CHRISTOFFEL-MINKOWSKI PROBLEM I: HESSIAN
EQUATIONS ON S*

PENGFEI GUAN AND XI-NAN MA

1. INTRODUCTION

Surface area measures are local versions of quermassintegrals in the theory of
convex bodies. If the boundary of the convex body is smooth, the corresponding
surface area function is a symmetric function of principal radii of its boundary. The
general problem of finding a convex hypersurface with kth symmetric function of
principal radii prescribed on its outer normals is often called Christoffel-Minkowski
problem. It corresponds to find convez solutions of the nonlinear elliptic Hessian

equation (see next section):
(1.1) Sp({uij +udij}) =¢ on 5%,

where S is the k-th elementary symmetric function.

In this paper, we are concerned with the existence, regularity and convezity for
the equation (1.1).

Alexandrov-Fenchel-Jessen Theorem ([2] and [11]) asserts the uniqueness for the
solutions of equation (1.1). In the case k = 1, this is the equation for Christoffel
problem. The early treatments were given in Christoffel [9], Hurwitz [20], Hilbert
[18], Suss [31] and others, the final solution was obtained in Firey [12], [13] and Berg
[4]. The other extremal case is ¥ = n, which corresponds to Minkowski problem.
This case has also been settled due to the works of Minkowski [26], Alexandrov [1],
Lewy [25], Nirenberg [27], Pogorelov [29], Cheng-Yau [8]. The intermediate problems
still remain open, very little is known though there is an extensive literature devoted
to it. We refer [5] and [30] for the references.

Research of the first author was supported in part by NSERC Grant OGP-0046732. Research
of the second author was supported by Foundation for University Key Teacher by the Ministry of
Eduction of China and NSFC No.10001011.
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It is known that for (1.1) to be solvable, the function ¢(z) has to satisfy
(1.2) / np(z)dz =0, i=1,..n+1
Sn

For Minkowski problem, (1.2) is also sufficient. But is is not sufficient for the
cases 1 < k < n [2]. For both Minkowski problem and Christoffel problem (k = n
and k = 1), the summation of the corresponding k-surfaces area functions of two
convex bodies is also a k-surface area function of some other convex body. They
are related to Blaschke and Minkowski sums of convex bodies respectively. For the
intermediate cases 2 < k¥ < n — 1, this is no longer true in general. There exist
two strictly convex bodies with analytic boundaries, the sum of their k-surface area
functions is not a k-surface area function of any convex body (see [10] and [16]).
This suggests that the intermediate problems are much more complicated.

The intermediate Christoffel-Minkowski problems raise the following fundamental
question in PDE:

Question: for what function ¢ on the right hand side of equation (1.1), there is
a regular convez solution?

The structure of Hessian equations have been investigated in [6], [21], [32], [33],
[24]. The natural solution class for this of type equations is k-convex functions
(see Definition 2.1). If £k = n, it is a Monge-Ampére equation, the convexity is
built into the solution class. In general, k-convex function is not convex for k& < n.
Hence, the major issue here is to find conditions for the existence of convez solution
of (1.1). In the case of Christoffel problem, equation (1.1) is linear. The necessary
and sufficient conditions in [12] was derived from the linear representation formula of
Green’s function. For the intermediate cases (2 < k < n—1), (1.1) is a fully nonlinear
equation. We have to take a different approach. We deal with the problem using
continuity method as a deformation process together with strong minimum principle
to force the conwvezity. This approach has been successfully used previously by
Caffarelli-Friedman [7] and Korevaar-Lewis [23] (it appears that Yau also suggested
similar approach, see [22]) for the semilinear equations in domains of R"®. The
crucial deformation lemma (Lemma 4.1) will be established in this paper for the
fully nonlinear Hessian equation (1.1).

We introduce some notations.

Definition 1.1. Let f be a positive C!+! function on S™ satisfies (1.2), Vs € R, we
say f is in C; if ( 4 + 0i;f°) is semi-positive definite almost everywhere in S™. We
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say. f is connected to g in C, if there is a continuous path h(t,.) € Cs, such that
h(0,z) = f(z) and h(1,z) = g(z), Vz € S™.

We note that the definition is independent of the choice of orthonormal frame.
A positive C1'! function f in C, if and only if f satisfies (1.2) and f* is a convex
function in R”*! as a homogeneous function of order 1.

‘We now state our main results.

Theorem 1.2. (Full Rank Theorem) Suppose u is an admissible solution (Def-
inition 2.1) of equation (1.1) with semi-positive definite spherical hessian W =
{usj +udij} on S™. Ifp e C_%, then W is positive definite on S™.

The following is the existence theorem.

Theorem 1.3. (Existence Theorem) Let o(z) € C11(S™) be a positive function,
suppose @ is connected to 1 in C_ 1, then Christoffel-Minkowski problem (1.1) has a
unique solution upto translations. More precisely, there exists a C** (V0 < a < 1 )
closed strictly convez hypersurface M in R™! whose principal radii of curvature
function of order k is ¢(z). M is unigue upto translations. Furthermore, if p(z) €
CH1(S™) (1 > 2,7 > 0), then M is C*t4Y. If ¢ is analytic, M is analytic.

