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Abstract

Stratification of Lagrangian Grassmannian in the product symplectic space (N x
M, m}ywn —Tywn) is constructed and the global homological properties of the strata
are investigated. Basing on the symplectic Gauss map, which prescribes to each point
of a Lagrangian submanifold (symplectic relation) in the product symplectic space
the tangent linear Lagrangian subspace, the generic properties of symplectic relations
are described and the corresponding local symplectic invariants are derived. Classifi-
cation of local models for generic symplectic relations is reduced to the classification
of conjugacy classes of smooth generic matrices.

1 Introduction.

Symplectic structure on a manifold M is a 2-form w, which is closed and nondegenerate.
Symplectic structures appear naturally in various branches of physics, e.g. mechanics,
optics, thermodynamics, etc. In most of these cases the symplectic space is a cotangent
bundle to a manifold with a symplectic form being the differential of the canonical Liouville
one-form. For a symplectic manifold (M,w), say the cotangent bundle with its Liouville
form, we can consider submanifolds L which are isotropic with respect to the symplectic
form, w |= 0. If L has a maximal possible dimension equals half of the dimension of the
symplectic manifold, then it is called Lagrangian. The Lagrangian submanifolds (possibly
with singularities) are interesting objects since for instance in optics they represent the
systems of rays producing an evolving wavefront, in mechanics they correspond to Hamil-
tonian systems and in thermodynamics they exactely describe the space of states of the

system being in thermodynamical equilibrium.
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There are an extensive local and global studies of Lagrangian submanifolds and their
singularities (cf. [19, 3, 8, 11]). An important object in global investigations of Lagran-
gian submanifolds is the Lagrangian Grassmannian A,; the manifold of linear Lagran-
gian subspaces in 2n-dimensional linear symplectic space. The canonical stratification
Ap = UR_ oAy, AS, = {B € An : dim(BNa) = k}, where o is a fixed element of A,, allows
us to indicate the geometry of Lagrangian submanifolds and their singularities. The set
AP =up_, .k 1s orientable and its singular part has codimension strictly greater than
2 in A,. Thus AQ) determines the singular cycle which is Poincaré dual to the universal
Maslov class u € H(A,,Z) (cf. [2]). Investigations of Lagrangian submanifolds in product
symplectic manifold (M, x My, mjws — mjw;), called also the symplectic relations, as it was
shown in [9], need to use the another natural stratification of the Lagrangian Grassmannian
Anam (dimM; = n,dimM, = m) determined by the imposed product structure properties.

The main goal of this paper is to explore the global geometrv of the product stratifica-
tion of the Lagrangian Grassmannian and indicate the local symplectic invariants by means
of the normal forms for generic symplectic relations. This type of problems are natural and
turn out to be intimately related to the generalization of the symplectic transformation
group and investigations of splitting of the potential systems (cf. [16, 19, 18, 9]).

In Section 2 of this paper we develop the local description of Lagrangian submanifolds
in product symplectic manifold. We show that by the general symplectomorphisms acting
in both components of the product any Lagrangian germ can be generated by a function
without Morse parameters. To proceed, further on, the investigations of symplectic rela-
tions, in Section 3 we construct the stratification of Lagrangian Grassmannian in product
linear symplectic space. This stratification distinguish the symplectically nonequivalent
vertical positions of symplectic relations and measures their difference to canonical rela-
tions formed by the graphs of symplectomorphisms. In Section 4 we show that a first
singular stratum of the Grassmannian A, is coorientable, we calculate the first homology
group of the strata and find the cycle in this group realizing the class dual to the universal
Maslov class of the Grassmannian A,,. For a smooth symplectic relation, in Section 5,
using the tangential ” Gauss” map into Grassmannian A,,,,, and transversality of this map

we investigate the generic properties of symplectic relations with respect to their position



according to the Cartesian product projections.

