CONVEX HYPERSURFACES OF PRESCRIBED CURVATURE

BO GUAN AND PENGFEI GUAN

1. INTRODUCTION

For a smooth strictly convex closed hypersurface ¥ in R™*!) the Gauss map
n: Y — S" is a diffeomorphism. A fundamental question in classical differential
geometry concerns how much one can recover through the inverse Gauss map when
some information is prescribed on S™ ([26]). This question has attracted much
attention dating back to more than a hundred years ago. The most notable example
is probably the Minkowski problem of finding a closed convex hypersurface in R?**!
whose Gauss curvature is prescribed as a positive function defined on S™. This
problem has been solved due to the work of Minkowski [17], Alexandrov [1], Lewy
[16], Nirenberg [18], Pogorelov [20], [21], Cheng-Yau [5] and others. In particular,
the analytic approach of Nirenberg, Pogorelov and Cheng-Yau to the problem has
inspired significant development of the theory of Monge-Ampére equations. Besides
the Gauss curvature, there are other important Weingarten curvature functions such
as, for example, the mean and scalar curvatures. In 1950s, A. D. Alexandrov [2] and
S. S. Chern [7], [8] raised questions regarding prescribing Weingarten curvatures.
So far large part of the problem has not received much consideration. Apart from
the Gauss curvature case (the Minkowski problem), very little is known except a
uniqueness result for the case n = 2 (see [2] and [12]).

In this paper, we initiate an investigation of problems in this direction. Specif-
ically, we consider the problem of finding closed strictly convex hypersurfaces in
R™*1 one of whose Weingarten curvatures is prescribed as a function defined on S™
in terms of the inverse Gauss map.

We first recall the definition of Weingarten curvatures for hypersurfaces. Let
Sk(A1,...,An) be the k-th elementary symmetric function normalized so that

Sk(1,...,1)=1.
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For a C? hypersurface £ in R™1, let k = (xy, .. ., kn) denote the principal curvatures
of 3 with respect to its interior normal. The kth Weingarten curvature Wy, of ¥ is
defined as
Wi = Sk(k1,...,65), k=1,...,n. ‘

For ¥ = 1,2 and n, Wj corresponds to the mean, scalar and Gauss curvature,
respectively. The following is a precise formulation of our problem.

Problem: Let 1 <k < n be a fixed integer. For which smooth positive function
% on S™ does there exist a closed strictly convex hypersurface T in R**! such that

(1.1) Wi(n™(z)) = ¢(z) VzeS?

Here we exclude the case £ = n as it corresponds to the well known Minkowski
problem. Our main result may be stated as follows.

Theorem 1.1. Assume ¢ € C51(S™) (I > 1) is a positive function. Suppose there
is an automorphic group G of S™ which has no fized points. If v is invariant under
G, ie., P(g9(z)) = ¥(z) for all g € G and z € S™. Then there exists a Cl+22
(V0 < a < 1) closed strictly conves hypersurface T in R™1 satisfying (1.1).

In particular, we have
Corollary 1.2. Assume ¢ € CH1(S™) (I > 1) is even, i.e., Y(—x) = 9(z) for all

« € S™. Then there ezists a C2 (V0 < a < 1) closed strictly convez hypersurface
Y in R™ ! satisfying (1.1). Moreover, after possibly a translation X satisfies

n Y(—z) = —n"Y(z) Vz e S™.

When n = 2, the solution is unique up to translations.

It is an outstanding problem to find necessary geometric obstructions to existence
of solutions in the general case. If they were at hand, one would be able to drop
the group invariance assumption in Theorem 1.1 as all necessary a priori estimates
are established in this paper. We note that similar group invariance assumptions
were previously used in other geometric problems such as, for example, conformal
deformation of scalar curvatures (see Chang-Yang [4], Chang-Gursky-Yang [3] and
references therein).

For the Minkowski problem, a necessary and sufficient condition of solvability is

known, i.e.,
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This is also a necessary condition for the Christoffel-Minkowski problems of pre-
scribing elementary symmetric functions of principal radii on outer normals (e.g.,
[21]). One would expect (1.2) to be a necessary or sufficient condition for problem
(1.1) as well. However, it turns out not to be the case. Indeed, we will prove

Theorem 1.3. (a) For every 1 < k < n and any nonzero real number m, there exists
a parameter family of closed strictly convez hypersurfaces (all are small perturbations
of the unit sphere) in Rt satisfying

/S" (Wi(n~(2)))

(b) There ezists a function f € C*(S") and a constant § > 0 such that for all
t € (0,8), problem (1.1) has no solution for 1 := (1 +tf)~ while (1.2) is satisfied.

