1) } denote

an arbitrarily selected orthonormal basis®. Let Hp—1, Hn—2, ... , Ho be

distinct Hilbert spaces, each isomorphic to M, with the obvious induced
orthonormal bases

{ IOﬂ"l)i ‘111—1) }: { loﬂ—?)’ Iln—Z) }: AR { |00>! ilﬂ) }

respectively.

Consider n qubits Q,_1, Qn—9, , Qo separately prepared in the states
1 1 1
T 0 — + 1 = 3 —— On— + 1n_ y Yy T = D + 1 ]
\/ﬁ(fnl) 1n-1)) \/§(| 2) +[1n-2)) \/Q(l o) +[10))
respectively. Let Q denote the global system consisting of the separately
prepared (without interacting) qubits Qn_1, @n-2, , Qo. Then the state
|1} of Q is:
) = T (On1) +[1a1)) ® 7= (10n2) +[1n-2)) ®-..® = (00) + [10))
\/§ n—1 n—1 \/i n—2 n—2 v \/§ 0 0

1

n
= (——) (lon_lon_g 5 0100) + |0n—10n—2 S 0110) + ... + |1n—11n—2 T 1110))

V2

which lies in the Hilbert space
H=Hn 1®@Hn2® ... ®Hop.

Notational Convention: We will usually omit subscripts whenever they
can easily be inferred from context.

Thus, the global system ©Q consisting of the n qubits @, _1, @n-2, ...,
Qg is in the state
n—1

1 n
) = (%) (IOOMODHIOOU'MH +|11...11))e§)%

“We obviously have chosen to label the basis elements in a suggestive way.
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The reader should note that the n-qubit register Q is a superposition of
kets with labels consisting of all the binary n-tuples. If each binary n-tuple
bn—1bn—2...bp is identified with the integer

B g2 b g2, g2,

i.e., if we interpret each binary n-tuple as the radix 2 representation of an
integer, then we can rewrite the state as

) = (%)n(|o>+|1>+|2)+ 2 1)).

In other words, this n-qubit register contains all the integers from 0 to
2" — 1 in superposition. But most importantly, it contains all the integers
0 to 2™ — 1 simultaneously!

This is an example of the massive parallelism that is possible within quan-
tum computation. However, there is a downside. If we observe (measure)
the register, then all the massive parallelism disappears. On measure-
ment, the quantum world selects for us one and only one of the 2" inte-
gers. Th‘ze probability of observing any particular one of the integers is
‘(1/ \/ﬁ)n‘ = (3)*. The selection of which integer is observed is unfortu-

nately not made by us, but by the quantum world.

Thus, harnessing the massive parallelism of quantum mechanics is no easy
task! As we will see, a more subtle approach is required.

7.3. An example of the dynamic behavior of a 2-qubit register.
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We now consider the previous n-qubit register for n = 2. In terms of the
bases described in the previous section, we have:

o - - ()s(2) - !
0
0
m == (g)e(?) = |o
0

0 - - (2)e(t) - [

Lo

v (De(2) - 4

Let us assume that the initial state |¢),_, of our 2-qubit register is

1
(191 g 0= L 00 111 = L 10y —pan = L |0
I¢>t=o—( = )®|0>— 75 100) —11)) = 75 (10) - 3) = = 4

Next consider the unitary transformation Usnor, which when written in
terms of the basis {]|00),]01),]10),|11)} = {|0},|1),|2),]|3)}, is given by

= [0} (0] + [1) (1] +12) (3] + [3) (2],

0
0
Uenor = 0
i

O = 0O O

0
1
0
0

OO =

where the rows and the columns are listed in the order |00), |01), |10), |11),
i.e., in the order |0), |1), |2}, |3).
Let us also assume that we are given a Hamiltonian I, such as

00 0 0O
1 00 0 O
H“ﬁ’roo 1 =1 |*
00 -1 1
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which moves the 2-qubit register from the initial state |),_, at time ¢t =0
to |¢¥);—; = Ucwnor %), at time ¢ = 1. Then

1 000 1
0100 1 0

[}y = Uonorlbho=| g o 0 1 V2| -1
0 010

&
V2

1 1
= (100) - [12)) = —= (10) ~ 13))

-0 O -

The resulting state (called an EPR pair of qubits for reasons we shall
later explain) can no longer be written as a tensor product of two states.
Consequently, we no longer have the juxtaposition of two qubits.

Somehow, the resulting two qubits have in some sense “lost their separate
identities.” Measurement of any one of the qubits immediately impacts the
other.

For example, if we measure the 0-th qubit (i.e., the right-most qubit), the
EPR state in some sense “jumps” to one of two possible states. Each of the
two possibilities occurs with probability %, as indicated in the table below:

75 (10100) — |1110))

Meas.
S Ot NN
Qubit
Prob=3 Prob = %
0100) |1110)

Thus we see that a measurement of one of the qubits causes a change in the
other.
7.4. Definition of quantum entanglement.

The above mentioned phenomenon is so unusual and so non-classical that
it warrants a name.

Definition 4. Let Qq, Qa, ... , Op be quantum systems with underlying
Hilbert spaces Hyi, Ha, ... , Hn, respectively. Then the global quantum
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system Q consisting of the quantum systems Q1, Qa, ... , Qn i said to be
entangled if its state [¢) € H = @j_; H; can not be written in the form

n

I?/)) = ® Wj) ;

Jj=1

where each ket lv,bj> lies in the Hilbert space H; for, j =1,2,...,n. We
also say that such a state |¢) is entangled.

Thus, the state
[Whees = 75 (100) = |11)

of the 2-qubit register of the previous section is entangled.

Remark 7. In terms of densily operator formalism, a pure ensemble p is
entangled if it can not be written in the form

n
p= ® Pj
i=1
where the p;’s denote density operators.

