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ABsTrAcT. In this paper we give some geometric characterizations of locally convex
hypersurfaces. In particular, we prove that for a given locally convex hypersurface M
with boundary, there exists r > 0 depending only on the diameter of M and the principal
curvatures of M on its boundary, such that the r-neighbourhood of any given point on
M is convex. As an application we prove an existence theorem for a Plateau problem for
locally convex hypersurfaces of constant Gauss curvature.

1. Introduction

Among all hypersurfaces in the (n + 1)-dimensional Euclidean space, R"*! (n > 2),
the locally convex ones form a natural class, and those of constant Gauss curvature are
of particular interest. A complete, locally convex hypersurface containing at least one
strictly convex point is known to be convex, that is it lies on the boundary of a convex
body [5,12]. Therefore it can be represented as a radial graph over the unit sphere
S™. For locally convex hypersurfaces with boundary, the situation can be much more
complicated. In this paper we give some geometric characterizations for locally convex
hypersurfaces with boundary. Roughly speaking, we will prove that if a locally convex
hypersurface M behaves nicely near its boundary, so does it globally. A typical result is
that if M has positive curvatures on its boundary, then there exists » > 0 such that the
r-neighbourhood of any point on the hypersurface is convex. As an application we prove
the existence of locally convex hypersurfaces of constant Gauss curvature, extending

earlier work in [4, 7], as well as giving an affirmative answer to the conjecture in [13].

Definition 1. A locally convex hypersurface M in R™t! is an immersion of an n-
dimensional oriented and connected manifold N (possibly with boundary) in R"*! ie.,
a mapping T: N = M C R, such that for any p € N, there exists a neighbourhood
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wp C N such that: (i) T is a homeomorphism from wyp to T(wp); (i) T(wp) is a

convex graph; (iit) the convezity of T(wy,) agrees with the orientation.

The assumption (iii) is to rule out hypersurfaces such as z,4+1 = 21 max(|z1| — 1,0).
This condition is not necessary if one considers complete, locally convex hypersurfaces

containing at least one strictly convex point [5].

The above definition permits M to be nonsmooth. We say M is C* smooth if T
is locally a C* diffeomorphism. We say M is locally strictly convex if the local graph
in (ii) above is strictly convex. Our treatment in this paper is based on the following

fundamental result for locally convex hypersurfaces for which we give a complete proof.

Main Lemma. Let M be a compact, locally convex hypersurface. Suppose the boundary
OM lies in the hyperplane {xn4+1 = 0}. Then any connected component of MN{z,41 <

0} is convez.

A direct consequence is the above mentioned classical result that a complete, locally
convex hypersurface with a strictly convex point is convex [5]. For applications to locally

convex hypersurfaces with boundary we first need to clarify some notions used below.

Since M. is immersed, a point £ € M may correspond to more than one point in N
with z as their image (under the mapping T'). For simplicity we agree with that when
referring to a point z € M we actually mean a point p € N such that z = T(p) Similarly
we say w, C M is a neighbourhood of z if it is the image of a neighbourhood in NV of
p. We say v is a curve on M if it is the image of a curve on N, and a set E C M is
connected if it is the image of a connected set in A, and so on. For a given point £ € M,
the r-neighbourhood of z, w,(z), is the connected component of M N B,(z) containing

the point z.

In the following we will suppose N is a connected, compact manifold with boundary,
except otherwise specified. It follows that M is also compact, OM # @, and for any
x € M, there are finitely many points in A" with z as their image under the mapping 7.

We say M is convez of reach r if for any point z € M, w,(x) is convex. By definition,
a locally convex hypersurface is convex of reach r for r > 0 sufficiently small. Let Cy ¢ , o

denote the cone with vertex z, axis £, radius », and aperture o, that is,
Cogra={y ER"™ | [y—z| <7, (y—=,6) > cosaly —=|}.

By definition, M satisfies a cone condition for sufficiently small ». That is for any point
x € M (corresponding to a point p € N), there exists a cone C, ¢, o lying on the concave

side of wy(z), i.e. the cone and w,(x) lie on the same side of any tangent hyperplane of
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M at z and C; ¢ o Nwr(z) = {z}. This cone will be called inner contact cone of M at
z. We say M satisfies the uniform cone condition with radius r and aperture o if M

has an inner contact cone at all points with the same r and c. We have

Theorem A. Let M C Bgr(0) be a locally conver hypersurface with C? boundary OM.
Then there exist r,a > 0 depending only on n,R, OM, and the upper and lower bounds
of the principal curvatures of M on OM such that M is convex of reach r, and satisfies

the uniform cone condition with radius r and aperture o.

Note that we do not require any regularity condition on M except that the curvatures
of M are well defined on the boundary 8 M. The positive curvature condition on O M

can be replaced by a strict convexity condition near M.

Theorem A enables us to treat locally convex hypersurfaces as graphs. Indeed for
any z € M, since M is convex of reach r, the r-neighbourhood of z can be represented
as a radial graph over a domain in S™, and the uniform cone condition prevents the
graph from collapse. As we pointed out that Theorem A holds automatically for » > 0
sufficiently small. The main point of Theorem A is that r depends only on the boundary
behaviour of M. Therefore Theorem A holds with the same r and « for a family of
locally convex hypersurfaces. More precisely, if one deforms M in the local convexity
category, the resulting hypersurface is convex of reach r and satisfies the uniform cone

condition with radius r and aperture o (see Theorem 4.1).

Theorem A finds applications when locally convex hypersurfaces are involved, such as
problems of prescribing Gauss curvature or harmonic curvature, or the immersion in R?
of the unit disc of positive curvature. Theorem A is also useful in affine geometry where
a prime object is the study of locally convex hypersurfaces of which the affine metric
is positive definite, such as the affine Plateau problem, proposed by Chern and Calabi,
which we plan to address in a future work. Using the Main Lemma above we proved
in [16] that an affine complete locally convex hypersurface is also Euclidean complete,
which implies, by virtue of our solution of the affine Bernstein problem in [17], that an
affine complete, affine maximal surface in R? is an elliptic paraboloid. This latter result

also improved Calabi’s results on the affine Bernstein problem.

In this paper we investigate the existence of hypersurfaces of prescribed Gauss curva-
ture. This problem leads to a fully nonlinear equation of Monge-Ampere type, which is
elliptic when the hypersurface is locally convex. A basic question is the existence of locally
convex hypersurfaces of positive constant Gauss curvature K (briefly K -hypersurfaces),
with prescribed boundary I', where I is a smooth disjoint finite collection of closed codi-

mension 2 submanifolds in R™+!. This problem was studied in [4,6,13]. In [13] Spruck
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made the conjecture that if T' bounds a strictly locally conver hypersurface Mo with
Gauss curvature K(Myp) > Ko > 0, then I' bounds a Ko-hypersurface. If My can be
represented as a radial graph over a domain 2 C S™ such that {2 does not contain any
hemisphere, then the existence of a Ky-hypersurface is proven in [4]. In this paper we

prove the conjecture holds in its full generality.

