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Summary

The behaviour of magnetic helicity in kinematic dynamos at large magnetic
Reynolds number is considered. Hughes, Cattaneo & Kim (1996) observe that
the relative helicity tends to zero in the limit of large magnetic Reynolds number.
This paper gives upper bounds on the helicity, by relating the helicity spectrum
to the energy spectrum. These bounds are confirmed by numerical simulation
and the distribution of helicity over scales is considered. Although it is found
that the total helicity becomes small in the limit of high conductivity, there can
remain significant, but cancelling, helicity at large and small scales of the field.
This is illustrated by considering the evolution of helicity in the stretch—twist—fold
dynamo picture.
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1. Introduction

Magnetic fields in the Sun, planets and galaxies are generally believed to be generated
by dynamo processes, governed by the magnetic induction equation

#B=Vx(uxB)+R!VZB, V-B=0 (1.1)

(e.g., Moffatt 1978). Here u is the fluid flow, of plasma or liquid metal, B is the magnetic
field and R is the magnetic Reynolds number, which is large in many astrophysical envi-
ronments. The equation (1.1) has been non-dimensionalised using the scale and turn-over
time of the flow u. In kinematic dynamo theory the flow u is fixed; if it is sufficiently
complex and R is large enough, the flow may act as a dynamo, giving exponential growth
of magnetic energy. For example, for a steady flow u, we will have eigenfunctions of the
form

B = b(z, y, z)e®+P), (1.2)
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where p is the dynamo growth rate. We shall be concerned with the limit of large magnetic
Reynolds number R and in particular ‘fast dynamos’, for which the largest real growth rate
p remains positive and bounded away from zero in this limit. Our interest in this paper is in
understanding the role of magnetic helicity within kinematic fast dynamo theory, although
in section 5 we give some discussion of nonlinear regimes. The general motivation for the
study of fast dynamos is that fast processes, such as the 22-year Solar cycle, are observed
in the (nonlinear) Solar dynamo for which R ~ 10 (e.g., Childress & Gilbert 1995).

In the idealised situation R = oo, in which the fluid is perfectly conducting, magnetic
energy will still grow in general, but it is known that the magnetic helicity H = <A:-B> is
conserved (under suitable boundary conditions) as the field evolves, and that this quantity
has a topological interpretation (Woltjer 1958, Moffatt 1969). Here <-> is a volume average
over the domain occupied by the fluid, and A is a vector potential for the magnetic field.
Plainly for R = oo, if a growing eigenfunction of the form (1.2) can be sensibly defined, it
must have zero helicity, as pointed out by Moffatt & Proctor (1985).

This raises the question of what happens to magnetic helicity in the limit when the
magnetic Reynolds number is large, but finite, R — co. Although the small quantity R~!
multiplies the final, diffusive term in (1.1), this term may not generally be neglected, since
the field may adopt small scales, and indeed in the Sun much small scale field structure
is evident (e.g., Priest 1984). The limit R — oo is highly singular and different behaviour
may occur for R = co and 1 < R < oco. For example in a kinematic dynamo, a typical
flow in the plane amplifies magnetic energy indefinitely for R = co, but magnetic energy
ultimately decays for any finite R, no matter how large, by Cowling’s theorem (Cowling
1934, Zeldovich 1957); the onset of the decay is delayed as R is increased.

It is found in MHD, in particular in tokomak and plasma physics, that the ideal helicity
invariant tends to be ‘robust’, being approximately conserved in many situations when the
dissipation is present but weak (e.g., Taylor 1974, Berger 1984, Biskamp 1993). This
suggests that helicity will be approximately conserved in a dynamo in the limit R — oo,
and so for growing fields the normalised, relative helicity should be small and tend to zero
in this limit. Precisely this behaviour is observed by Hughes, Cattaneo & Kim (1996),
who discuss the behaviour of magnetic fields in fluid flows with different degrees of flow,
or kinetic, helicity, <u -V x u>. In each case considered the magnetic helicity falls off
with a power law dependence as the magnetic Reynolds number is increased.

The aim of the present paper is to give bounds on the level of helicity in growing mag-
netic fields, within kinematic dynamo theory, and to discuss its distribution over different
scales. We use an exponent defined by Vainshtein & Cattaneo (1992) to give information
about the slope of the energy spectrum, and this leads to bounds on the helicity spectrum,
related to results of Berger (1984) (see sections 2 and 3). In section 4 we study the mag-
netic helicity for kinematic dynamo action in a flow first studied by Otani (1993). This
gives information not only about the total helicity, but also about its distribution over
scales, and we observe considerable cancellation of helicity as it is summed over a range
of scales. In particular we observe helicity at the very largest scale having opposite sign
to that at smaller scales. To understand how helicity may be distributed over different



scales in a fast dynamo, we consider the idealised ‘stretch-twist—fold’ picture, in section 5.
This makes a link with geometrical ideas of writhe and twist (see Moffatt & Ricca 1992).
Finally in section 6 we offer some conclusions.