Please note that we have defined entanglement only for pure ensembles.
For mixed ensembles, entanglement is not well understood!®. As a result,
the “right” definition of entanglement of mixed ensembles is still unresolved.
‘We give one definition below:

Definition 5. A density operator p on a Hilbert space H is said to be en-
tangled with respect to the Hilbert space decomposition

n
H=Q)H;
j=1

if it can not be written in the form

£ n
p=2 2| Qrun | -
k=1 j=1

for some positive integer €, where the \,’s are positive real numbers such
that

¢
> =1,
k=1
and where each p(;x) is a density operator on the Hilbert space H;,

9Quantum entanglement is not even well understood for pure ensembles.
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Readers interested in pursuing this topic further should refer to the works
of Bennett, the Horodecki’s, Smolin, Wootters, and others.

7.5. Einstein, Podolsky, Rosen’s (EPR’s) grand challenge to quan-
tum mechanics.

Albert Einstein was skeptical of quantum mechanics, so skeptical that he
together with Podolsky and Rosen wrote a joint paper[16] appearing in 1935
challenging the very foundations of quantum mechanics. Their paper hit
the scientific community like a bombshell. For it delivered a direct frontal
attack at the very heart and center of quantum mechanics.

At the core of their objection was quantum entanglement. Einstein
and his colleagues had insightfully recognized the central importance of this
quantum phenomenon.

Their argument centered around the fact that quantum mechanics vio-
lated either the principle of non-locality!! or the principle of reality!2.
They argued that, as a result, quantum mechanics must be incomplete, and
that quantum entanglement could be explained by missing hidden vari-
ables.

For many years, no one was able to conceive of an experiment that could
determine which of the two theories, i.e., quantum mechanics or EPR’s
hidden variable theory, was correct. In fact, many believed that the two
theories were not distinguishable on physical grounds.

It was not until Bell developed his famous inequalities[2],[3], that a phys-
ical criterion was found to distinquish the two theories. Bell developed
inequalities which, if violated, would clearly prove that quantum mechanics
is correct, and hidden variable theories are not. Many experiments were
performed. Each emphatically supported quantum mechanics, and clearly
demonstrated the incorrectness of hidden variable theory. Quantum me-
chanics was the victor!

7.6. Why did Einstein, Podolsky, Rosen (EPR) object?

But why did Einstein and his colleagues object so vehemently to quantum
entanglement? We explain Bohm’s simplified version of their argument.

We note first that Einstein and his colleagues were well aware of two
principles, namely
1) All the forces of nature are local interactions

1We will later explain the principle of non-locality.
12For an explanation of the principle of reality, please refer, for example, to [40].
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2) The principle of non-locality, i.e., that spacelike separated regions of
spacetime are physically independent of one another.

7.6.1. All the forces of nature are local interactions.

All four forces of nature, i.e., gravitational, electromagnetic, weak, and
strong forces, are local interactions. By this we mean:

1) They are mediated by another entity, e.g., graviton, photon, etc.

2) They propagate no faster than the speed c of light

3) Their strength drops off with distance

7.6.2. Spacelike distances.

Two points in spacetime P, = (z1,y1, 21,t1) and P = (z2, y2, 22, t2) are
separated by a spacelike distance provided the distance between (z1,y1, 21)
and (zg, y2, z2) is greater than cl|ty — ¢4/, ie.,

Distance ((mls i1, Z]_) 1 (1'2, Y2, 32)) >c |t2 - tll )
where ¢ denotes the speed of light. In other words, no signal can travel
between points that are separated by a spacelike distance unless the signal

travels faster than the speed of light. But because of the basic principles of
relativity, superluminal communication is not possible.

It follows that:

The principle of nonlocality: Spacelike separated regions of spacetime
are physically independent. l.e., one can not influence the other.

7.6.3. EPR’s objection.

We now are ready to explain why Einstein and his colleagues objected so
vehemently to quantum entanglement.

Consider a two qubit quantum system that has been prepared by Alice!®
in her laboratory in the state
[9) = 75 (10200) = [1a1)
After the preparation, she decides to keep qubit #1 in her laboratory, but
enlists Captain James T'. Kirk of the Starship Enterprise to transport qubit
#0 to her friend Bob!* who is at some far removed distant part of the
universe, such as at a Federation outpost orbiting about the double star
Alpha Centauri in the constellation Centaurus.

8 Allice is a well known personality in quantum computation, quantum cryptography,
and quantum information theory.

14Bob is another well known personality in quantum computation, quantum cryptog-
raphy, and quantum information theory.
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After Captain Kirk has delivered qubit #0, Alice’s two qubits are now
separated by a spacelike distance. Qubit #1 is located in her Earth based
laboratory. Qubits #0 is located with Bob at a Federation outpost orbiting
Alpha Centauri. But the two qubits are still entangled, even in spite of the
fact that they are separated by a spacelike distance.

If Alice now measures qubit #1 (which is located in her Earth based
laboratory), then the rules of quantum mechanics force her to conclude that
instantly, without any time lapse, both qubits are “effected.” As a result of
the measurement, both qubits will be either in the state |0;0p) or the state
|1110), each possibility occurring with probability 1/2.

This is a non-local “interaction.” For,

e The “interaction” occurred without the presence of any force. It was
not mediated by anything.

e The measurement produced an instantaneous change, which was cer-
tainly faster than the speed of light.

e The strength of the “effect” of the measurement did not drop off with
distance.

No wonder Einstein was highly skeptical of quantum entanglement. Yet
puzzlingly enough, since no information is exchanged by the process, the
principles of general relativity are not violated. As a result, such an “effect”
can not be used for superluminal communication.

7.7. Quantum entanglement: The Lie group perspective.

Many aspects of quantum entanglement can naturally be captured in
terms of Lie groups and their Lie algebras.