Theorem B. Let I' be a smooth disjoint finite collection of closed codimension 2 sub-
manifolds in R™L. Suppose I' bounds a locally strictly convex hypersurfice My with
Gauss curvature K(Myp) > Ko > 0. Then T’ bounds a Ko-hypersurface.

The existence and regularity of convex hypersurfaces with prescribed Gauss curvature
have been well investigated for closed hypersurfaces or those which can be represented
as a graph over a convex domain [2,3,8,10,14,15,18,19]. If the domain is nonconvex,
a necessary and also natural condition is the existence of a subsolution [4,6]. In the
locally convex setting this condition is equivalent to the one in Theorem B, that is I’
bounds a locally strictly convex hypersurface. As for when I' can bound a locally convex
hypersurface is a delicate question, there are geometric and topological obstructions.
The smallness assumption of the Gauss curvature Ky is also necessary. Unlike the mean
curvature case where one can give an upper bound of the mean curvature in terms of the
magnitude of the boundary, an upper bound for the Gauss curvature depends also on
the geometric structure of the boundary. We refer the reader to [4,7,11] for discussions
on these questions. The solution in Theorem B is usually not unique, as is easily seen by

using a plane to cut a sphere.

Theorem B cannot be reduced to the Dirichlet problem since a locally convex hyper-
surface cannot be represented as a graph in general. To prove Theorem B we will use
the well known Perron method, since by Theorem A, we can treat locally convex hyper-
surfaces as graphs. By the Perron liftings we obtain a sequence of “monotone”, locally

convex hypersurfaces which converges to a K-hypersurface.

A more general problem is the existence of Weingarten hypersurfaces with prescribed
boundary, such as the existence of locally convex hypersurfaces with prescribed harmonic

curvature, which was treated in the papers [7, 9].

This paper is organized as follow. In Section 2 we introduce the generalized Gauss
mapping for locally convex hypersurfaces and discuss some basic properties of the map-
ping. In Section 3 we prove the Main Lemma. Using a moving hyperplane to cut off
a connected piece from a locally convex hypersurface, we prove this connected piece is
convex if it contains no boundary point. In Sections 4 and 5 we then prove Theorems A

and B, respectively.



2. The Gauss mapping

For a locally convex hypersurface M, not necessarily smooth, we introduce the gen-
eralized Gauss mapping G : M — S™. Strictly speaking, the Gauss mapping is defined
on N. Indeed, for any interior point p € A there is a neighbourhood w, C N such that
T(wp) is a convex graph. A hyperplane L is a tangent hyperplane of M at z = T(p) if
L passes through z and T'(w,) lies on one side of £. The Gauss mapping G of N at p is
the set of normals (on the convex side of M) of such tangent hyperplanes. However for
convenience we refer to a Gauss mapping defined on M when no confusion arises. For
any interior point z € M, there is a neighbourhood w, C M, which can be represented
as a graph of a convex function by Definition 1. The image of the Gauss mapping at z,
G(z) (with respect to p € N, where T'(p) = z), is the set of normals of tangent hyper-
planes of w, at . A vector v € G(z) is called a normal of M at z. For a C' smooth
convex hypersurface the generalized Gauss mapping coincides with the Gauss mapping

in the classical sense.
First we give some simple properties of the Gauss mapping.

(i) If v is a normal of M at zx, £ =1,2,---, such that vy =+ v and zx — z, then v is a

normal of M at .
(ii) For any point x € M, G(z) is a closed, convex set strictly contained in a hemisphere.

(iii) For any point & € M, there is a neighbourhood w, such that G(wz) = U, G(2) is

strictly contained in a hemisphere.

Properties (i)-(iii) follow immediately since near z, M can be represented as a convex
graph. In particular we see that G(x) is strictly contained in the southern hemisphere if

and only if locally M can be represented as

i1 = g(Z1, "+, Zn) (2.1)

for a convex function g. It is easily seen that (2.1) holds if and only if M satisfies the
cone condition at z with e, 1, the positive z,1-axis direction, is the axial direction of

the cone.

If z is a boundary point of M and if M is C'' smooth, we introduce a unique normal
of M at z as follows. Namely we take z as the origin and choosing the coordinates
properly such that locally M is represented by (2.1) for a convex function g, and the
z;-axes, 1 = 1,--- ,n—1, are tangent to OM at z. Since g is convex, 9;,¢(0,---,0,z,) is

monotone and well defined a.e. as a function of z,,. Hence o = lim,_ _,08z,9(0,---,0,2,)
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exists. By choosing the coordinates properly we may also suppose o = 0 such that
g(0,---,0,z,) = o(zy,) as &, — 0. Since the z;-axes, ¢ = 1,--- ,n — 1, are tangent to

OM at z, we have, for ¢ = (21, - ,Zpy1) € OM,
9z o) = o(r) as r=(> )2 50, (22)
i=1

By the convexity of g, we see that (2.2) holds for z € M near the origin. It is easily seen
that the z,1-axis is uniquely determined by (2.2). We define the negative &, ;-direction
as the normal of M at z.

Lemma 2.1. Let M be a locally conver hypersurface in R™t'. Suppose the origin
O € M and the vectors te,1 are not normals of M at O. Let T’ be the connected
component of M N {zpy1 = 0} containing O. If T NOM = 0, then the vectors te 11
are not normals of M at any points on T, and T is a locally convez (n — 1)-dimensional

hypersurface in the hyperplane {z,4+1 = 0}.

Proof. First we prove that the vectors +e, 1 are not normals of M at any point on I'.
We argue by contradiction. Let E denote the (closed) subset of ' such that z € T if and
only if either e, or —e, 1 is a normal of M at z. Since +e,.; are not normals of M
at the origin, they are not normals of M at any point nearby. Let z be a point in E and
let £ be a path in I" connecting z and the origin. We may suppose N E = {z}, otherwise
we may replace z by a point 2’ € £N E such that E has no other point on £ between @
and z’. Suppose —ey, 41 is a normal of M at z. Then {z,,41 = 0} is a tangent hyperplane
of M at z and locally M stays on the side x, 1 > 0. On the other hand, since between
O and z there is no other point of E lying on ¢, M intersects with {z,; = 0} at any
point in £ — {z}. Hence M can not lie on one side of {z,; = 0} in any neighbourhood

of z. We reach a contradiction.