2. Energy spectrum and Ohmic dissipation

In order to discuss the evolution of helicity in dynamos, there are a number of possi-
ble settings we could consider, three-dimensional steady flows, two- or three-dimensional
unsteady flows, or even random flows. In order to relate our results most cleanly to the nu-
merical simulations of section 4, we choose to work with a two-dimensional incompressible
flow field u(z,y, t), which has all three components (uz, ty, u,). We take the flow u to be
periodic with period 27 in « and y, and with period T in ¢. Examples of such flows have
been considered by several authors and robust fast dynamos have been obtained (Galloway
& Proctor 1992, Otani 1993). Our analysis could be adapted to other situations, and the
conclusions would be much the same.

We therefore consider solutions to the induction equation (1.1) (with V - u = 0) that
are periodic in space. We can define the magnetic energy E(t) by

1
E(t)=3 <|B|?>>, (2.1)
where <-> represents an average over space. This obeys
O,E = —<u-J x B> — e<|J|*>, (2.2)

where J = V x B is the current. Here we have conveniently set € = 1/R, so that € is a
dimensionless diffusivity and we are interested in the limit of zero diffusion € — 0.

We suppose that we have integrated the induction equation numerically for the given
flow, and the numerical solution is dominated by the fastest growing eigenmode, which
here takes the Floquet form

B = ePHw)ttikzp (4 4 £) + c.c. (2.3)

(in the absence of degenerate modes). Here ‘c.c.’ denotes the complex conjugate of the
previous term. The function b is periodic in ¢ with period T, and p is the real growth
rate of the mode with wavenumber k # 0. The above field is periodic in all three spatial
directions, and we take it to lie in a 27 X 27 x 27 /k box.

The magnetic energy is given by
E(t) = e¥'<|b|*> (2.4)

and grows exponentially in time (superposed on the periodicity inherent in b). Let us
factor out the exponential growth and then time average, to define the magnetic energy of
the growing eigenfunction as

£ = <e"PE(t)>; = <<|b|*>>, (2.5)
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where <->; denotes a time average. To avoid cumbersome notation we will drop such time-
averages from now on, with the understanding that this and similar quadratic quantities
are to be time-averaged.

It will be useful to look at the magnetic field in Fourier modes, writing

b(z,y,t) = Y _ bpn(t)e™* . (2.6)
m,n
In terms of this we have
&= ngna Emn = Ibmnlza : (27)
mn

where £,,,, is the the contribution to the energy from the (m,n)-mode. We may normalise
the eigenfunction so that the contribution from the large-scale field is

Eis = Eoo = |boo)® = 1. (2.8)

(If this mode is identically zero because of a symmetry, some other large-scale mode may
be chosen; the choice is not crucial.) We can also define an energy spectrum £(x) by

E=) E(k), Ew)= > [brmnl?, (2.9)

k=1 k—1<K(mn)<k

where K (m,n) = vm2 +n? + k% and k = 1, 2, ... labels the shells over which the spectrum
is computed.

We now introduce fast dynamo scalings. Moffatt & Proctor (1985) show that the
diffusive cutoff in a fast dynamo is a length-scale of order €'/2 (see also Galloway & Frisch
1986), and bearing in mind (2.8) above we may postulate an energy spectrum of the form

E(k) ~ 6271, (1 Sk SV, (2.10)

Here ~ is taken to mean ‘approximately proportional to’, with similar meaning to the
inequality symbols < and 2. Such scalings are consistent with numerical simulations
of fast dynamo action (e.g., Childress & Gilbert 1995, section 12.2). With this spectral
slope assumed, the total energy is obtained fron integrating (2.10) (and assuming that
(k) falls rapidly to zero outside the range given),

1 <0,
E=E/Es ~ {e_p z Ny (2.11)

and we may identify the exponent p with the exponent n of Vainshtein & Cattaneo (1992).1

 Note that for simplicity and brevity we shall here and elsewhere ignore special cases
such as p = 0 in (2.11) which give rise to the logarithmic scaling £ ~ loge. Such cases are
probably only of academic interest and in any case our scaling assumption (2.10) is too
crude to make deductions about any variation as weak as loge.
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The global energy balance (2.2) restricts the value of p. To see this we first make
the key assumption that in a typical fast dynamo all three terms in (2.2) are of similar
magnitude, and so

E~ned, JT=<|il*>, (2.12)

where the constant of proportionality implicit in our use of ‘~’ depends on the details of
the fast dynamo but is independent of € as ¢ — 0. Here j is defined for the current J
in a similar way to b for the magnetic field in (2.3), and in terms of Fourier components
(cf. 2.6)

Smn = iK X bn, (K = (m,n,k)). (2.13)

We may define the spectrum J(x) of the average current squared, analogously to (2.9),
with J = <|j|*>> = Yo, J (). From (2.13,2.10),

T(k) ~ 62Tt (15K S, (2.14)
and so
1 p<-—1,
T ~ {G—P—l o> -1 (2.15)

(see also Boozer 1992).

