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1. Introduction

In this paper we derive various interior estimates for k-admissible hypersurfaces of
R"*! and more particularly, for graphs of k-admissible solutions of the equation
of prescribed k-th mean curvature. These estimates include local integral bounds
for certain curvature quantities in terms of boundary integrals of same quantities,
and related local monotonicity formulae. We will use these estimates to improve
the curvature bounds established in [13], and to derive a local Holder gradient
estimate for 2-admissible solutions of the equation of prescribed scalar curvature.

The k-th mean curvature Hy of a C? hypersurface M C R™*1 is given by the
k-th elementary symmetric function of the principal curvatures Ag,..., A, of M,

Hy = 5k(AM,...,0n) = S A (1.1)
1<i; < <ig<n

We say that a C? orientable hypersurface M in R™*! is k-admissible if at each
point its vector of principal curvatures A = (\q,..., \,) belongs to the cone

FkZ{)\ERn:Sj()\)>O, j=1,...,k}.

We compute the second fundamental form with respect to the upwards pointing
normal if M is the graph of some function defined over a subdomain of R”.

All the estimates of this paper will be proved under the assumption that we
have control of the modulus of continuity of the normal vector field v (actually,
a somewhat weaker condition suffices). Thus we are in effect considering only
hypersurfaces M that can be represented as graphs with small gradient on small
enough neighbourhoods of any point of M. We shall nevertheless state most of
our results in a more geometric fashion.

If M = graph u, Hy = Hy[u] is given by an expression depending on Du and
D?u. Tt is well known that the k-curvature equation

Hylu] =1 (1.2)

is an elliptic equation and Hy [u]l/ k is a concave function of D?u if the graph of u
is k-admissible (see [2]). Such solutions are called k-admissible.

We shall use the following notation. X denotes the position vector on M,
and X T and X+ denote the tangential and normal components of X. V denotes
covariant differentiation on M. Various integrals that appear below will be as-
sumed to be with respect to the natural measures, without these always being
indicated. Thus if the integral is over a relatively open subset of M, the measure
is n-dimensional Hausdorff measure ™, while integrals over boundaries of such
domains are with respect to n — 1-dimensional Hausdorff measure #™~!.

Our first result is the following local integral bound.

Theorem 1.1. Let M be a k-admissible _hypersurface in R n > 2, such that
M = graph u for some function u € C*(Bg,(0)) with u(0) = 0, Du(0) = 0. Let
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g = H,:"k for some k € {2,--- ,n}. Then for any p > 1 there is a number pg €
(0, do], depending only on p and the modulus of continuity of v on M (Bg, (0)»R),
such that for any p € (0, po] we have

/ v?PHYHy_q < P/ v?PHYHj_4
Me oM, (1.3)
+Clp/ HY (¢* + pg* | Vy) +02/ HY ™ (g + 076" % Vg)?)

M, M,
where M, = M N BZ,“"I(O), C:1 and Cy depend only on k,n and p, and v =

v 1+ |Dul?.

Remarks. (i) The restriction on p amounts to requiring |Du| < ¢(p) for a positive
constant ¢(p) < 1 depending only on p. Thus 1 < v < v/2 on M,,. The factor v??
could be therefore be removed, at the expense of introducing a constant C(p) in
front of the boundary integral.

(ii) If Ag > 0 on M, then (1.3) can be written more explicitly as
k
[ HE <[ PHIH -
M

M, n—k + 1
Above we have incorporated the last term of (1.4) into the second last term of
(1.3).

(ii) If M is a convex hypersurface, then the term requiring the introduction
of v?P is automatically nonnegative and can be discarded at a suitable point in
the proof. In this case (1.3) (and (1.4) if Ag > 0) holds with v?? replaced by 1.
Furthermore, we do not need to assume that p is small; all we need is supg a0 | Du| <
1. However, the convexity of M is an unnatural assumption unless k = n.

/ g v?PHY(X V) (1.4)
MP

P

Theorem 1.1 is essentially a differential version of the following local mono-
tonicity formula.

Theorem 1.2. Let M,g,p and po be as in Theorem 1.1. Then for any 0 < r <
R < pg we have
1 1
—/ ’UszfHk_l S — ’UZPHfHk_l
T M, R Mpg

R
1 _
+01/ (—/ HY (g" + pg"* 1IVgl)> dp (1.5)
r p M,
R 1 p—1 ¢ k 2 k-2 2
+Cz/ ;/ HY™" (g* + p°g* % |Vgl|?) | dp,

p

where Cq, Cy are the constants from (1.3).