For any point z € I, by Definition 1 there is a neighbourhood w, of z in M which can
be represented as a convex graph. Since +e, 1 are not normals of M at 2z, w,N{z,+1 = 0}
is a convex graph as a hypersurface in R™ = {z,41 = 0}. Let N/ = T7I(T"). Since T
is locally a homeomorphism, N’ is an (n — 1)-dimensional, connected manifold (not
necessarily smooth). It is easy to see that the triple (I, N/, T') satisfies the conditions in

Definition 1. Hence I is locally convex. [J

For a locally convex hypersurface M, next we introduce a continuous vector field
vz (z € M) on M, which will be used in Section 5. If M is smooth, the normal v is a

continuous vector field on M, and for any = € M, the line segment v, connecting z to
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z — tv(z), where ¢ > 0 is a small constant, gives a mutually disjoint, continuous vector
field on M. If M is nonsmooth, we introduce a continuous vector field v, on M as

follows.

Let 7,a > 0 small such that M is convex of reach r and satisfies the uniform cone
condition with radius r and aperture o. Then for any point z € M, the ball B,/ (2')
with radius ' = %r sin o and centre 2’ = z + %rf is contained in the inner contact cone
C,¢,r,a- Therefore one can choose the coordinates properly such that locally near z, M
is represented as a graph by (2.1) for a convex function g such that |Dg| < co in B!, the

ball in R”, (= {Zn4+1 = 0}), of radius o, where ¢ < irsino.

Let F, , denote the graph of g. If F, , contains no boundary point of M, then g is well
defined in B.. If F, , contains boundary points of M, then g is defined in a subdomain
B" of B! , where B” is the projection of F, ; in {zp4+1 = 0}. In both cases let B" denote
the domain of definition of g. Let D, = {(z1, - ,Zn+1) | Zn+1 > g(2'), =’ € B"}, where
z' = (£1,-++ ,Zn). D, is a convex domain in R"*!. Let D,; = {z € D, | dist(z,0D,) >

t}, where t < %a. Since D, ; is convex, there is a unique point y € 8D, ; such that
ly — z| =inf{|z — 2| | © € 0D, }. (2.3)

We define a mapping ¥ from M to R"+! such that ¢(2) = y. Let 7, denote the line
segment connecting z to 1(z), closed at z and open at ¥(z) (namely -y, contains the
endpoint z but not the endpoint 1(z)). Then +, is a vector field defined on M.

For fixed ¢ > 0 and £ < %0, observe that for any 2’ € w,/2(2), the %a—neighbourhood
of z in M, we have ¥(z') € 8D, and

[¥(2") — 2| =inf{|z — 2/| | z € 8D, +}.

Therefore by the convexity of D, ;, we see that -y, and vy, are disjoint when 2’ € wgs/2(2),

and the direction of 7, depends continuously on z. Therefore we have.

Lemma 2.2. Suppose M is convez of reach r and satisfies the uniform cone condition
with radius r and aperture o. Then for any t € (0, %r sin &), there is a continuous vector
field vz on M, with |yz| =t such that v, and v are disjoint for ' € wai(x), where |v4|
1s the length of the line segment ;.



3. Proof of the Main Lemma

We will use the moving plane method to prove the Main Lemma. We need the concept
of extreme point. For a convex set £ C R¥, a boundary point € OF is an extreme point
of E if there exists a tangent hyperplane £ C R* such that LN E = {z}. Obviously
any bounded convex set has extreme points. It is well known that any interior point
in E can be represented as a linear combination of extreme points of E. Moreover, if
F is a bounded, closed set and E the convex closure of F, that is E = N{D | D D

F, D is convex}, then an extreme point of E is a point in F.

Let M be a locally convex hypersurface whose boundary M C {z,1 = 7*} for some
7* > 0. First we suppose M C {x,+1 > 0}, the origin O € M, —e, 41 is a normal of M
at O with M strict convex at O. Then £ = {z,41 = 0} is a tangent hyperplane of M
at the origin O.

For any t € [0,7*), let A; denote the connected component of {0 < z,4; < t} N M
containing the origin O. Obviously A; is a closed set, and A; C A; for any 0 < ¢t < ¢. If
Az is convex, we have A; = A; N {zp41 <t} for any 0 < ¢ < £. Let D; be the convex
closure of A;. We have D; C {0 < z,,; < t}.

The proof of the Main Lemma. consists of two steps. First we prove that A; is convex if
the north pole e,41 is not in G(A;) (Lemma 3.1). We then prove N is homeomorphic to
the unit sphere if e, 41 is a normal of M at some point on A; N {zp41 =t} (Lemmas 3.2
and 3.3), which in turn implies e,y is not in G(A;) for any ¢ < 7*, by our assumption
that ON # 0.

Lemma 3.1. Suppose G(A;) has a positive distance from the north pole of S™. Then A,

is convez, namely Ay C 0D;.

Proof. First we show that the south pole of 8™ is not a normal of M at any point
in A; — {O}. Suppose to the contrary that —e,,; is a normal of M at some point
z* € Ay — {O}. Suppose z* € {z,11 = s} for some 0 < s < . By our construction of
A; there is a curve v C {0 < z,41 < s} connecting z* to the origin O. Let v’ denote
the segment of v N {z, 1 = s} containing z*. By Lemma 2.1, —e, ;1 is a normal of M
at any point in 4’. Since M is locally convex, there exists a neighbourhood w C M of
z* such that w lies above the tangent plane {z,+1 = s}. But since v C {zp,41 < s}, we
see that there is a segment of y near z* contained in {z,+1 = s}. It follows that v’ is
open as a subset of 7. Obviously it is also closed. Hence the whole curve  lies in the

hyperplane {z,+1 = s}. This is a contradiction.
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By assumption, M is strictly convex at the origin. Hence A, is convex for s > 0 small.
Suppose 5 < t is the largest constant such that A, is convex for any s € (0,3). Then Az

is also convex. We want to prove that Az, . is convex for sufficiently small € > 0if 5 < £.

Let Ty = A; N L;, where £; = {z,41 = s}. By Lemma 2.1, T'y is closed, locally
convex for any 0 < s < t. Since I'; is convex for s € (0, 3], it is topologically a sphere for
s € (0,3], namely it is homeomorphic to the sphere S™~'. It follows that I's, and also
I's e for € > 0 small, can be represented as a radial graph. Hence I's.. is topologically
a sphere. Let €, be the convex closure of I';. By the convexity of I'; for s <5, we have
00, =I5 for s < 5. Hence I'sy. is in an &'-neighbourhood of 8Q5 with ¢/ — 0 as e — 0.

Note that 2, has nonempty interior since I'; is locally convex.

We first prove 8Qz.. = sy for € > 0 sufficiently small (regarding 2, as a set in
R" ({zn+1 = s})). Let E = 0. — I's.. Note that if 2z is an extreme point of
54, then z € I's;.. Hence E consists of line segments. Let y be a line segment in E.
Choosing the coordinates properly we suppose v C {z, = 0} and 8Qz4. C {z, > 0}.
Then v C F =: {z,, = 0} N 0Q54.. It is easy to see that F is convex and any extreme
points of F belong to I's;.. Therefore there is a line segment, which we suppose is exactly

v, with both endpoints lying in I'z4..