Clearly (2.11), (2.12) and (2.15) are only compatible if p > 0, and we will assume this
holds in what follows. The limiting case p = 0 is not ruled out by the above argument,
but measurements of p in simulations give positive values, as low as 0.25 (Gilbert, Otani &
Childress 1993), but increasing for flows of greater complexity (Cattaneo et al. 1995); see
gsection 4 below. Therefore we shall take p > 0 and note that for a typical fast dynamo (in
the kinematic regime), the total energy must therefore be dominated by small-scale fields
(Vainshtein & Cattaneo 1992). Note that in the two-dimensional case p = 1 (Vainshtein
& Cattaneo 1992); this is not a dynamo, but we observe p — 1 (from below) in the two-
dimensional limit k¥ — 0 of large-scale dynamo action, in section 4 below. We therefore
expect that in typical fast dynamos 0 < p < 1.

It is important to note that there are some examples of fast dynamos which do not
fall into our framework. Models such as baker’s maps with uniform stretching (Finn & Ott
1988), and that of Arnold et al. (1981), amplify magnetic fields without generating fine
structure. There is no cascade of magnetic energy to small scales and so (2.10) does not
hold; furthermore magnetic dissipation is negligible in (2.2). However these models cannot
straightforwardly be embedded as smooth flows in three-dimensional space. For realistic
flows, as have been simulated numerically, it is clear that there is a cascade of magnetic
energy to small scales (see Galloway & Proctor 1992, Otani 1993, section 4 below), and
our framework is correct.



3. Helicity spectrum and dissipation

We now consider the helicity per unit volume given by
H(t) = <A -B>, (3.1)

where A is the vector potential defined by B =V x A, V- A =0 and <A> = 0. We
take there to be no mean field, <B> = 0, this being a dynamo calculation, in which case
A is periodic in space with the same periodicity as B, and may be taken to have Fourier
components a,, (cf. 2.6). The evolution of helicity is governed by

O.H = —2e<B - J>. (3.2)

If the diffusivity e is strictly zero, then H is a constant, in keeping with its topological
interpretation in terms of the linkage of magnetic field lines (Moffatt 1969).

Now suppose we have 0 < € < 1 and a growing magnetic field eigenmode (2.3). By
analogy with the discusion in section 2 above, we may define the helicity of the eigenmode
7 = <a-b* +a* - b>, its spectrum 7(k), and the contributions Hmy, from wavenumber
(m, n) in the horizontal. We have Hmn = 8mn-bj,, +a5,, bmn With amp, = K “2{K Xbmn-
There follows the inequality |amn| < K~1|bmns| and so

2 < 2
|Hmn| S _KT’I’TL,_’I?,—) Emn, IH(R)' ~ Eg(l‘i) (33a,b)
The first of these is exact, but the second is approximate, because of the bundling of modes
into shells used to define the spectra.

We wish to bound the helicity in a fast dynamo. The most straightforward inequality
comes from taking the minimum value, &, of K (m, n) in (3.3a) and summing over all modes,
to obtain |H| < 2€/k. This is rather crude, though, as it does not take into account the
fact that the energy is predominantly at small scales, where K is much larger than k. To
use this fact we substitute (2.10) into (3.3b) and integrate to obtain

1 p<1/2
< )

However a tighter bound still may be derived by considering dissipation of helicity accord-
ing to (3.2) above. We define the current helicity of the eigenmode by D = <b-j*+b*-j>,
with contributions Dmp = bmn - j%n + blan - Jmn. USINg limn| < K|bmys| we have that

|Dinn| < 2K (m,n)emn, |D(x)| S 2kE(k) (3-5)
and so
Dl S (p>0) (36)
We then have from (3.2) for the total helicity
"] S (p>0), (3.7)
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which is tighter than the inequality in (3.4) (for 0 < p < 1/2). This is our main result
for the helicity. If the magnetic field is normalised so that the large-scale flux is of order
unity, the total energy increases as € — 0, but the helicity decreases for p < 1/2 or, for
p > 1/2, increases more slowly than energy, as no more than el/2¢,

We note that this result may also be obtained by an argument of Berger (1984).
Assuming (2.12) holds, we have by the Cauchy-Schwartz inequality and (3.2)

(8,H)? < €<B?><J?> S ¢EO,E ~ b, E? (3.8)
and so (since growth rates are of order unity),
H| S €%, (3.9)

in agreement with (3.7) above.

