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0. Introduction

In this paper, we define an “admissible system” as a set-with-operators satisfying a
certain list of axioms (see (A0)—(A4) in Section 2). Our goal is to show that these axioms
abstract a minimal set of properties for understanding the combinatorics of the Weyl char-
acter formula for representations of semisimple Lie groups or algebras, and more generally
for symmetrizable Kac-Moody algebras.

Axioms {A0)-(A3) can be recognized as defining, although with slightly different nota-
tion, what is known as a “crystal” in the theory that Kashiwara has developed for bases
of representations of quantized universal enveloping algebras [K2]. The remaining axiom
(A4) postulates the existence of what we call a “coherent timing pattern,” and is designed
precisely to force a certain natural operation to be a sign-reversing involution.

We would like to emphasize that all proofs in this paper are self-contained, aside from
a few standard facts about root systems and Weyl groups. Furthermore, it uses nothing
from representation theory, and (if one is willing to drop all considerations of motivation)
can be understood at a combinatorial level as a collection of theorems about generating
functions expressible as ratios of alternating sums over Weyl groups.

In Section 2, after introducing the defining axioms, we prove simultaneously that (1)
every admissible system has a “character” (i.e., a generating series) that is a nonnegative
sum of Weyl characters, and (2) there is a simple product decomposition rule for multi-
plying the character by any Weyl character (see Theorem 2.4). As a corollary, one also
obtains a branching rule for decomposing the character of any admissible system relative
to Weyl characters for root subsystems. We remark that these results are false for general
crystals; i.e., systems that fail to satisfy axiom (A4).

At this point the main issue is existence; i.e., for each Weyl character x(A), does there
exist (and if so, how can one construct) an admissible system whose character is x(A)?
Indeed, once we have such constructions, the previous results immediately yield tensor
product and branching rules for Weyl characters. We give two solutions to the existence
problem, the first (for finite root systems only) is close to the philosophy of crystal bases,
and the second is provided by Littelmann’s path model [L1-4].

In the first approach, we define a product construction for admissible systems (see
Section 3). This coincides exactly with the usual definition of the product of crystals,
except that we have the added (light) burden of proving that axiom (A4) is respected.

In Section 4, we study “thin” admissible systems; these are the systems for which the
most trivial timing pattern—a constant function—suffices. We prove that the only signif-
icant thin systems are those arising from minuscule and quasi-minuscule representations
(Theorem 4.3).

In Section 5, we digress to discuss the example of semistandard tableaux for the root
system .A,; these can be viewed as forming an admissible subsystem of a product of thin
systems. Although tableaux are well understood from many points of view, including that
of crystal bases and the path model, it is nonetheless worth emphasizing how easy it is to
deduce in this way (1) the equivalence of the bi-alternant and tableaux definitions of the
Schur functions, and (2) the Littlewood-Richardson rule (see Proposition 5.1).

In Section 6, we confront (the lack of) complete reducibility. Although there is a
canonical decomposition of any admissible system into irreducible subsystems, there ex-
ist irreducible systems whose characters are sums of more than one Weyl character; we
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call these “tangled” systems. Entanglement is not an issue for the crystals corresponding
to irreducible (integrable, highest weight) modules, since the latter belong to a category
that enjoys complete reducibility. We prove (Theorem 6.4) that products of minuscule
and quasi-minuscule systems suffer no entanglements, and this allows us to deduce (Theo-
rem 7.1 and Corollary 7.2) that for every Weyl character x () for every finite root system,
there is an admissible subsystem with character x(A) in such a product.

The crystals arising from representations are known to be unique and well-behaved un-
der tensor product (see Theorems 4.1 and 4.2 of [K2]). Since the admissible systems arising
from minuscule and quasi-minuscule representations are easily seen to be the crystals of
these representations, it follows that the admissible systems whose existence we prove in
Sections 6 and 7 must be identical to the crystals of representations in Kashiwara’s theory.

It would be interesting to identify a stronger set of axioms whose only models are the
crystals of representations. It is conceivable that the axioms for a “strongly untangled”
admissible system (see Section 6) have this property. For simply-laced root systems, a
more specific proposal would be the axioms for an admissible system, together with the
“combinatorial Serre relations” described in Lemmas 6.5 and 6.6 (see also Section 7.3
of [K1] and Remark 6.7(d) below).

In Section 8, we return to the general case, and show that Littelmann’s path model fits
the axioms for an admissible system. More specifically, we treat the instance of the path
model corresponding to Lakshmibai-Seshadri paths in [L1], although the derivation we give
is closer in spirit to the approaches based on the Weyl character formula in [L2-3]. In
this context, the timing pattern records the time of deepest penetration of a path through
each wall of the fundamental chamber, and axiom (A4) can be viewed as extracting the
essential combinatorial properties of these penetration times.

One reason for using the Lakshmibai-Seshadri path model is that the objects can be
explicitly and uniformly described—in this case, as weighted chains in the Bruhat order-
ing of the Weyl group (hence we refer to the objects as “Lakshmibai-Seshadri chains”).
However, this causes no real loss of generality, since the crystal defined by any path model
depends only on the highest weight (see [L2] or Theorem 2 of [L3]). Thus all path models
yield admissible systems, although this should not be hard to prove directly.
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1. Preliminaries

Let V be a finite-dimensional real vector space with a non-degenerate symmetric bilinear
form (, ), and let & C V be a crystallographic root system with simple roots {a; : i € I'}.
By this we mean that & is the set of real roots of some symmetrizable Kac-Moody algebra.
The finite root systems of this type are the root systems of semisimple Lie algebras.

For each root o € ®, we let oV := 2a/(a,a) denote the co-root and o, € GL(V)
the reflection corresponding to ¢, so that g,(\) = X — (A, aV)a. For each i € I, we let
s; denote the reflection corresponding to the simple root ¢;. The Weyl group W is the
subgroup of GL(V') generated by {s; : i € I'} (or equivalently, {0, : & € ®}); it is finite if
and only if ® is finite.



We remark that ® can be characterized by the following axioms.

R1) {a;:4 € I} is a linearly independent set.

R2) (a;,a;) >0foralliel.

R3) (ai,a)) € Z<° for all 4, j € I such that i # j.

R4) @ = Ujes Wau-

We let @ denote the set of positive roots; i.e., the roots in the nonnegative linear span
of the simple roots. One knows that & is the disjoint union of ®* and —&.

Welet A:={X eV :{(\a})€Z, alli € I} denote the lattice of (integral) weights.
This is slightly misleading terminology, since A is not a lattice in V, but rather a lattice
inV/Z, where Z={ €V :{\al)=0, alli € I}.! Those A € V such that (\,aV) >0
for all « € &1 (or equivalently, (A\,«)) > 0 for all ¢ € I) are said to be dominant. One
knows that every W-orbit in V has at most one dominant member. We let AT denote the
semigroup of dominant integral weights.

The (integral) Tits cone A, is defined to be the union of all W-orbits of dominant
integral weights, or equivalently,

Ac={xeA:{)aY) <0 for finitely many @ € &}

(
(
(
(

We have A = A, in the finite case, but not otherwise.

We now need to define a suitable ring R that contains the characters of all integrable
highest weight modules for the corresponding Kac-Moody algebra. In the finite case, one
may simply take R to be the group ring of A, but in general more care is required.

First, choose a height function ht:V — R; i.e., a linear map such that ht(c;) = 1 for
all i € I. Second, for each )\ € A, let e* dénote_.a. formal exponential subject to the rules
et . e’ = e** for all u,v € A. These given, we define ‘R to be the ring consisting of all
formal sums 33,4 cae* (ex € Z) satisfying the condition that for all € R, there are
only finitely many weights A such that ht(A) > h and ¢, # 0. A subtle complication is the
fact that the W-action e* — ¢“* on exponentials does not extend to the full ring R.2

Note that R includes the formal power series ring Ry = Z[[e™® : 4 € I]]. In particular,
if f € Ry has constant term 1, then e*f has a multiplicative inverse in R.

For each A € At with a finite W-stabilizer, we define

A(N) = Z sgn(w)e¥?,
weWw

where sgn(w) = det(w) denotes the sign character. It is not hard to show that A(A) is a
well-defined member of R, and more generally, the same holds if we extend the definition
to any A € A, with a finite W-stabilizer. Moreover,

Aw)) = sgn(w)AQR)  (w € W),

and A()\) # 0if and only if A has a trivial stabilizer. If X is dominant, then A()) # 0if and
only if ) is strongly dominant (i.e., (A, )} > 0 for all i € I). In that case, e=*A()) € Ry
has constant term 1 and A(\) is invertible in R.

1In general, we have to allow for the possibility that the simple roots span a proper subspace of V.

Indeed, it can happen that the bilinear form is degenerate on the span of the simple roots.
2For example, consider how s; should act on 3 530 e~kai,
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Since ( , ) is non-degenerate, we may select p € A so that {p,a;) = 1 for alli € I.
This given, for each A € AT we define

Z sgn(w)e® A e)—r
A()‘ + p) _ WEW

A(p) Z sgn(w)e¥?~*

weWw

x(A) =

It is easy to show that wp — p, and hence x(}), does not depend on the choice of p. By the
Kac-Weyl character formula [Ka], these are the characters of the irreducible integrable
highest weight modules for the corresponding Kac-Moody algebra.

2. Adimissible Systems
Fix a crystallographic root system @ with simple roots {e; : ¢ € I} and weight lattice A.

DEFINITION 2.1. An admissible system is a 4-tuple (X, u, 6, {F; : i € I}), where

e X is a set whose members are called objecis,
e 4 and 6 are maps X — A (i.e., assignments of integral weights to objects), and
e for each i € I, F; is a bijection between two subsets of X,

subject to axioms (A0Q)-{A4) below.
By abuse of notation, we identify the system with the set X.
Our first requirement is - -
(A0) For all h € R, there are only finitely many objects z such that ht(u(z)) > h.

In other words, the generating series Gx := ) _ . x e*(#) is a well-defined member of R.
In case ® is finite, it is reasonable to use the stronger hypothesis that X is finite.