For any point z € v, let 2’ € I'sy. satisfy |2/ — z| = inf{|y — 2| | p € I's4c}. By the
definition of locally convex hypersurface, there is a § > 0 such that the d-neighbourhood
of any point in M is convex. Hence 2’ is unique if ¢ is sufficiently small. At the endpoints
of v we have |z — 2’| = 0. By the local convexity of M it is easy to see that |z — 2’| can

not attain a strict maximum at interior points of . Therefore v C I's,.; a contradiction.

We have proved that if I's is convex, so is I's; . for sufficiently small ¢ > 0. It follows

that ', is convex for any s € (0,¢] and € is the convex set enclosed by I'.

To prove that A; is convex, we first observe that for any s € (0,t], 0D; N {zpt1 =
s} = Q,. Indeed, since T, is convex and G(A;) has a positive distance from the north
pole, we see that for any point z € T'y, there is a hyperplane {z,+1 = a- =+ ao} for some
a € R", |a| > 0 small, such that z belongs to the hyperplane and D, lies on the lower
side of the hyperplane.

Let E; = 8D, — (A; UQs). Then Es C {zn4+1 < s}. Since A, is convex for s > 0
small, E, is empty for s > 0 small. Let § < ¢ be the largest number such that A; is
convex for all s € (0,35]. If § < t we want to prove Az, is convex for sufficiently small
¢ > 0, namely E3,. is an empty set for sufficiently small . If this is not true, then

similar to the above, F3,. consists of line segments. Let v be a line segment in F5,..
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As above we may suppose both endpoints of « belong to Asy.. For any z € v, let 2’ be
the point in Az, . closest to z. Then by the local convexity of M, |z — z’| cannot attain a
strict maximum at interior points of y. But since |z — 2’| = 0 at the endpoints, we have

v C Az, a contradiction. Hence Az, . is convex. This completes the proof. [

Since M is strictly convex at the origin, G(A;) has a positive distance from the north
pole for ¢ > 0 small. Suppose at height ¢ > 0, G(A;) has a positive distance from the
north pole. Then by (i) in Section 2, G(A¢y.) has a positive distance from the north
pole for € > 0 small. Hence by Lemma 3.1, A;,. is convex. That is we can move the
hyperplane £; = {zn41 = t} further upward to height ¢ > t such that G(A;) has a
positive distance from the north pole and A;NOM is empty. Therefore we can move the
hyperplane £ up to level 7 < 7* such that for any ¢t < 7, A; is convex, A; C dD;, and

G(A:) has a positive distance from the north pole. We want to prove 7 = 7*.

If - < 7% let A’ = Upc,A; and A the closure of A’. We claim that there is a point
z € OA (z € {zn+1 = 7}) such that e,41 is a normal of M at z. For if not, then G(A)
has a positive distance from the north pole, and so also G(A,4.) for some € > 0 small,

a contradiction with our definition of 7.

To proceed further we need to examine the set A;, the connected component of T—1(A;)
containing pg, where pg € N is such that T'(pg) = {O}. We want to prove 4, is topolog-

ically an n-ball for ¢ < 7, namely A; is homeomorphic to an n-dimensional ball.
Lemma 3.2. For anyt <7, T is a homeomorphism from A; to A;.

Proof. Since M is strictly convex at the origin O, by the definition of locally convex

hypersurface, Lemma 3.2 is obviously true for ¢ > 0 small.

Suppose Lemma 3.2 is true for ¢, we show that it is true for t+c if t+c < Tand e > 0is
sufficiently small. Indeed, if it is not the case, then there exist sequences pg, qx € A¢4c,,
where g, — 0, such that T'(px) = T(gx) = Tk € Atye,. Since A; is compact, we may
suppose & — o € A;. Suppose pr, — p and gx — ¢, then T'(p) = T(q) = z¢. By the
assumption that Lemma 3.2 holds at ¢, we have p = ¢q. However since T is locally a
homeomorphism, we must have pr = g, when £ is large. Hence Lemma 3.2 holds for an

open set t € (0,t*).

Lemma 3.2 has been proven if t* > 7. If t* < 7 we show that Lemma 3.2 holds for
= t*. If this is not true, then there exist two points p,q € A such that T'(p) = T'(q) =
x € Ay«. By assumption that Lemma 3.2 holds for ¢ < t*, the points p, ¢ cannot be both

interior points of As. If p is an interior point and ¢ is a boundary point of A, then
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z = T'(p) is an interior point of A;» and z = T'(g) is simultaneously a boundary point of
As«. This is impossible. If both p and ¢ are boundary points of A;., we choose arbitrary
two points px, qx € Ay, , where ti /' t*, such that py — p and gx — ¢. Then both T'(pi)
and T'(gx) converge to z. Since A;« is convex, there are curves £, C A4 connecting T'(py)
to T'(qx) such that the arclength of ¢; converges to zero. In other words, both T'(px)
and T'(gx) are in the r-neighbourhood of z with » — 0 as £ — co. By Definition 1, T is
locally a homeomorphism. It follows dist(px, gx) — 0, whence p = ¢q. Hence Lemma 3.2
holds. J

As above denote by D, the convex closure of A;. Let D = Ug, Dy, @ = 0D — A’ C
{Zn41 = 7}. Let A be the connected component of M N 8D containing A’. Then
AcAc A, AcC 0D, and ) is a closed convex set.

Let A’ = Ui, A¢, A the closure of A’, and A be the connected component of T_I(K)
containing A’. We want to prove that A = 8D, and T is a homeomorphism from A to
dD. Since 8D is a closed, convex hypersurface, it follows A/ = A is a closed manifold.
However this is in contradiction with the assumption that M # 0. Hence we must have

T="T"
Lemma 3.3. We have A =0D and T is a homeomorphism from A to 8D.

Proof. We have shown that e,;; is a normal of M at some point in JA. Since 0A

contains no boundary point, by Lemma 2.1, e,, 1 is a normal of M at any point z € 9A.

If O = {z} is a single point, then obviously we have A = 8D, and as in the proof of
Lemma 3.2 we see that T~1(z) has only one point in A since T is locally a homeomor-

phism. Hence Ais homeomorphic to D.

If Q is a convex set, let z be an extreme point of Q. Let £ = {>_ ; a;z; = b} be a
hyperplane parallel to the z,; axis, such that z € £ and Q C {d>_ o, aix; < b}. Let
C. ¢ r be an inner contact cone of M at z. Let 6 be the angle between £ and e, 1. Since

eén+1 is a normal of M at z, we have 8 < 7/2. Hence we can make a linear transformation

n+1

x'i'_—za"ijxi izl)"':”)
Jj=1
Tnt+l = Tn+l,

for some constants a;;, such that e, 1 is the axial direction of the cone. Therefore we can
suppose that near z, M is represented by z,4+1 = g(z1, -+ ,%,) for a concave function g

such that g < 7. Since g = 7 on 91, and  is strictly convex at z (i.e., z is an extreme
11



point of ), We have g = 7 for z € € near z. That is there exists § > 0 such that g = 7
forz € wy = QN{b—30 < >°1 , a;z; < b}. Hence w; C M and A; = A’Uw; is connected.
Obviously A; is topologically an n-ball.