Remarks. (i) This generalizes to k-th mean curvature equations the monotonicity
formulae established in [12] for W2P solutions of k-Hessian equations.
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(ii) If Ag 2> 0 on M, we obtain the monotonicity formula

1 1
—/ ’UszfHk_l _: — UZPHfHk_l
r M, R Mg

k R k, 2
- - PHP(X, v).
n—k—l—l/r‘ p /Mpg” 1 (X,v)

In the special case £ = 2 we obtain from Theorem 1.2 an a priori local Hélder
gradient estimate for 2-admissible solutions of the equation of prescribed scalar
curvature. This extends our results [15] for solutions of degenerate two dimensional
Monge-Ampére equations and [12] for solutions of the 2-Hessian equation. We state
a version involving only L norms of g and Vyg.

(1.6)

Theorem 1.3. Let M, g and pp be as in Theorem 1.1, with k = 2. Then for any
g>n—1 and any r € (0, po/2] we have an estimate

|Du(z) — Du(y)|

< C(n,q)r~/1 { HY +r"*9sup g*

sup
evesy |z -yl Ma, My,
z#y
. (1.7)
q
+7r39t" sup |[Vg|?? + r" sup g? + r4T" sup IVglq}
ar My, My,

where aa =1 — (n —1)/q.
In Section 3 we shall prove the following interior curvature bound.

Theorem 1.4. Let M, g be as in Theorem 1.1, n > 3, and suppose that g := H,:/k
satisfies
pi<g<py,  |Vgl<p on M (1.8)

for some positive constant p. Then for any s > k(n — 1)/2 we have
|A(0)| < C (1.9)

where A is the second fundamental formifM and C depends only on k,n, s, u,dy,
the modulus of continuity of v on M N (Bg,(0) x R), and on [,, H}.

Remarks. (i) This improves the curvature bound of [13], which is essentially the
same result with s > kn/2.

(ii) In the case k¥ = n the lower bound on ¢ is known to be essentially sharp
(see [10]). We do not know whether the lower bound s > k(n — 1)/2 is optimal if
k < n. Examples in [11] show that s > k(k — 1)/2 is necessary for corresponding
interior second derivative bounds for k-Hessian equations. We expect that the
optimal bounds for g should be the same for k-Hessian and k-curvature equations.

(iii) A purely local interior curvature bound for the scalar curvature case k = 2
has been proved by Nelli [7] under the strict ellipticity assumption [F;;] > 61 for
a positive constant § (see the following section for the definition of F;;).
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2. Monotonicity formulae

In this section we shall prove Theorem 1.1. Let eq,...,e,+1 denote the usual
orthonormal basis of R"*. Near (0,%(0)) we may choose a local orthonormal
frame field €;,---,&, on M = graph u. We denote covariant differentiation on
M in the direction &; by V,. We let €,41 = v be the unit normal vector field.
Let A = [h;;] denote the second fundamental form of M, relative to the frame

€1, -+ ,€,. The k-curvature operators Hx on M are then defined by
Hi[A] = Se(A1,- -+, An) (2.1)
where A1, -, A, are the principal curvatures of M, which are the eigenvalues of
A. Tt is well known that OH,
Fij = Fa; (4]
is a positive matrix, and H[A]'/* is a concave function of A if M is k-admissible

(see [2]).

We first write the equation
Hy[A] = ¢ (2.2)
in the form
GrlA] == H'k[A]l/lc =g. (2.3)

Differentiating (2.3), and writing G;; = ‘—g%l;[A], we obtain
Gi;Vihi; = Vig, (2.4)

Gz-leVlhij Z VZV,g = Ag, (2.5)

where in the last inequality we have used the concavity of G to discard a term
which is quadratic in VA, and where A denotes the Laplace-Beltrami operator on
M. As usual we assume summation over ! =1,...,n in (2.5). Using the standard
formula for commuting covariant derivatives, together with the Gauss equations

Rk = highji — hahjk,

where R;;i; denotes the Riemann curvature tensor, and the Codazzi equations,
which tell us that V;h;; is symmetric in all indices, we find that

ViVihi; = ViVihj
= V;Vihj + Rlijmhml + Riitmhm;
= ViV hy + hijhimbmi — Rimhijhm
+ hyuhimhm; — Rimhithm;
= ViV hy — himhijhmi + huhimbm;.
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Using this in (2.5) we obtain

GijViVihy 2 Gijhijhimbim — Gijhimhjmhu + Ag. (2.6)
We have ) 1
1—k)/k _
Gij = EHI& )/ F."j = Egl kFij (27)

where Fj; = g—i’;[A], so using this in (2.6) we obtain

Fi;VViHy = FyV.Vihy > Fyjhiihimbim — HiFijhimhim + kg® ' Ag

2.8
= Q+kg*Ag. 28)

Observe that if Ag > 0, the last term can be dropped; the subsequent computa-
tions involving this term are then unnecessary, and we shall see that we obtain
(1.4) in place of (1.3). Furthermore, as shown in [3], if M is convex, then @ is
nonnegative and can be dropped. However, the convexity of M is not a natural
assumption if & < n.