For each z € X, we call u(x), é(x) and e(z) := p(x) — 6(z) the weight, depth and rise
of z. We also require '

(A1) 8(z) € —A*, e(z) = p(z) — 6(z) € A*.
It is convenient to introduce the notations u(z,i) = (u(z),ay), é(z,1) = (6(z), o)), and
e(z,1) = {e(z),a)) for all i € I. We call §(z,i) and &(z,7) the depth and rise of = in the
direction of «;. In these terms, we have

8(2,i) < min(0, u(z,4) (i € I),
e(z,%) 2 max(0, u(z,1)) (G €l),

and either one of these is equivalent to (A1).
Next, we require the domain and co-domain of F; to be the set of objects with nonzero
rise and depth in the direction of a;; i.e.,

(A2) F;is a bijection {z € X : e(z,%) >0} = {z € X : §(z,i) < 0}.
We further impose the conditions
(A3) p(Fi(z)) = u(@) — i, 8(Fi(z),i) = 6(z,4) — 1.
Hence also e(F;(z),i) = e(z,i) — 1. We let E; = F; ! denote the inverse map.
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It is easy to see that (A1)—(A3) imply
F¥(z) = E7*(z) is defined & 6(z,1) < k < &(z,4). (2.1)

The maps E; and F; act as raising and lowering operators that provide a partition of
the objects into ¢;-strings that are closed under the action of E; and F;. For example, the
a;-string through z is (by definition)

Ft(z), ..., Fi(z), z, Ei(z), ..., B %(z),

where § = &(z,i) and £ = &(z,i). The top member of the string, E; °(z) = F{(z) has a
depth of 0 and a rise of £ — § in the direction of o;; the bottom member Ff(z) has a rise
of 0 and a depth of § — €.

LEMMA 2.2. If X is a system satisfying (A0)—(A3), then

(a) Gx is W-invariant, and
(b) p(z) e A, forallz € X.

Proof. (a) We seek to prove that for all 4 € A and all ¢ € I, the coeflicients of e# and
e®# in Gx are the same. Given an object z € X of weight p = u(z), let § = 6(z,7) and
€ = e(z,1). Since § < 0 and € > 0, it follows that § < & + € < ¢, whence 2’ := F'(x)
is a valid object of weight u — (6 + €)a; = s;p (cf. (2.1)). Since there can be at most one
member of the a;-string through #' whose weight is s;u(z') (namely, z), it follows that
the map = — 'z’ is an involution. '

(b) Tt follows from (AQ) that {ht(u(z)) : £ € X} has a maximum. Assume toward a
contradiction that s(z) has maximum height among all z € X such that i(z) ¢ A.. Since
u(z) cannot be dominant, we have u(z,4) < 0 for some ¢ € I, hence the element z' € X
in the o;-string through = of weight s;u(z) constructed in (a) has greater height. The
maximality of ht(u(z)} then implies s;u(z) € A., a contradiction. O

In the following, it will be convenient to define
<y if z=FF(y) for some k > 0.

Any assignment of real numbers ¢(xz,7) € R for all pairs (z,?) with 6(z,7) < 0 is called a
timing pattern for X. QOur final requirement is

(A4) There exists a coherent timing pattern ¢( , ) for X; i.e.,

for all pairs (z,%) such that §(z,7) < 0 and Fi(z) is defined (i.e., e(z,4) > 0), we have

(i) t(z,i) < t(Fi(x),9),
and for all 7 # 4, all integers § < 0, and all ¢ < #(=z, ),

(ii) there is an object y »=; = such that 6(y,j) = ¢ and ¢(y,j) = ¢ if and only if there

is an object y' =; Fi(x) such that §(y',j) = & and t(y/',5) = ¢.

Note that if F?(z) also exists, then for all ¢ < ¢(Fi(z),%) we can apply (ii) with Fi(z)
replacing z. Bearing in mind (i), it follows that for ¢ < t(z,%), there is an object y >; =
such that 6(y,j) = d and t(y, j) = t if and only if there is an object y’ %; F2(z) such that
8(y',5) = 6 and t(y’, j) = t. By iteration, we obtain more generally
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LeMMA 2.3. For all distinct pairs 1,5 € I, all objects ' <; x such that é(z,i) < 0,
all integers § < 0, and all t < t(z,1), there is an object y »; = such that é(y,j) = § and
t(y,j) = t if and only if there is an object y' »; «' such that 6(y',j) = & and t(y',j) =t.

For some basic examples of admissible systems, see Sections 4 and 5.
THEOREM 2.4. If X is an admissible system and v € A™, then

x)-Gx= Y xv+nu()

z€X:v+d(z)EAT

In particular (taking v = 0),
Gx= Y, x{u).

§(z)eAt

It should be noted that v + p(z) = (v + §(z)) + (u(z) — &(z)), so (Al) implies that
each term v + p(z) appearing in the above expansion is dominant. Note also that §(z) is
dominant if and only if §(z,7) = 0 for all ¢ € I. In that case, we say that z is mazimal.

Proof. Since Gx is W-invariant by Lemma 2.2(a), we have

Alp+v)-Gx = Z sgn(w)e®(P+)+a(@)

weW,z€X .
= > sga()eHHeE) = N A(p+v+p(z).  (2.2)
weW,zeX zeX

The fact that the summands A(p + v + u(z)) are well-defined members of R follows from
Lemma 2.2(b). (In particular, 4 € A, implies that p + v + p has a finite W-stabilizer.)
" 'Now let k; = ki(v) = —{p+v,&) < 0. For all z € X, we define

J(@) = {i € I: 6(z,i) < ki}.

For each i € J(z), there is a unique object z; i=; = such that é(z;,7) = k;. Assuming that
J(z) is nonempty, we say that z is “bad” with respect to v.

By (A4), there is a coherent timing pattern ¢( , ) for X.

Given that z is bad, choose 7 € J(z) so that t(x;, ) is minimized. If there is more than
one minimizing choice, select 7 to be the first one relative to some fixed ordering of I.
Setting § = é(z,1), € = £(z,4) and I = £ + § — k;, we have § <1 < &, so it follows by (2.1)
that 2’ := F}(z) is a valid object. Moreover by (A3),

8z',i)=6—-1=k; —e <k,
so i € J(z'), z' is bad with respect to », and
p(z') = p(x) —los = p(z) — (u(2), o Yo + ki,
whence z' is the unique member of the a;-string through z such that
si(p+v+u(z)) =p+v+uz). (2.3)
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We claim that the map z +— z' is an involution on the set of all members of X that
are bad with respect to v. To see this, for each j € J(z') let z’ denote the unique object
such that :1:; ¥; @' and &(z},j) = k;. Since z and z' are on the same o;-string, we have
x; = z;. Choose j € J(z') so as to minimize ¢(z7, j), and if there is more than one choice,
select 7 to be first in the ordering of I. We have t(z}, j) < t(z},1) = t(z;,1) and 2’ %; 2 or
z <%; ', so if we assume j # i, then Lemma 2.3 implies that there is an object y »=; z such
that 6(y, j) = k; and t(y, j) = t(z},j). Hence, j € J(z) and y is the unique object on the
aj-string through z such that é(y, j) = k; (i.e., y = z;), so t(z;, j) < t(z;, 1), contradicting
our choice of 4. Therefore ; = 7 and the object z” such that =’ — 2’ is (by (2.3)) the
unique member of the a;-string through z' (or z) such that

si(p +v +p(e')) = p+ v+ p(z").

Thus z = =" and the claim follows.

Since (2.3) implies A(p + v + p(z)) = —A(p + v + u(z')), the net contribution of bad
objects to (2.2) is zero. The remaining “good” objects are characterized by the property
that (p + »,a)) + &(x,%) > 0 for all ¢ € I, or equivalently, » + §(z) € A+, whence

Alp+v)-Gx= Y,  Alp+v+p@).
zeX:w+d(z)EAT

Now divide by A(p). O

Given J C I, let ®; denote the root subsystem of & with simple roots {e; : j € J}.
We let Wy C W, Ay D A, and Ry denote the corresponding Weyl group, weight lattice,
and character ring. Provided that we use the height function inherited from @ (in which
case Ry D R), it is easy to see that any admissible system X can also be viewed as an
admissible system relative to ®; using only the operators E; and F; for j € J.

An immediate consequence of the second part of Theorem 2.4 is the following “branching
rule” for decomposing Gx as a sum of Weyl characters relative to ®;.

COROLLARY 2.5. If X is an admissible system and J C I, then

Gx= 3 x(u);J),

s(z)eAt

where x(\; J) € Ry denotes the Weyl character (relative to ®;) corresponding to A € AY.
Note that §(z) € AT if and only if 6(z,j) =0 for all j € J.



3. The Product Construction
Let X and Y be admissible systems. In the following, we will construct an admissible
system XY whose set of objects is the Cartesian product of X and Y. For brevity, we will
represent the objects of XY as concatenations zy with z € X,y €Y.
The weight, depth® and rise of the object zy are as follows:

plzy) = p(=z) + puly),
6(zy, 1) = min(6(z, 1), p(z, 1) + 8(y,4)) = é(z,1) + min(0, &(z, ) + 6(y, 1)),
e(zy,1) = max(e(y, i), e(, ) + p(y, 1)) = e(y, 1) + max(0,&(z, 1) + 6(y, 4))-
Since §(z,%) < 0 and §(y, 1) < p(y, 1), it follows that 6(zy,:) < min(0, u(zy,1)) and hence

(A1) holds. It is also clear that Gxy = GxGy, so (A0) is immediate.
The raising and lowering operators E; and F; are defined by

_ [ F(z)y ife(z,i) +4(y,4) >0,

Rt ={ Sy i ez, 4) + 6(3,) < 0,
E( ) _ { E.,(-’E)y le(JJ,'L) + 5(y,z) 2 0,
WY = eEi(y)  if e(z,i) + 6y, 1) <O0.

We claim that these maps are well-defined inverse pairs satisfying (A2)—(A3). Indeed,
congider an object zy with £(zy,7) > 0. If (z,i) + 6(y,%) > 0, then &(z,%) > 0, whence
- Fy(z) is defined, Fi(zy) = F;(z)y, and F; decreases both the depth and rise in the direction
of o; by 1. Furthermore, we now have e(Fi(z),?) + §(y,%) = 0, whence E;(Fi(z)y) = zy.
.Otherwise, if &(z,4) + 6(y,i) < 0, then e(y,i) = (xy,i) > 0, whence F;(y) is defined,
.. ‘Fi(zy) = oF;(y), and again F; decreages both the depth and rise in the direction of ¢;
-by 1. Furthermore, we have e(z,?) + 6(F;(y),%) < 0, and hence E;{(zF;(y)) = zy. Also, in
- both cases it is clear that u(F;(zy)) = u(zy) — ;. Conversely;.a similar argument shows
-that E; is well-defined and inverted by F; whenever §(zy,%) < 0, so the claim follows.