In a sequent paper [3] jointly with B. Andrews, we will study the curvature
flow equation associated to Christoffel-Minkowski problems. The condition on ¢ in
Theorem 1.3 will be replaced by simpler condition ¢ € C_ 1 alone via curvature flow
approach with the assistance of the Full Rank Theorem (theorem 1.2).

The organization of the paper is as follows. We derive the equation (1.1) together
with some basic facts of elementary symmetric functions in the next section. In
section 3, we establish C? a priori estimates for general k-convex solutions. The key
deformation lemma will be proved in section 4 for the Hesslan equations on S™. In
section 5, we prove Theorem 1.2 and Theorem 1.3.

Acknowledgment: The work was done while the second author was visiting
McMaster University, he would like to thank the Department of Mathematics at
McMaster University for the warm hospitality.

2. PRELIMINARIES

We recall the definition of k-symmetric function: V1 <k <n, VA= (A1,...,\,) €
R™,

(2.1) Se(X) = Niged
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where the sum is taking over for all increasing sequences i1, ..., i of the indices chosen
from the set {1,...,n}. The definition can be extended to symmetric matrices by
letting Sg(W) = Sp(A(W)), where A(W) = (A (W), ..., \n(W)) are the eigenvalues
of symmetric matrix W. We also set Sy = 1 and Sy = 0 for k& > n.

For a strictly convex body K in R**! with smooth boundary M, the Gauss map
i is a diffeomorphism from M to ™. For z € S, let A(z) = (A1(z), ..., An(z)) be
the principal radii of curvature of M at the point 7~!(x). Then

(2.2) Sk (z) = Sk(A(z))

is the k-surface area function over the unit sphere S™ at the point z. Let u(z) =
zii~i(z) be the support function. Let ey, ...,e; be any orthonormal frame on S™,
and let u;; to be the covariant derivative with respect to the frame. The eigenvalues
MW(z)} = (A1(=), -, An(z)) of the Hessian matrix W(x) = {us;(z) + u(z)d;;} are
the principal radii of M at 7i=1(z) (see [8] and [29]). Hence, u satisfies the equation
(1.1).

On the other hand, if u is a solution of (1.1) with the property that W is semi-
positive definite on S™, u is a support function of a convex body. If W is positive
definite everywhere in S™ and ! > 2, the corresponding hypersurface M is strictly
convex. In this case, V0 < a < 1, M is C*® if and only if u is in C** (e.g., see [29]
and [30]).

Definition 2.1. Let & be the space consisting all n x n symmetric matrice. For
1 <k £, let T’ is the positive connected cone in § containing the identity matrix
determined by

Iy={Wes§: S(W)>0,..,5 (W) > 0}
Suppose u € C?(S™), we say u is k-convex, if W(z) = {us;(z) + u(z)di;} is in Ty
for each z € S™. u is convex on S™ if W is n-convex. Furthermore, u is called an

admissible solution of (1.1), if u is k-convex and satisfies (1.1).

It will become clear that algebraic properties of the elementary symmetric func-
tions are crucial in our proofs. We also refer the recent work [19] for the important
role of elementary symmetric functions in other contents. The following are some
basic results of elementary symmetric functions.

Proposition 2.2. If {W;;} = W is a n X n symmetric matriz, let

F(W) = Sx(W)
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for 1 <k < n, then the following relations hold.

I
Sk(W) = E Z 6("11 "')"’k;]l)"')]k)Wiljl e mkjk’

11,00 =1
J1yeenadke=1

(W)

1 = S
= (k — 1)' Z 5(%,’&1, e lk-132 71, "'7.710—1)W1§1j1 s VV'ik_ljk_l

. OF
FY =
o=

i.]_,...,i‘k_l:l
J1yenjr—1=1

. oPF
Firs = 2
6VVijaWrs( )
1 n
= m Z J(iarsili'--:ik—%ja sajl)”';jk—Z)VV'iljl Ll Wik_zjk_zs
’ 21y nyif—o=1
Jlyesfg—2=1

where §(41, ..., 155 J1, .-, ji) 15 the Kronecker symbol.

We will need the next two lemmas in the later sections.
Lemma 2.3. For 1 <k <1, G = (M\,.., N), V1 € 4,5 < n,i # j, we denote
Sk(Gli) to be the symmetric function with X; = 0 and Sx(G|ij) to be the symmetric
function with \; = A\j = 0. Then, the followings are true,
Se(G)S1-1(Ga) Si-1(Gla) — Si(G)Sk_1(Cle)
= Sk(G|2)S1-1(G|a) S-1(Gle).
If1<k<l, fora#p,
Sk(G)Sk—2(Glep) — Sk—1(Gla)Sy-1(G|B)
= Sk(G|ap)Sk-2(Glap) — Si_,(Glap).
Proof: We note that S;(G) is a nomial, now for any « € G,
Sk(G)Si-1(Gla) Sk-1(Gla) — S(G)SE_1(Gla)
= [AaSk-1(Gla) + Sk(G|@)]1Si-1(C|) Sk-1(Gle) — S(G)S?_, (Gl
= 51(G)Sk-1(Glo)? + Sk(Gle) Si-1(Gla) Sk-1(Gler) — Si(G)S_(Glex)
= S(Gla)S1-1(G|@) Sk-1(Gla).
The second identity in the lemma follows directly from the identities, Skx(\) =
Sk(AlD) + XiSk—1(Al8),  Sk(A) = Sk(Alig) + XiSe—1(Ali) + AjSe—1(Alig). O
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Lemma 2.4. For 1 <k <1, G = (A1,..., A1), Yo # B and for all real numbers
i CRI (D)