Let
H=H._1 ®Hn—2®-"®H0 = n—1®0Hj

be a decomposition of a Hilbert space H into the tensor product of the
Hilbert spaces Hpn—1, Hn-2, ... yHo. Let U= U(H), Un—1 = U(Hn-1),
U,—2 =U(Hn-2), . .- ,Up = U(Hp), denote respectively the Lie groups of all
unitary transformations on Hpn_1, Hn_2, .. ;Ho. Moreover, let u = u(H),
Un-1 = Up_1(Hn-1), Un—2 = Up_2(Hn-2), ... ,ug = up(Hp) denote the
corresponding Lie algebras.
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Definition 6. The local subgroup L = L(H) of U = U(H) is defined as
the subgroup

L=Unr1®Up2®...00p = n_1®0Uj i

The elements of L are called local unitary transformations. Unitary
transformations which are in U but not in I are called global unitary
transformations. The corresponding lie algebra

f=uy_1Hu, oH...BHug

is called the local Lie algebra, where B’ denotes the Kronecker sum!®.

Local unitary transformations can not entangle quantum systems with
respect to the above tensor product decomposition. However, global unitary
transformations are those unitary transformations which can and often do
produce interactions which entangle quantum systems. This leads to the
following definition:

Definition 7. Two stales |11) and |,) in H are said to be locally equiv-
alent ( or, of the same entanglement type), written

W) o~ 1¥2)
ocal
if there exists a local unitary transformation U € L such that
Ulpy) =) -
The equivalence classes of local equivalence ~ are colled the entangle-

local
ment classes of H. Two density operators p; and py, (and hence, the

corresponding two skew Hermitian operators ip, and ipy lying in u) are said
to be locally equivalent ( or, of the same entanglement type), written

P1 .~ P2,

local

if there exists a local unitary transformation U € L such that
Ady(py) = py

where Ady denotes the big adjoint representation, i.e., Ady(ip) = U(ip)UT.
The equivalence classes under this relation are called entanglement classes
of the Lie algebra u(H).

Thus, the entanglement classes of the Hilbert space H are just the orbits
of the group action of L(#) on . In like manner, the entanglement classes
of the Lie algebra u(H) are the orbits of the big adjoint action of IL(*) on

15The Kronecker sum A B B is defined as
ABB=A®1+1QB,

where 1 denotes the identity transformation.
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u(H). Two states are entangled in the same way if and only if they lie in
the same entanglement class, i.e., the same orbit.

For example, let us assume that Alice and Bob collectively possess two
qubits Q45 which are in the entangled state

. [004) + |1514) 1

|"»b1) == \/2' - \/i

o O =

1

and moreover that Alice possesses qubit labeled A, but not the qubit labeled
B, and that Bob holds qubit B, but not qubit A. Let us also assume that
Alice and Bob are also separated by a spacelike distance. As a result, they
can only apply local unitary transformations to the qubits that they possess.

Alice could, for example, apply the local unitary transformation

0 010

01 10 0 001
UA—(—1 0)®(0 1)_ -1 000
0 -1 0 0

to her qubit to move Alice’s and Bob’s qubits A and B respectively into the
state
0
0814} —[1804) _ 1 1

|’¢’2) = \/§ \/§ __{]i )

Bob also could accomplish the same by applying the local unitary transfor-

mation
0 -10 0
10 0 -1 1 00 0
UB_(01)®(1 0)_ 0 00 -1
0 01 0

to his qubit.

By local unitary transformations, Alice and Bob can move the state of
their two qubits to any other state within the same entanglement class.
But with local unitary transformations, there is no way whatsoever that
Alice and Bob can transform the two qubits into a state lying in a different
entanglement class (i.e., a different orbit), such as

I"J)s) = |OBOA>-

The only way Alice and Bob could transform the two qubits from state
[41) to the state |1p3) is for Alice and Bob to come together, and make the
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two qubits interact with one another via a global unitary transformation
such as

1 001
Dime L[ 0 110
AB= /Bl 0 -110
-1 00 1

The main objective of this approach to quantum entanglement is to de-
termine when two states lie in the same orbit or in different orbits? In other
words, what is needed is a complete set of invariants, i.e., invariants that
completely specify all the orbits ( i.e., all the entanglement classes). We
save this topic for another lecture[31].

At first it would seem that state kets are a much better vehicle than
density operators for the study of quantum entanglement. After all, state
kets are much simpler mathematical objects. So why should one deal with
the additional mathematical luggage of density operators?

Actually, density operators have a number of advantages over state kets.
The most obvious advantage is that density operators certainly have an up-
per hand over state kets when dealing with mixed ensembles. But their
most important advantage is that the orbits of the adjoint action are ac-
tually symplectic manifolds, which are objects with a very rich and pliable
mathematical structure. That the orbits of the adjoint representation are
symplectic manifolds follows from the fact that they are the same as the
orbits of the co-adjoint representation. Needless to say, this topic is beyond
the scope of this paper.

Remark 8. It should also be mentioned that the mathematical approach
discussed in this section by no means captures every aspect of the physical
phenomenon of quantum entanglement. The use of ancilla and of classical
communication have not been considered. For an in-depth study of the rela-
tion between quantum entanglement and classical communication (including
catalysis), please refer to the work of Mike Nielson and others.

We will later need a little less precision than is given above in regard
to describing the locality of unitary operations. So we give the following
(unfortunately rather technical) definitions:
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Definition 8. Let H, Hn-1, Hn-2, ... ,Ho be as stated above. Let P =
{Ba} be a partition of the set of indices {0,1,2,... ,n—1}, ie., P isa
collection of disjoint subsets By of {0,1,2,... ,n— 1}, called blocks, such
that | J, Bo ={0,1,2,... ,n—1}. Then the P-tensor product decompo-

gition of H is defined as
He @ Mo,

Ba€P
where
HBa = ® H.T ?
JEBa
for each block By in P. Also the subgroup of P-local unitary transfor-
mations Lp(H) is defined as the subgroup of local unitary transformations
of H corresponding to the P-tensor decomposition of H.