2 Product symplectic space

Let (My,w), (M>,ws) be two symplectic manifolds, dimM; = 2n, dimM,; = 2m. The

product symplectic space is defined as
M = (M x My, w; © wy),

where 7;,7 = 1, 2, are the canonical projections, m; : My X My = M;, we©wy = Tiws — miws.
By C, L,1I, we denote the coisotropic, Lagrangian and isotropic submanifolds of M
with respect to the symplectic structure Q = wy © wy (cf. [19, 9]). There is a natural
question concerning the typical positions of the submanifolds with respect to the canonical
projections. In this paper we will consider the generic properties of Lagrangian submani-
folds known also as the symplectic relations or correspondences (cf. [18, 8}).
By (L,p) we denote a Lagrangian submanifold germ in M. Now we introduce the

equivalence relation acting in the space of germs of Lagrangian submanifolds.

DEFINITION 2.1 The two Lagrangian germs (Ly,p1), (L2, p2) C (M, Q) are called equi-
valent if there exist two symplectomorphism germs By : (My, m1(p1)) — (M1, m1(p2)) and
By : (Ma,ma(p1)) = (Ma,m2(p2)) such that the symplectomorphism By x By : M — M

sends Ly into Ly and p, into ps.
Now we have the preliminary

LeEMMA 2.1 If (L,p) is a Lagrangian germ in M, then there are local cotangent bundle
structures arcund m1(p), say T*X and around m(p), say T*Y, such that (L, p) is generated

in the product space

M= (T*(X xY),wy Owx)
by a germ of a generating function F : (X XY, mxxy(p)) — R such that, in local coordinates

on (X X Y, wxxy (D)),

F($7 y) = i i m'iy‘7'¢ij($7 y)a (1)

i=1j=1
where wy, wx are the corresponding Liouville forms on T*Y and T* X respectively, mxxy :

T*(X xY) = X xY is a canonical cotangent bundle projection, dimX =n, dimY =m.
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Proof. Let ((p,q), (7,d)) be Darboux coordinates on 7*(X x Y'), then

Q=Y dp;Adg; — Y dp;i A dg.

i=1 i=1
By [3] (Section III 19.3) we can find the partition U J = {1,...,n}, INJ =0, TUJ =
{1,...,m}, INJ = 0 such that there exists a smooth function

(PI:‘ZJ:pia Qj) — S(pl:‘]];ﬁf;@j)?

which is a generating function for (L, p) (cf. [2, 3]). By the svmplectomorphism & of M,

(P(p: q7ﬁ7('7) = (—QIaprpI)QJa _ql_aﬁfapfa _j) = (é-am:n) y)1

which preserves the product structure of M, we get the generating function (z,y) —
F(z,y) for (L,p) in the canonical cotangent bundle symplectic structure 7*X x T*Y on
M. We can write

F(z,y) = Fi(z) + Y Y my;bi(x,y) + Fa(y)

i=1j=1

and then, taking the equivalence B; X By,
Bi(¢,z) = (& — gradFi(z),z), Ba(n,y) = (n— gradFy(y),y)

we get the reduced form (1) . O

Now we have the first simple equivalency class distinguished by the property
rankTy = 2m,

where m < n.

PRroPOSITION 2.1 If (L,p) projects onto (M, ma(p)), dimMs = 2m, m < n, then (L, p)

is parallelizable, i.e. it is equivalent to its tangent space T, L with the generating function
m
F("an) = szyz
i=1
Proof. By assumption (L, p) may be parameterized by the following mapping

@@7 67 q]) = (¢I(ﬁ7 (.77 QI)7¢‘J(257 Q) QI))QI7¢J(p) (-71 q1)7ﬁ1 q-)



i.e. ®Q =0, where IUJ = {1,...n}, INJ =0, and ¢r, ¢7,:s are smooth function-germs.

Let us construct the symplectomorphism
E: M — M
such that
2, z) = (& + dr(&r, 20, 21), 65(E5, T0s 20), 20, Y0 (60, %0, 21), €0, T ).
It is really a symplectomorphism, in fact
E*(dpy A dqy +dpy Adgy) = dér Adzy + dor(...) Adzp + dds(...) Adiy(...).