Z Sk (Gla)Sl_l(GIa)Sk—1 (Gla)7§
acG

(2.3) > Si(G) D) _{S?_1(GlapB) — Sk(Glep)Sk-2(GlaB) }vars.
a#£f

Proof: We first prove the following equality: V1 < a <1,

(24) D A[Si-1(GlaB) — Sk(GlaB)Sk-2(GlaB)] = Si(Gla)Sk-1(Gle).
BEG fa

We note that,

Y. 5e-1(Glap)Si(Gla) = (i — k)Sk(Gla)Se-1(Cla),
BEG,B#a

and

Y. Sk(Glop)Sk-1(Gla) = (I — k = 1)Sk-1(Gle) Sk (Cle)-
BEG,f#a

As §; is a nomial, we get

D {AsSt-1(GlaB) — XsSk(Glaf)Sk—2(GlaB)}

BeG
p#a

= Y "[Sk-1(GlaB)Sk(Gla) ~ Si(Glaf)(Sk-1(GlaB) + AsSk—2(G|eB))]

Be@
B#a

=) [Sk-1(GloB)Sk(Gle) — Sk(GleB)Sk-1(Gla)]

BEG
f#a

= Sk(Glo)[(! = k)Sk-1(Gle) = (I = k — 1)Sk—1(Gle)] = Sk(G|er) Sp-1(Gle)

Identity (2.4) is verified. Now we use Cauchy inequality and (2.4) to prove (2.3).
For any a # B, by nomiality of 5;(G), Si(G) = AaA3Si-2(G|aB).
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SUG) > [Si_1(GlaB) — Sk(Glaf)Sk-2(GlaB)1ars

a,8€G
a#B
= ) S5i-2(GlaB)[Si-1(GlaB) ~ Sk(GlaB)Sk—2(GlaB)l(AsYa) (Aars)
a&géeﬁc
< 3 5a(ClaB)SE+(GlaB) — Sk(GlaB)S-o(Glap) L2 2T
a&i%a
= Y 5i-2(GloB)As[Si_1(Glap) — Sk(Glap)Sk-2(GlaB)As 72
a&/ieﬂG
=2_51(Gla) X7 MlSE-1(Glep) — 5k(GlaB)Se-2(GlaB)v;
acG BEG,B#a
= Sk(Gla)Si_1(Gla) Sk-1(Gla)y2.
1le]
This completes the proof of (2.3). O

3. A PRIORI ESTIMATES

As the first step in the proof of the theorem, we establish the a priori estimates
for the solutions of equation (1.1) in this section .

We note that for any solution u(z) of (1.1), u(z) + I(z) is also a solution of the
equation for any linear function I(z) = .74 a;z;. We will confine ourselves to

solutions satisfying the following orthogonality condition:
(3.1) / ziude =0, Vi=1,2,..,n+1.

When u is convex, it is a support function of some convex body Q. Condition
(3.1) implies that the Steiner point of £ coincides with the origin.

In the case of k = 1, the equation (1.1) is a linear elliptic equation on sphere. A
priori estimates for solution u satisfies (3.1) in this case follows from standard linear
elliptic theory. Therefore, we will restrict ourselves to the case k > 2. The equation
(1.1) will be a uniformly elliptic once C? estimates are established for u (see [6]).
By Evans-Krylov theorem and Schauder theory, one may obtain higher derivative
estimates for u. Therefore, we only need to get C? estimates for u.
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Proposition 3.1. Let
(3.2) H := trace(uij + 6;;u) = Au + nu.
If u is k-convez, then

(3.3) 0 < H < max(n(z) — Ap(z)),

where @ := (Z,‘EE)%

n

Proof. The positivity of H follows from Newton-Maclaurin inequality. Assume
the maximum value of H is attained at a point g € S™. We choose an orthonormal
local frame ey, eg, ..., e, near o such that u;;(zo) is diagonal. Let W = {u;; + d;ju},

we define
Sk

C_ﬁ) £ (W)

G(Wi5) = (
Then the equation (1.1) becomes
(3.4) G(Wy) = ¢
For the standard metric on S™, we have,
Hiy = AWy —nW;; + H.