(1.3) _ 0.

Another important question is the uniqueness for prescribing Weingarten curva-
ture problems. For the Minkowski problem the uniqueness is known, as a conse-
quence of Brunn-Minkowski inequality. There is also Alexandrov-Fenchel-Jensen
theorem regarding the uniqueness for the Christoffel-Minkowski problems. When
1 < k < n, the uniqueness for problem (1.1) seems still open in general, except for
n = 2. For constant Weingarten curvature hypersurfaces, the uniqueness is known;
see [13] for the mean and Gauss curvatures, and Cheng-Yau [6] and Hartman [11]
for the general cases. In this paper, we obtain the following local result.

Theorem 1.4. Let 1 < k < n. There ezists a constant § € (0,1) such that for all
functions ¢ € C**(S™) with ||1 — Pllcragry < 6, problem (1.1) admits either no
solution or a unique solution up to translation.

While the Minkowski problem is connected with Monge-Ampere equations, the
resulting differential equation for problem (1.1), when 1 < k < n, is a Hessian
quotient equation on S”. This type of fully nonlinear equations has recently been
studied by Trudinger [23], [24] and Krylov [15] for Dirichlet problem on bounded
domains in R". We will transplant their work to S™. In a different content, Hessian
quotient played important roles in recent work of Huisken-Sinestrari [14].

This article is organized as follows. In section 2 we reformulate equation (1.1) in
terms of the supporting function on S™ and establish a priori estimates for admissible
solutions. In section 3 we consider an auxiliary equation and use a degree theory
approach to prove Theorem 1.1. In section 4 we first prove part (a) of Theorem 1.3
by constructing strictly convex hypersurfaces satisfying (1.3). We then prove part
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(b) of Theorem 1.3 and Theorem 1.4 with the aid of the a priori estimates established

in section 2

Part of this work was done while both authors were visiting NCTS, Taiwan in
1999. We are very grateful to Professor C. S. Lin and NCTS for their warm hospi-
tality. We would also like to thank Professors A. Chang, C. S. Lin, P. Yang and S.
T. Yau for helpful discussions and encouragement.

2. A PRIORI ESTIMATES FOR THE SUPPORTING FUNCTION

Let X be a closed strictly convex hypersurfaces in R™*! and n(y) the unit outer
normal vector to £ at y € ¥. The Gauss map n then is a diffeomorphism from
Y onto S". Let Y = n7!: S* - % C R" denote its inverse Gauss map. For
convenience we may assume the origin of R®*! is contained in the interior of 3. The
supporting function u of ¥ is defined as

u(z) =z-Y(z), z€S* CcR".

Let V2u denote the Hessian of u and o the standard metric of S*. The Hessian
matrix
A=V +uo

contains all information of curvatures of . It is well known (e.g., see [5]) that the
principal radii r; = Kl'(l < i < n) of curvature of T are the eigenvalues of V2u + uo.
Let K denote the collection of all n x n positive definite symmetric matrices and

rt= {)\= (Al,...,)\n) ER”I)\,’ > 0}.
For each A € K, let A(A) = (\1,...,An) denote the eigenvalues of A. We define

(2.1) F(A) = (Spn-s(MA)F, A€k
where S, ; = Sp/S; for 0 <1 < n (for convenience we take Sy = 1). Note that
Sk(l’f,]_, - ,Iﬂn) = [Sn,n—k(ﬁl_l, - ,Ii;l)]_l.

Consequently, if ¥ is a solution of problem (1.1), its supporting function u satisfies
the following partial differential equation on S*

(22) F(V?u+u0) = (Spni(r[u]))¥ = ¢ on S,

where @ = 'z,b‘% and r[u] = (rq,...,7,) denotes the eigenvalues of V2u + uo.
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We call a function v € C%(S"™) admissible if Vv + vo is positive definite. If u is
an admissible solution of (2.2), we can recover a strictly convex hypersurface 3 that
solves (1.1) by

(2.3) Y(z) =u(z)r +Vu, z€8"

(see also [5]) so that w is the supporting function of . Therefore, solving problem
(1.1) is equivalent to finding an admissible solution of (2.2).

We now proceed to derive a priori estimates for admissible solutions of (2.2). The
main estimates we obtain in this section are for general cases. The group invariance
assumption will be only needed when we make use of degree theory in the proof of
Theorem 1.1.