Another measure of the helicity in the magnetic field is the relative helicity Hg =
#H/2+/<[a]2><[b|2> of the field, which satisfies [Hr| < 1, and is used by Hughes et al.
(1996). Here, using now familiar arguments,

—_ 2 1 p< 11
A= <|a| >~ {Gl_p 0> 1’ (310)
and so putting this together with (2.11) and (3.7) we have
(1-p)/2 0< 1
<S¢ <4 11
fr % {1 p>1 (3:11)

Assuming that 0 < p < 1 in a typical fast dynamo, Hg tends to zero in the high-
conductivity limit € — 0.

Hughes et al. (1996) also measure the two lengthscales given by

_ 2 a2 J€e2 0<p<],
La = (<lal">/<b>) V2~ { G0 050 (3.12)
and

Is = (<[bP’>/<[i?>)2 ~ /2 (p>0). (3.13)

The same results are obtained by Hughes et al. (1996), who give discussion similar to
ours. With 0 < p < 1 we may identify the scaling exponents of these authors given by
Hr ~ €M, lg ~ e, la ~ € with y1 > (1 —p)/2, v2 = 1/2 and v3 = p/2. We also obtain
the inequality 1 + 3 > 1/2, which is satisfied by their numerical results for these flows.
Finally note that relative helicity of order unity in a fast dynamo is only possible if p > 1,
in which case l4,lp ~ €/2. This is in agreement with the discussion of Moffatt & Proctor
(1985), although we know of no numerical examples which show p > 1.



4. Numerical results

We now present some numerical simulations. Our aims are first to confirm the above
upper bounds on helicity as € — 0, and to see how tight these bounds are. Secondly we
wish to look in more detail at the distribution of helicity over scales, given by its spectrum
#H(k). We study a specific example, the MW+ flow of Otani (1993) given by

u(z,y,t) = 2 cos®£(0,sinz, cos ) + 2 sin® t(siny, 0, — cos y), (4.1)

based on modulating two Beltrami waves of positive helicity. Related models involving
pulsed Beltrami waves were studied by Bayly & Childress (1988) and related smooth flows
by Galloway & Proctor (1992) and Hughes et al. (1996). These flows are readily simulated
numerically, and we used resolutions of up to 5122 Fourier modes.

4.1. Fields of moderate scale.

At high R = 1/e the most unstable magnetic field mode has k¥ =~ 0.8 and shows
structure over a range of scales; its growth rate is p ~ 0.393 for small e. We first investigate
the behaviour of helicity and energy in this case.

Figure 1 shows the scaling of £ (triangles), J (pluses) and |#| (crosses) as functions
of 1/¢ on a log-log plot. The scaling of £ is very clear: the straight line observed gives
the value p ~ 0.25 as obtained by Gilbert, Otani & Childress (1993). The scaling for the
current J is less clear; the best estimate of the slope for the smallest values of ¢ would
give p ~ 0.18, but the graph has some upward curvature. In measuring the current the
dissipation scale is more heavily weighted than for the energy, leading to slower convergence
to the scaling law as € — 0. For a given ¢ higher numerical resolutions are also required
to obtain the data point on the J curve accurately, than for £. We therefore use the £
scaling to estimate p ~ 0.25.

This implies from (3.7) that the total helicity # must fall off at least as fast as *2°.
This slope is shown by the dashed line in figure 1 and it may be seen that the total helicity
falls off faster than this upper bound requires, more as €%-%, with some downward curvature.
To confirm the connection with the energy spectrum, figure 2(a) shows £(x) plotted for
several values of e. The spectral slope shows reasonable agreement with €(x) ~ &~%50
(shown dashed) as suggested theoretically, but is rather noisy, despite time averaging over
one period.

Although the total helicity goes to zero with €, examination of #(x) shows that this
arises from significant cancellation of positive and negative helicity at different scales.
Figure 2(b) shows the logarithm of |#(x)|. In order to show its sign and yet use a log-log
graph we in fact plot f(#H(k)) against log;q k, where

f(z) = sign(z) log,(max(1, 10%z)). (4.2)

Thus positive values of helicity appear on the graph on the range 0 to 6, and negative
values on the range —6 to 0. Also shown by dashed lines are the bounds (for 1/e = 10°)
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obtained from summing (3.3a) over all the modes in the calculation. At the very largest
scale, when s = 1 and only the large-scale bgg mode is included in the spectral sum, the
helicity is significant, and negative with Hoo ~ —1.5 for small e. We see that although
the total helicity goes to zero even faster than our bounds indicate, this is not much of a
constraint on the magnetic field at large scales. The large scale modes generated in the
growing field can have significant helicity, here negative, while helicity of the opposite sign
is spread out along the cascade to small scales, the total helicity being negligibly small as
e — 0.