But because

dp A dq — dé1(P, 7, q1) N dgr — dé,(...) Adis(..) =0
we get

E*(dpr Adgr + dpy Ndgy) = dér AN dzp +dEg Nz
Taking the equivalency (27}, 4d) we get a germ, which is equivalent to (L, p) written in the
form

Er=-vy5, m=z5, &=0,

where J = {1,...,m}, and Q = dns A dy; — d§ A dz. But this germ is generated by the

following generating function
m
F(may) = Z"I;iyi-
i=1
O
REMARK 2.1 In the case of Proposition 2.1, the image of ® (see Proof of the Prop. 2.1) is
a coisotropic submanifold of (My,w,) and moreover (M,,ws) is isomorphic to the reduced

symplectic manifold. For generic germ (L,p) this is the typical situation ezcluding strata

of codimension > 0 in (L,p) where the rankT'my |1,z is not mazimal.

3 Lagrangian Grassmannian

Now we assume that the space M is linear and build with the linear symplectic spaces

(N,w) and (M,ws), M = (N x M,ws 8 wi), dimN = 2n, dimM = 2m, m < n. By Ay
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we denote the Lagrangian Grassmannian of linear n+m-dimensional Lagrangian subspaces
in M. Let N and M be canonically placed in the product. If L € A,,,, then there are
two possibilities; L is transversal to N (i.e. rankms |1, is maximal), or L is not transversal
to V. The set of those L € A, which are not transversal to N we denote by CAyysm
and call it the critical subset of A,,;,,. Naturally if L is transversal to NV then L is a linear
reduction relation. The subspace of A, consisting such L we will denote bv RSp,im.
The case of n = m was studied in [9] and in the first two sections we generalize these results
to n # m. If n = m, RSpn+m is equal to the space of graphs of symplectic isomorphisms
G Span,. Analogously, the most singular set of elements in A, ., is called supercritical. It is
denoted by SA,1.,, and defined as SA,m = Ap X Ay, where A, and A,, are the Lagrangian
Grassmannians in N and M respectively. We easily calculate the codimension of the most

critical stratum
codimSA,m = dimA, i — dimA,, — dimA,, = nm.

Now we introduce the composition of symplectic linear relations. Let R; and Ry be the
Lagrangian subspaces in the product spaces, say (M; x My, ws©w;) and (My x M3, w3 ©ws)
respectively. Then we define the composition of R; and E,, denoted by Ky o R; as the

following Lagrangian subspace
R2 o] Rl = {(’U]_,’Ug) c M1 X M3 : EIszMz; (’U],’UQ). c Rl, (’1)2,’03) c RQ}

in the product symplectic space (M; X Mj,ws © w;). The transposed relation to R C
(M7 X My, ws © wy) is defined to be the Lagrangian subspace of (My x M;,w; © wy) having

the form

Rt = {('UQ,’Ul) € M2 X M1 : (’Ul,’Uz) € R}

Using the description method of the Grassmannian by compositions of symplectic relations

we have the following result.
LEMMA 3.1 If L € RSpnym, then L has a following unique decomposition

L=LoR,



where L, R are symplectic relations, L C (N x M,wy ©wg), R C (N x N,wzOwy) and R

is a graph of the coisotropic projection p onto (N,wy) and wy— is defined by the formula

*
PrWi = WN |m (),

and L is an element of the Grassmannian Ay, in the symplectic space (N X M, wy Qwg),

dimN = dimM = 2m, being the graph of a symplectic isomorphism.
On the basis of this unique decomposition we immediately have
dimRSppim = dimIﬁ’ﬁm + dimAs,,,

where dimI2" is dimension of an isotropic Grassmannian of n—m—spaces in 2n—dimensional
symplectic space. This dimension is equal to the dimension of the coisotropic Grassman-

nian of coisotropic spaces of codimension n —m denoted by C2" . Then using the formula

dimC2 = n(n —m) — %(n —m)B(n—m) —1)

we get

GimBSpnym = 2n(n—m)— %(n —m)(3(n—m) — 1)+ 2m? + m

1
= §(n +m)(n+m+1) =dimA,im

Finally we have the resulting decomposition of C A, .

THEOREM 3.1 The critical set of Apim has a canonical partition into smooth strata
m
CAn+m = U CkAn+m,
k=1
where the elements of Cr A1 are determined by the pairs of two coisotropic subspaces V;
in N and Vy in M of codimension n — m + k and k respectively, and the symplectic linear

automorphism of the 2n — 2k— dimensional symplectic space.