We define the fineness of a partition P, written fineness(P), as the
mazimum number of indices in a block of P. We say that a unitary trans-
formation U of H is sufficiently local if there exists a partition P with suf-
ficiently small fineness(P) (e.g., fineness(P) < 3) such that U € Lp(H).

Remark 9. The above lack of precision is needed because there is no way to
know what kind (if any) of quantum computing devices will be implemented
in the future. Perhaps we will at some future date be able to construct
quantum computing devices that locally manipulate more than 2 or 8 qubits
at a time?

8. Entropy and quantum mechanics

8.1. Classical entropy, i.e., Shannon Entropy.

Let S be a probability distribution on a finite set {s1,s2, ... ,8p} of
elements called symbols given by

Probla;) =i ,

where Z;;l pj = 1. Let s denote the random variable (i.e., finite mem-
oryless stochastic source) that takes a value s; with probability p;.

Definition 9. The classical entropy (also called the Shannon entropy)
H(S) of a probability distribution S (or of the source s) is defined as:

H(S) = H(s) = Z p;18(p5) »

where g’ denotes the log to the base 2 .
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Classical entropy H(S) is a measure of the uncertainty inherent in the
probability distribution &. Or in other words, it is the measure of the
uncertainty of an observer before the source s “outputs” a symbol s;.

One property of such classical stochastic sources we often take for granted
is that the output symbols s; are completely distinguishable from one an-
other. We will see that this is not necessarily the case in the strange world
of the quantum.

8.2, Quantum entropy, i.e., Von Neuman entropy.

Let Q be a quantum system with state given by the density operator p .
Then there are many preparations

Preparation
[} [196) [ .- [19n) ]
Lee [ oo [ [ pn |

which will produce the state p. These preparations are classical stochastic
sources with classical entropy given by

H=-) p;lg;) .

Unfortunately, the classical entropy H of the preparation does not necessar-
ily reflect the uncertainty in the resulting state p. For two different prepara-
tions P; and Py, having different entropies H (P;) and H (P2), can produce
the same state p. The problem is that the states of the preparation my not
be completely physically distinguishable from one another. This happens
when the states of the preparation are not orthogonal. (Please refer to the
Heisenberg uncertainty principle.)

John von Neumann found that the true measure of quantum entropy can
be defined as follows:

Definition 10. Let Q be a quantum system with state given by the density
operator p. Then the quantum entropy (also called the von Neumann
entropy) of Q, written S(Q), is defined as

S(Q) = —Trace(plgp) ,
where g p’ denotes the log to the base 2 of the operator p.

Remark 10. The operator 1gp exists and is an analytic map p —— lgp
given by the power series

= o]

1 - D"
lgp,: i;l_z- Z(_l)n'l'l(p — )

n=1



A ROSSETTA STONE FOR QUANTUM MECHANICS 43

provided that p is sufficiently close to the identity operator I, i.e., provided
le—1l <1,

where

' [ Av]|
Al| = sup
|4l = sup o

It can be shown that this is the case for all positive semi-definite Hermitian
operators of trace 1. Hence, S(p) is defined for all density operators p.

Quantum entropy is a measure of the uncertainty at the quantum level.
As we shall see, it is very different from the classical entropy that arises
when a measurement is made.

One important feature of quantum entropy S(p) is that it is invariant
under the adjoint action of unitary transformations, i.e.,

S( Ady(p) ) =5 (UpU) = 5(p) .

It follows that, for closed quantum systems, it is a dynamic invariant. As
the state p moves according to Schrédinger’s equation, the quantum entropy
S(p) of p remains constant. It does not change unless measurement is made,
or, as we shall see, unless we ignore part of the quantum system.

Because of the unitary invariance, the quantum entropy can be most easily
computed by first diagonalizing p with a unitary transformation U, i.e.,

UpUt=A(X),

_) - . . . '_H)
where A( X\') denotes the diagonal matrix with diagonal A = (A1, Az, ... ,An).

Once p has been diagonalized, we have
S(p) = —Trace (A(T) Ig A(T))
= —Trace( A(MlgAr, A2lgha, ..., AnlgAn))

T
= - ZAJ' lg AJ' )
i=1
where the A;’s are the eigenvalues of p, and where 01g0 = 0.

Please note that, because p is positive semi-definite Hermitian of trace 1,
all the eigenvalues of p are non-negative real numbers such that

i
> oa=1.
J=1
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As an immediate corollary we have that the quantum entropy of a pure
ensemble must be zero, i.e.,

I?pure ensemble => S(p) = 0|

There is no quantum uncertainty in a pure ensemble. However, there is
quantum uncertainty in mixed ensembles, as expected.

8.3. How is quantum entropy related to classical entropy?
But how is classical entropy related to quantum entropy?

Let A be an observable of the quantum system Q. Then a measurement
of A of @ produces an eigenvalue a; with probability

p: = Trace (Pa,p) ,

where P,, denotes the projection operator for the eigenspace of the eigen-
value a;. For example, if a; is a non-degenerate eigenvalue, then F,, =

|a:) {ail -

In other words, measurement of A of the quantum system Q in state p
can be identified with a classical stochastic source with the eigenvalues a;
as output symbols occurring with probability p;, We denote this classical
stochastic source simply by (p, A) .

The two entropies S(p) and H(p, A) are not the same. One is a measure
of quantum uncertainty, the other a measure of the classical uncertainty
that arises from measurement. The quantum entropy S(p) is usually a
lower bound for the classical entropy, i.e.,

S(p) < H(p, 4) .

If A is a complete observable (hence, non-degenerate), and if A is compatible
with p, i.e., [p, A] =0, then S(p) = H(p, A).