4.2. Large-scale fields.

In the above example we took k = 0.8, giving the fastest growing mode in which the
scale of the magnetic field is comparable with that of the fluid flow. Also of interest is the
behaviour of large-scale fields with small values of k. Although these have smaller growth
rates, tending to zero as k — 0, study of these modes gives insight into the mean-field
dynamo regime. Therefore, as a further example, we consider Otani’s MW+ flow (4.1)
with k = 0.05 and k = 0.01. Growth rates are shown in figure 3(a), and it may be seen
that these saturate rather slowly as € — 0. Figures 3(b,c) are similar to figure 1 and show
£ (triangles) and |#| (crosses) plotted against 1/¢ in a log-log plot (J is not shown); in
figure 3(b) k = 0.05 while in 3(c) k¥ = 0.01. Here the power law for energy is steeper
and takes longer to become established as € — 0. Measurements of the exponent p give
p ~ 0.60 for k = 0.05 (using the range 500 < 1/ < 10%) and p ~ 0.72 for k = 0.01 (using
103 < 1/e < 10%). The upper bounds on the helicity are ¢=%1° and %22 respectively,
shown dashed, and the actual helicity lies well within these bounds, decaying rather than
growing.

We note that the value of p appears to increase as k is reduced, corresponding to
more energy in the small scales. With a field of larger scale in the 2-direction, we approach
the situation where the field is independent of z, and the arguments of Vainshtein &
Cattaneo (1992) come into play, which predict p = 1 for the non-dynamo case & =0, from
consideration of the vector potential for the field. The energy spectrum is flatter, and
the helicity spectrum shows greater fluctuations than for k = 0.8 (we do not plot either
of these here). There is strong negative helicity at the largest scale and positive helicity
further down the spectrum.

5. Helicity in the stretch—twist—fold picture

We have seen that in Otani’s flow there is significant helicity at the largest scale, bal-
anced by opposite helicity at smaller scales, to give a total helicity that is vanishingly small
in the fast dynamo limit e — 0. In this section we consider the behaviour of helicity and its
distribution in the original stretch—twist—fold (STF) fast dynamo picture of Vainshtein &
Zeldovich (1972). Although the STF dynamo is only a picture, raises many questions, and
indeed is difficult to realise numerically (see Vainshtein et al. 1996, Vainshtein, Sagdeev &
Rosner 1997), it remains an important guide to intuition. Our aims here are to understand
how helicity is distributed over scales in a fast dynamo with a helical flow field, and to
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give indications of how this is modified in a dynamical regime in which the Lorentz force
becomes important.

Figure 4 shows the basic STF process on a tube of flux (Vainshtein & Zeldovich 1972).
We note that the flow field as depicted by the bold arrows itself has a positive sense of
kinetic helicity, measured by u -V X u, as in a basic ‘cyclonic event’ of Parker (1955). We
take the helicity of the magnetic field in figure 4(a) to be H = 0, for example by taking
the field lines to be circular and unlinked. We also take the flux of the tube to be ® =1
and the fluid to be perfectly conducting, € = 0, so that the magnetic field line topology is
preserved subsequently. Thus in 4(d) the helicity remains zero, but we may identify two,
cancelling contributions as follows. To do this we use Moffatt & Ricca (1992) in the rest of
this section; this paper should be consulted for further discussion, references and historical
perspective.

The first contribution to the helicity comes from considering the centre line of the tube;
initially this is just a circle Co, but is depicted after the stretch—twist operations in figure
5(a), and as the curve C; after after one complete STF operation in figure 5(b). When
deformed to lie almost in a plane, C; (nearly) crosses itself just once. If we associate
an integer &1 with the crossing according to its sense as also shown in figure 5(a), we
obtain that the ‘writhe’ of C; is —1 and this gives a ‘writhe contribution’ to the helicity
of Hyy = —1. More generally the writhe of any curve C is given by the integral

W)= L § rxie=s) o

There is a compensating ‘twist’ of field lines inside the tube: relative to the tube’s centre
line (or more precisely a Serret—Frenet framing of the curve Cp) the field lines rotate
through an angle 2 when the centre line is traversed once (Moffatt & Proctor 1985). This
gives a ‘twist’ of +1, and the ‘twist contribution’ to the helicity is Hyw = +1. The total
helicity after one STF step is H = Hyy + Hiw = 0.