Let 7 = Q — w;. Then ©, is also a closed convex set. Let A; be the connected
component of T~!(A;) containing A’. We claim that A; is homeomorphic to A;. Indeed,
we have shown in Lemma 3.2 that A’ is homeomorphic to A’. From the last paragraph we
see that w; is homeomorphic to A; — A’. Note that w; NA’ = (. Hence T is 1-1 mapping
from A; to A;. By our construction, T is locally a homeomorphism on A’ NAw,. Hence

T is a homeomorphism on A;.

We continue the above argument. Let z be an extreme point of },. Suppose z € L,
where £ = {3}, a;z; = b} for different a, b, such that Q; C {3, a;z; < b}. As above
there exists § > 0 such that wy =y N{b—6 < Y .| a;z; < b} is a piece of M. Let
Ay = Ay Uws, and Q5 = Q) — wy. Then Oy is closed convex set. If Q5 # 0, Ay is
topologically an n-ball. Let A, be the connected component of 7~(Az) containing A;.
Similar to the above we see that As is connected and T is a homeomorphism from A, to
As.

We claim that there is an extreme point z of €2; such that we can choose § > §p for
some &g depending only on N and the mapping T'. Indeed, since {); is bounded, there is
a ball BR(0) in R™ (= {41 = 7}) such that Q; C Bj. Let R be the smallest constant
such that Q; N 0By # 0 (note that O is a closed convex set). Let z € Q1 N dBg. By
definition there is an r > 0 depending only on N and T such that the r-neighbourhood
of z in M can be represented by z,41 = g(z1,- - ,Z,) for a concave function g such that
g < 7. Then it is easy to see that one can choose § > §g =: %(R - \/_Rm) such that
g =Tin wsp.

We proceed further as above. At each step we choose an extreme point z € Q such
that § > do/2. Therefore in finitely many steps we exhaust the set . That is A= oD,
and 8D is homeomorphic to A O

The Main Lemma is thus proved if M is strictly convex at the origin. If M is not
strictly convex at the origin, we suppose M lies above the graph z,11 = > 22 + 3,
where a > 0,8 < 0 are constants, « sufficiently small. We move the graph upwards
until it touches a point z € M. Then M is strictly convex at z. Suppose £ = {z, 1 =
> oi 1 @i%; + ap} is a tangent plane of M at z. Then the above argument shows that
for any h > ag, the connected component of M N {zn4+1 < > a;x; + h} containing =z

is convex as long as it does not contain boundary points. In particular this means that

12



the connected component of M N {z,4+1 < 7* — §} containing z is convex for any é > 0,
provided we choose o > 0 sufficiently small such that > a? is also sufficiently small.

Hence M is convex. This completes the proof of the Main Lemma.

From the Main Lemma we have

Corollary 3.1. Let M be a complete, locally convex hypersurface with a strictly convex

point. Then M is convez.

Indeed, let the origin O be a strictly convex point of M such that —e,; is a normal of
M at O. As above let A; denote the connected component of MN{z,41 <t} containing
the origin. Then A; is convex. Since A; C Az for any t < {, M = Uicoolt is convex.

Similarly we have
Corollary 3.2. Let M be a closed locally convex hypersurface. Then M is convez.

Remark 3.1. For smooth hypersurfaces different proofs for Corollaries 3.1 and 3.2 are
available, see [12]. For nonsmooth locally convex hypersurfaces, the only proof we know

is given in [5], where the details are given only for n = 2 and are very difficult to follow.

The above argument also produces a similar result for locally convex hypersurface
with arbitrary boundary. More precisely, let M be a locally convex hypersurface such
that the origin O belongs to M and —e,+1 is a normal of M at the origin. Let A
denote the connected components of M N {z,41 < t} containing the origin. Let 7 > 0
be the largest number such that A; N dM = 0 for all ¢ < 7. Then we have the following

extension of the Main Lemma.
Lemma 3.4. Let 7 be as above. Then A, is convez for allt < T.

From the proof of Lemma 3.3 we see that the connected component of A, N 8D

containing @ intersects with the boundary oM.

4. Proof of Theorem A

Let N = N U (8N x [0, 6]) be an extension of V. Let M = T(N) be a locally convex
hypersurface with C? boundary. First we extend the mapping T to N x [0, 4] such that
for any p € ON and ¢t € [0, 6],

1
T(p,t) =z +te, — Ekt2u, (4.1)
13



where z = T'(p), v is the normal of M at x, and e, is a unit vector in the tangent plane
of M at z, perpendicular to M, towards the outside of M. The constants # > 0 small
and k > 1 large will be chosen such that M = T(N) is locally convex.

For any given point 29 € OM, we choose a new coordinate system such that zg is the

origin, the south pole of 8™ is a normal of M at zp and locally M can be represented as

Tn41 = g(xla e 7$n) (42)

for a convex function g with Vg(0) = 0. Furthermore we may suppose the z;-axes,
t=1,---,n — 1, are tangent to OM at zp and the z, axis is perpendicular to OM,
directed towards the outside of M. Then the projection of 9M on {z,+; = 0} can be
represented as

T =¢(T1, ", Tn-1) (4.3)

such that V(0) = 0. Therefore the boundary O M can locally be represented by

ITn = (P("L'la e ,xn—l)

Ipt1 = g(xh oy Tp—1, (P) (44)
Suppose locally T(ON x [0, 8]) is represented by

Tl = u(T1, -, Z4). (4.5)

Then Du(0) = 0. From (4.1) we have u;; = gy and u;, = g at the origin, i =
1,---,n — 1. In order that the Hessian D?u is positively definite, it suffices to assume
k > gnn(0). Therefore we can choose k large enough and @ > 0 small enough, depending
only on n, the curvatures of M, and the upper and (positive) lower bounds of the
principal curvatures of M on M, such that M is locally convex. Furthermore M is
locally uniformly convex near M and OM is Lipschitz regular.

Now we are in position to prove Theorem A. For any given point z € M, by choosing
proper coordinates we may suppose z is the origin, the south pole of 8™ is a normal of
M at z and the hyperplane {z,4; = 0} is a tangent hyperplane of M at the origin. Let

A, A etc be as in Section 3.