Proof. By 7y (ma resp.) we denote the canonical projections of M = N x M onto N (M
resp.). The simple geometric argument shows that if L € CA,,, then my(L) C N and
mam (L) C M are the coisotropic subspaces with the equally dimensional uniquely defined

reduced symplectic spaces. This property defines the corresponding strata distinguished
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implicitly in Lemma (3.1) and the decomposition of the Theorem follows immediately.
(W]

As a result of this theorem we obtain
COROLLARY 3.1 The strata CrA, 1 are smooth submanifolds of Apirm and
codimCrAnym = k* + k(n — m). (2)
Proof. It is pure calculational result.
codimCiAp_m = dimAgym — dimI>" 4 — demld, ]zm — dimAsg,_ak.
Using the standard formulas for the respective dimensions we get the result. O

DEFINITION 3.1 If L € CyAnym then L is called the k—vertical element of the Grassman-

nian Ay ym-

Hence A, is decomposed into strata of k—vertical elements with £k =0,...,m < n.

4 The geometry of Ay,

The purpose of this section is to explore the geometry of the Lagrangian Grassmannian
in the product of two symplectic spaces of the same dimension. Let (M?" w) be the
symplectic linear space and (M, Q) = (M x M,w 6 w).

We consider the partition of the singular set C'As, into the smooth submanifolds,

(cf. [9]) i
CAZn = U CkAZn

k=1
every stratum CiAs,, for k=1,...,n — 1, is fibered in the following way
r
Sp(2n — 2k) Crl2n
p
(Zz")?



where p is a canonical projection into the symplectic polars (isotropic spaces) to coisotropic
spaces prescribed to the elements of CxAs, and r is a fiber inclusion. The symbol I,f" de-
notes the isotropic Grassmannian of k—dimensional isotropic subspaces (or (2n—k)—dimen-
sional coisotropic subspaces) in 2n—dimensional symplectic space, the symbol Sp(2n — 2k)
denotes the group of symplectic linear automorphisms of the (2n — 2k)—dimensional sym-

plectic space.

PRrROPOSITION 4.1 The first homology group of the set CyAsy,, fork=1,...,n—1, with

the real coefficients is equal to R.

Proof. We take the exact homotopy sequence for the fibration
.. = m(Sp(2n — 2k)) = 71 ( CrAz) = T ((Z2*)*) — ...

Since 7 (Sp(2n—2k)) ~ Z and my ((Z2")?) ~ Z»®Z, ([13, 1]) is a torsion group, Sp(2n—2k)
and CyAs, are connected, so we obtain that Hy( CxAay,, R) is equal to R or is trivial. We
will examine the generator of the group Hl( CiAgy, R) coming from Sp(2n — 2k). We fix
the point in the base Iy = R* x R* € (Z2")?, so above I, we have the inclusion of the fibre
r:Sp(2n — 2k) — CiAo,. As a .'generator of H,(Sp(2n — 2k), R) we take the class [y (%)]

of the matrix cycle in Sp(2n — Zk)

et 0 ... 0
0O 1 ... 0
’Yk(t): : - :
0 0 1

for t € [0, 27].

Let (e1, v (t)e1), (62, Te(t)€2), - - -, (En—ks> Vk(t)En—k) be the complex basis of graphy(t) C
CrF @ C"* where €1,...,en_g is the standard basis in C*~*. We recall that the sym-
plectic structure in the product M is given by the form ) = mjw — Tw = w O w, so we
conjugate the first variable due to the sign minus in the form 2. The appropriate real basis
is the following:

(e1, 1e(t)e1) = (1,0,...,0,€%,0,...,0)
(ie1, ivk(t)er) = (—1,0,...,0,i€",0,...,0)



(e, 2% (t)a) = (a1, 1)
(ter, ive(t)er) = (—ier,ier), for 1=2,...,n—k.

—

We denote by [yx(t)] the image of the generator [yx(t)] under the mapping
e : Hi(Sp(2n — 2k}, R) — Hy( CrAan, R).