Although the two forms of helicity sum to zero, they are associated with different scales
of the field. The positive twist helicity is associated with structure internal to the tube,
whereas the negative writhe helicity is related to the twisting of the pair of tubes about
each other. Thus the STF process has generated positive helicity at the smallest scale,
and negative helicity at a slightly larger scale. This transfer, of negative magnetic helicity
to larger scale, and positive to smaller scale, in a flow field with positive kinetic helicity, is
well known (see, e.g., Moffatt 1978, Pouquet, Frisch & Léorat 1976, Brandenburg 2001).

Now consider applying the stretch-twist (figure 5(c)) and fold (figure 5(d)) operations
a second time; the center line C; of the tube is shown. This time the stretch—twist of a pair
of flux tubes gives a writhe of —4 as pairs of 2 tubes cross each other. However at the same
time two individual tubes wrap around each other and this gives another contribution to
the writhe of +2 as shown. Again we may consider the writhe as distributed over different

scales. On the largest scale involving 4 = 22 tubes, there is a writhe of Hyry = —4. On
the next scale, involving 2 = 2! tubes, there is a writhe of Hy;; = 2 — 1 = 1. The total
writhe is then Hy, = Hyr1 + Hwr2 = —3 and so the corresponding twist is Hyyw = 3 to
compensate.
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The general picture now becomes clear. After the step n — 1 of the STF process
we have 2" tubes of field with centre line Cr,—_1. We then do the stretch-twist—fold
operation. This generates a bundle of 2" tubes of flux with centre line C,,. Associated
with the fold operation is positive and negative writhe. The negative writhe is on the
largest scale, involving all 2™ tubes, and corresponds to 271 tubes crossing over 2"~}
tubes and is —27~1 x 2"~ = —227=2 (figure 5(e)). The positive writhe is on the next scale
down, involving 2"~ tubes being twisted through 2, and gives a writhe of 27~1(2"~1 —1)
(figure 5(f)). If after n steps we let Hy,; denote the writhe that involves 27 tubes we have
for the largest scale

Hyrn=-2""2  (j=n), (5.2)

while for smaller scales,
Hyej=-2¥"2421(27-1) (j=1,2,...,n-1). (5.3)

In (5.3) the negative writhe is generated at step j, and the positive writhe at step j + 1.
The total writhe involving 27 tubes is

Hyp; =2713x2971-2) (j=1,2,...,n-1). (5.4)

The total twist helicity is Hiw = 2™ — 1, given by the field structure internal to the tubes.

Although the STF picture is very idealised, it does throw light on the numerical
results and their relation with the analysis of sections 2 and 3. First, we observe the
same structure to the helicity spectrum, with negative helicity at the largest scale, and
positive helicity at all smaller scales. Second, we note that the net positive writhe at a
given intermediate scale comes from a positive and a negative contribution, which we have
been careful to isolate above in (5.3). Kinematically there is no reason why the positive
and negative contributions, for example the +2 and —1 shown in figure 5(d), should cancel
other than fortuitously. This agrees with the numerical results that indicate that the
inequality |H (k)| S 2E(k)/k is not well saturated in simulations (see figure 2(b)); there is
more energy at a given scale than is required by the total helicity at that scale. Finally if
weak diffusion € > 0 is now introduced, obviously the tubes of field will start to reconnect
when they reach scales of order €}/2. The twist helicity will be destroyed first, and then
writhe Hy, ; for increasing j. The total helicity will be negative and small.

The above picture, although crude, also gives some indications about what may occur
initially when Lorentz forces become important. Let us consider the case when the fluid
Reynolds number is of a similar size to the magnetic Reynolds number for simplicity. It is
clear, looking at figure 5(d), that it is energetically favourable for the +2 writhe and the —1
writhe now to cancel by the interchange of sections of field lines. This would immediately
reduce the energy while preserving the field line topology at this scale. Similarly the plus
and minus contributions (5.3) to the writhe at a given scale may be partially cancelled
by interchange motions. Thus we may expect that at the onset of dynamical effects the
total number of crossings of the magnetic field will be reduced by dynamical, magnetic
relaxation effects (Moffatt 1985). The ‘crossing number’ of a continuous vector field has
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been defined by Freedman & He (1991) (see also Berger 1993) as

C(B) — %// |B(r) X B(r’) ) (l‘ - l")l d3r 43¢, (55)

|r —r'|3

This definition is analogous to (5.1) for a continuous field, but with the absolute value
of the integrand taken. We may expect that this quantity decreases significantly at the
onset of saturation, while plus and minus writhe cancel through interchange motions. This
also suggests that the upper bound |H(k)| < 2€(k)/x will be quite closely attained after
equilibration, and this is in fact seen in numerical simulations (Brandenburg 2001).