LEMMA 3.1. Letz,2' € X, y,y €Y, and j€ I.
(a) If 'y’ = 2y, then 2’ »=; xz and y' »=; y.
b) Ifz' »=; z, then there exists y” € Y such that z'y" i=; zy and e(z’, 5)+6(y",j) 2 0.
j j
(c) Ife(z',5) +6(y',4) <0, then z'y’ »=; zy if and only if &’ =z and ' =, y.

Proof. The action of F; on zy decreases £(z,j) + é(y,j) by 1. Furthermore, whenever
e(z,7) + 8(y, j) is positive, F;(zy) is defined and acts on z; similarly, e(z, 7) + 6(y,7) <0
implies that E;(zy) is defined and acts on y. It follows that every o;-string in XY has a
unique object zy for which e(z, j) + 8(y, ) = 0, and the string itself takes the form

E;(2)y =5 -+ 75 Bi(2)y %5 2y #; aF(y) %5 -~ 7 <F5 (y), 3.1)
where § = §(z, j) and € = £(y, 7).
All three assertions are easy consequences of this observation. [

3Strictly speaking, we have not defined §(xy) here, but rather d(zy,:) for all i € I. However the
properties of admissible systems depend only on the latter, so it is a moot point.
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ProrosiTioN 3.2. If X and Y are admissible systems, then XY is also admissible.

Proof. All that remains is to verify (A4); i.e., the existence of a coherent timing pattern.
By applying order-preserving injections R — R<? and R —+ R>?, we may select coherent
timing patterns for X and Y so that t(z,7) < 0 and ¢(y,7) >0forallz € X,y €Y,ie ]
where these times are defined (i.e., 6(z,%) < 0 and d(y,%) < 0). These given, we define

. t(z,1) ife(z,i)+5(y,1) 20,
fevi) ={ 4o s
t(y,i) ife(z, i) +d(y,i) <0
whenever 6(zy,?) < 0 and claim that this is a coherent timing pattern for XY.

From (3.1), one can see that the values of ¢(-,%) along a given a;-string in XY consist
of the negative, nondecreasing values of #(-,7) along the upper portion of an a;-string
in X, followed by the positive, nondecreasing values of (-, %) along the bottom portion of
an a;-string in Y. This confirms part (i) of (A4).

For part (ii), choose a distinct pair %,j € I, let zy be an object such that §(zy,i) < 0
and £(zy,i) > 0, and consider an object z'y’ »; zy such that § = §(z'y’,5) < 0 and
t = t(z'y’, j) < t(zy,7). We need to establish the existence of an object z"y"” »; F;(zy)
such that 8(z"y”,7) = & and t(z"y",j) =t.

Case 1: g(z,i) + 6(y,i) > 0 (i.e., Fi(zy) = Fi(z)y). We have t(zy,i) = t(z,i) < 0,
so t < 0, whence t = t(z',5), e(z',j) + 6(¢',j) = 0, and § = é(z',5). Since t(,) is
coherent on X and z' =; z (Lemma 3.1(a)), there must be an object z” 3; Fi(z) with
t(z",j) = t(z',7) = t and 8(z", 5) = é(=',j) = 4. By Lemma 3.1(b), it follows that there
is an object y"” € Y such that z'y"” »; Fi(z)y and e(z”,j) + 6(y",7) > 0, so we have
o(z"y",j) = 6(=",j) = 6 and t(z"y",j) = t(z",5) = ¢.

Case 2: €(z,i) + 6(y,1) < 0 (i.e., Fi(zy) = zFj(y)) and ¢ < 0. The latter of these forces
t =t(z', ), whence g(z',j) + 6(3',5) =2 0 and é = d(z’, ). Applying Lemma 3.1(b), there
is an object y” € Y such that z'y” =; £F;(y) and (', 7) + 6(y”,7) > 0, and the latter
implies 6(z'y”, ) = 8(z!, j) = § and ¢(z'y", j) = t(z',5) = t.

Case 3: £(z,1) + 6(y,%) < 0 (i.e., Fi(zy) = zF;(y)) and t > 0. Here, t(zy,t) > ¢t > 0,
which forces t(zy,:) = t(y,i) and t = t(z'y’,j) = t(¥',j), whence e(z’,j) + 8(v’,5) < O,
8(y',7) < 0 (since e(2',7) > 0), and &§ = p(2’,7) + 4(y', 7). By Lemma 3.1(c), we must
have ' = z and ¥’ »>; y, and since (,) is coherent on Y, there is an object y” =; Fi(y)
such that t(y"”,7) = t(¥',4) =t and &(y",7) = 6(¥', j). Applying Lemma 3.1(c) again, we
obtain zy" >; zF;(y), t(zy”,j) = t(y",5) = ¢, and é(zy", ) = pu(z,5) + 6(y",5) = 4.

Almost identical reasoning applies if we start with an object z"’y" »=; Fi(zy) such that
d(="y",§) < 0 and ¢(z"y", 5) < t{xy, 1), so this confirms part (ii) of (A4). O

REMARK 3.3. In an [-fold product X - -+ Xj, iteration of the above construction yields
objects that are I-tuples z; ---z; (z; € X;), with

plor o) = plz) + -+ pla),

6(zy -+ x1,1) = 1131}21“(z1’i) + -+ pl@io1,9) + 6(zj,1), (3:2)
e(@y @y, i) = max e(zx, 1) + p(Trt1,9) + - + pler,9). (33)
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Furthermore, the raising and lowering operators are given by

Ei(x]_"-:l:l) :;1;1...15"’.'(11’-],)'__ml7
I?i(ml--.zl) =$1...F:l:(zk)...wl,

where j and &k denote the smallest and largest indices for which the minimum and maximum
are achieved in (3.2) and (3.3), respectively.

4. Thin Systems

The simplest admissible systems are those that admit a coherent timing pattern that is
constant. We say that such systems are thin. For example, it can happen that all strings
of objects have length at most one, so conditions (i) and (ii) of (A4) hold vacuously; in
this case every timing pattern is coherent.

In general, if a constant timing pattern is to be coherent, then condition (ii) implies that
for all distinct 4,5 € I, all § < 0, and all objects = such that §(z,7) < 0 and e(z,?) > 0,
there is an object y ¥, = such that §(y,7) = J if and only if there is an object y' =; Fi(x)
such that §(y',j) = 6. Conversely, it is easily seen that this forces any constant timing
pattern to be coherent. To simplify even further, observe that the existence of an object
y »=; z such that é(y,j) = J is equivalent to the.condition § > 4(z,j). This yields the
following characterization of thinness. -

'PROPOSITION 4.1. A 4-tuple (X,u,6,{F; : i € I}) satisfying (A0)-(A3) is a thin
admissible system if and only if 0(Fi(z),j) = &(x,j) for all z € X and distinct 4,5 € I
such that é(z,%) < 0 and &(z,1) > 0. '

- REMARK 4.2. If X = X; --- X is a product of thin admissible systems, it follows from
Remark 3.3 and the proof of Proposition 3.2 that a coherent timing pattern for X can
be devised by setting t(z1---x1,4) = j when E; acts on z1-:-2;"at ;. Equivalently, if
O(zy -+ z,i) <0 and j is the least index for which

8(wy - - 20,8) = p(@1,1) + -+ + p(-1,9) + 6(25,1),
then one may set t(z; ---z,4) = 7 (cf. (3.2)).

A. Trivial systems.

A weight 6 € A is said to be trivial if (§,a)) = 0 for all ¢ € I. Since V need not be
spanned by the simple roots, there may be nonzero trivial weights. It is easy to see that
one may construct a (thin) admissible system consisting of a single object with a trivial
weight. Moreover, if X is any admissible system, one can create a new admissible system
by adding a fixed trivial weight 8 to the weight of each z € X; this can be seen as a special
case of the product construction.

B. Minuscule systems.

A weight p € A is said to be minuscule if (u,a") € {0, %1} for all @ € ®. This includes
the possibility that p is trivial. Since W permutes ®, every element in the W-orbit of a
minuscule weight is also minuscule.

11



For any minuscule A € AT, it is easy to construct a thin admissible system X (\) whose
object set is the W-orbit of A. Naturally, the weight of the object u is p itself, and if we
define the depth and rise of u so that

-1 if {u, OL,L) =-1,
0 otherwise,
1 if (p,a)) =1,

0 otherwise,

8(u, ) = min(0, (1, })) = {
e(u, 1) = max(0, (4, o)) = {

then it is easy to see that (A1) holds. In particular, {u,a)) = 8(u,1) + e(p,:) for i € I.
For the raising and lowering operators, we define

Fi(p)=sip=p—oa; if (/-":a'}/) =1 (ie.,e(p,i) >0),
Ez(p') =sip=p+oa; if (“7 agl) =-1 (i'e'1 6(.“’; 7’) < 0)

It is clear that these maps are inverse pairs satisfying (A2)-(A3). Since there are no
objects i in X (A) that satisfy 6(p,7) < 0 and €(p, i) > 0, we are in precisely the situation
mentioned at the beginning of this section: every timing pattern is coherent. In particular,
X()) is a thin admissible system; we call these minuscule systems.

Dominant minuscule weights are fairly rare and have a well-known classification (e.g.,
see Exercise VI.4.15 of [B]). In particular, no (irreducible) infinite root system has a
nontrivial minuscule weight (this follows from Lemma 4.5 below), and in the finite case,
there is.one dominant minuscule weight in each coset of A modulo Z® (see Lemma 7.3).

C. Quasi-minuscule systems. :

We say that a weight u € A-is quasi-minuscule if {(u,a”) € {0,+1,+2} for all a € P,
and there is a unique o € ® such that (u, ) = 2. Note that every element in the W-orbit
of a quasi-minuscule weight is also quasi-minuscule. ‘

For simplicity, assume now that & is irreducible. In that case, we should also assume
that & is finite; otherwise, there are no dominant quasi-minuscule weights (Lemma 4.5).
Under these circumstances, it is well-known that ¢ must have either one or two orbits of
roots. In the two-orbit case, the roots in each orbit have different lengths (“long” and
“short”); in the one-orbit case, we can agree that all roots are short by convention. In
either case, we let ®, denote the set of short roots, and let I, = {i € I : @; € $,} denote
the indices of the short simple roots.

A fundamental property of every short root 8 is that (3,aV) < 2 for all @ € &, and
equality occurs if and only if 3 = a. (This can be proved by examining the rank two root
systems; e.g., see [B,§VI.1.3].) In other words, short roots are quasi-minuscule. In fact,
the short dominant root, denoted &, is the unique dominant quasi-minuscule weight, aside
from trivial translations (see Lemma 4.6 below).