For every Lagrangian subspace L C (M, 2) we have

= 4) ( ) oeR)

Gian
for some ( g ) € Sp(2n) where A and B are matrices of dimensions n x 2n (cf. [14]).

We will represent [7;(7)] using the matrix ( g ) :
The matrix A has the following form

Xa O
A= ;
(7 a)
" where
1. X4 = (e1,%€1,- -, Enk, t€n—k) 18 the matrix of dimension (n — k) x (2n — 2k).

2. The matrix Q4 = (Ej,0) has the dimension k x 2k and consists of two parts: the

identity matrix Ej and the zero matrix.
We have the analogous form of the matrix B:
Xg 0
= (% a)
where dimensions of the appropriate parts are the same as in the matrix A and
1. Xp = (w@)er, ive(t)ers - - - ()en—rk, 115 (t)€n—r)

2. Qg = (0, Ey).

We will show that the class of the cycle 'y;:(/t) does not vanish in homology. We

calculate, that

det(7a(?)) = det ( ° ) = et(23)m,

10



where t €< 0,27 > .

Now we consider the mapping
det? : Ay, — S, [D] s (det D)?,

where the element [D] € Ay, ~ U(2n)/O(2n) represents a Lagrangian linear subspace
in 4n— dimensional symplectic space. We recall, that the universal Maslov class of the
Lagrangian Grassmannian is defined as the element po, of the first cohomology group
H'(Agn, Z) ~ Z such, that its evaluation on a 1—dimensional cycle 7y in Az, is the intersec-
tion number of v and a certain hypersurface. The class p, is the generator of H Y(Agn, Z)
and it is the image of the generator of H'(S!,Z) under the mapping det®* : H'(S?, Z) —
H(Asn, Z) ([2],[17]). Dually the map of homology det? : Hy (Ao, Z) ~ Z — Hy(S',Z) ~ Z
is an isomorphism and the image of the cycle [fy’,:(i)] under the mapping det? is equal to
2g, where g is the generator of H;(S!,Z). We conclude that [7;\(75)] is nonzero. The

mapping 7, is an epimorphism, so consequently 7, is an isomorphism and we have, that

Hl(CkAQn,R)ZR. - 0O

We denote by 3, an element of H;(Agn, R) ~ R dual to the universal Maslov class

Uian, i.e. the evaluation of the class ug, on the class puj, is equal to one. So we get

[e(®)] = [deg det?(7e(®))] 13n = 20835

—

For the inclusion j : CxAgn < Ao, k=1,...,n — 1, we have j.([1x(¢)]) = 2u3,- Thus

we proved the following theorem:

THEOREM 4.1 For every stratum CiAg,, kK = 1,...,n — 1, we can find the cycle in

Hy( CxAszn, R) ~ R realizing the class p3, € Hi(A2n, R) dual to the universal Maslov class

for the Grassmannian Ag,.

REMARK 4.1 We observe that in every stratum CylAgn, k = 1,...,n — 1 we can find
another cycle which represents precisely the cycle ps,, for ezample in Ci1Ay we have the

following cycle
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et 00 0

0 01 —

010 0 t € (0,7).
0 01 ¢

Let Iy be a fixed element of A, and L be an arbitrary element of Aj,. We define the
image of [y by L:
Lil)={peM:F €l (v,p)€L}

We consider the mapping ([9]) p : A2n = An; p(L) = L(ly). Let pr be the mapping
p reduced to the stratum CpAs, for £k = 1,...,n — 1. Although p is not continuous on
the strata CyAq, for K = 1,...,n — 1 but the loop 'yfﬁ) C CiAa, is transformed to a
continuous loop in A,. We can easily calculate, that for each ¢t € (0, 27) the Lagrangian

subspace pk(')”\(%)) in (M?",w) is represented by the unitary matrix from U(n)

et 0 0
0 1 0
0 0 1

—

Thus the cycle [ (7x(t))] is equal to 27, where p, is the generator in Hi( A, , Z) and
simultaneously it is a class dual to the universal Maslov class of the Grassmannian A, .