By the assumption the matrix W € Iy, so {G%} is positive definite. Since {H;;} <0,
and {G¥} is diagnol, it follows that at zg,

n
(3.5) 0> GYHij = G*(AWy) — nG Wi + H Y | G™.

i

As @ is homogeneous of degree one, we have
(3.6) GAW;; = .
Next we apply the Laplace operator to equation (3.4), we obtain
GIWiji, = Vi,
G Wik Wosk, + GIAW; = A,
By the concavity of G, at z, we have
(3.7) GEA(Wy) > A.
Combining (3.6), (3.7) and (3.5), we see that
0> A¢—n¢+H2n:G“.

i=1



CHRISTOFFEL-MINKOWSKI PROBLEM I: HESSIAN EQUATIONS ON §*

As Y % > 1 (eg, [32]), it follows that H < np — Ap.

In order to obtain a C? bound, we need a C° bound for u. In the case of Minkowski
problem, such crucial C? bound was established by Cheng-Yau in [8] (see also [29]).
Their estimates assume the convexity. Here, we use the a priori bounds in Proposi-

tion 3.1 to get a C° bound for k-convex solutions.

Lemma 3.2. For any C? k-convez function v, there is a constant C depending only

on n and maxgn (n(Av + nv) + |v]) such that,

(3.8) [lvllc2 < C.

Proof. At any point z € 5", we may assume the matrix (v + 0;v) is diagonal.

Let A; is a eigenvalue of that matrix, as k > 2, we have
v +v < mazid; < Av + nv.

In turn,

(3.9) vi; < (Av+mw) —v, Vi

It follows from (3.9) that, for any i =1, ..., n,

v = (Av +nv) —nv — kak > —(n—2)(Av +nv) —v.
k#i
Thus at z, as Av+nv >0,

[viilco < (n(Av + nv) + |v]).
we obtain

(3.10) |V20]co < C’(néasas(n(Av + nw) + |v])).

By interpolation, |Vv|gco can be bounded by |v|co and |V2v|co. The lemma is

proved.

Now we establish the C-estimate. The proof is based on a rescaling argument.

Proposition 3.3. Ifu is a admissible solution of equation (1.1) and satisfies (3.1),
then there exist a positive constant C depending only on n, k, ming» @, ||¢||c1.1, such

that,
(3.11) llullce < C.
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Proof. Suppose (3.11) is false, then Ju'(l = 1,2,...) satisfying (3.1), there is a
constant C independent of {, and F({uéj + 6;ul}) = @, where @ = —é'%:l;, with ¢
satisfies .

ll¢'lle2 < C, ”J”CO <C |lpe 21

Pt
Let v* = Tl then

(3.12) llllze =1,
By Proposition 3.1, we have
(3.13) < H =Ad 4+t <G,
where the constant C' independent of I. From (3.13) o' satisfies the following esti-
mates ’
Lo c
(3.14) 0<Av +nvf < —— —3 0.

= lwt||zeo
On the other hand, by Lemma 3.2, (3.12) and (3.14), we have
[lo']lc= < C.

Hence, there exists a subsequence {v%} and a function v € C*(5") satisfying (3.1)
such that

(3.15) v — v in CY*(SM), with ||v]|ze = 1.
Combining (3.14) and (3.15), in the distribution sense we have
Av+nv=0, on S™
By linear elliptic theory, v is in fact smooth. Since v satisfied (3.1), we conclude

that, v = 0 on S™. This is a contradiction to (3.15). O

Now, C? a priori bounds follows from Lemma, 3.2, Proposition 3.1 and Proposi-
tion 3.3. By Evans-Krylov theorem and Schauder theory (e.g, see [15]), we have the
following a priori estimates.

Theorem 3.4. For each integer | > 1 and 0 < a < 1, there exist a constant C
depending only on n,l,a,ming, and ||p||c11(S™) such that

(3.16) Hu“cz+1,a (S"') < C,
for all admissible solution of (1.1) satisfying the condition (3.1).
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So far, we have obtained upper bounds for the principal radii of Christoffel-
Minkowski problem.  For Minkowski problem, a lower bound of the principal radii
follows directly from the equation (1.1). In the next section, we will show that the
principal radii of the general Christoffel-Minowski problem is bounded from below if
 satisfies the condition in Theorem 1.3. In the case of Christoffel problem, Firey’s
conditions [12] are necessary and sufficient. But, they are very cumbersome. It is
desirable to have some simple sufficient conditions. Pogorelov in [28] established a
lower bound of principal radii on $? under the condition,

(3.17) ¢(z) — pss(2) >0, on 52,

where ©(z) is differentiated at the point z with respect to arc length of the great
circle on S2.

To conclude this section, we derive a simple estimate which drops dimensionality
restriction in (3.17). For the Christoffel problem, (1.1) can be written in the simple
form, Y 0 Wi = .

We may assume that the smallest eigenvalue of matrix {W;;} attains at some
point z, € S and along e; direction. Then we have

Vinl(wo) =0, i=12,.,n,
AWH(:L'O) Z 0.
As Wh14 = Wiz + Wi — Wi, at the point z,,

n n
0< Z Wi = (AW),; + nWh1 — ZWiz' = 11 +nWi; — .

i=1 i=1

Therefore at z,, nW11 2> © — ¢11.