One may construct a thin admissible system X (&) whose object set is ®,U{0; : 7 € I, },
where 0; denotes an object of weight 0, and each root 8 € ®; is defined to have weight 5.
The depth and rise are defined by setting

5(ﬁ7.7) e min(oa <ﬂ’ a;'/»’ 6(017.7) = _Jij’
6(137.7) = ma.x(O, (:31 a;'/))1 E(O'Ihj) = Jij
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forall B € ®,, 4 € I,, and j € I. Thus (8, ;) = 6(8,5)+¢(B,5) and (0;, 5) +¢(0;, 5) = 0,
so (Al) holds. Note that 6(8,7) > —2 for all j € I, with equality if and only if 8 = —a;
and j € I,. Similarly, e(8, j) < 2, with equality if and only if 8 = «; and j € I,.

For the raising and lowering operators, we define

Fi(os) = 0i, F3(0;) = —ou, Fj(8) =s;8=0—0aj (if (B,a]) =1),
E,;(—Oti) =0y, E,'(Oi) = oy, EJ(,B) = Sjﬁ =0+ Qj (if (,B,a;-l> = —1)

for 8 € ®,, 4 € I,, and j € I. As in the minuscule case, it is easy to check that
these are inverse pairs satisfying (A2)—(A3). However, here there do exist objects z such
that 6(z,7) < 0 and £(z,7) > 0; namely, the objects 0; (¢ € I;). For these, we have
8(0;,7) = 6(—ai,7) = 0 for § # i, so X (&) is a thin admissible system by Proposition 4.1.

Even if @ is not irreducible, the same construction can be used if & is the short dominant
root of some (finite) irreducible component of ®. Even more generally, if A = 6 + a for
some trivial @ € A, we define X ()) to be the (thin) system obtained by shifting the weights
of X (&) by 6; thus X () = X(6)X (a). We call these quasi-minuscule systems.

D. Classification.

An explicit classification of all thin admissible systems would be unreasonably compli-
cated, given the possibility of tangled systems (see Section 6). Nevertheless, the follow-
ing result shows that the only “interesting” thin systems are the minuscule and quasi-
minuscule systems (see also Remark 6.7(c)).

THEOREM 4.3. Assume that ® is irreducible of rank > 1. If X is a thin admissible
system, then the weight of every object is minusciile or quasi-minuscule. In particular,
Gx is a sum of Weyl characters x(\) such that A € At is minuscule or quasi-minuscule.
Furthermore, nontrivial weights can occur only if ® is finite.

Our proof will require a series of lemmas. .

LEMMA 4.4. If X is an admissible system with an object = such that é(z,i) < —2 and
8(z,j) € —1 for some pair 1, j € I satisfying {(a;,a;) < 0, then X cannot be thin.

Proof. Assume toward a contradiction that X is thin. If (x,5) > 0, we can replace
z with Fj(z); indeed, Proposition 4.1 implies that §(F;(x),?) = 6(z,7) < —2. Thus by
iteration, we may assume that £(z,j) = 0. Now consider the object y = E;(x). We have
d(y,%) < 0 and £(y,%) > 0, so Proposition 4.1 implies &(z, j) = 6(y,j). However, u(y) =
p(x) + i, so we have e(y, j) = e(z, 7) + (@;, &f) = (e, @) ) <0, contradicting (A1). O

LEMMA 4.5. If ® is infinite and irreducible, then for all nontrivial A € A, the set
{(\,BY): B € &t} is unbounded.

Proof. We may write A = 3, /() & )w; for suitable w; € A such that (w;,a)) = 6;;.
Since A is dominant and nontrivial, the coefficients (), oY) are nonnegative, and at least
one is positive. It thus suffices to show that {(w;,8Y) : B € ®*} is unbounded for all ; € I.

For each § € @+, we have 87 = 3, ;(w;, 8Y)c; . Bearing in mind that (a;, ;) < 0 for
all 7 # 1, it follows that for any particular such 7,

(04, 8Y) < 2wi, BY) + (o, o Yw;, BY). (4.1)
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Now let J C I denote the set of indices j € I such that {{w;,8”): 3 € '} is unbounded.
Clearly J is nonempty, since Y, {w;, 8Y) is the height of 8" (as a co-root), and there
can be at most finitely many positive co-roots of bounded height. If J # I, then by the
irreducibility of ®, there must be a pair j € J, ¢ € I — J such that (a;, ;) < 0. In that
case, {w;,3") is bounded above, whereas (w;,3") is not, so (4.1) implies that (o, B8Y)
cannot be bounded below. However, {w;, s;8Y) = {(w;,8") — {4, 8"), so this contradicts
the fact that (w;,8”) is bounded. O

LEMMA 4.6. Assume that ® is finite and irreducible. If A € A is quasi-minuscule and o
is the unique root for which {\,aV) = 2, then A — « is trivial. Moreover, if X is dominant,
then A — & Is trivial.

Proof. We may assume that A is dominant. In that case, we must have a = @&, since
@V is the highest co-root. Now if A — & fails to be dominant, say (A — &, a)’) < 0, then
0 < (oY) < {(@,¢). We cannot have @ = o;; otherwise (A, o) = (&, ) = 2. Thus
since & is quasi-minuscule, we must have (&,c)) = 1 and {(\,a)) = 0. In that case,
B = s;a@ is a root distinct from & such that (), 87) = (A, &) = 2, a contradiction.

Hence A — & is dominant, and if it is also nontrivial, we must have (A — &, ) > 0 for
some ¢ € I. Moreover, since & is a dominant root, the coefficient of ¢ in @ must be

positive, so we obtain (A — &,a") > 0, whence (A, &) > 2, a contradiction. O

LEMMA 4.7. Assume that ® is finite, irreducible, and of rank > 1. If A € AT is neither
minuscule nor quasi-minuscule, then there is a weight u € W that is neither minuscule
nor quasi-minuscule relative to some irreducible subsystem ® ; of rank 2.

Proof. Proceeding by induction, we assume that the rank is > 2. Since &V is the highest
co-root and ) is not minuscule, we must have (), &V} > 2. Every orbit of roots includes a
simple root, so one may select w € W so that wa = a; for some ¢ € I. Taking u = w),
we have (u, ;) > 2, so u is not minuscule relative to ®; for all J C I such that i € J.

A spanning tree with at least two vertices has at least two end nodes, so there must be
at least one j € I — {i} such that the subsystem indexed by J = I —{j} is irreducible. If 4
is not quasi-minuscule with respect to ® 7, we continue the induction. Otherwise, o; must
necessarily be the unique root in ®; such that (u,c)) = 2, and p — o; must be trivial
relative to &; (Lemma 4.6); i.e., (4 — a;,@)) = 0 for all k # j. On the other hand, u is
not quasi-minuscule relative to @, so we must have (u — o;, ) # 0.

We may therefore assume that ¢ and j are the unique indices whose deletion leaves an
irreducible diagram; if j' were a third (or second, if 7 failed to have this property), then p
could not be quasi-minuscule relative to the subsystem indexed by I — {j'}, so again we
could continue the induction.

It follows in particular that 7 and j are non-adjacent (i.e., {(a;, @;) = 0); a spanning tree
with only two end nodes must be a path, and (since ® has rank > 2) the end nodes of the
path are non-adjacent. Hence {(u,ay) # 0. Setting p' = s;u, we claim that u' cannot be
quasi-minuscule relative to ®;. We have s;jo; = a; and (¢, o)) > 2, so if ' were quasi-
minuscule, then y' — @;, and hence also p’ — p, would be trivial relative to ®;. However,
u' — p is a nonzero multiple of o; and @ is irreducible, so this is a contradiction. O
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Proof of Theorem 4.8. Let X be the weight of some object in X. Since A € A, and the
weights are W-stable (Lemma 2.2), we may assume that ) is dominant.

Case 1: ® is infinite. If X is nontrivial, then there exists 8 € & so that (},8") > p+2,
where —p < 0 denotes the smallest entry in the Cartan matrix [{;, o)] (Lemma 4.5).
Now select w € W so that —wg is simple, say w8 = —a;. Since ® is irreducible, we can
also find j € I so that {(a;, ;) < 0.

There must be an object z € X with u(z) = wA, whence 6(z, 1) € u(z,7) < —2—p< —2.
If u(z,j) <0, then §(z, ) < p(z,7) < 0 and we contradict Lemma 4.4, so it must be the
case that p(z,7) > 0. If p(z,j) = 0, then consider the object y = E;(z). We have
8(y,i) < -1 —-p < =2 and p(y,5) = p(z,j) + (o, af) < 0, so y is an object whose
existence contradicts Lemma 4.4. The remaining possibility is that pu(z,j) > 0. In that
case, £(z,j) > 0, so there is an object 2 = Fj;(z). This object has é(z,j) < 0 and
(2, 1) = p(x,4) — (o, 0 ) < p(z,i) +p < —2, s0 again we contradict Lemma 4.4.

Case 2: ® is finite. Assume toward a contradiction that X\ is neither minuscule nor
quasi-minuscule. In that case, Lemma 4.7 shows that we may assume & has rank 2.

Since X is not minuscule, there is a root 8 such that (X, 8Y) > 2, so there is an object z
whose weight is not quasi-minuscule and satisfies 5(z,%) < —2 for some ¢ € I. The lowest
object z’ on the a;-string through z is either z, or satisfies p(z',1) = d(z',47) < =3, in
which case p(z') is also not quasi-minuscule. Replacing z with z’, we may thus assume
g(x,i) = 0. We may further require that z has minimal height among all the objects at
the bottom of some string of length > 2 whose weight is in the same (finite) W-orbit.

Since & has rank 2, there is only one other simple root, say «;, and since @ is irreducible,
. we have (a;,a;) < 0. Since X is thin, it must be the case that é(z, j) = 0; otherwise, we
contradict Lemma 4.4. We also claim that £(z,5) < 1. Indeed, if £(z,5) > 2, then the
lowest object =’ on the o -string through =z satisfies d(z’,7) < —2 and p(2’',j) = s;u(z),
contradicting our choice of z. Now since d(E;(z),j) = d(z,j) = 0 (Proposition 4.1), it
follows that 0 < e(E;i(z),j) = e(z,j) + (a;; ;). But we have €(z,j) < 1, so this leaves
only the possibility that e(z,j) = 1 and (o;, @) = —1.

Finally, we claim that §(z,i) = —2. If not, we have &(z,i) < —3 and §(E?(z),5) =0
(Proposition 4.1), so 0 < e(E?(z), §) = e(z,5) + 2{, @) ) < 0, a contradiction.