8.4. When a part is greater than the whole — Ignorance = uncer-
tainty.

Let @ be a multipartite quantum system with constituent parts 9, _,
... ,@1, Qo, and let the density operator p denote the state of ©@. Then
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the state p; of each constituent “part” Q; is given by the partial trace over
all degrees of freedom except Q;, i.e., by
pj = Trace(p)
0<k<n—-1

K

By applying the above partial trace, we are focusing only on the quantum
system Qj;, and literally ignoring the remaining constituent “parts” of Q.
By taking the partial trace, we have done nothing physical to the quantum
system. We have simply ignored parts of the quantum system.

What is surprising is that, by intentionally ignoring “part” of the quan-
tum system, we can in some cases create more quantum uncertainty. This
happens when the constituent “parts” of Q are quantum entangled.

For example, let Q denote the bipartite quantum system consisting of two
qubits @; and Oy in the entangled state

|0100) — [1110)
S Lant

The corresponding density operator pg is

|Po) =

1
Pe = 3 (]0100) (0100| — [0100) {1110| — |1110) {0100] + |1110) (1110
100 —1
1|/ 000 o0
- 9 0 00 0
-1 0 0 1

Since pg is a pure ensemble, there is no quantum uncertainty, i.e.,

S (p)=0.

Let us now focus on qubit #0 (i.e., Qp). The resulting density operator
pp for qubit #0 is obtained by tracing over &y, i.e.,

1 1710
po = Tracey (pQ) = E( [0y (0| + 1) (1] ) = 5 ( 0 1 ) ;
Hence, the quantum uncertainty of qubit #0 is
S(po)=1.

Something most unusual, and non-classical, has happened. Simply by
ignoring part of the quantum system, we have increased the quantum un-
certainty. The quantum uncertainty of the constituent “part” Cp is greater
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than that of he whole quantum system Q. This is not possible in the
classical world, i.e., not possible for Shannon entropy.

9. There is much more to quantum mechanics

There is much more to quantum mechanics. For more in-depth overviews,
there are many outstanding books. Among such books are [9], [15], [17], [24],
[25],[27], [34], [36], [38], [40], [42], [43], and many more.

10. The Beginnings of Quantum Computation

We begin this section with some examples of quantum computing devices.
By a quantum computing device!® we mean a unitary transformation U
that is the composition of finitely many sufficiently local unitary transfor-
mations, i.e.,

U = Un—lUn_2 v UIU[],

where Up—1, Un—2, ... ,U1 ,Up are sufficiently local unitary transformations.
Each Uj is called a computational step of the device.

Our first examples will be obtained by embedding classical computing
devices within the realm of quantum mechanics. We will then look at some
other quantum computing devices that are not the embeddings of classical
devices. We then give a brief description of quantum teleportation, a means
possibly to be used by future quantum computers to bus qubits from one
location to another.

10.1. Embedding classical (memoryless) computation in quantum
mechanics.

One objective in this section is to represent!” classical computing com-
puting devices as unitary transformations. Since unitary transformations
are invertible, i.e., reversible, it follows that the only classical computing
devices that can be represented as such transformations must of necessity
be reversible devices. Hence, the keen interest in reversible computation.

For a more in depth study of reversible computation, please refer to the
work of Bennett and others.

18Unfortunately, Physicists have “stolen” the akronym QCD.
"Double meaning is intended.
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10.2. Classical reversible computation without memory.

Tp-1 — — Yn-1
Tp-1 — - UYn-1
Input¢ : : CRCD, : : Output
T — — n
zo — — Yo

Each classical n-input/n-output (binary memoryless) reversible com-
puting device (CRCDy,) can be identified with a bijection

m:{0,1}" — {0,1}"

on the set {0,1}" of all binary n-tuples. Thus, we can in turn identify each
CRCD,, with an element of the permutation group Sp» on the 2™ symbols

(@ | @e{o1"}.
Let
By=8lapmi, vos jp-1)
denote the free Boolean ring on the symbols zg,z1, ... ,Zn—1 . Then

the binary n-tuples @ € {0,1}" are in one-to-one correspondence with the
minterms of B, i.e.,

n—1

— a-

@ =[],
j=0
where

0 _ =
r; = T
T - .
r; = z;

Since there is a one-to-one correspondence between the automorphisms of
B, and the permutations on the set of minterms, it follows that CRCD,’s
can also be identified with the automorphism group Aut (B,) of the free
Boolean ring B,.

Moreover, since the set of binary n-tuples {0,1}" is in one-to-one cor-
respondence with the set of integers {0,1,2, ... ,2" — 1} via the radix 2
representation of integers, i.e.,

n—1

(bn—lybﬂ-—2) i :bl}bo) = ZbJ2J ¥
=0

we can, and frequently do, identify in this way binary n-tuples with integers.
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For example, consider the Controlled-NOT gate, called CNOT, which is
defined by the following wiring diagram:

c —@P— b+e

|
CNOT=| b —re— b ;

a —r—r— a

where ‘e’ and ‘@’ denote respectively a control bit and a target bit, and
where ‘a 4 b’ denotes the exclusive ‘or’ of bits @ and b. This corresponds to
the permutation 7 = (26)(37), i.e.,

(]0) = |000) — |000) = |O)
1) = [001) — |001) =]1)
[2) = [010) ~—— |110) =6)
3) = [|011) — |111) =7)

< )
|4) = |100) — [100) = |4)
|5y = |101) — |101) =|5)
6) = |110) — [010) =|2)

L 7)) = [111) +— |011} =3)

where we have used the following indexing conventions:
First=Right=Bottom
Last=Left=Top

As another example, consider the Toffoli gate, written Toffoli, which is
defined by the following wiring diagram:

c —&H— c+ab

Toffoli=| b — e — b ;

a — @ — a

where ‘ab’ denotes the logical ‘and’ of a and b. As before, ‘+’ denotes
exclusive ‘or’. This gate corresponds to the permutation m = (67).

In summary, we have:

{ CRCD, } = Syn = Aut (B,)
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10.3. Embedding classical irreversible computation within classical
reversible computation.