When k& = n, equation (2.2) is a Monge-Ampére type. In general, (2.2) is a Hessian
quotient equation on S". In the work of Cheng-Yau [5] and Pogorelov [21] on the
Minkowski problem, a crucial step is to estimate the diameters of strictly convex
hypersurfaces in terms of upper and lower bounds of their Gauss Curvature. Cheng-
Yau [5] obtained explicit bounds for the inner and outer radii of the convex body,
which now is called Cheng-Yau Lemma. However, similar estimates do not hold
if the Gauss curvature is replaced by other Weingarten curvatures without further
regularity assumptions on the curvature function (e.g., a convex perturbation of long
cylinder with caps). Here we will first use the special structure of equation (2.2)
to derive positive lower and upper bounds for principal curvatures of the convex
hypersurface under C*! regularity assumption on its k-th Weingarten curvature.
Then we apply Cheng-Yau’s lemma, to obtain C? bounds. The similar idea was used
by Yau [25].

In the rest of this section, we assume u € C*(S") is an admissible solution of
(2.2). We stress that the estimates we will derive below are independent of the

group invariance assumption.

Proposition 2.1. There exist constants cg, Cyp > 0 depending only on n, inf ¢ and
||tp||cl,1(Sn), such that

(2.4) coo < V2u+uo < Cyo on S".

Proof. Write
H = trace(VZu + uo) = nu + Aw.

We first estimate H from above. Assume the maximum value of H is achieved at a
point zp € S™ and choose an orthonormal local frame ey, ..., e, about zy such that
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u;j(zo) is diagonal. Denote
wij = uj + 055U,

and oF
FY — _ ).
aw” ({w"J})
For the standard metric on S”, we have
(2.5) H;; = Awy; — nwy; + H.

By our assumption the matrix {w;;} is positive definite and hence so is {F*}. It
follows that at zo, since {H;;} < 0 and {F*} is also diagonal,

0> F¥Hy = F*A(wi) — nFPwy + H Y  F%,
Since F' is homogeneous of degree one, we have
Fi"wz-.i = .
Next, applying the Laplace operator to equation (2.2), we obtain
FiA(wy) > Aep.
Here we have used the fact that F' is concave. We also have the inequality (see [23])

OF

(2.6) —OXi T

Combining these inequalities, we see that
H<C() FH <o

This proves the upper bound in (2.4).
On the other hand, by equation (2.2) and Newton-Maclaurin inequality, we have

Sn(rful) = ¢* Spi(rlul) = ¢ (Sa(rlu))) =,
and hence
Sn(rlul) 2 c1p™
for some constant ¢; > 0. Since each of the eigenvalues of V?u + uo is bounded
form above by a uniform constant, this gives the lower bound in (2.4). O

It follows from Proposition 2.1 that equation (2.2) is uniformly elliptic with re-
spect to admissible solutions. Suppose u is the supporting function of a strictly
convex hypersurface ¥. Then by Proposition 2.1, all principal curvatures of & are
bounded above and below from zero. In particular, the Gauss curvature of & admits
a positive lower bound and an upper bound as well, which depend only on the k-th
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curvature of X. It follows from Cheng-Yau’s Lemma that the interior of & contains
a ball whose radius depends only on the k-th Weingarten curvature of 3. After a
translation, we may assume the Steiner point of ¥ is the origin (that is, u is orthog-
onal to Span(zy,...,%n+1)). Cheng-Yau’s Lemma therefore implies a bound for u
from above. By Proposition 2.1 we then obtain bounds for the second derivatives,
which in turn yields an a priori gradient bound for » as Vu must vanish at some
point on S™. We thus have

Proposition 2.2. Suppose u is the supporting function of a strictly convex hyper-
surface ¥ with the origin as its Steiner point. Then there erists a constant Cp > 0

depending only on n, infy and ”‘P”CI,I(S") such that
(2.7) ”“”02(8") < Ch.

By the Evans-Krylov and Schauder theory (see, for example, [10]), we obtain
C%% and higher order estimates from the C? estimates in Proposition 2.2 and the
uniform ellipticity which is guaranteed by Proposition 2.2.

Theorem 2.3. For each integer Il > 1 and 0 < a < 1, there ewists a constant K
depending only on n,l,a, miny and ”‘P”CI-I(S") such that

(2.8) ”’U'”cz+2.a(S") <K

for all non-negative admissible solutions u of (2.2).

We next list some simple facts about automorphic groups on S which we will
use later. For the reader’s convenience (also partially because we were not able to
find an appropriate reference), we include brief proofs.