6. Discussion

We have discussed the role of helicity in kinematic dynamos for the astrophysically
important limit of large magnetic Reynolds number R. We have focussed on fast dynamos,
in which the growth rates remain of order the turn-over time-scale in this limit. Hughes et
al. (1996) showed that the relative magnetic helicity goes to zero as R — o0 in a growing
field, and we have derived an upper bound on the helicity, relating it to the slope of
the energy spectrum. Studying the distribution of helicity over different scales revealed
however that there is a great deal of cancellation: in the examples we considered there was
strong negative helicity at the largest scale, almost entirely cancelled by positive helicity
at moderate and small scales. A similar behaviour was seen in the idealised STF picture
of a fast dynamo, and some predictions were made of behaviour at the onset of saturation,
when Lorentz tension forces come into play.

The flow fields we have used have maximal kinetic helicity u - V x u. Hughes et
al. (1996) study a number of dynamo flows which have zero kinetic helicity and it would
be interesting to consider the role of magnetic helicity in these dynamos in more detail.
Obviously the inequalities we have derived remain correct as they use no information about
the flow field. However the distribution of magnetic helicity over the different scales will
probably be less coherent in fast dynamos with zero kinetic helicity.

Our study may be summarised by saying that the exact conservation of helicity in
ideal MHD is replaced by very low levels of total helicity at large R in a kinematic fast
dynamo. However this low total helicity does not seem to act as a constraint on field growth
nor on the helicity of the large-scale field. In our example we have seen a strongly helical
field on the large scale, with smaller scales containing cancelling helicity of the opposite
sign. At first sight this stands in contrast to recent ideas of Brandenburg (2001) (see also
Vishniac & Cho 2000), who argues that in nonlinear, high-R dynamos helicity ‘drives’ the
large-scale field. These arguments are based on conservation of helicity, the fact that the
large-scale fields are strongly helical, and that dissipation of helicity is small. It is certainly
true that non-linear dynamos with helical and non-helical forcing of the velocity field show
very different behaviour of the large-scale fields (e.g., Pouquet et al. 1976, Maksymczuk &
Gilbert 1999). There is no direct contradiction with our kinematic results above, since the
elastic nature of Lorentz forces may be such as to minimize energy for a given helicity at

12



each scale, and so in that sense helicity may control large-scale fields. However the matter
is clearly delicate since helicity may take either sign and cancel, and so dissipation of total
helicity is not a clear guide to the evolution of helicity at large scales.

On this note, the following numerical simulation might be of interest to determine
cause and effect: to what extent dissipation of helicity drives the large-scale field, or to
what extent it passively follows. A nonlinear run (1) could be started using a velocity
forcing with positive helicity and run up to time ¢ = T. In another run (2) the forcing
would have positive helicity for 0 < ¢ < T'/2 but negative for T/2 < t < T. There are
then two possible outcomes for the second run. First, the field may take a significant time
to adjust after ¢ = T'/2 and to reverse its magnetic helicity at large scales. During this
adjustment period we would expect to see a decay of magnetic energy and halting of any
inverse cascade (see Pouquet et al. 1976, Gilbert & Sulem 1990). If this long adjustment
occurs (and its length increases for R — oo) before the evolution resumes as the mirror
image of run (1), we may conclude the large-scale field is controlled by dissipation of
helicity. The second possibility is that the large-scale fields adjust rapidly at ¢ = T/2 and
change sign of helicity (in a fashion independent of R for large R), this change being taken
up by the helicity at lower scales. During the transition the magnetic energy would not be
diminished significantly, and the inverse cascade would be only interrupted briefly. If this
is the case then it will be clear that helicity is playing a minor role in driving the nonlinear
dynamo.
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Figure captions

Figure 1. log;o & (triangles), log,oJ (pluses) and log;q |#| (crosses) are plotted against
log,o 1/€, for Otani’s flow with ¥ = 0.8. The dashed line indicates a power law
dependence of €025,

Figure 2. (a) log;o £(k) (b) F(#H(x)), plotted against logq « for 1/e =10, 20,50, ... 10%. In
(a) the dashed line indicates a power law dependence k793, In (b) the dashed lines
show the upper and lower bounds obtained from (3.3a).

Figure 3. (a) Growth rate p plotted against log;, 1/e for Otani’s flow with & = 0.05 (upper
curve), k = 0.01 (lower curve). (b,c) logyo& (triangles) and logq |#| (crosses) are
plotted against log,o1/e, for Otani’s flow with (b) k¥ = 0.05 and (c) ¥ = 0.01. The
dashed lines indicate a power law dependence of (b) €10 and (c) e7922,

Figure 4. The stretch—twist—fold process: an initial flux tube (a), is stretched (b), twisted
(c) and folded (d), to obtain a doubled flux tube.
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Figure 5. The center line of the flux tube after (a,b) one and (c,d) two iterations of
the stretch—twist—fold process. Contributions to the total writhe of the curve (with
sign convention shown in (a)) are marked near each set of crossings. The writhe
generated at the nth iteration is shown as (e) the negative contribution, (f) the
positive contribution.