If z is an interior point of M, then A; contains no boundary points for ¢ > 0 sufficiently
small, because of the positive curvature condition of M on dM. By Lemma 3.4 there
exists 7 > 0 such that A; is convex, A, NOM = 0 for t < 7 and A contains at least one

boundary point of M.
14



Let 2y be a boundary point in A. Let v be the normal of M at zg. We claim
v —ent1]| >0 (4.6)

for some o > 0 depending only on the curvatures of M at zp. In other words, G(A) has

a positive distance from the north pole.

To prove (4.6) we choose a new coordinate system such that zp is the origin, the south
pole of S™ is a normal of M at zg. Then locally near z5, M is represented by (4.2) for a
convex function g with Vg(0) = 0, and M is given by (4.4) with D¢(0) = 0. Since M
has positive curvatures on 9 M, we have

i ]
ang(wla""mn—1790)2c0>07 1':1:"';"_1- (47)
%

It follows )
Co
Tn+1 Z —4-' ; .’L',? (48)

- . -1
near the origin. Since |p| < CoY i, z?, we also have

Tny1 > ColTnl. (4.9)

Therefore (4.6) follows from (4.8) (4.9). Note that if z is a boundary point, then by our

choice of coordinates we have v = —e,, 11 and (4.6) holds automatically.

We go back to the coordinates where z is the origin and {z,+1 = 0} is a tangent plane
of M at z. In the following we apply Lemma 3.4 to the hypersurface M , regarding z as
an interior point of M. Ifzisa boundary point of M, we have 7 = 0 and A = {z}. If
z is an interior point, then by (4.6) we see that G(A) has a positive distance from the
north pole. Therefore by Lemma 3.4, we can move the hyperplane £, = {z,41 = 7}
further upward to a height 7 > 7 such that A; is convex, Ay N OM = 0 for any t < 7T,
and A contains at least one boundary point of M , Where Xt is the connected component

of M N {Zn41 < t} containing the point z, A is the closure of U;.7A;. By (4.6) we have
T>T—T2>T, (4.10)

where r > 0 depends on 6,k in (4.1), and ¢ in (4.6). Therefore M is convex of reach r.

To show that M satisfies the uniform cone condition, let ﬁt be the convex closure of
Kt, D= Uiz Dy, and Q=06Dn {n+1 =7}. Then () is convex and closed. By Lemma

3.4, Q) contains a boundary point 7 € OM. Since AM is Lipschitz, there exists a ball
15



Bl(y) C Q) for some € > 0 depending only on the boundary of M. Hence M satisfies
the cone condition at 2 for a cone of radius r and axial direction y — z. The aperture of
the cone depends only on ¢, 7, and R, where R > 0 is such that Br(0) D M. Note that

r and « are independent of the point z. Hence Theorem A holds.

In the above proof we reduced Theorem A to the local strict convexity of M = M.
Therefore the positive curvature condition in Theorem A can be replaced by the assump-
tion that M can be extended to M such that M — M is locally strictly convex. This
condition can also be replaced by the local strict convexity condition of M near M.
That is, there exists § > 0 such that for any 2z € 9M, the §-neighbourhood of z is strictly

convex.

As a consequence we see that Theorem A holds not only for M, but for a family of
locally convex hypersurfaces. Indeed, let & denote the set of locally convex hypersurfaces
M, = Ty(N) such that T, = T on N x [0,6]. Let ® = {Ty(N) | T1(N) € &}. That
is, M; € @ if and only if M; U {M — M} is a locally convex hypersurface in &. Then
for any R > 0, there exist 7, > 0, depending only on n, R, M, and the curvatures
of M on OM, such that any locally convex hypersurface M; € ® is convex of reach r
and satisfies the uniform cone condition of radius r and aperture o if M C Bg(0). This

result will be used in proving Theorem B, so we state it as a theorem.

Theorem 4.1. There exist r,a > 0, depending only on n, R, 83M, and the curvatures
of M on OM, such that for any locally convex hypersurface My € ®, if M1 C Bg(0),
then M is convezx of reach r and satisfies the uniform cone condition of radius r and

aperture o.

If M is convex of reach r, then for any point z € M, the r-neighbourhood of z can
be represented as a radial graph over a domain in a unit sphere S™. The uniform cone
condition ensures furthermore that the ball of radius %7‘ sina with centre at z + %rf
is contained in the cone, where £ is the axial direction of the cone. Therefore one can
choose the coordinates properly such that locally near z, M can be represented as a graph
Tn+1 = g(Z1," - ,Zn), such that g is well defined in By = {z' = (x1,---,2,) | [2'| < b0},

1

where dg = Srsino.
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5. Proof of Theorem B

Theorem B cannot be reduced to a Dirichlet problem directly, but we will use the
existence of generalized solutions (in Alexandrov’s sense) and the regularity of solutions
to the Dirichlet problem for the prescribed Gauss curvature equation. For clarity we

divide this section into several subsections.

5.1. Surface area
Let u,v be two convex functions defined in a bounded domain © C R" such that u > v
in Q and v = v on 0. Let A, and A, denote the surface area of the graphs of v and v

respectively. We claim that
Ay <Ay (5.1)

with equality if and only if u = v in Q. Indeed, let v; = v + ¢t(u — v). The surface area
of the graph of v; is given by

At = / (1 + ID’Ut|2)1/2.
Q

We have

d .D’Ut
a, = D(u —
dit fn(1+|th;2)1/2 (u=2)

- [w=-om,

where for any convex u, H, is the mean curvature of the graph of u in the weak sense.

Hence )
A, — A, = —/(u—v)(/ Hvt) <0.
Q 0
If u # v, let h be a linear function such that v > h in 2 and A > v in a subdomain
Q' C Q. Let w = max(h,v). Then 4, < A, < A,.

;From the above formula we also see that if {ux} is a sequence of convex functions

converging to u uniformly in a convex domain €2, then A,, — A,. Indeed we have

/mﬂml
Q

for any convex function u and convex domain 2.

5.2. Perron method

Next we briefly describe the well known Perron method for the Dirichlet problem for the
17



prescribed Gauss curvature equation

detD?u
(1 + |Dul?)(n+2)/2
u=g¢ on 0%,

=K in Q, (5.2)

where K is a positive constant, 2 is a bounded, Lipschitz domain in R™ (not necessarily
convex), and g is a convex function defined on Q. For a convex function u defined in €,

we define the normal mapping N, by setting, for z € (Q,
Nu(z) ={p e R" |u(y) 2z -p+u(z) Vye}

and Ny (E) = UpegNy(z). For any Borel set E C Q, let u,(E) = [Ny (E)|. Then p, is a
nonnegative measure on 2 [10]. A convex function u, continuous up to the boundary, is

a subsolution of (5.2) (Aleksandrov’s sense) if v = g on 2 and for any open set E,
1 (E) > K/ (1+ | Du|?)("+2)/2, (5.3)
E

We say u is a generalized solution if equality in (5.3) holds for any Borel set E. Note
that Du is a.e. well defined since it is convex. Obviously if u;, us are subsolutions, so is

max(uy, uz).