To summarize, we have shown that £(z,9) = é(z, ) = 0, 6(z,%) = -2, e(z,7) = 1, and
(@;y0Y) = —1. Hence, u(z,i) = -2, u(2,9) = 1, and p(Ei(z),i) = p(Ei(z),4) = 0. Tn
other words, u(E;(z)) = p(z)+ «; is a trivial weight. However, (o;, a;) = —1 implies that
o; is short, so —a; {and hence p(z)) is quasi-minuscule, a contradiction. O

5. Semistandard Tableaux

Consider the root system ® = A,_1 = {e; —¢; : 1 < ¢ # j < n}, where &1,...,6,
denote an orthonormal basis of V = R". As a set of simple roots, we take a; = ¢; — €541
fori=1,...,n — 1. The Weyl group acts as the group of permutations of €1,...,e,.

It is not hard to see that wy := €1 + - + ¢ (0 € & € n) is a dominant minuscule
weight, although wy = 0 and wy, are trivial. The W-orbit of wy can be naturally identified
with the k-element subsets of [n] := {1,...,n}, so the construction of Section 4B yields a
thin admissible system X whose objects are the k-subsets of [n].
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The product of I copies of X = Xp U -+ U X, is (by Proposition 3.2) an admissible
system whose objects consist of all {-tuples of subsets of [n]. Furthermore, the weight,
depth, and rise of the [-tuple 7' = (77, ...,T}) are as follows (cf. Remark 3.3):

w(T) =N (T)er + -+ + Np(T)enp,

5(T,4) = min, Ni(Tgj) — Nita(T<5), (5.1)
e(T,1) = b o Ni(Ts;) — Nipa (Ts5), (5.2)

where Tgj = (T1,...,T}), 55 = (Tjt1,...,T1), and Ni(T) denotes the number of occur-
rences of ¢ among T, ...,T;. Thus (for example), the depth of T in the direction of o; can
be computed by scanning the subsets T} from left to right, finding the smallest cumulative
difference between the number of ¢’s and 7 + 1’s. The depth is 0 only if the number of i’s
accumulated is at least the number of 7 + 1’s at all stages of the scanning process.

As a particular instance of the product construction, the operator E; acts as follows.
Assuming §(7,i) < 0, locate the least index j such that §(T,i) = N;(T¢;) — Niy1(T<;).
Under these circumstances, T; must include i + 1 but not i. One then obtains T’ = E;(T)
by replacing ¢ + 1 with ¢ in T;. Consequently, j is now the greatest index for which
6(T",1) = NA(TLy) ~ Niga(TL,), or equivalently, £(T",i) = Ny(T;) ~ Niga (T3,), and F;
inverts E; by changing the ¢ in 7} back to ¢ + 1.

Now choose integers [ = A1 > --- 2 A, > 0, and consider the dominant (integral)
weight A = Ajgg + - + Anen. This weight is clearly in the nonnegative integral span of
the wy’s; indeed, the coefficient of wy in A is Ay — Agy1. Thus we may uniquely write

A:wk1.+"'+wk”

where L< b €<k <n.

Given an object T' = (T4,...,T1), one may treat each subset T; as a column whose
members are listed in increasing order from top to bottom, with the top and subsequent
entries of each column aligned in rows. If the j-th column has &; entries for 1 £ j < I, we
say that T forms a tableau of shape A\.* In addition, if the rows are non-increasing from
left to right, we say that the tableau is semistendard. For example, if [ = 5, n = 6, and
A = 5g; + 4ea + 3e3, then the array

3 2 2 11
4 3 3 2
6 4 3

represents a semistandard tableau T of shape A and weight 22, + 3g2 +4e3 +2¢4 +€6. The
reader can also check that §(7,7) = (-2,-1,0,0,-1)fori =1,...,5.

4The columns of these tableaux are listed in reverse order from the usual English tradition.
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PROPOSITION 5.1. The set of semistandard tableaux of shape A forms an admissible
subsystem Y (\) of X'. Furthermore, Y (\) has a unique maximal object, and the weight
of this object is A. Therefore, Gy () = x(A), and for all v = v161 + -+ + Vpen € AT,

Xx(\) =) Kaue* and x(Nx(¥) = D exuwx(i),

ueEA peAt

where K , denotes the number of semistandard tableaux of shape A and weight pu, and
Cx,u,» denotes the number of semistandard tableaux T of shape A and weight j» — v such
that v; + N-l(T/:J) 2 Vi1 + Nipa (T:._j) foralli<n and j <.

Proof. To show that semistandard tableaux (or any subset of X') form an admissible
system, it suffices to show that the operators E; and F; preserve semistandardness. Thus
consider a pair (T',7) such that T' is semistandard and §(7,i) < 0. As we noted above,
E; operates on T by changing a single ¢ + 1 to an ¢ in the leftmost column T; such
that 6(T,%) = Ny(Tgj) — Nit1(T<;). Since ¢ ¢ Tj, the only way E;(T) could fail to be
semistandard would be if the entry in the same row of T, were equal to ¢ + 1. However
in that case, there must also be an i directly above the i + 1 in T4, (or else we violate
the defining property of j), and hence there must be an entry > 7 directly above the  +1
in T}, a contradiction. Similar reasoning shows that F; preserves semistandardness.

If T is semistandard and maximal (i.e., 8(T,i) = 0 for all ), then the top entry in
the leftmost column must be a 1. By semistandardness, it follows that the top entry in
every column is a 1. Tterating this reasoning, the leftmost entry (and hence all entries) in
the second row must be a 2, and so on. Hence, there is a unique maximal semistandard
tableau of shape A, and it has weight A.

The remaining assertions are now immediate consequences of Theorem 2.4. O

6. Untangled Systems
: Let X be an admissible system. We say that Y C X is F-sdturated if for all i € I, we
" have Fi(y) € Y for all y € Y in the domain of F;. We define E-saturated subsets of X
similarly, and say that Y is saturated if it is both E- and F-saturated. It is easy to see
that Y is an admissible subsystem of X if and only if it is saturated.

An admissible system is irreducible if it is nonempty and contains no proper subsys-
tems. Intersections of saturated sets are saturated, so for every Y C X there is a smallest
saturated subset containing Y. Since the complement of a saturated subset is saturated,
it follows that every admissible system is a disjoint (countable®) union of irreducible sub-
systems. Furthermore, the decomposition is unique up to order.

Recall that z € X is said to be magzimal if 6(z,4) = 0 for all ¢ € I; i.e., 8(z) € AT,
Every nonempty admissible system has at least one maximal object; this follows from
the second part of Theorem 2.4, or one can argue that an object of maximum height is
maximal (cf. the proof of Lemma 2.2(b)).

An irreducible system need not have a unique mazimal object.

For example, let X be any (irreducible) admissible system, and let X’ denote an isomor-
phic copy of X, disjoint from X, with z — z' an isomorphism. It is clear that X U X' also

5The countability of an admissible system follows from (A0).
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forms an admissible system. However, one may create a new admissible system with object
set X U X' by redefining F;(z) := y’ and F;(z') := y for an arbitrary set of triples (z,y, )
satisfying y = F;(z). If X is sufficiently connected (e.g., there exists a pair z,y € X such
that there are two ways to write y = Fj,--- F},(z)), then this can be done in a way that
yields a system with only one irreducible component. At the same time, this system has
twice as many maximal objects as X.

We say that an admissible system X is untangled if every irreducible component of X
has a unique maximal object; otherwise, X is tangled. We say that X is strongly untangled
if it is untangled as an admissible system relative to ®; for all J C I.

PrOPOSITION 6.1. Minuscule and quasi-minuscule systems are strongly untangled.
Moreover, all irreducible components of such systems relative to ®; (for all J C I) are
minuscule or quasi-minuscule.

Proof. First consider a minuscule system X()) as in Section 4B. The objects (and
weights) are the members of the W-orbit of )\, and it is clear that each such weight is also
minuscule relative to ®;. Each Wj-orbit of weights has a unique member p € A}, and
this orbit forms a & ;-subsystem of X ()) that is isomorphic to the minuscule ® ;-system
of highest weight p.

Now consider a quasi-minuscule system X ()) as in Section 4C. There is no loss of
generality in assuming that @ is finite and irreducible, and that A = &, the short dominant
root. For ¢ € I, the object 0; is maximal relative to ®; if and ounly if ¢ ¢ J, in which case
the singleton {0;} is an irreducible (minuscule) component of X (&) relative to ®;. All
other objects are short roots 3; if 8 is maximal relative to ®7, then it is either minuscule
relative to ® 7, or it must be a short dominant root of ;. In the former case, the W;-orbit
of B-forms a minuscule subsystem of X (&) relative to @;; in the latter case, 3 generates
a quasi-minuscule subsystem. 0O

Give;n an admissible system X and a subset J C I, define a partial order < on X by
taking the transitive closure of the relations

z <5y if z= F;(y) for some i € J.

This extends the notation ‘<;’ introduced in Section 2. Note that the maximal objects of
X relative to ® 7 are the maximal elements of this partial order.
The following is a type of “diamond” criterion for strong disentanglement.

LEMMA 6.2. An admissible system X is strongly untangled if and only if for all distinct
pairsi,j € I and all z € X such that 6(z,1) < 0 and 6(z, j) < 0, there is an object y such
that E,(Z) -\<{i,j} y and E](it) #{i,j} Y.

Proof. If X is strongly untangled, then there is a unique maximal object in every
irreducible component of X relative to ®y; ;;. In particular, since E;(z) and E;(z) belong
to the same component, there is an object y satisfying the stated condition.

Conversely, given an admissible system X satisfying the stated condition, consider an
object yo € X that is maximal relative to some ®;, and let Y denote the Fj-saturated
(i.e., {F; : i € J}) subset of X generated by yo. It suffices to show that ¥ is E;-saturated,
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since it then follows that Y is an admissible ®;-subsystem of X, which by construction
has yo as the unique maximal object.

To show that Y is Ey-saturated, we proceed by induction with respect to height. Given
a pair z € Y, i € J such that d(z,7) < 0, it must be the case that z = F;(z') for some
z' € Y and j € J (by definition of Y). If ¢ = j, we immediately obtain E;(z) € Y.
Otherwise, ¢ # j and the stated hypothesis provides for the existence of an object y such
that E;(z) <{i;} y and 2’ <{; ;3 y. We must have y € Y, since by the induction hypothesis,
any object =y; ;3 =’ belongs to Y. It follows that E;(z) € Y, since Ei(z) S(;;; ¥y €Y
shows that E;(z) is in the F-saturated set generated by yo. O

QUESTION 6.3. Are products of (strongly) untangled systems (strongly) untangled?