References

Arnold, V.I., Zeldovich, Ya.B., Ruzmaikin, A.A. & Sokoloff, D.D. 1981 Zh. Eksp. Teor.
Fiz. 81, 2052-2058. [English transl.: Sov. Phys. JETP 54 (1981) 1083-1086.]

Bayly, B.J. & Childress, S. 1988 Geophys. Astrophys. Fluid Dyn. 44, 211-240.
Berger, M.A. 1984 Geophys. Astrophys. Fluid Dyn. 30, 79-104.

Berger, M.A. 1993 Phys. Rev. Lett. 70, 705-708.

Biskamp, D. 1993 Nonlinear Magnetohydrodynamics. Cambridge University Press.
Boozer, A.H. 1992 Astrophys. J. 394, 357-362.

Brandenburg, A. 2001 The inverse cascade and nonlinear alpha-effect in simulations of
isotropic helical hydromagnetic turbulence. Astrophys. J. 350, to appear.

Cattaneo, F., Kim, E., Proctor, M.R.E. & Tao, L. 1995 Phys. Rev. Lett. 75, 1522-1525
Childress, S. & Gilbert, A.D. 1995 Stretch, Twist, Fold: The Fast Dynamo. Springer Verlag.
Cowling, T.G. 1934 Mon. Not. Roy. Astr. Soc. 140, 39-48.

Finn, J.M. & Ott, E. 1988 Phys. Fluids 31, 2992-3011.

Freedman, M.H. & He, Z.-X. 1991 Ann. Math. 134, 189-229.

Galloway, D.J. & Frisch, U. 1986 Geophys. Astrophys. Fluid Dyn. 36, 53-83.

Galloway, D.J. & Proctor, M.R.E. 1992 Nature 356, 691-693.

Gilbert, A.D., Otani, N.F. & Childress, S. 1993 In Solar and Planetary Dynamos (ed.
M.R.E. Proctor, P.C. Matthews, A.M. Rucklidge), pp. 129-136. Cambridge Univer-
sity Press.

Hughes, D.W., Cattaneo, F. & Kim, E.J. 1996 Phys. Lett. A 223, 167-172.

Maksymczuk, J. & Gilbert, A.D. 1999 In Stellar Dynamos: Nonlinearity and Chaotic Flows
(ed. M. Niifiez & A. Ferriz-Mas), pp. 97-106. ASP Conf. Series, vol. 178.

Moffatt, H.K. 1969 J. Fluid Mech. 35, 117-129.

Moffatt, H.K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cam-
bridge University Press.

14



Moffatt, H.K. 1985 J. Fluid Mech. 159, 359-378.

Moffatt, H.K. & Proctor, M.R.E. 1985 J. Fluid Mech. 154, 493-507.
Moffatt, H.K. & Ricca, R.L. 1992 Proc. R. Soc. Lond. A 439, 411-429.
Otani, N.F. 1993 J. Fluid Mech. 253, 327-340.

Parker, E.N. 1955 Astrophys. J. 122, 293-314.

Pouquet, A., Frisch, U. & Léorat, J. 1976 J. Fluid Mech. 77, 321-354.
Priest, E.R. 1984 Solar Magnetohydrodynamics. Reidel Publishing Company.
Taylor, J.B. 1974 Phys. Rev. Lett. 33, 1139-1141.

Vainshtein, S.I. & Cattaneo, F. 1992 Astrophys. J. 393, 199-203.

Vainshtein, S.I. & Zeldovich, Ya.B. 1972 Usp. Fiz. Nauk 106, 431-457. [English transl.:
Sov. Phys. Usp. 15 (1972), 159-172.]

Vainshtein, S.I., Sagdeev, R.Z., Rosner, R. & Kim, E.-J. 1996 Phys. Rev. E, 53 4729-4744.
Vainshtein, S.I., Sagdeev, R.Z. & Rosner, R. 1997 Phys. Rev. E, 56 1605-1622.

Vishniac, E.T. & Cho, J. 2000 Magnetic helicity conservation and astrophysical dynamos.
Preprint.

Woltjer, L. 1958 Proc. Nat. Acad. Sci. USA 44, 489—491.
Zeldovich, Ya.B. 1957 Sov. Phys. JETP 4, 460-462.

15



El6URE |




Fleure ()

~—
S~
~




FlGureE 3

Ca) 0.12 |
0.08 -

0.0 - : : : :

1 2 3 4

G