A classical 1-input/n-output (binary memoryless) irreversible computing
device can be thought of as a Boolean function f = f(zn—2,...,Z1,Z0) in
B,-1 = B{zg,%1,... ,Zn-2). Such irreversible computing devices can be
transformed into reversible computing devices via the monomorphism

t:Bp_1 — Aut(B,),
where ¢(f) is the automorphism in Aut(B,) defined by
(x‘n.—la Tn-2y-..,T1, 5!','0) = (mn~l & f!x'n.*% & !:‘Dl)mﬂ) )

and where ‘@’ denotes exclusive ‘or’. Thus, the image of each Boolean
function f is a product of disjoint transpositions in Son.

As an additive group (ignoring ring structure), B,_1 is the abelian group
@3(:0— it Zs, where Zy denotes the cyclic group of order two.

Classical Binary Memoryless Computation is summarized in the table
below:

Summary
Classical Binary Memoryless Computation

(n-1)_
Bn—l = @?:0 ! 22 —LF Szn = A’U.t(Bn)

10.4. The unitary representation of reversible computing devices.
It is now a straight forward task to represent CRCD,,’s as unitary transfor-
mations. We simply use the standard unitary representation

v : Sen — (2™ C)

of the symmetric group Sy» into the group of 2" x 2™ unitary matrices
U(2™;C). This is the representation defined by

T — (Bk,mk)on yon

where §x; denotes the Kronecker delta, i.e.,

1 ifk=¢
Oke =
0 otherwise

We think of such unitary transformations as quantum computing devices.
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For example, consider the controlled-NOT gate CNOT' = (45)(67) € Sg
given by the wiring diagram

[+ —_—e — C

|
CNOT'=|b ——— b

a —@P— a+c

This corresponds to the unitary transformation

10000000\
01000000
00100000
00010000
Uenor =¥(CNOT)=1| ¢ ¢ g g 0 1 0 0
00001000
000000O0O 1
\000O0O0O0TLO0)

Moreover, consider the Toffoli gate Toffoli’ = (57) € Sg given by the
wiring diagram

C _— e — T

Toffoli' =| ¥ — & — b4ac
|

a —_— B ) a

This corresponds to the unitary transformation
10

Urosrar’ = V(Toffoli’) =

OO OO OO
cCcoOoRr oo C
COOOCOO
cCoOooOo o oo
PO Do OoOD
(e o e T e Y e B e Y s

cCoocoooo
cocoocooH

000100

Abuse of Notation and a Caveat: Whenever it is clear from context,
we will use the name of a CRCD,, to also refer to the unitary trans-
formation corresponding to the CRCD,,. For example, we will denote
v(CNOT) and v(Tof foli) simply by CNOT and Tof foli. Moreover
we will also use the wiring diagram of a CRCD,, to refer to the unitary
transformation corresponding to the CRCD,,. For quantum computa-
tion beginners, this can lead to some confusion. Be careful!
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10.5. Some simple quantum computing devices.

After CRCD,,’s are embedded as quantum computing devices, they are
no longer classical computing devices. After the embedding, they suddenly
have acquired much more computing power. Their inputs and outputs can
be a superposition of many states. They can entangle their outputs. It
is misleading to think of their input qubits as separate, for they could be
entangled.

As an illustration of this fact, please note that the quantum computing
device CNOT" given by the wiring diagram

1 000

. b —e— a+b 0100
GO = | “looo01
a — P — a 0010

is far from classical. It is more than a permutation. It is a linear operator
that respects quantum superposition.

For example, CNOT” can take two non-entangled qubits as input, and
then produce two entangled qubits as output. This is something no classical
computing device can do. For example,

0) — 1) L 100) — 110)) — —= (f00) —
7 ﬁ(IUO) |10)) ﬂ(IOO) |11))

For completeness, we list two other quantum computing devices that are
embeddings of CRCD,,’s, NOT and SWAP:

® |0) =

NOT =| ¢ —[NOT|— a+1 2(2 (1))=01
and
1 0 00
b —me— —P— —re— a 0010
Sl | | | “lo100
a —-P— —e— —@B— b 00 0 1

10.6. Quantum computing devices that are not embeddings.

We now consider quantum computing devices that are not embeddings of
CRCD,’s.

The Hadamard gate H is defined as:
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Another quantum gate is the square root of NOT, i.e., vVNOT, which
is given by

]

1—:2 7 1 141 1 —1
VNO——’»NOT—)—Q(l.)—Q(_i 1).

There is also the square root of swap v/ SWAP which is defined as:

1 0 0 0
0 L 1i g
SWAP=| — VSWAP — |=| , 1% ik
52 =7 0
0 0 0 1

Three frequently used unary quantum gates are the rotations:

_ cosf isinf \ _ (001
£ “\ isinf cos@ |
_ cos @ sinf _ 802
4 —sinf cosf

(]
ifos [ € 0 ifag
— e . = 0 e_ie =€

10.7. The implicit frame of a wiring diagram.

Wiring diagrams have the advantage of being a simple means of describing
some rather complicated unitary transformations. However, they do have
their drawbacks, and they can, if we are not careful, be even misleading.

One problem with wiring diagrams is that they are not frame (i.e., basis)
independent descriptions of unitary transformations. Each wiring diagram

describes a unitary transformation using an implicitly understood basis.

For example, consider CNOT" given by the wiring diagram:

b —e— a+b
CNOTY = |

a —r B — a

The above wiring diagram defines CNOT” in terms of the implicitly under-

stood basis
{fo=(s)-m=(2)}
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This wiring diagram suggests that qubit #1 controls qubit #0, and that
qubit #1 is not effected by qubit #0. But this is far from the truth. For,
CNOT” transforms
0) +11) _ 10) —[1)
V2 V2

10— 11) _ 10y —]1)
V2 v2

where we have used our indexing conventions
First=Right=Bottom

into

Last=Left=Top

In fact, in the basis

0 0=
{loy= B2 1y = B0}

the wiring diagram of the same unitary transformation CNOT” is:

b — @ — a+b

a —_— 0 — a

The roles of the target and control qubits appeared to have switched!