4. A DEFORMATION LEMMA

In this section, we establish the key deformation lemma. As in previous section,
we let W = {u;; + d;;u}.
Lemma 4.1. (Deformation Lemma) Let O C S™ be an open subset, suppose
u € C4(0) be a solution of (1.1) in O and the matrix W = {W;;} is semi-positive
definite. Suppose there is a positive constants Cy > 0, such that for a fized integer
(n—=1) 21>k, Vz € O, 5;(W(z)) > Co. Let ¢p(z) = Sj+1(W(z)) and let 7(z) be the
largest eigenvalue of {——((p"%),—j (z) — 5,-j<p_%(z)}. Then, there are constants C1,Ca
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depending only on ||ullce, ||¢|lc1a, n and Co, the following differential inequality
holds in O,

(41)) " F(2)pap(z) < k(n — D" F (2)S1(W (2))7(z) + C1| V()| + Cad(a),
o,B
where F*8 are defined in Proposition 2.2.

Remark 4.2. The lemma generalizes results of Caffarelli-Friedman [7] and Korevaar-
Lewis [23] to Hessian equation. We note that we made no assumptions on the size
of S;41 and the constants Cp, C; in Lemma 4.1 depend only on ||u||cs, [|¢|lc11, n
and Cy. This dependence is crucial for us in establishing Theorem 1.3 for ¢ € C11,

Proof of Deformation Lemma. Following the notation of Caffarelli and Fried-
man [7], for two functions defined in an open set O C S*, y € O, we say that
h(y) S k(y) provided there exist positive constants ¢; and cz such that

(4.2) (h — k) () < (| Vo] + c2¢)(y).

We also write h(y) ~ k(y) if h(y) < k(y) and k(y) < h(y). Next, we write h < k
if the above inequality holds in O, with the constant ¢;, and ¢; depending only on
lulles, |lellc2, n and Cy (independent of y and O). Finally, h ~ k if A < k and
k < h. We shall show that

n
(43) > F¥4ap S —Dp E5i(W)r,
a,5=1

For any z € O, let A1 > Xa... > A, be the eigenvalues of W at z. Since Sj(W) >
Cp > 0and u € C3, for any z € S™, there is a positive constant C > 0 depending only
on |lullcs, |l¢llcz, n and Co, such that A; > Xe... > X > C. Let G = {1,2,...,1}
and B = {l + 1,...,n} be the “good” and “bewared” sets of indices, and define
Sy (W|i) = Sx((W|i)) where (W|i) means that the matrix W exclude the i-column
and i-row, and (W|ij) means that the matrix W exclude the i,j columns and 1, j
rows. In the following, all calculations are at the point z using the relation ”<”,
with the understanding that the constants in (4.2) are under control.

For each z € O fixed, we choose a local orthonormal frame ey, ..., e, so that

W is diagonal at z, and Wy; = A;,Vi = 1,...,n. Now we compute ¢ and its first
and second derivative in the direction e,. Let

Sz] — BSH-I(W) Sij,'rs — 6251+1(W)
Wi Wi 0W,s
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As ¢ =511 (W) and ¢, = Yij S Wi;ja, we find that (as W is diagonal at z),
44) 0~¢(2) ~ D Wu)Si(G) ~ > Wi, (so Wi~0, i€B),

i€B icB
(4.5) ~ da ~ S (@)Y Wiia ~ > Wiia
iEB ieB
and
0, ifi,7 € G;
(4.6) Si—1(Wlig) ~ ¢ Si-1(Glj), ifi€B,jeG;

Sl—l(G)a 1f7'7.7€B)Z7é.7
Also, by Proposition 2.2,

47) gii Si(@), ifi=je€B,
] 0, otherwise.
Sl—l(WliT)7 ifi=yg,r=s1%#r;
(4.8) S =8~ 1 (Wlig), i g,r=j,s=5;

0, otherwise.
Since doa = ) ; j [Sij’”Wrwa,-ja-[-Sij Wijaa), from (4.4) and (4.5), it follows that
for any a € {1,2,...,n}

Poe = ZS‘ 1(W i) WiiaWija — ZS’ 1(Wlig) %JQ+ZS"VVMM
i#] i#j

= (§ :+ z :+ E o+ E )S1-1(Wig) WiiaWija
i€G i€B ijeB ijeG
i€B jeG Vg iE

Q- +) 4D + 3)8-1(Wliy) zJ‘,,+ZS“WW,“,£

i€G i€eB i3j€B i,j€G
JEB JEG  i#j i#j

From (4.5) and (4.6), we have
(4.10) Z Si1(Wif)WisaWija ~ [, Si-1(Gl5) Wijal Y Wiia ~ 0.