Proposition 2.4. Let G be a automorphic group on S™. Then

(i) G has no fized points if and only if there is no nontrivial invariant functions
under G in the linear span K; of x1,...,Tn41;

(i) if G does not have fized points on S™ then any invariant function under G is

orthogonal to Ki;
(111) no orbit of G is contained strictly in an open hemisphere provided that G

does not have fized points.

Proof. (i) Suppose G has a fixed point @ € S™, i.e., g(a) = a for all g € G. Then

a-g(z) =g(a) - g(z) =a-z Vge G,z eS".
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Thus the function v € Span(z;,...,Zn+1) defined by v(z) = a-z, z € S is invariant
under G. Conversely, suppose ¢ € R*1, ¢ £ 0, such that

c-g(z)=c-z, Vg€ G,z eS"
Let a = ¢/||c|| € S®. Then
a-gla)=|la*=1, Vge@.

This implies g(a) = a for all g € G.

(ii) Suppose u is a function invariant under G. We decompose u as a series of
spherical harmonic functions in Kj, j = 1,2,..., where Kj is the space of spherical
harmonic functions of degree j. G acts invariantly on K. So each component (in
K;) of u is also invariant under G by the uniqueness of decomposition. In particular,
if G has no nontrivial invariant function in K3, the component of v in K; must be
0 and, therefore, 4 must be orthogonal to Kj.

(iii) Suppose there is a point £® € S™ such that its orbit G(z°) is contained in
an open hemisphere. Let C' be one of the smallest closed spherical caps containing
G(z°). We may assume C is bounded by a horizontal plane (below the center of
S™). We then claim the north pole p is a fixed point of G. This can be seen
as follows. Suppose g(p) # p for some g € G. Then G(z°) is contained in the
intersection of C' and g(C). Note that g(C) is congruent but not identical to C
since dist(g(p), g(C)) = dist(p, C). It is easy to see now that G(z°) is contained in
a strictly smaller cap. O

Under the assumption that v is invariant under the automorphic group G' which
has no fixed points on S, we may obtain bounds for u directly from Proposition 2.1
by some elementary methods. In the following, ¢y, Cy are as in Proposition 2.1.
Lemma 2.5. Let v be a geodesic on S™ with the arc length parametrization and
write u(s) = u(y(s)). Then, for all s € [0, §],

co(1 —cos s) < u(s) — u(0) cos s — u'(0) sins < Cy(1 ~ cos s).
Proof. For 0 < 5 < %, set h = u/coss. Then
(K cos? s)' = u" cos s — u (cos s)” = (u" + u) cos s.

By Proposition 2.1 we obtain

T
cocoss < (B cos’s) < Cycoss, 0<s< 5
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It follows that

cosins < h'(s)cos? s — A'(0) < Cpsins, 0<s< g

Integrating this again we obtain the desired inequalities. O

Corollary 2.6. Suppose u is invariant under an automorphic group G which has
no fized points on.S™. Then

co<u<Cy onS"

Proof. Suppose u achieves its minimum and maximum at zg, yo € S”, respectively.
Thus Vu(zg) = 0 and Vu(yp) = 0. Moreover, by Proposition 2.1, we have u(zg) <
Co and u(yp) > cp since V2u(zg) is positive semi-definite and V2u(yy) is negative
semi-definite. Let sy be the distance between zg and 1y on S™. Since u is invariant
under G and by Proposition 2.4, the orbit of any point on S” is not contained in an
open hemisphere, replacing zg by g(zo) for some g € G if necessary, we may assume
so < %. By Lemma 2.5 we have

u(zo) — u(yo) cos so > co(1 — cos sp)
and
u(yo) — u(zo) cos 59 > Co(1 — cos sp)
from which follows that ¢y < u(zg) < u{yp) < Ch. O

Remark 2.7. In the general case, we derive from Lemma 2.5 that

2¢p < nSq‘nu -l-nég;xu < 2C%.

This gives an upper bound for u provided that u > 0 on S™.

Remark 2.8. If u is invariant under an automorphic group without fixed points, its
Steiner point is the origin since u is orthogonal to the linear span of z1,...,z,41 by
Proposition 2.4. Corollary 2.6 also follows from a result of Schneider [22].