10.8. The No-Cloning Theorem.

In this section, we prove that there can be no device that produces exact
replicas or copies of a quantum state. (See also [47] for an elegant proof
using the creation operators of quantum electrodynamics.)

The proof is an amazingly simple application of the linearity of quan-
tum mechanics. The key idea is that copying is an inherently quadratic
transformation, while the unitary transformations of quantum mechanics
are inherently linear. Ergo, copying can not be a unitary transformation.

But what do we mean by a quantum replicator?

Definition 11. Let H be a Hilbert space. Then a quantum replicator
consists of an auziliary Hilbert space Ha, a fized state |g) € Ha (called the
initial state of replicator), and a unitary transformation

U HAQHOH —HAQHDH
such that, for some fized state |blank) € H,
U o) |a} [blank) = [¢,) |a) |a)
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for all states |a) € H, where |¢,) € Ha (called the replicator state after
replication of |a)) depends on |a).

Since a quantum state is determined by a ket up to a multiplicative non-
zero complex number, we can without loss of generality assume that |tg),
|a), |blank) are all of unit length. From unitarity, it follows that |¢,) is also
of unit length.

Let |a}, |b) be two kets of unit length in # such that
0<|{(alb)|<1.

Then
{ U [o) |a) [blank) = |1h,)|a)|a)
U |wo) b) [blank) = |9) |b) [b)
Hence,
(blank] (a| (ol UTU |o) |b) [blank) = (blank| (a| { v | %o ) |b) [blank)

=(alb)

On the other hand,

(blank] {a| (vo| UTU |ho) |b) [blank) = (a] (al { %4 | %3 ) |b)|b)
= (a]|b)? (¥ |9)

Thus,
(alb)(alth)=(alb).
And so,
(alb)(valth)=1.

But this equation can not be satisfied since
[(alb)f <1
and

(| 9 ) <1 [bad 1 o) 1] =1

Hence, a quantum replicator cannot exist.
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10.9. Quantum teleportation.

As stated earlier, qubits can not be copied as a result of the no-cloning
theorem. (Please refer to the previous section.) However, they can be
teleported, as has been demonstrated in laboratory settings. Such a mech-
anism could be used to bus qubits from one computer location to another.
It could be used to create devices called quantum repeaters.

But what do we mean by teleportation?

Teleportation is the transferring of an object from one location to an-

other by a process that:

1) Firstly dissociates (i.e., destroys) the object to obtain information. -
The object to be teleported is first scanned to extract sufficient infor-
mation to reassemble the original object.

2) Secondly transmits the acquired information from one location to an-
other.

3) Lastly reconstructs the object at the new location from the received
information. — An exact replicas re-assembled at the destination out
of locally available materials.

Two key effects of teleportation should be noted:

1) The original object is destroyed during the process of teleportation.
Hence, the no-cloning theorem is not violated. )

2) An exact replica of the original object is created at the intended des-
tination.

Scotty of the Starship Enterprise was gracious enough to loan me the
following teleportation manual. So I am passing it on to you.

Quantum Teleportation Manual

Step. 1 .(Location A): Preparation: At location A, construct an EPR
pair of qubits (qubits #2 and #3) in Hy @ H3.

Unitary 01) - |10)
|00) +— Matrix AR
Hs @ Ha — Hy @ Ha

Step 2. Transport: Physically transport entangled qubit #3 from lo-
cation A to location B.
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Step 3. : The qubit to be teleported, i.e., qubit #1, is delivered to lo-
cation A in an unknown state

al0) +b]1)

As a result of Steps 1 - 3, we have:

e Locations A and B share an EPR pair, i.e.
— The qubit which is to be teleported, i.e., qubit #1, is at Location
A
— Qubit #2 is at Location A
— Qubit #3 is at Location B
— Qubits #2 & #3 are entangled
e The current state |®) of all three qubits is:

1®) = (a|0) + 1)) (w) € Hy @ Hy ® Ha

To better understand what is about to happen, we re-express the state
|®) of the three qubits in terms of the following basis (called the Bell basis)

of H1 ®Hy :

(104) = |10)\;2_101)
_ [10)+]o1)

) |¥p) = 72
) = 00)\;%11)

1Wp) = 00)—[11)

3

The result is:

30 1%4) (—al0) —b]1))
+[¥p) (—al0) +5|1))
+|¥c) (a]1) +5]0))
+|¥p) (a]1) —5]0)) ]

where, as you might have noticed, we have written the expression in a sug-
gestive way.

|®) =

]

Please note that since the completion of Step 3, we have done nothing
physical. We have simply performed some algebraic manipulation of the
expression representing the state |®) of the three qubits.
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Let U : Hy ® Ho — H1 ® Ha be the unitary transformation defined by

[ |¥4) ~—— |00)

T5) — |01)
| 1%e) — |10)
19) — 1)

Step 4. (Location A): ®Apply the local unitary transformation U ®
I:H1®H,@Hz — H1 ®@Ha ®Hs to the three qubits (actually more
precisely, to qubits #1 and #2). Thus, under U ® I the state |®) of
all three qubits becomes

3l 100) (—a0) —b]1))

|‘I)’> — +|01)(_a|0)+b|1>)
+10) (a |1) + b]0))

111} (af1) ~bJ0) ]

Step 5. (Location A): Measure qubits #1 and #2 to obtain two bits
of classical information. The result of this measurement will be one

of the bit pairs {00,01, 10, 11}.

Step 6.: Send from location A to location B (via a classical communica-
tion channel) the two classical bits obtained in Step 6.