We described the strata CpAsg,, for Kk =1,...,n — 1. Now we are interested in two
extreme strata: supercritical set CpAz, = SAg, ~ A, X A, and in GSpy, = Sp(2n)
consisting of the graphs of the linear symplectomorphisms. In these two cases we have no
problem with continuity. As a generator of H;(Sp(2n),R) ~ R we take the class of the
matrix cycle 7:(%), te< 0,27 >, VV-hiCh were described above for the cases k=1,...,n—1.

In the case & = 0 every element of the cycle ’Y:(ﬂ represents the basis of the Lagrangian
linear subspace which is a graph of a symplectomorphism. Let pg = p |sp(2a) - Considering

the mappings

j det?
Sp(2n) — Ay — S
£o det2

Sp(2n) — A, — S
we obtain the same results as for the strata CyAg,, where k =1...,n — 1. The mapping

p: Ao — A, reduced to the supercritical set SAg, ~ Ap X A, (we denote it by pn) is
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simply the projection 7; on the second component of the product M?* x M?" . Thus, the

analogous arguments for the mappings

J
A2TL <_’ S‘l\zn
{ T2 = Pn
A,

leads us to the conclusion:

COROLLARY 4.1

1. For the mapping j. : H1(SA2n, R) ~ R® R — H;(Ag,, R) ~ R we obtain

j*(ap‘:n b:u‘;:) = (_a’ + b):u‘;'nn

where the classes p,;, and p3,, are dual to the universal Maslov classes for the Grass-

mannians A, and As,, a,b € R. In particular we have j.(—p;,, ur) = 243,

2. The map pn. - Hi(SA2,, R) = Hi( Ay, ,R) is the projection on the second factor, so

Pns (U, pih) = ik for an arbitrary v.

The Lagrangian Grasssmannian is an orientable manifold if and only if n is an odd

integer (cf. [6]). So in our case Grassmannian As, is not orientable for an arbitrary n € N.
PROPOSITION 4.2 The first singular set Cy1 Ay, is coorientable in Asy,.

Proof. We will construct the normal direction in an arbitrary point L € CiAg,,
L C (M,Q). Let f; € m(L)*, fo € mp(L)L, where the symbol L denotes the orthogonal
complement in M with respect to the scalar product <,>. Observe that (if1,0), (0,if2)

belong to the subspace L, because
Q((Zfl,O), (‘U,’LU)) = —w(ifl,v) = "RC.H(fl,’U) =—-< fl,’b' >=0,

where H is the Hermitian product in M and analogously Q((0, ¢f2), (v, w)) = 0. The normal

direction in the point L € C1A,, is defined as follows:
L(t) = span{(tf1,if2), (ifr,—tf2)} ® L', t€(0,1),
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where the subspace L" is an orthogonal complement in the Lagrangian subspace L (with
respect to the scalar product in M) to the space span{(0,if2), (¢f1,0)}. We check, that
span{(f1,0), (0, f2)} are skew-orthogonal to L and to each other i.e.

Q(tf1,if2), (if1, —tf2)) = wlife, —tf2) —w(tfr,ifi) = (—t) = (—t) =0.

5 Local properties of symplectic relations

Let L C M be a symplectic relation. We can associate with L the symplectic ”Gauss”

map

Gr:L>p—=T,L € Apim,

where the tangent space T, L is identified with the linear subspace of M.

DEFINITION 5.1 We call L to be in general position (or it is generic) if Gy, is transversal
to the stratification CApiy = Uieq CklAntm. We say that L has k—wvertical position at
p € L if GL(p) € CxMnym: The index k is called the rank of the vertical position.

We see that the O-vertical position at. p corresponds to the case when T,L € A4, —

CAp - Following Theorem 3.1 and Lemma 2.1 we obtain the following result.

PROPOSITION 5.1 Letp € L, and L has k—vertical position at p, then the germ (L,p) is
equivalent to one in (T*X x T*Y,wy © wx) generated by the generating function
n m
Fz,y) =) zy;$i(2,y),
i=1j=1
where the rank of the vertical position of L at p is equal to the corank of the matriz

(zZE_(0,0)), k = corank($(0,0)) at (0,0) = mxxy (p).