3. EXISTENCE VIA DEGREE THEORY

With the estimates derived in the last section, it would be natural to use continuity
method to obtain a solution for equation (2.2). Unfortunately, while the closeness
follows from the estimates, the openness is difficult to establish due to the lack of
geometric obstructions. Instead, we will approach the problem using degree theory,
which is the only place we need the group invariance assumption.
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We first consider some auxiliary equations of the form
(3.1) F(V?u+vo) = %(p on S".
Let v € C?(S"), v > 0 and set
Alv] = {u € C*(S") : VZu +vo > 0}.

Our goal here is to find a unique solution of (3.1) in Afv]. We first need to derive a
priori C? estimates for solutions of (3.1) in A[v].

Lemma 3.1. For any function u € C%(S"), we have
(3:2) ”'u'”él(g") < 4““”00(S")”u”02(8")-

Proof. Let U = u — mingr u, we have U > 0 on S™. Suppose max |VU| = |VU (p)| =
e1U(p) at some point p € S™ and with a unit vector filed e;. Let y be the great
circle on 8" which is tangential to e; at p, parameterized by the arc-length s with
7(0) = p. We write U(s) = U(y(s)). This then reduces the problem to the one
dimensional case: we only have to show that

(U'(0))? < 2(max U)(max U").
By Taylor’s expansion,
2
0 < U(s) < U(0) + U'(0)s + (max U”)% Vs €R.

Note that we may assume U(0) > 0 (otherwise, U’(0) = 0 since U is nonnegative).

Taking s = —2%,(%)5, we obtain

U2(0)
~U(0) + 2(max U") ——5 > 0.
O+ 2max U oy
Thus
[U'(0)? < 2(max U")U(0).
This prove Lemma 3.1. d

In Proposition 3.2 and Corollary 3.3 below, let u € C4(S™) N A[v] be a solution
of (3.1).
Proposition 3.2. There ezists a constant ¢; > 0 depending only on minv, minp,
“UHCZ(S") and ”‘P”C2(S") such that

1
(3.3) = <u<ec and |V2'u,| <ec onS".
1
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Proof. At a point on S™ where u achieves its maximum value we have
U
v > F(Vzu +wo) = —¢p
v

since V2u is negative semi-definite. The maximum value of u is thus controlled by
max v and min . Similarly, at a point where the minimum value of u occurs,

v < F(Viu+4vo) = %cp.
Therefore u is bounded from below by a positive constant depending only on minv
and max .

Since V2u + vo is positive definite, to estimate |[V2u| we only need to derive an
upper bound for Au. Assume the maximum value of Au is achieved at a point zg
and choose an orthonormal local frame about %o such that u;;(zo) is diagonal. We
have at zg, since {(Au);;} <0 and FY is also diagonal,

0 >F*(Au);;
=Fii(A(’u.1;i) + 2Au — 2nui,-)
=F"A(uii + v) — 2nF%(ui; + v) + (2Au + 2nv — Av) Y F¥
U u i
>A(—p) — 2n— 2Au+2nv — A F*
>A(=p) = 2n—p+ (28u + 2nv — Av) 3

Au 7 © .
>— 2 = - Au— A F*
2—p+ VuV(v)+uA(v)+( u v+nv)z
by concavity of F. Now (3.3) follows from Lemma, 3.1. O

Corollary 3.3. Let u € C*(S™) N A[v] be a solution of (3.1). There ezists constant
ca > 0 such that

1
(3.4) P < V?u+wvo <cgo on S™
2

Proof. We only have to derive the lower bound. Note that F(V2u+ vo) is bounded
below from zero and the eigenvalues of (V2u + vo) are bounded from above by
Proposition 3.2. As in the proof of Proposition 2.1, this implies a positive lower
bound for the product of the eigenvalues of V?u + v, which in turn implies a
positive lower bound for all eigenvalues of V2u + vo. O

Theorem 3.4. Assume v, ¢ € C4(S"), v > 0, ¢ > 0 on S™. Then there ezists a
unique solution u € C>*(S™) N A[v] of (8.1), where 0 < a < 1. Furthermore,

”u“cs,a(S") <C

for some constant C' depending only on n, o, minv, min ¢, ||v|| ca(S™) and llell ga S™-
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Proof. We will show that for 0 < ¢ < 1 the equation
(3.5) F(VZu +vlo) = %(pt on S

has a unique smooth solution in A[v'] with appropriate a priori estimates, where
v' =tv+ (1 —1t) and ¢* = tp + (1 — ). By a standard comparison argument (see,
for example, the proof of Theorem 17.1 in [10]) we see that the solution of (3.5) in
A[v?], if exists, is unique for each ¢ € [0, 1]. Set

T ={s €[0,1] : (3.5) is solvable in C>*(S™) N A[v*] for all ¢ € [0, 5]}.
For t € T, let u* € C5(S™)NA[v!] be the solution of (3.5). We note that 0 € 7 and
1% = 1. By Proposition 3.2 and Corollary 3.3, equation (3.5) is uniformly elliptic at
u® and

|| c2s™) £ €, independent of .
By the Evans-Krylov theorem and the classical Schauder estimates we obtain
(3.6) ”ut”CS,a(S") < C, independent of .