(4.9)

jEG
Similarily,
(4.11) > S1-1(W i) WiiaWige ~ 0.

i€G
jEB
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Again, by (4.5) and (4.6),

(4.12) Z Si—1(Wij)WiiaWjja ~ —S1—1(G) Z Wﬁa
i,j€EB i€l
i
and
(4.13) Yo SaWlii)Wea~ > Si1(Gl)Wha.
i€G,jEB i€B,jEG

Inserting (4.6), (4.10)-(4.13) into (4.9), we obtain

(4~14) Paa ~ Z SiiWiiaa -2 Z SI—I(GIj)Wi_%'a - Sl—l(G) Z W'i.27'a'
i icB ijEB
M)

Set Fob .= %g{fv_(a?' By Proposition 2.2 and (4.4), we have for any a € {1, 2, ...

Sk-1(Gla), fa€G,a=p;
(4.15) F {8 1(@), ifaeB,a=p
0, if a # B,
and,
Sk—2(Wlir), ii=jr=s,i#r;
(4.16) F978 = { ~Sp 5(Wlig), ifi#j,r=j,s=4;
0, otherwise.

From (4.14)-(4.16) we obtain

n n
Z F(!a¢aa ~ Z Z SiiFaaI/Viz'aa
a=1 a=1 1
n n
(4.17) =2) > S(GINF* Wiy — S51-1(G) Y | Y | F**Wi,
o=14icB a=11i,j€B

JEG
By (4.4), (4.7) and homogeneity of Sy and Sj11,

n b3 n n
Z Z SiiFaaVViiaa = Z Z SiiFaa (Waaii + VVii - Waa)
a=1 =1 a=1 i=1
n n B
(4.18) ~ D0 SEF* Wi — (n = DkpSi(G).
a=1 i=1

Differentiating the equation (1.1), we get
Qi = FOPTW 0. W,si + FPW g5
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(4.16), (4.7) and Propositon 2.2 yield,
DD S Wani = Y S — Y FOPT WoapiWrsi}

29 1 % a;ﬂ
o YOS Y DT+ Y )Sk-a (W aB) Wi Wi
i€eB acG «a€B a,fEB oG
BEB PBEG  a#B a#p
(4.19) + i+ D Ska(WlaB)W25}51(G).
a,f=1
a#p

It follows from (4.6) and (4.5) that,
(420) D Si-1(WaB)WaaiWagi ~ [ Y Si-1(GI8)Wppil > Waai ~ 0.

acB BEG 0B
peG
In turn,
n n .
DD S Waaii ~ SG) D> {pii— Y Se—2(GlaB)WpgiWae
a=1i=1 i€B a,fEG
o#p
n
(4.21) - Z Sk—2(G)WapiWaai + Z Sk—Z(Wlaﬁ)Wgﬂi}-
a,0€B a,f=1
axtp aFp

Inserting (4.21) and (4.18) to (4.17), we have

n

> P ~ S1(G) Y (i — ko) = SUG) Y S Sia(Gloh) WoeiWss:

a=1 i€B i€B a,0€C
a#B
=S D Sk a(CWaaiWppi 2> > Si1(GIB) Sk (W) Wi,
i€B a,f€B a=1{eB,fEG
atB
(422)  +SUG) DD Sk 2(WaB)Wis = > 51-1(G) Y Spo1t(Wa) Wi,
1EB a#p a=1 ,8€B

We need further simplifications for the terms in (4.22). For the fourth and fifth
terms on the right hand side of (4.22), ¢ € B, we regroup the summations as

Saps =2 e + Dapen+ Yaseo s Cpeo = Vgen + Tases + Dampec
o [44 «
Since W is semi-positive definite,

WppSk—2(G|B) < Sk-1(G).
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For any a € B, 8 € G, by nominality of S;(G),

> SO Sk—2(WaB)W2g; ~ S Si-1(GIB)WpsSk—2(GIBW2s;

i,0EB %,0EB
BeG pea
(423) < ) Si-1(GlA)Sk1(G)W2s
,aEB
peG

Also, when o, 8 € G, # 83,

S1-1(G[B)Sk-1(Gle) = 851-1(G|B)[Sk-1(GlaB) + WpSk_2(Glap)]
(4.24) 2 S5i-1(G|B)WppSk—_2(Glap) = Si(G)Sk—2(GlaB).

From (4.24), we get

Do) SUG)Ska(WaB)WEs 2> S 81-1(GIB)Sk-1(Gla) W2,

i€B a,feG i€B a,feCG
o#B oB
(4.25) S=D. D Si(GlB)Sk-1(Gla)yW2s; < 0.
i€B o,fER
gy

Combining (4.23) and (4.25), we obtain the following inequality,

SUG) YD Sk2(WaB)Wisi—2D . > Si1(GIB)Sk-1 (W) W3,

i€B aB a=1ieB peC
30D SUG)Sk-2(Wep)Wis; —2 3> Si-1(Gla)Sk_1 (Gla) W2,
i€B a B i€B acG