Suppose ug is a subsolution of (5.2). Denote by ¥ the set of all subsolutions of (5.2).
Let

u(z) = sup{w(z) | w € ¥}

Then u is a solution of (5.2). Indeed, by convexity there exists a sequence of subsolutions
wy such that wi ~ « uniformly in 2. By the weak convergence of p,, , see [10], u is a
subsolution of (5.2). u is indeed a solution, for otherwise we can replace u in any ball
B, C Q by the solution of (5.2) with Q = B, and boundary value u. The existence of

solutions of (5.2) on strictly convex domains is well known [10].

5.3. Monotone sequences

We introduce a monotone relation for two locally convex hypersurfaces Mgy = T(N) and
My =T1(N) in @, where & is the set in Theorem 4.1. We denote Mgy < M if there is
a continuous immersion Ty, t € [0, 1], of the manifold A in R"*! such that T;(N) € &
and T} satisfies the monotone condition: for any ¢t € [0,1] and p € N, there is a
neighbourhood w, C N and € > 0 such that T,(q) lies in the concave side of T}(w,) for

s€[t,t+¢] and g € wp.
18



We say a sequence of locally convex hypersurfaces My = T (N) € ® is monotone if
My < My for all k. We say the sequence My, is convergent if there exists a sequence of
homeomorphism ¢y from A to itself such that T - or : N — R"*1 is convergent. Note
that if there exists a mapping T : N — R+l satisfying the conditions in Definition 1
such that My = T} (N), then T =T - @y for a homeomorphism ¢ from N to itself.

Lemma 5.1. Let Mg, M1 € ® such that Mg < My. If My C ER(O), then M, €
Br(0).

Proof. Let Tt,t € [0, 1], be the monotone deformation from Mg to M;. Then if M; =
T:(N) C Bgr(0) for t < tg, so is Mg,. Therefore it suffices to show that M; C Bg(0)
when ¢ > 0 small. For any point p € N, if To(p) € Bgr(0), then Ty(¢) € Bgr(0) for ¢
sufficiently close to p and ¢ > 0 sufficiently close to 0. If Ty(p) € 0Br(0), we may suppose
To(p) = (0,--- ,0,—R). Then M, can be represented as a graph 1 = g(z1, -, 2y,) for
some convex function g such that g > \/Rz——z:cf . Since T is a monotone deformation,
by definition we have that for ¢ close to p and ¢ > 0 small, T3(gq) lies above the graph
of g. Since N is compact, by the finite covering theorem we conclude that M; C Bg(0)
when ¢ > 0 is small. [J

Therefore if M, is a sequence of monotone, locally convex hypersurfaces in ®, we have
My C Bg(0) for some R > 0 large enough. One can also prove the surface area of M

is monotone decreasing.

5.4. Construction of a monotone sequence

Next we use the Perron lifting to construct a sequence of monotone, locally convex
hypersurfaces in ®. Let Mj be the locally convex hypersurface in Theorem B, given by
the immersion Mg = Tp(N). Let N , Mvo be the extension of N, My, as in Section 4.

For any point g € My, by Theorem 4.1 we may choose the coordinates properly such

that locally near zg, M{) is represented by
Tnt1 = UO(a"l) e ):L"n)7 (54)

and ug is nonnegative, convex function well defined in B} = {z' = (21, -+ ,zy) | |2/| < 4},

where

1 1
= — < — i
] g& €= 207's1n(ae/2)

are fixed constants. Since in Theorem 4.1 we are concerned with the r-neighbourhood of

z, we may also suppose ug < r. By the convexity we have

|Dug| < 2r/8 in By, (5.5)
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Let Do = {¢’ € By, | (¢',u0(2")) € Mo}, and Fy C M be the graph of ug over Do. In

Dy we consider the Dirichlet problem for the Gauss curvature equation

detD?u
(1 + |Duj?)(n+2)/2
U = Ug on 8Dg

=K0 n DO (56)

where K is the positive constant in Theorem B. By assumption K(Myg) > Ky, ug is a
subsolution of (5.6). By the Perron method in §5.2, there is a solution u; of (5.6) such
that u; > ug in Dy. The projection in the x,1-axis direction is a natural 1-1 mapping
from Fy to Fy, where F} is the graph of u;. Denote this mapping by 1. Then 1y and
its inverse is Lipschitz by (5.5). On Mgy — Fy let 9 be the identity mapping. Then
Ty =: 1o - Ty defines an immersion of A such that M; = T7(N) is a locally convex
hypersurface in ®. We have obviously K (M;) > Kp.

Denote by A(uo) (= A(uo,z)) and A(uy) (= A(u,2)) the surface areas of F and
F1, respectively. By §5.1 we have A(u;) < A(ug), with equality if and only if Fy = Fj,
namely, the Gauss curvature K (Fp) = Ko. We choose the point 29 € My such that

A(ug, 20) — A(u1,20) > %sup{A(uo,z) — A(u1,2) | 2 € Mg} (5.7)

Note that for a given point z € My, there are different coordinates such that locally My
can be represented as a graph by formula (5.4). The supremum (5.7) is also taken among
all such possible coordinate systems. By choosing zp as in (5.7), we obtain a locally
convex hypersurface M; € ®. Obviously Mgy < My and A(Mp) > A(M;).

Continuing the above procedure, with ¢ fixed at all steps, and Mg replaced by My_1
at the k" step, we obtain a sequence of monotone, locally convex hypersurfaces My, € ®,
My, = T (N), such that K(Mj) > K, and the surface area A(Mp) is uniformly bounded.
By Lemma 5.1, we have My, C Bg(0) for all k.

5.5. Convergence of the monotone sequence {M;}

Let UT%, Bc(z;) D Br(0), where € < g57sin(a/2), be a finite covering of Bg(0). For any
given j and k, we claim there are finitely many connected components in B,(z;) N M.
Indeed, let w;,i = 1,2,---, be the connected components of B.(z;) N M. Let @; be
the connected components of B, 5(2;) N M, containing w;. Regarding ; as a subset of
the extended hypersurfaces Mk = MpU (j\-/lvg — My), we see by Lemma 3.4 that @; are
mutually disjoint. By the uniform cone condition in Theorem 4.1, the surface area of w;

is large than a¢ for some a¢ > 0 depending only on n, », and «. Since the surface area of
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My is uniformly bounded, i.e., A(Mj) < Ay for all k, there are at most [%OQ] connected

components of B (z;) N M.