This implies that 7 is closed in [0, 1].
Next, let £; be the linearized operator of u — F(V2u+vto) — %o’ at u?, that is,

. i
Lip = FY (V! +v'0)p;j — %p, for p € C%(S™).
By the maximum principle,

Ly : C>%(S™) = C¥(S™)

is one-to-one. Thus, £; is invertible if and only if its index, ind(L;), is equal to
zero. By the Fredholm Alternative and the regularity theory, (By the Fredholm
Alternative, Lo : H? — L? is invertible. Then apply regularity result to show
Ly : CFt2e 4 Ok is invertible.) the linear operator £g, which is given by

Lop=Ap—p, for peC*S),

is invertible from C®“(S"™) onto C*%(S") and hence ind(Ly) = 0. Consequently,
ind(£) = 0 and L; is invertible for all ¢ € 7, as the index is homotopy invariant.
By the implicit function theorem, 7 is open in [0, 1] and thus 7 = [0, 1]. O

We are now in a position to solve (2.2) and prove Theorem 1.1.
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Proof of Theorem 1.1. Let G be an automorphic group without fixed points on S*
and consider the Banach space
B = {w e C*S™) : w(g(z)) = w(z) for all g € G and z € S"}.
Assume p € B, p > 00n S™. For w € Band 0 <t <1, we write v = ¥ and denote
by u’ the unique solution of (3.5) in A[v] with @ = tp + (1 —t), as in the proof
of Theorem 3.4. ;From the uniqueness we see that logu® € B. By Theorem 3.4 the
map
(3.7) T;: B— B, w~ logut
is compact. Moreover, according to Corollary 2.6 and Theorem 2.3 there exists no
solution of
(3.8) w—Tiw=0
on the boundary of
Br={weB: ||u|g< R}
in B when R is sufficiently large. Consequently, the degree deg (I — T3, Bg,0) is
well defined and independent of ¢. When t = 0, if w satisfies Tow = w, then w is
a supporting function of a unit sphere (see, e.g., Cheng-Yau [6] and Hartman [11]).
As w € B, by Proposition 2.4, w = 0. That is, Tow = w has a unique solution
w = 0. So the fixed point of T} is isolated and
deg (I — Tp) = deg (I — To, B5(0),0)
for any small § > 0. Let Thv = ¢70(98%) | We have
deg (I — To, B5(0),0) = deg (I — Ty, Bs(1),0).
Now, let us look at the derivative (I — ff’o)'. As Tyv satisfies
. T
F(VX(Tyv) +vo) = %v,

the linearized operator at v of Ty satisfies

' I 7 T(; P pff’ov
F"](VZ(TQ'U)+’1)0')((T0,vp),;j + pdi;) = ;,v =

At v =1, we have Tpv =1, (f’ofu),;j + vd;; = 6;; and Fii = dij. We see that
A(T(;,lp) t+np= T(;,lp —p-

That is,
(A —=1)(Tp10) = —(n+1)p.
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This yields
Thy=(n+1)(1-A)™"
If (I — f};)l)p =0, p satisfies Ap = —np. That is, p € Span{z1,...,Znt1}. On the
other hand, as p € B, p is orthogonal to the span of z;,...,Z,41 by Propoéition 2.4.
We must have p = 0. Therefore, T — T(;,l is injective in B. By the standard degree
theory (e.g., [19]);
deg (I - Tv, B5(1),0) = (-1)”,
where 8 is the number of eigenvalues of f‘é,l which are greater than one. Let us
calculate 8. If y > 1 and
Ty 10 ="p,

we then have 41
n
Ap=(——-1
= ( p )p-

As the eigenvalues of A are non-positive integers, we must have 1 = ﬁ,yﬂ That is,
v=mn+1, and 8 = 1. We conclude that

deg(I —Ty) = —

Thus, (3.8) has a solution for each 0 < £ < 1; the one corresponding to ¢ = 1 is then

a admissible solution of (2.2).
This completes the existence part of Theorem 1.1. Finally, the regularity in