The following special case is particularly useful, since it will lead to constructions of
admissible systems for all Weyl characters of all finite root systems.

THEOREM 6.4. Products of any number of minuscule and quasi-minuscule systems are
strongly untangled.

Proof. Let X = X; ---X; be a product of minuscule and quasi-minuscule systems. To
prove that X is strongly untangled, it suffices by Lemma 6.2 to show that X is untangled
relative to ®; for all doubletons J C. I. However by Proposition 6.1, the irreducible
components of each X; relative to ®; are still minuscule or quasi-minuscule. Since products
distribute naturally with respect to disjoint union, X is therefore a disjoint union of
__products of minuscule and quasi-minuscule systems relative to ®;. In other words, we
may assume that ® has rank 2; say I = {1,2}. We may also assume that & is finite, since
otherwise X would be a product of singletons (cf. Theorem 4.3).

Thus there are four cases: & = A; x A;, A2, B2, or Ga..

LEMMA 6.5. Assume (a1, az) =0 (i.e., ® = A; x A1)
(a) For all z € X such that §(z,1) < 0, we have §(E(z),2) = d(x,2).
(b) If§(z,1) < 0 and §(z,2) < 0, then Ey Es(z) = EoEy(z).

Proof. A quasi-minuscule system for & = A; x A; consists of an a;-string or a;-string of
length 2; a (nontrivial) minuscule system consists of an a;-string or as-string of length 1,
or a product of both. Thus we may assume that each factor X; is a single string.

Now consider an object £ = z1---2; € X such that §(z,1) < 0, and recall that the
action of E; is such that Ey(z) = z1--- E1(z;) - - - o; for some ¢ (see Remark 3.3). Since
X; must be an a;-string, z; — Ei(z;) has no effect on §(z;,2). Furthermore, since
{01, a2) = 0, this replacement also has no effect on p(z;,2), and hence no effect on 6(z, 2)
(see (3.2)), proving (a).

It follows that if 6(x,2) < 0 and E» acts on position j of z, then it must also act on
position j of E;(z) (again, see Remark 3.3). We must also have j # i, since E» does not
act on any object of X;. By the symmetry of the roles of @; and a3, we conclude that the
actions of F, and F, commute. 0O
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LEMMA 6.6. Assume {a;,ay) = (ag,ay) = —1 (ie, @ = A;).
(a) For all z € X such that é(z,1) < 0, we have §(E1(z),2) — é(z,2) € {0,-1}.
(b) If6(z,1) <0 and §(z,2) < 0, then exactly one of the following holds:
(i} 8(Ei(z),2) = 6(z,2) and EyEy(z) = ExEr (),
(ii) 8(E2(z),1) = 8(z,1) and E1Ex(z) = ExEq(z), or
(and both expressions are defined).

Proof. In the notation of Section 5, the root system & = A3 has two nontrivial dominant
minuscule weights (up to trivial shifts): €; and €, + £2. Furthermore, it is easy to check
that X (g1 + e2) occurs as a subsystem of X (g1)X(e1), and the quasi-minuscule system
X (2¢; + £3) occurs as a subsystem of X (e1)X (e1 + €2). Thus we may reduce to the case
where each factor X; is isomorphic to X (g); i.e., X = X (e1)'.

As in Section 5, we can identify X(g;) with a system of three objects 1,2, 3, with
corresponding weights £1,€2,e3 and the string structure 1 >; 2 >3 3. In this way, the
objects of X are words of length [ over the alphabet {1,2,3}, and the depth and rise are
given as very special cases of (5.1) and (5.2).

Given a word £ = x; ---x; € X such that d(z,1) < 0 and E; acts on z at z;, it must
be the case that z; = 2 and Fy(z;) = 1. This action of E; has the effect of decreasing
Na(z<j) — N3(zg;) by 1 for j > i and no effect for j < i. Since d(z,2) is the minimum
value of this expression over all j, this yields (a).

Now assume d(z,2) < 0 as well, and consider the case in which §(E;(z),2) = §(z,2).
By the previous analysis, F» must act on z at a position j < 4. Since E; preserves zgj,
it follows that E, acts at position j in both z and E;(z). Meanwhile, in Ey(z) there is
an additional 2 prior to position i, the first position of = that achieves the minimum value
for N1{z<:i) — Na(zg;). Hence, this minimum decreases by 1 (and §(Ez(z),1) < é(z, 1)),
but the position where this minimum first occurs (namely, 7} does not. That is, E; acts
at position ¢ in both z and Es(z), so the actions of E; and E; on z commute.

By interchanging o; and oy, we reach a similar conclusion if §(Ez(z),1) = §(z,1), so
the only remaining possibility is that §(E;(z),2) — §(z,2) = 6(Ex(z),1) — 6(z,1) = —1.
Assuming that E; and E»> act on z at a pair of respective positions ¢ and j with j < ¢,
it must be the case (in order for the action of F; to decrease §(z,2)) that there is a first
position j' > i where N3(zgjr) — Na(zg;) = 6(x,2), and E; acts at position 5’ on Ej(z).
In E,E;(z), the positions € j are unchanged and 6(E; Er(z),2) = 6(z,2), so E; acts on
E,E1(z) at position j. We thus have

$=---3~--2---3---,
E2Ey(z) =2+ 12+,

with the changed positions being 7,1, ' (in order). Since the number of 1’s and 2’s in the
first i — 1 positions of EZE; () is the same as in z;, we have §(E3 E; (z),1) = é(z,1) <0,
and E; acts on E2E;(z) at some position i’ such that j < ' <.

On the other hand, E» acts on z at position 7, decreasing 6(z, 1) by 1, but the position
where E; acts on E3(x) remains i. The first j' — 1 positions of Ey Ez(z) and EZE;(z) are
now identical, so E; acts on E; E5(z) at position i'. Comparing the cumulative number
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of 2’s and 3’s among the first j’ positions of EZ?E,(z) and z, the only difference is that
E2F5(z) has one less 3 (starting at j), one more 2 (from j to i’ —1), and one less 2 (starting
at 7). It follows that 6(E2Ex(z),2) = 6(z,2) < 0, E5 acts on E2E(z) at position j', and
thus ElEgEl (.’L‘) = EzEjz_Ez(.'lI)

This proves the conclusion of (iii) under the added condition that j < i; i.e., E; acts to
the left of 4 on z. However, the hypotheses of the lemma are invariant under switching 1
and 2, so the conclusion must also be valid when E» acts to the right of ;. O

Lemmas 6.5(b) and 6.6(b) establish the existence of a “diamond” fitting the conditions
of Lemma 6.2, and thus prove Theorem 6.4 for all simply-laced root systems (i.e., root
systems whose rank two subsystems are all of type A; x A; or Az).

The case ® = Ba. One way to realize By is through an automorphism of A;. Letting
{a},ah, b} denote the simple roots of Ag, there is a linear automorphism o that fixes of
and interchanges o and «4. In this way, the short roots of B; can be identified with the
roots of A3 fixed by o, and the long roots can be identified with the sums a + o(a) for
a € Aj; such that o(a) # a. In particular, the simple roots of By can be chosen so that
o1 = of and az = af + af. Using the coordinates from Section 5, we have a; = €3 — €3,
09 = &1 — E9 + £3 — €4, and o acts by interchanging £, with —e4 and £, with —ej3.

The nontrivial Bs-weight w = (1/2)(e1 + €2 — £3 — £4) is dominant minuscule, and is
the unique such weight up to trivial shifts. The corresponding minuscule system X (w)

.consists of four objects with the string structure 1 >; 2 >3 3 >, 4, and their weights are
" the four weights fixed by ¢ that can be obtained from w by permuting &;,...,64. From

. this it is easy to check that the quasi-minuscule system X (&) is a subsystem of X (w)?, so

we may reduce to the case where each factor X; is isomorphic to X (w); i.e., X = X(w)".

The weight w is also dominant minuscule relative to Az, and one can view X (w) as
the o-invariant part of the minuscule As3-system X’(w) in the following way. Since w is
fixed by o, the Az-orbit of w is o-stable, so there is an induced automorphism o of X'(w).
This automorphism fixes four of the six objects, and the weights of the fixed objects are
the weights in X (w). Letting E;, Fj (¢ = 1,2, 3) denote the raising and lowering operators
of X'(w), one finds that the four fixed objects are z, Fi(z), F] F3 F3(z) = F3F|{F}(z), and
FyF|F}F;(z) = F3yF}F]{F;(z), where z denotes the maximal object of X’(w). Identifying
these cbjects with those of X (w), we have F; = Fj and F> = F{Fj = F3F].

The automorphism ¢ extends naturally to the I-fold product X'(w)’, and the fixed
points of this automorphism can be identified with the objects of X (w)!. Furthermore,
under this identification, the raising operators E; and E» act on X(w)! in the same way
that Ej and E; E} act on the o-fixed objects of X'(w)".

Now consider an object z = z; ---z; € X(w)! such that §(z,1) < 0 and 6(z,2) < 0.
Since Aj; is simply-laced, we know that X’(w)! is strongly untangled, so there is a unique
maximal object y in the irreducible component of X'(w)! that contains z, E; (z) = E}(z),
and Es(z) = E{Ej(z). We claim that y is fixed by ¢, and hence an object of X (w)'. If
not, then let 3’ be a o-fixed object of maximum height in this component. As a non-
maximal object of X'(w)!, it must be the case that §(y’,i) < 0 for some i. However if
8(y',2) < 0, then Ej(y') = Ey1(y') would be a higher counterexample. On the other hand,
since ¥ is o-fixed, the only remaining possibility is that 6(y’,1) = é(y',3) < 0, in which
case Lemma 6.5(a) shows that E]Ej(y') = FEa(y') would be a higher counterexample,
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a contradiction. This same reasoning also shows E; or F» can be applied to any non-
maximal o-fixed object of X’(w)’, so it follows that Ej(z) <(1,2) ¥ and Ea(x) (1,2} ¥
whence by Lemma 6.2, X = X (w)’ is strongly untangled.

The case ® = G,. Choose an order-three linear automorphism & of the root system Dj.
One can label the simple roots o (i = 0,1, 2, 3) so that ¢ fixes oy and cyclically permutes
o), oy, af, which are mutually orthogonal. The short roots of Gz can then be realized
as the o-fixed roots of Dy, and the long roots are sums of nontrivial g-orbits in Dy. In
particular, the simple roots of G, can be chosen so that oy = ag and az = o} + of + af.