Putting above to (4.22),

n

D F%%aa SSUAD (0 —kp) = > > Se_o(Glah) WaaiWssi)
a=1 ieB i€B a&/.;eﬁG

—2) Y S-1(Gla)Sk1(Gla)Wiy — SUE) Y. S S4-2(G)WaaiWps:
icB acG ieB a,g&EﬂB

(426) =) 511(G) Y S (GlWis+Y. > SuG)Sp-2(Glap)Wis,.
i=1

a,fEB i€B a,feB
a#B
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We set,

n
SI(G)Sk 2 G) Z aﬂz WaaiWﬂﬂi]—ZSl—l(G) Z Sk—l(G'a)Wc%ﬂi,

i,a,6€B =1 *PEB
a#f
and Vi € B,
Sl(G)(pz Z Si- Gla)Sk 1(G|a)W3az7
acG
and

SI(G) Z Sk-2 Glaﬂ)WaazWﬂﬂz] - Z Si-1 Gla)Sk 1(G|O£)W2m
(p ,ﬂ#E‘BG aEG
a

Claim: Il S 0, Iz 5 0 and I3 5 0.

If the Claim is true, we will have the following critical formula.

(4.27) ZF“% $5(6) Y lps — EE 1‘;; — kyl.

icB
Then (4.3) follows from (4.27).

PROOF of the CLAIM. We observe that,

=3851(@) Y Sia(Wle)Wis ~ -+ > )85-1(G) Y. Sii1(GWE,,
i=1

a,8eB i€EB  1€G a,8eB
(428) S-51G)S (DD D Wis—D D> Waaih
i€B a,;géeﬂB i€B a€B
Q

If we put (4.28) into I, by (4.5) and Newton-Maclaurin inequality, we get
~{51(G)Sk-2(G) Y Waai( Y Wipi) + 5i-1(G)Sk1(G) Y. Wiy}

i,aEB BeB,fF#a i,aeB
+3° Y [SUG)Se—2(WeB) — 51-1(G) Sk—1(G)W2s;
i€B a,fEB
a#p
~ [S1(@)Sk—2(G) = Si1(@)Sea (RN D Woa+ D > Wil <o.
i,a€B i€B a,fEB

o B
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To treat I; by (4.5) and Proposition 2.2, Vi € B, .
429)  @i=_+ ) )k 1(W|a)Waai ~ Y Sk—1(Gle) Waai-

a€EB o€eG aEG
This yields,
1 1
I~ (3 5PHG)Sk-1(Glo)Woaai)® — ) Si-1(Gla) Sp-1(Glo) Wia:
¥ a€eG aeG

1 1 1
= E[Z 512_1(G|0f)V[/vct20z'5‘Ic—1(G'la)wvozon']2 - Z Sl—l(Gla)Sk—l(Gla)Wgai
aeG a€G

1
<o > 5i-1(Gla) Si—1(Glo) W2y WppSk-1(GIB) — ) Si—1(Gla) Sp-1(Gle) W2,
®
a:ﬁEG acG
~ Y S1-1(Glo)Sk-1(Glo)Wies = Y Si-1(Gla)Sk—1(Gla) Wy = 0.
aEG acG

Now we deal with I3. It follows from (4.29) that for any i € B,

oil ~ Y S 1(Gla)Weai + Y Sk-1(Gla)Sk-1(G|B) WeaiWegi-

acG a,BEG
ofB

By Lemma, 2.3 and Lemma, 2.4,
¢Is ~ > [SUG)SP_1(Gla) — Sk(G)Si—1(Gla) Sk—1(Gla)] W2y

acG
+ 8@ Y [Sk-1(Gla)Sk-1(GIB) — Sk(G)Sk-2(GlaB)Waai Wpgi
a,eG
a#f
= - 5k(Gla)Si-1(Gla)Sk—1(Glo) Wiy
a€G
+ Si(G) ) [SE-1(GlaB) - S1(GlaB)Sk—2(Glop)Waai Wasi < 0.
a,feG
aFff
The Claim is verified. The proof of the Deformation Lemma is complete. |

5. THE EXISTENCE AND CONVEXITY

First, we prove Theorem 1.2.

Proof of Theorem 1.2. By Evan-Krylov theorem and Schauder theorem, u €
C32(S™),¥0 < @ < 1. In fact, u is in Holder-Zygmund space A*(S™) by linear
élliptic theory. If W is not of full rank at some point zg, then thereisn—1>1>k
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such that S;(W(z)) > 0,Vz € S™ and ¢(zy) = Sj+1(W(zo)) = 0. By (4.1) in the
Deformation Lemma 4.1, as ¢ € C_ 1,

n
Y FP(2)pap(z) < C1|V(2)] + Cad().
a,p
The strong minimum principle implies ¢ = Sj41(W) = 0. On the other hand, we
may assume u satisfies (3.1), so u is nonnegative on S™. By Minkowski type formula

(e-g., [30]),
(n—1) / wSW) =1 +1) [ Sea (W),
n gn

We conclude that u = 0. This is a contradiction to (1.1). O

Now we proceed to prove Theorem 1.3.