Theorem 1.1 follows from Theorem 2.3. O

4. PROOF OF THEOREMS 1.3 AND 1.4

We start with some calculation. Let v € C°°(S™) and consider u; = 1 + tv. For
t > (0 small, u; is a supporting function of some smooth strictly convex hypersurface,

and
n

2 ' _ i
Sn(VPut +uo) = 2; Z,(n Z)ls #,
Here, and in the rest of this section, we write S; = S;(V?v + vo). It follows that

(4.1) /Snxjs,-da=0, Vi<j<n+1, 1<i<n

since
Joo 2350V 4 wia)do =0, V1<ji<nt1

for all £ > 0 sufficiently small.
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For a fixed k (1 < k < n), by straightforward calculation we see that

(4.2) Sne(V2us +uio) = 1+ ast + agt? + ast® + O(th)
where
ay = (n -— k‘)S]_,
n—k
(4.3) a3 = —5—[(n+k—1)8, — 2k57],
-k
as = %[%Sf - (n + 2k — 2)5152] + aSs,

for some constant a depending only on k and n. ;From this we compute, for any
m € R, the coefficients of the Taylor expansion

(4.4) [Sn (V2 +u0)]™ = 1 + byt + bot? + bst® + O(t%)
to obtain

by = m(n — k)Sy,
(45) by = mz_k)-[(n +k—1)8; + (m(n — k) — n— k)S?]
and, when m = H,
(4.6) b3 = M(&Sﬁﬁ’z —25%) +bS;

where b is a constant. We are now in a position to prove the following result which
implies part (a) of Theorem 1.3.

Proposition 4.1. For every integer k, 1 < k < n, and any m € R, m # 0 there
exists v € C°(S™) such that the function u; = 1 + tv satisfies

(4.7) /S 2 [Sp(VPue + 140)]do 0
for all t > 0 sufficiently small.
Proof. We use the spherical coordinates on S™

1 = CO8 91,

z; =sinfy---sinf;_jco80;, 1<j<n,
(4.8) T N
ZTnt1 =siné; ---sinb,_; sin b,
dogn = sin""1 9, sin™ 20, - - - sinb,_1d0; - - - dby,

where 0 <8, <7, 1<j<n-1; 0<6, <27 Let

(4.9) 9(z) = n(cos? ;) - - - n(cos? B,_1) (cos 26, + sin 36,,)
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where 7 is a smooth cut-off function satisfying 0 <7 < 1; n(t) = 1 if [¢| < 1 and
n(t) = 0 if |t| > 2. One finds that

(4.10) Jomsa@) =0, ¥i<i<n+1, Jmnag@) 2o

Note that the linear elliptic operator L defined by L(v) = S1(V?v + vo) is self-
adjoint with kernel Ky = Span(z1,...,Zp+1). As g is orthogonal to the kernel of L,
there exists v € C*°(S™) satisfying the equation

(4.11) S1(V% +wvo) =g on S™.

By (4.10), we see from (4.1)-(4.5) that u; = 1 + tv satisfies (4.7) for all ¢ > 0

sufficiently small, provided that m # H

Turning to the case m = %f—,’z, we take v = :cll where [ > 1 is an odd integer. For
t > 0 sufficiently small, the function u; = 1 + tv then is the supporting function of
a surface of revolution. For convenience we write § = 6; and, therefore, z; = cos 8,

0 < 8 < 7. Using a formula in [9] with some simplification, we obtain
1-1
S1 = —n——(n cos? @ — I'sin? ) cos' 2 6,

Sy = (1-1n? A-2p

(n cos® 6 — 21 sin? §) cos

It follows that

1— 3
35152 — 253 = ( nsl) (n® cos® @ — 3n?1 cos* @ sin? @ + 213 sin’ ) cos® 6 9.

We calculate

/S _21(38182 — 28{)do = ¢; /0 W(35152 —25%)sin™"1 @ cos 0df
=cy /0 W(n3 cos® 6 — 3n?l cos* 0 sin? 6 + 21° sin® 0) cos® % G sin™ ! Hdf
=n2cy /0 7r(n cos®*1 9sin™ 1 9 — 31 cos® ! 9 sin™*! 6)dH
+ 213¢, /0 i cos® 5 9 sin™ % 94

T
=203¢, / cos¥ % 9sin™ % 9do < 0
0

since

T
/ (ncos® 1 9sin™ 19 — 31 cos® ! g sin™ ! 9)df = cos® G sin™ @ : =0
0
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and [ > 1 is an odd integer, where ¢; is a positive constant (equal to the volume of
3