In this case, there are no (nontrivial) minuscule weights, so we may assume that each
factor X is isomorphic to the quasi-minuscule system X (&); i.e., X = X(&)!. There are
six short roots and an object of weight 0 in X (@); these objects have the string structure

Adr101+as 2a1 =101 —q1 =3 —1 — Q2 >1 —Q.

Furthermore, & is also the dominant root of D4, and we can extend the action of o to an
automorphism of the quasi-minuscule D4-system X’{@) by permuting the weight 0 objects
0; in the same way that o permutes the simple roots o (0 < 7 < 3). Thus X (&) can be
viewed as the o-invariant part of X’(&). Letting E, F] (0 < i < 3) denote the raising and
lowering operators of X'(&), we have E; = E}, and E, = E; E}Ej} under this identification.

The automorphism ¢ extends naturally from X'(&) to X’(&)*, and the o-invariant part
can be identified with X (&)!. Using Lemma 6.5 and the fact that o, a}, o} are mutually
orthogonal, it follows that F; and E» act on X (&)' in the same way that E} and E}E}E}
act on the o-fixed part of X'(&)'. Since X’(a)! is strongly untangled (D4 is simply-laced),
the same reasoning used for B2 shows that X (&)’ is also strongly untangled. O

REMARK 6.7. (a) It follows that if X and Y are any admissible systems that occur as
subsystems of products of (quasi-)minuscule systems, then XY is strongly untangled.

(b) In an untangled system, the irreducible component containing a given maximal
object z is simply the F-saturated subset generated by z.

(c) Assuming @ is irreducible of rank > 1, an untangled thin system must be a disjoint
union of (thin) systems whose generating series are single Weyl characters x{)\) with A
minuscule or quasi-minuscule (Theorem 4.3). Moreover, one can show that any such system
must be isomorphic to one of the minuscule or quasi-minuscule systems X () of Section 4.
Thus in this context, products of untangled thin systems are strongly untangled.

(d) The relations Ey E; = E3E; and E 1 E2E; = E2E2E, in Lemmas 6.5(b) and 6.6(b)
can be viewed as combinatorial analogues of the Serre relations. In general, for each
object z in a strongly untangled system, one can ask for a minimal object y such that
E;i(z) <} v and E;(z) <5 v (assuming that E;(z) and Ej;(z) are defined). There
must be a sequence of raising operators starting with E; that takes z to y, and another
starting with Ej;; their equality is a combinatorial Serre relation. In Bs, there are at least
four of these relations; namely,

ElEzE]_EzEl = EzEsz, EzE]:?EzzEl = ElE%Esz,
and the two that occur in Aj. In G, there are at least 15 such relations.
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7. Generation of Finite Systems
Throughout this section, we assume that @ is finite. It follows that there is no harm in
further assuming that V is spanned by the simple roots. Under these circumstances, there
are no nonzero trivial weights, A is a true lattice, and A/Z® is a finite abelian group.
The following result implies (and is roughly equivalent to) the fact that every Weyl
character occurs as a summand of a product of minuscule or quasi-minuscule characters.
This fact does not seem to be well-known; in any case, we have not seen it in the literature.

THEOREM 7.1. For every A € AT, there is a product of minuscule and quasi-minuscule
systems that includes a maximal object of weight A.

Combining this with Theorem 6.4, we obtain

COROLLARY 7.2. For every A € AT, there is an admissible subsystem of a product of
minuscule and quasi-minuscule systems whose generating series is x ().

Our proof of Theorem 7.1 (or rather, the stronger result in Theorem 7.6 below) is
constructive in that for each A, we show how to identify a suitable sequence of minuscule
and quasi-minuscule systems and a maximal object of weight A in their product. In order
to explicitly realize the irreducible component containing this object, one still needs to
identify the F-saturated set that it generates (cf. Remark 6.7(b)).

LEMMA 7.3.

(a) Each coset of A modulo Z® contains a unique dominant minuscule weight.
(b) If ® is irreducible, then the lattice generated by any nonzero W -orbit of minuscule
* weights includes Z®.

‘Proof. (a) This is well-known and easy to prove; e.g., see Corollary 1.13 of [St].

(b} Given a nonzero minuscule orbit {2, it suffices to show that ZQ includes every
simple root. However if o; ¢ ZQ, then «; must be orthogonal to the linear span of Q.
Otherwise, we would have (i, a)') # 0 for some p € Q, and therefore (i, ) = £1 (since p
is minuscule), whence a; = +(u — s;u) € ZQ. Thus the simple roots in Z{) are orthogonal
to those not in ZQ. Given that Q # {0}, this contradicts the irreducibility of . O

LEMMA 7.4. If® isirreducible and () is a W-stable set of minuscule and quasi-minuscule
weights, then for every dominant A € Z(}, there is a decomposition

A=m+---+wm (k€N

with p; + --- + p; dominant for 1 € i < 1.

Proof. The sum of all members of a W-orbit in A is W-invariant, hence orthogonal to
all simple roots, and hence zero. It follows that each element of —(2 is in the nonnegative
integer span of (2, and thus there exist decompositions A\ = y; +--- + g with p; € Q.

If I < 1, there is nothing further to prove. Proceeding by induction, fix ! > 2 and choose
a decomposition that minimizes the height of y; within its W-orbit. If A — 1, is dominant,
then the induction hypothesis provides a decomposition of A — p; with dominant partial
sums, and we are done. Otherwise, we have (A — py, ;) < 0 for some i € I and hence
{p;,a)) <0 for some j <! and (4;,c)) >0, since A is dominant.
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Since g is minuscule or quasi-minuscule, it must be the case that (u,,a;) =1or2. In
the former case, p; — a; = s; is in the same W-orbit; in the latter case, u; must be quasi-
minuscule and p; — @; = 0 (Lemma 4.6). Similarly, u; + o is either zero or in the W-orbit
of 11, so we may replace y; with g, —o; and p; with u; +a; in our decomposition, suitably
reducing [ if either of these replacements vanishes. However, if this new decomposition of
A still has length I/, we contradict our original choice. Hence it must be shorter, and we
may appeal to the induction hypothesis. O

REMARK 7.5. This result is false if we drop the hypothesis that V is spanned by the
simple roots. For example, using the coordinates for & = A,_, from Section 5, there
is no suitable decomposition of the dominant weight A = —e, for the minuscule orbit
Q = {&;: 1 <1 < n}. Instead one can argue that the result remains valid in the general
case if we are allowed to shift A by a trivial weight.

Now consider any lattice A’ such that Z& C A’ C A. By Lemma 7.3(a), we know that
A'/Z® is a finite group generated by a set of dominant minuscule weights; let Q1 denote
any such set of generators.

THEOREM 7.6. Assume & is irreducible, and let A’ and Q1 be as above.

(a) If A’ # Z®, then for all dominant X € A’, there is a sequence wy,...,w; € Q2 such
that the minuscule product X (w;) - -- X(w;) has a maximal object of weight X.

(b) IfA' = Z® (i.e, O C {0}), then for all dominant A € A’, there is an | > 0 such
that the quasi-minuscule product X (&)! has a maximal object of weight .

Proof. (a) Let §2 denote the W-stable set generated by Q. Since ZS2 includes members
of all cosets of A’ modulo Z®, it follows via Lemma 7.3(b) that A’ = ZQ. Applying
Lemma 7.4, we deduce that every dominant A € A’ has a decomposition A = p3 + -+
with y; € @ and p7 + - - - + p; dominant for all 4. Letting w; denote the dominant member
of the W-orbit of u;, this means precisely that the I-tuple (u1,. .., z;) is a maximal object
of X(w1)--- X (wi) of weight A (see (3.2)).

(b) The short roots ®, generate Z®. If all roots are short this is vacuous; if there are
long roots, then there is a pair , j € I such that a; is short, o; is long, and (o;, af) = —1.
In that case, a; = sjo; — a; € Z®,, and hence Z®, includes the entire orbit of long
roots. Applying Lemma 7.4, we deduce that every dominant A € Z® has a decomposition
A=p0+---+ 5 with §; € &, and S, + - - - + 5; dominant for all i. This implies (via (3.2))
that the I-tuple (B1,...,0;) is a maximal object of X (&)' of weight . O

REMARK 7.7. (a) The lattices A’ such that Z& C A’ C A index the various classes
of (connected, semisimple, complex) Lie groups with root system &, and the dominant
weights in A’ index the (Weyl) characters of their irreducible representations.

(b) For irreducible root systems, the groups A'/Z&® are almost always cyclic. In such
cases one can take 21 to be a singleton and deduce that there are maximal objects of all
possible dominant weights in A’ among the powers of a single minuscule or quasi-minuscule
system. The only exceptions occur when & = D,, A’ = A, and n is even.
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8. Lakshmibai-Seshadri Chains
Given a fixed A € A*, we let ‘<’ denote the usual Bruhat ordering of the W-orbit of ),
i.e., the transitive closure of the relations

oapp<p if (p,a¥)>0 (peW) acdF).

Similarly, if A is anti-dominant (i.e., —\ € A*), we define the Bruhat ordering of W in
exactly the same way. We write v < p to indicate that p covers v. This happens only if
v = oo u for some a € @+ as above, but not conversely.

The Bruhat orderings of WX and —W X are dual-isomorphic (in fact, 4 < v if and only
if —v < —u), so by employing arguments that simultaneously apply to orbits generated by
dominant or anti-dominant weights, one may instantly dualize any property of the Bruhat
order. In the finite case such distinctions are unnecessary, since every finite W-orbit is
generated by a dominant member.

Given +) € AT and a fixed b € R, we define the b-Bruhat ordering ‘<;’ by taking the
transitive closure of the relations

Oath <p it if oop < pand b{u,aVY€Z (u€ W), ac dt).

Thus g covers v in the b-Bruhat order if and only if i covers v in the normal Bruhat order
and b(u — v) is an integer multiple of a root. In particular,

v<p b = blu—v)eZd, (8.1)

and the only nontrivial values of b are rational with a denominator that divides (), a")
for some root a. (Otherwise, v <p p only if v = p.)
Note that the 1-Bruhat ordering is the normal Bruhat ordering.

- LEMMA 8.1. If {u,aY) > 0 and v < p, then either
(3) (v,a¥) <0 and v <y 55 < iy Or
(b) (v,a;) > 0 and s;v <p sip.

Proof. Proceed by induction, the base being the (trivial) case ¥ = p. In all other cases,
we have v < p and there is a positive root a such that v < oou <p p and oou < p.