Ox;0y;

Let M,xm (n > m) denote the space of n x m matrices of real numbers. For each
natural r, 0 < r < m let ¥, denote the subset of M, «., consisting of matrices of corank 7.
¥, is a submanifold of M, ., of codimension r? + r(n —m) (cf. [7]). Let E,x,, denote the
set, of n x m matrices of smooth function-germs at 0 on X XY, i.e. a representant of a germ

is a smooth mapping of some open neighborhood of 0 € X x Y into Myupm. ® € E,xm 18
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called generic if it is transverse to all ¥,, 7 =0,1,...,m. By Lemma 2.1 and Proposition
5.1 to a neighborhood U7 of p € L, for some choice of the cotangent bundle structures on
M, we associate the generating function mxxy(U) =V 3 (z,y) — F(z,y), where L is
transversal to the fibering. We can treat coordinates (z,y) € U as a parameterization of
L. To each (Z,7) € U we associate the reduced, with respect to terms depending only on

z — T and y — 7 separately, the two-jet
e =20 2 (3 — %) (y; — 77)ai; (2, 7).

The smooth mapping V 3 (z,y) — a;; € Muxm we will call the one-jet extension of the

parametrization of L. Now we have.

PROPOSITION 5.2 Let L C M be a symplectic relation in M. Then the following cond:-

tions are equivalent

1. G is transversal to the stratification of the critical set CAyym = Uy CkApsm-

2. For any germ of a symplectic relation (L,p) the corresponding one-jet extension of

the local parameterization of L is generic.

Proof. We know, by Proposition 5.1 that the corresponding stratifications of A, ,, and
M,,«m coincide. Thus the one-jet extension (a;;(z,y)) reconstructs the Gauss map locally.
Soif V' 3 (z,y) = (ai(z,y)) is generic, then G, is transversal to the stratification of Apym
and opposite if G, is transverse to the stratification of A,,,, then by the extension and
reduction method (see also [4, 5]) the corresponding local one-jet extensions are generic

matrices. O
REMARK 5.1

A. If a;;(Z,9) is generic then ¢;;(x,y) is generic in some open neighbourhood of 0. And
because of a;;(0,0) = ¢;;(0,0), rank(a;;j(0,0)) = rank($;;(0,0)), we have the local
equivalency of generic matrices (a;;(Z,7)) and (¢i;(z,y)) (cf. [12]). In fact

(Cl,,;j © ¢) ($, y) = Z Ofik(CE, y)¢kl($: y)ﬂlj(xa y):
kl

where ¥ is a local diffeomorphism, ¢(0) = 0, and a«, § are local invertible matrices;
Ol(O) = Inxn; /3(0) = Ixm-

15



B. On the basis of Proposition 5.2, the k-vertical points of generic L C (N x M,w;Swy),

dimN = 2n,dimM = 2m can not be removed by a small perturbation of L if
E4+k(n—m)<n+m, (n>mk<m). (3)

For generic L, the isolated points of k-vertical position appear only if m € N fulfills
the following condition

m= (K - ),
for some natural numbers h € N and s € N, s > 2. In this case the relation L
has an isolated k—vertical point, not removable by a small perturbation of L, for
k= %(2 + h—s). If n = m the k—vertical points generically appearing in L are given
by the inequality k* < 2n. The isolated points of the k—wvertical position appear only

if n=2h%  h €N and these are 2h—wvertical points.

C. If n = m = 2, then the supercritical points, i.e. points p € L such that Gi(p) € CaAy,
appear in generic L as the isolated points. At such. points L is generated locally by

the following generating function
2

F(il,‘, y) = Z miyj¢ij(x7y)7

ij=1
where ¢4;(0,0) = 0, and the transversality of G to CaoAy4 is equivalent to the mazimal
rank property
rankD®(0,0) = 4,
where ®(z,y) = (4ij(z,y)) € Maxe.
If n =m =1, the supercritical points for generic L are not isolated. In this case the

generating function has the form,

F(z,y) = zyf(z,y),
and the transversality condition means that f has no critical point at 0. Moreover the
transversality condition ensures the infinitesimal symplectic stability of such super-
critical points.
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