S" 1) and ¢z = %}—IL < 0. ;From (4.1)-(4.6) it follows that u; satisfies (4.7) for

all ¢ > 0 sufficiently small. a

Remark 4.2. In the case m = Z—fi, 1y constructed in the proof of Proposition 4.1
is the support function of a surface of revolution. Similar construction can also be
done for m # H It follows from the proof of Proposition 4.1 that the linearized
operator L,, of S,’{fk at u; is not self-adjoint with respect to the standard metric on
S™. We complement this with the following observation. Suppose w is a positive

function defined on S™ such that
(4.12) /S 2j0(@)[Sap(V2u + uo)]™ = 0

for all u € C®(S") with {VZu +uo} >0, where 1 <j<n,1<k<nand meR,
m # 0 (all are fixed). Then, for any v € C?(S"), as the function u; = 1+ tv satisfies
(4.12) for all t > 0 sufficiently small, we have

/S" zjw(a:)Sl(VZU +wvo)=0

by (4.4) and (4.5). This implies A(z;w) + nzjw = 0 on S. Since the kernel of
A + n is the linear span of z1,...,z,, we see that w = const.

With the aid of the a priori estimates established in section 2, we have the fol-
lowing non-existence result which proves part (b) of Theorem 1.3.

Proposition 4.3. Let 1 <k <n and g € C*(S") satisfy (4.10). Then there ezists
a constant 0 > 0 such that for all 0 <t < § the equation

(4.13) Sni(V2u +uo) = 1+t(n—k)g
does not have any admissible solution.

Proof. Suppose that there exists a sequence of positive numbers ¢; = 0 (I — o0)
and admissible functions v; € §%%(S™) satisfying

Suk(Viuy+vo) =1+t(n—k)g, 1=1,2,....
Let u; = 1 4 #;v where v € C*°(S") is a solution of (4.11). We may assume that
v 1 Ky and v; L K for alll > 1, where K is the span of z1,...,2,41. Let

U, — v
wp = 5
tl
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By (4.2) we see that w; satisfies
(4.14) Lywy = a3+ O(%)
where ag is as in (4.3) and L; = afj Vij + ¢ is an elliptic operator with coefficients

. 1
o) = %(Vzuf + ujo)ds

and ¢; = Y a¥*, where uf = su; + (1 — s)v;. By Proposition 2.1 and Theorem 2.3, I
is uniformly elliptic and L; -+ Ly = A + n in the Banach space of bounded linear
operators form C3(S™) to C1(S™). We claim that there exists a constant C such

that

(4.15) ”wl”ch(S") <C VIi>1

Suppose this is not true. After passing to a subsequence, we may assume
lwillgoggmy > 1 V1

and let w; = wl/”"UIHCO(S")- Then

Ly, = as + O(tl) .
”'WZHCO(S")
We obtain by the standard elliptic estimates,
“"Dl“CS(S") < C independent of I.

It follows that there exists a subsequence {1, } that converges in C>*(S") norm to
a function W € C%%(S™). We have

AW +nw=0 on S",

and therefore @ € K;. Since w; L K; for all I > 1, we have @ L K; and hence
w = 0. This is a contradiction as ”'LBIHCO(S") =1 for all [ > 1. Therefore, the claim
is true.

Again by the elliptic estimates we obtain from (4.15)

||wl||03(sn) < C independent of .

The implies that a subsequence of {w;} converges to some wy € C%*(S™) (in C?
norm). By (4.14) we have

Awg +nwpg=ag on S".
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Thus as L K3, which is a contradiction since

./S" Tnt102 = —k(n — k) /S" Tni19” #0
by (4.3) and (4.10). O

Proof of Theorem 1.4. It follows the similar lines as in the proof of Proposition 4.3.
Suppose the theorem is not true, then there is a sequence of g; € CL1(S") with
11— gjllcl,l(Sn) =c¢; < Jl such that, there are two solutions u{ 1 K; and u% 1K
ul —u
. ”U{—ujzllco
elliptic equation L;j(w?) = 0, for each j with L; uniformly elliptic. By the uniqueness
theorem for the equation (2.2) with ¢ = 1, we have L; — Ly = A + n. Passing to
a subsequence, w’ converges to a function w in C? with Aw + nw = 0. This is a

with w] — ud, % 0, for each j = 1,2,.... The function w/ = satisfies an

contradiction to the facts ||w|lco =1 and w L Kj. 0O
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