Choose an arbitrary boundary point y® € ' = My. We take it as the origin and
suppose y° € By for some By among the balls {B:(z;)}. Let w(t) be the connected
component of By; N M containing 10, where By, is a ball of radius ¢, concentrated
with By. By Theorem 4.1, w) = w)(r) is convex and there is a cone C of radius r and
aperture o, with vertex at y° and axial direction £, such that Cy lies on the concave side
of wg. By choosing a subsequence we may suppose £y — e,41, the north pole of S™. Let
C denote the cone of radius 7 and aperture /2, with vertex y° and axial direction e, .
Then C lies in the concave side of w for all large k by the monotone condition. Suppose

locally near y°, w? is represented by

Tnpr =us(z), = =(x1, - ,zn).
If w{ contains no boundary point of Mo, then uf is well defined in Bj,, where §' =
srsing. Otherwise it is defined in a subdomain of Bj, (which is independent of k since
I' = O M, is independent of k). In both cases let D° be the domain of definition. Since
M, is monotone, ug is a sequence of monotone, convex function. Hence ug converges to

a convex function u® in D°. Let F° denote the graph of u° (over D%). We claim
K(F% = K, (5.8)

where K (M) denotes the Gauss curvature of M. Indeed, since K(Mj) > Ky, we have
K(F%) > Ky. If FO is not a Ko-hypersurface, there is a ball By C D (§ = ¢/8) such
that
pao(B5) > Ko [ (14 D)2
é

Let u} (u*, resp) be the solution of (5.6) with domain Bj and boundary value u (u?,

resp.), and let uf = ul (u* = v resp.) in D° — B}. Then u* > u° u* # u° and
K(F,) > Ko, where F,. is the graph of u*. It follows the surface area A(Fy,.) <
A(Fyo) + ¢ for some ¢’ > 0. Since uj — u* and uf — u® uniformly, we have A(Fy;) <
A(Fyo) + 1¢/, which implies by (5.7) that A(My41) < A(My)+ 3¢’ for all k large. This
is impossible. Hence (5.8) holds.

We proceed as above. Suppose at the j** step we have a sequence of connected
components wi_l C My, which can be represented as graphs z,41 = ui_l(:t:’ ) for 2’ €
D=1 such that u] ' — w/~!. Let F9~! denote the graph of u/~1. Then at the (j + 1)

step we choose a point 3/ € F°U---U8F7~1, and 3’ is not an interior point of F* for
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alli=1,---,j — 1. Suppose 37 € 8F7~!. As above we take y’ as the origin and let B;
be a ball among {B.(z), ¢ =1,---,m} such that y7 € B;. Let §;, = ﬂi be the (unique)
point in wi"l such that 75 — y’. Then Ji € B, when k is large enough. Let wi (t) be
the connected component of B;; N M containing yi, where B;; is the ball of radius ¢,

concentrated with B;. As above suppose locally near v, wi is represented by
Tny1 = ul(z'), o' €D, (5.9)

Then u?c is monotone, convex, and converges to a convex function u?. Let F7 denote the
graph of u/. Then we have K(F7) = K.

This procedure finishes in finitely many steps (say at the m*-th step) since we have
shown above that for any £ > 1 and j = 1,---,m, there are at most [‘2—(‘]’] connected
components of B¢(z;) N Mj. Therefore we obtain a collection of Ky-hypersurface F*,

i=0,+,m*—1.

For k sufficiently large, we define a mapping # from My to M = UF*? such that
n - Ty is locally a homeomorphism, where T}, is the mapping for My,. Since {B.(z;), j =
1,---,m} is a finite covering of My, wi(a), j=0,---,m*—1,is a covering of M. Let
k large enough (but fixed) such that |u§c — 7| < " for some &"” small. For any z € My,
we have =z € wi(s) for some j. Hence z is an interior point of wi = w,’;(r). Let 7y, be
the vector field on M, introduced in Lemma 2.2. By Theorem 4.1, M; is convex of
reach r and satisfies the uniform cone condition with radius » and aperture a. Hence we
have |y,| > & when " is chosen sufficiently small. It follows that v, N F7 contains a
unique point {y}. We define a mapping 7 such that y = n(z). Obviously 7 is well defined
on M, and locally it is a homeomorphism. Hence M = 7 - Tx(N) is a locally convex

hypersurface. Since F7 are Kg-hypersurfaces, M is also a Kg-hypersurface.

Similarly we can define a mapping 7; from M to M; as above, where k is fixed, 7 > k.

Then n; — n and n; - Tx = n - Tx. That is, M; converges to M.

5.6. Regularity

Let My be the locally convex hypersurface in Theorem B, given by the immersion Mg =
To(N). Let M be the extension of M, as in Section 4, and let M = M U {Mo — My}
be the extension of M, where M is the Ky-hypersurface obtained in §5.5, such that both
M and f\/lvo are locally convex. For any boundary point z € I', one can choose a nearby
point 2z’ € Mo — My, and take z2’' as the Tn+1-axis direction, such that locally near z,
My can be represented as

Tnp1 = ul(z1, -, Zn) (5.10)
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and M can be represented as
Toy1 = u(T1, * ,Tn). (5.11)

By our construction of My, we have u > u® near 2.

To prove the regularity of M we first prove M is locally strictly convex. Let zg € M
and let £ be a tangent hyperplane of M at zy. If M is not strictly convex at zp, there is
a line segment -y, which passes through the point 2, such that v C Ag, where for ¢t > 0,

A is the connected component of M N {z,4+1 <t} containing zg.

By the extension in Section 4, Ho — My is locally strictly convex. Hence for t > 0
small, A;, as a set in ﬂ, contains no boundary points of M , and hence is convex by
the Main Lemma. Hence Ay is also convex. From [1], an extreme point of A is not an
interior point of M since M is a Ko-hypersurface. Hence Ay contains a boundary point

z1 € OM(=T), and there is a line segment £ C Ag such that 2z; is an endpoint of ¢.

Suppose near z;, Mg and M are represented by (5.10) and (5.11) respectively. Then
¢ is not tangent to I' at z;. Indeed, if £ is tangent to T, then ug, = 0 since u > u°, where

£ is the direction of £. This is a contradiction.

Choosing a new coordinate system we can then suppose z; is the origin and ¢ is the
T, axis, such that u is a nonnegative convex function. Since £ is not tangent to I' at z;,

we have by the smoothness of T,

n—1

0 <u(ry, - ,Tn-1,Tn) < C’Z x? (5.12)
i=1
for any fixed z,, > 0. But since the Gauss curvature of u is a positive constant, one can

easily construct a supersolution to show that (5.12) is impossible, using the comparison

principle. Therefore M is locally strictly convex, and so it is smooth [10].

The regularity on the boundary of a K-hypersurface is a local property and has been
proven in [4,6]. Hence M is globally smooth. This completes the proof.

Finally we point out that Theorem B can be extended to the case when the Gauss
curvature depends on the position of the hypersurface. That is if I' can bound a locally
convex hypersurface My such that K(My)(z) > f(z) for any z € My, then there exists
a locally convex hypersurface M with boundary I' such that K(M)(z) = f(z), where
f € C2(R™*1) is a positive function.
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