As an intermediate summary, we have:

1) Qubit #1 has been disassembled, and
2) The information obtained during disassembly (two classical bits) has

been sent to location B.

Step 7. (Location B): The two bits (2, j) received from location A are
used to select from the following table a unitary transformation U7

18 Actually, there is no need to apply the unitary transformation 7. We could have
instead made a complete Bell state measurement, i.e., a measurement with respect to the
compatible observables |W4) (¥4, |¥B) (¥5|, |¥o) (Yc|, |¥D) (¥p|. We have added
the additional step 4 to make quantum teleportation easier to understand for quantum

computation beginners.
Please note that a complete Bell state measurement has, of this writing, yet to be

achieved in a laboratoy setting.
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of M3, (i.e., a local unitary transformation I4 ® UGS on Hy @ Ha ®Hs)

“ Rec. Bits || U .d) Future effect on qubit #3
00 [(00) — ( _(1) _{1] ) —a|0) —b|1) — a|0) +b|1)
01 U@ = ( ‘01 ‘1) ) —a|0) +b|1) > a|0) +b|1)
10 U(m):(fl’ é) a|1) +b]0) — a|0) +B|1)
11 U(“):(_(l) é) a|1) — b]0) —> a|0) + b|L)

Step 8. (Location B): The unitary transformation U9 selected in
Step 7 is applied to qubit #3.

As a result, qubit #3 is at location B and has the original state of qubit
#1 when qubit #1 was first delivered to location A, i.e., the state

a|0)+b]|1)

It is indeed amazing that no one knows the state of the quantum teleported
qubit except possibly the individual that prepared the qubit. Knowledge
of the actual state of the qubit is not required for teleportaton. If its
state is unknown before the teleportation, it remains unknown after the
teleportation, All that we know is that the states before and after the

teleportation are the same.

11. There is much more to quantum computation

Needles to say, there is much more to quantum computation. I hope that
you found this introductory paper useful.
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12. Index

* A %
Adjoint, 11
Big, 26
Little, 26
Alice, 36, 39
Ancilla, 11
Automorphism group Aut (B,), 47

*R*
Bennett, 46
Blackbox, 27

Bob, 36, 39
Boolean ring By, 47
Bra, 7

Bracket, 47

* Ok
CNOQOT - See Controlled-NOT
Co-adjoint representation, 40
Complex projective space, 9
Commutator, 17, 26
Computation

Irreversible, 46
Computational step, 46
Computing device

Classical, 46

Reversible, 47-50, 51

Quantum, 46
Constituent “part,” 25, 45
Controlled-NOT gate, 32, 48, 50, 51, 52, 53
CRCD,, — See Computing Device

*)*
Density operator, 19-26
Deutsch, David, 29
Diagonalization, 12, 20
Dirac notation, 7-8, 11-13
Dynamic invariants, 43

D

Eigenket, 12

Eigenvalue, 12
Degenerate, 12
Non-degenerate, 12
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Einstein, 35
Embedding, 49
Ensemble

Mixed, 20

Pure, 20, 44
Entangled

Quantum, 33-44
Entanglement

Type, 38

Classes, 38
Entropy

Classical, 41-42

Shannon, 41-42

von Neumann, 42-44

Quantum, 42-44
EPR, 33, 35-37
Expected value, 16

* ok
Filtration, 14

* Q¥

Global quantum system, 33

Global unitary transformation, 38
Gottesman, 29

S
Hamiltonian, 18
Heisenberg
Picture, 27-29
Uncertainty Principle, 17
Hermitian operator, 12
Hilbert space, 6
**
Irreversible computation, 46
* Ik
Juxtaposition, 29-31

e
Ket, 7
Kronecker sum, 38

L

lg, 41
Lie group, 37
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Local equivalence, 38

Local interaction, 35-36

Local Lie algebra, 38

Local subgroup, 38

Local unitary transformation, 38

N[
Measurement, 13-16, 21
Multipartite quantum system, 25

*N*

Nilsen, Mike, 40
No-cloning theorem, 53-54
Non-locality, 35-36

NOT gate, 51

* ()
Observable, 12
Basis of, 13
Compatible operators, 17
Complete, 12
Frame of, 13
Incompatible operators, 17
Measurement, 12
Selective measurement, 12
Operator, 11
Hermitian, 12
Measurement, 12
Operator, 21
Self-adjoint, 12
Unitary, 18
Orbits, 38

*PpE

Partial trace, 23-25

Partition, 41

Path-ordered integral, 18-19

Pauli spin matrices, 13

Permutation group, 47

Planck’s constant, 18

Polarized light, 4-5

Podolsky, 35

Positive operator valued measure, 15
POVM, 15

Princible of non-locality, 35,36
Probabilistc Operator valued measure, 15
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Probability distribution, 41
Projection operator, 21

*Q*
Quantum
Entangled, 33-44
Register, 30-33
Replicator, 53
Repeater, 55
Qubit, 5-6

*R
Reality, Principle of, 35
Register

Quantum, 30-33
Repeater,

Quantum, 55
Replicator

Quantum, 53
Reversible computation, 46
Rosen, 35
Rotation, 52

Gk
Schrédinger picture, 27
Selectve measurement operator, 14
Self-adjoint operator, 12
Spacelike distance, 36
Square root of
NOT, 52
SWAP, 52
Standard deviation, 17
Standard unitary representation, 49
Stochastic source, 41
Superluminal communication, 36
Superposition, 5, 31
SWAP gate, 51
Symbols, 41
Symmetric group, 47
Symplectic manifold, 40

*rok
Teleportation, 55
Quantum, 55-58
Tensor poduct, 8
Toffoli gate, 48, 50
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Trace, 23

Partial, 23-25

KT
Unitary

Operator, 8
Transformation, 18

LA VAl
*FWE

Wiring diagam, 47-48,49-50,51-53
Implicit frame, 52

Wootters, 53
*yk
Hy

A
Zurek, 53
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