Case 1: a = ;. We may assume (v, o) > 0; otherwise, (a) holds and we are done. Now
since s; 44 <p 4 is necessarily a covering relation, it follows that b{u, )) € Z. Furthermore,
since b(u — v) € Z® by (8.1), we thus have b(v,a)) € Z, whence s;v <p v <p Sips <p
and (b) holds.

Case 2: a # o;. In this case, 8 := s;a must be positive and (s;u, 8") = (u,a") > 0, so
we have sjoop = ogsipu < sip. Hence (oap,a)) > 0; otherwise, oop < si0ap < sipp < p,
contradicting the fact that oo u < u.

Claim: $;0qp <p Sips. Since gap <p u, we have b(s;u, 8Y) = b{u, V) € Z, so to prove
the claim it suffices to show that s;o,p < s;u. If this were false, then there would be a
chain of length > 3 from s;o,u to u. However the chain s;o4p < oqp < p is unrefinable,
contradicting the fact that the Bruhat order is graded (e.g., see [D]).

Now since (oo, @)} > 0 and v <p 0qp, it follows by induction that

(a) (v,0) <0 and v <p 8i0ap <p Oali, OF

(b) (v,aY) > 0 and s;v <p SiTap.
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In the latter case, the claim yields s;v <p s;oqu <p 8;p. In the former case, the claim
yields v <p s;oou <p sijpu. We also obtain s;pu <, p in this case, since the relations
8ifh >p 8i0aph <p Oops <p p imply b(p — s;u) € Z® via (8.1). In either case, this completes
the induction. O

Given £) € AT, we say that a pair consisting of a Bruhat chain pp < p1 < -+ <
in the W-orbit of A and an increasing sequence of rationals 0 < b3 < --- < b < lisa
Lakshmibai-Seshadri chain (or LS chain) if

Mo <by M1 <pg - <y Mi-

To simplify the description of certain operators, it will be convenient to identify this object
with the map = : (0,1] = W, where

Ho if 0 <tg bl,
z(t) =< pp  if by <t < gy,
w ifh <t

Note that the piecewise-constant left-continuous maps z that arise in this fashion (i.e.,
from LS chains) can be characterized by the property

z(t) e 2z(tt) (0<t< 1), (8.2)

where z(t1) denotes limiting value of = approaching ¢ through values > t.

We claim that these maps form the objects of an admissible system whose generating
series is () (assuming A € A1), although for this to be a precise statement we first need
to assign weights and depths, and construct lowering operators.

"Given z as above, we define the weight of = to be

plz) = f 1 o(t)dt = p— Y be(uk — pe—1)- (8.3)
Y 1<kgl

The fact that this is an integral weight is a consequence of (8.1). The depth (and resulting
rise) of z in the direction of «; is defined (respectively, given) by

6(@,3) = s, / (a(s), ) ds, (8.4)
e(a,i) = max / (z(s), ) ds. (8.5)

We remark that the piecewise-linear map ¢ — f(f z(s) ds is a “Lakshmibai-Seshadri path”
in the sense of Littelmann [L1].
To see that the depth and rise are integral, note that

[ te0)aiyds = t(ath0) = 3 bule = o)

1<k
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where j is the largest index such that b; < ¢. Hence by (8.1),

/t(z(s),a}’) ds€Z & t{z(t),o)) € Z. (8.6)

In particular, since s;u <p ¢ implies b(u, ;') € Z, Lemma 8.1(a) yields

(@(t), o) <0, (2(t7), ) >0 = /t(m(S),a}")ds €Z. (8.7)
0

Assuming that the minimum in (8.4) does not occur at an endpoint (otherwise 5(:(: i)=0
and &(z, z) = u(z,1) or vice versa), it must occur at some ¢ for which (z(t), ;") < 0 and
(x(tT), ) > 0, in which case (8.7) implies §(z,1) € Z.

To construct a lowering operator z — Fi(z), assume £(z,i) > 0, let £; be the largest
value of ¢ for which equality occurs in (8.4) and (8.5), and let ¢ be the smallest value of

t >t such that ftl (z(s),a))ds = g(z,i) — 1. We then define

S,‘.’L’(t) if t, <t <ty
z(t) otherwise.

R = {

Clearly Fi(z) is a piecewise-constant left-continuous map (0,1].—» WA.

LEMMA 8.2. Let z, t1, t2 be as above.

(a) Fi(z) is the map corresponding t6 some LS chain.

(b) u(Fi(z)) = p(z) — @i and 6(F;(z), 1) = 8(z,2) — 1.

(c) ty is the smallest value of ¢t such that fo (Fi(z)(s),a))ds = 8(=,1) — 1.
(d) ty is the largest value of t < ty such that fo (Fi(z)(s), ) ) ds = 6(z, ).

Proof. (a) Let &(¢ fo (z(s),a)) ds. Bearing in mind (8.2), we need to show that

(i) z(t1) <4, iz (t'l") (a.ssummg t, > 0),
(i) s;z(t) <e siz(t™) for ¢ < t < ta, and

(iii) s;z(t2) <¢p x(t]) (assuming 3 < 1).

For (i), note that having the minimum value of £(t) at ¢ = ¢; > 0 forces (z(t1),¢)) <0
and (z(t7),aY) > 0. The fact that ¢, is the largest value with this property forces
(z(t),aY) > 0, and hence (i) follows from Lemma 8.1(a).

For (iii), it suffices to show that s;z(t2) <s, z(t2), or equivalently, t2{z(t2), o)) € Z>°.
The integrality follows from (8.6) and the fact that Z(f;) = é(z,i) + 1 € Z, and the
positivity follows from ¢, being the smallest value of ¢ > ¢; such that #(t) = é(z, i) + 1.

For (ii), we claim that (z(t),o)) > 0 for t; < t < t2. Since the previous argument
shows that (z(t2), ) > 0, this could fail only if (:z:( ),aY) € 0and (z(t*),a)) > 0 for
some ¢ € (t1,%2). In that case, (8.7) implies &(t) € Z. However, the deﬁnltlons of t; and
ty force 8(z,7) < &(t) < 6(z,%) + 1 for ¢1 < t < 2, so this is impossible. Given the claim,
(ii) now follows from Lemma 8.1(b).

(b)—(d) Let y = F;(z). We have

to 123
(@) — ply) = f (2(t) — siw@®)dt = [ (a(t), aY)ou dt = o,

t1
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yielding the first part of (b). Since z(¢) = y(¢) for t £ ¢;, we have §(t) > §(z,%) for
all such ¢, with equality at ¢ = ¢;. Since (y(t), o) = —(z(t),0;) < 0 for t; < t < i3,
it follows that §(t) strictly decreases from ¢, to t» by the amount &(t2) — £(¢1) = 1, so
9(t) = 6(z,1) — 1 for t < ta, with equality if and only if ¢t = 3. Finally, we have y(t) = =(t)
for t > to, so §(t) = 2(t) — £(t2) + §(t2) = (¢) — 2 for such ¢, and to complete the proof
of (b), (c) and (d), it suffices to show that Z(¢) > &(z,?) + 1 for ¢t > to. If this were false,
there would be a local minimum for £(¢) in this region strictly below é(z, ) + 1. However,
(8.7) shows that such a minimum would have to be integer-valued, and hence equal to the
global minimum &(z, ?), contradicting the definition of ¢;. O

The following result is essentially due to Littelmann [L1], the main difference being
that we have formulated it in the setting of admissible systems.

THEOREM 8.3. For all A € AT, the set of LS chains in the W-orbit of A is an admissible
system with generating series x(\).

Proof. Let z be the map corresponding to some LS chain pg <p, pt1 <p, -+ <o, -

To verify (A0), note that if v < u, then every Bruhat chain from v to p must have
length < ht(b(s — v)) (reduce to the case of a covering pair). Bearing in mind p; <3 A, it
follows via (8.3) that if u(x) has height > h, then every Bruhat chain from ug to A must
have length < ht()\) —h. Thus for a given h, there are at most finitely many choices for
[ and wo,-..,m- Moreover, given v < u, there are only finitely many rationals 0 < b < 1
such that v <p u, so (A0) holds.

Axiom (A1) is immediate from the discussion surrounding (8.4) and (8.5).

. To prove that Fj is bijective as in (A2), we construct the inverse E; explicitly. Given a
map z such that (z,4) < 0, we define

, ) siw(t) ifty <t ta,
Eia)(0) = { |
z(t) otherwise,
where ts is the smallest value of ¢ such that equality occurs in (8.4) and (8.5), and ¢, is
the largest value of ¢ < ¢3 such that f(f (z(s),;a))ds = 8(z,i) + 1. If we define the dual of
z to be the map z* corresponding to the LS chain

—l <qp v Loy —H1 <gp —Ho (ai =1- bi),

then z*(t) = —x(1 — t) (aside from a set of measure zero), and E;(z*) = F;(z)*. Hence
E;(z) is the map corresponding to an LS chain (Lemma 8.2), and parts (c) and (d) of the
lemma and its dual version show that F; and F; are inverses.

Lemma 8.2(b) proves (A3).

To construct a coherent timing pattern, let z be a map such that é(z,¢) < 0 and define
t(z,4) to be the least value of ¢ such that equality occurs in (8.4) and (8.5). Assuming
F;(z) is defined (i.e., £(z,i) > 0), Lemma 8.2(c) shows that t(x,1) < t(Fi(z),i). By
iteration, it follows that z'(t) = =z(t) for all ' <; = and t < t(z,i). Therefore, given
a map y »>; z for some j # i such that d(y,j7) = 6 < 0 and t(y,j) < t(z,i), we have
y(t) = z(t) = F;(z)(t) for t < t(y,j), and therefore 6(F;(z),j) < J. Hence there is a map
y' »=j Fi(z) such that §(y’,j) = 6, and we claim that ¢(y',7) = t(y,5). Indeed, we must
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have y'(t) = Fi(z)(t) = z(t) = y(¢) for t < min(¢(y’, ), t(y, 7)), so a discrepancy between
t(y’,7) and t(y, ) would contradict their deﬁmtlons Similar reasoning proves conversely
that if there is a map y' =; Fi(z) such that (y’,j} = 6 < 0 and ¢(y',7) < t(z,%), then
there is a map y =; = such that 6(y,j) =6 and ¢(y,5) = t(v’, j), so (A4) holds.

Thus we have an admissible system.

Finally, note that if the initial term ug of an LS chain is not dominant; say, (ug, @) < 0,
then (8.4) implies §(z, 1) < 0. Hence the only maximal object in this system is the singleton
chain of weight A, and the generating series must be x(A) (Theorem 2.4). O
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