Since ¢ is connected to 1in C_ 1, there is a continuous function A(¢, z) in [0, 1]x S™,
such that h(0,z) = 1, h(1,z) = p(z) and A is in C_% for each fixed t. Now, we
approximate h by a sequence of positive functions h™ satisfying

Properties:

(1), A™ is continuous in [0,1] x S™, and A™(0,z) = 1;

(ii), for each ¢ fixed, A™ is smooth in z variables and satisfies (1.2);

(iii), for each m and ! fixed, A™ in C([0, 1] x CH(S™));

(iv), B™ — h uniformly in C([0,1] x CL:1(S™)).

Such a sequence can be easily obtained by the operations of smoothing and pro-
jecting in z variables (so to make (1.2) satisfied) on the function h—1. We point out
that we do not require h™(t,.) to be in C_ 1 (note that there is no direct assumption
on Si(Wp,) in Theorem 1.2).

We consider the following equation:

(5.1) Sk(uf-;-m(z) + §ijub™(z)) = A™(t, z), Vz € S™.
Proposition 5.1. For sufficient large m, the equation (5.1) has a unique smooth

strictly convez solution u'™ satisfying (3.1) for all t € [0,1].

Proof: The uniqueness follows from Alexandrov-Fenchel-Jessen Theorem. The
regularity follows from Theorem 3.4. We use continuity method for the existence.
For each m fixed, let

I, = {t € [0,1]|(5.1)has strictly convex solution}.
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Since for is strictly convex u satisfying(1.1), the linearized operator L, at u is self-
adjoint and Span{z1,...,Zn41} is the exact kernel . By standard implicit function
theorem, I, is open and non-empty (as 0 € I;,).

We claim I, is closed when m sufficiently large. Suppose this is not true, then by
Theorem 3.4 and continuity method, there is a sequence of smooth functions {uim},
and t,, > 0,z,, € S™ such that W; = {uf}m + 8;ub™} positive definite for ¢ < #,,
ug,, satisfying (5.1) with

det(th (mm)) =0.
Since ™ — h uniformly in C*!, by Theorem 3.4 there is a subsequence {tm; }
converges to to, h™ (tm;, ) converges to h(to,z) in C™!, and u™™ converges to a
function u in C% for every 0 < a < 1. The Hessian matrix W = {usj+0;5u} is semi-
positive definite on S™, but W is degenerate at some point. This is a contradiction
to Theorem 1.2 as h(tg,.) € C_%. O

Proof of Theorem 1.3. The uniqueness result follows from Alexandrov-Fenchel-
Jessen theorem. By Proposition 5.1, there is a sequence of strictly convex functions
u™ satisfying

Sk(Wm(z)) = A™(1,7), on S™

By Theorem 3.4, there is a subsequence of smooth strictly convex function u™
converges to u in C3* for every 0 < @ < 1. And u satisfies (1.1). By Theorem 1.2,
u is strictly convex. The higher regularity and the analyticity of u follows from the
standard elliptic theory. a

Remark 5.2. The convexity of (p‘71=' is dual to the concavity of the differential oper-
ator Sk%. From the proof, the condition on ¢ in Theorem 1.3 can also be replaced
by the condition ¢ connected to Si(vij + vdi;) € C_ 1 for some arbitrary smooth
strictly convex body with support function v in Theorem 1.3. It is easy to verify
that if ¢ satisfies (1.2) and {—;; + kd;jo} > O, then ¢ satisfies the condition in
Theorem 1.3.

Remark 5.3. If G is an automorphic group of S™ which has no fixed point (e.g., G
a symmetry action with respect to the origin) and if ¢; and @, are invariant under
G, one may connect ¢; and (s in C_% by the function h(t,z) = (t(p(m)l_% +(1-
t)wg_%)"“. h(t,z) satisfies (1.2) automatically as it is invariant under G (see [17]).

In particular, every G-invariant function ¢ € C_ 1 1s connected to 1 in C_ 1. In this



CHRISTOFFEL-MINKOWSKI PROBLEM I: HESSIAN EQUATIONS ON S» 21

special situation, ¢ € C_ 1 if and only if ¢ = v—* for some positive support function
v of a G-invariant convex body. By Theorem 1.3, for any G-invariant convex bodies
K; and K, with support functions v; and vy respectively, VA € [0,1], Vp € R,
there is a unique G-invariant convex body I~{§‘J with support function u such that
Sk ({wij +diju}) = (A + (1—X)vE)~*. The relation defines an operation for such G-
invariant convex bodies. The observation exhibits that the class of functions which
satisfy the condition in Theorem 1.3 is quite large.

Remark 5.4. In the case of the figures of revolution, the intermediate Christoffel-
Minkowski problems was solved in Firey [14]. Set g: = (to(z) + 1 — t)%, and let
m(x), ---, M (z) be the eigenvalues of the matrix {d;jg:—(g:)i;} at the point z. Set 7 =
max; (7 (x)). Pogorelov in [29] obtained a sufficient condition for the intermediate

1
Christoffel-Minkowski probelms. The condition is that, ("T"I) 2-N7 < mingn g;.
1
We note that, at any maximum point of g;, it yields ("’T_l) -1 maxgn g; < mingn g;.
This puts the restriction on g; that ¢ is close to a constant.
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