From [13], Lemma 2.1, we know that v = 4/1+ [Du|? = v, satisfies the
equation

2
FUV,-VJ-U = vFijh.imhjm + ;Fijvivvjv + vz(kg’“_IVg, e.n+1), (2.9)

where e, is the n + 1-st standard coordinate vector of R+

We now compute a differential inequality for W = ¢(v) HY where ¢ is a smooth
positive function to be chosen and p > 1 is a constant. We have

VW = ¢'(v)H' Vv + pd(v) HY ™'V, H; (2.10)
and
V,‘VjW = d)’(’U)H{'viVj’U + ¢”(U)H{’V,;'UV]"U
+ p¢' (v)HP " (V0 V;Hy 4+ V0V Hi) + pp(v) HY 7'V, V,Hy  (2.11)
+p(p — 1)¢(v)HY ">V H,V; H,.
Consequently, using (2.8) and (2.9) we have
FyViV;W
2
>¢' (v)HY {vFijhimhjm + EFZ-,-Vijv + v (kg*~1Vy, en_H)}
+ ¢ (v) HP Fyy VvV v + 2p¢ (v) HE ™ F3, Viu Y Hy (212)
+ pp(v)HY ™ { Fijhijhimhim — H1Fijhimhjm + kg" 1 Ag}
+ p(p — l)qS(v)Hf—zF,-jViHleHl.
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For any € > 0 we now estimate

2p¢’ (v) HY ' Fy; V0V ; Hy

p(¢)? o2 (2.13)
> — —Hl Fijv,;’l)v]"l) - ep(p - 1)¢H1 FijViHlijl.
e(p—1)¢
Using this in (2.12) and rearranging terms we obtain
F,jVi;V;W > HYFijhimhjm [¢'v — pd)
2¢/ p(¢')?
+ HYF;;ViwVu | — + ¢" —
VIV S O 1 (2.14)
+(1—e)p(p —1)¢(v)HY *F; V. H, V; H,
+v%¢/ (v) HY (kg* ' Vg, eni1) + kpp(v) H] " g* ' Ag,
where we have discarded the nonnegative term p¢(v)HY _lFiJ- Bijhim P -
We now set
$(v) = v*
for ¢ > 0 to be chosen. Then
/ 1 X
¢d'v—pd=(qg—pv!> iqvq if ¢g> 2p. (2.15)
Furthermore o
%ﬁ +¢" = q(g + 1)vI 2 (2.16)
Next we have "o )

—-1)¢ e—1)"

Eventually we want to fix € € (0,1) so that the coefficient of the third term on
the right hand side of (2.14) is positive. It is apparent then that (2.17) cannot be
controlled from above by the right hand side of (2.16) for all p > 1, so we argue a
little differently.

We recall from [13] that

n
Viv=Vi(v i) = Vg2 Vit = 07 Z hik{€x,ent1)-
k=1
€ is a unit tangent vector field to M = graph u, so for each k = 1,...,n there is

a unit vector field &, defined near 0 € R™ such that

(gka Dﬁk ’LL)

V 1+ IDihulz .

€r =
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Then D
U
(B, €np1) = —re
V 1+ |D§k’u,[2
and consequently
De, uDg u

I+ D, ulfy/1 1 [Dgul?
S v4|Du|2Fijhikhjk.

Fij vi’UVj’U = ’U4Fijhikhjl

Thus, using (2.17)

N2 2
POV g vV < — P | DulPu 2 H B hahg

e(p—1)¢ e(p—1)
< iqqufFijhikhjk
provided
ﬁ|Du|2v2 < i- (2.18)
We now fix € = 1/2 and set ¢ = 2p, so that (2.15) is valid. Then (2.18) holds

whenever
p—1
16p2’

|Dul?v? <

in particular, it holds if

|Duj? < min {1, (%) } : (2.19)

And this is clearly valid for all X € M,, = M N B! with sufficiently small
po > 0, depending only p and the modulus of continuity of v.

Combining the above estimates we see that for any p > 1 we have
FigViV;W 2 SHY Fijhimhym + (49 + 2p) L Fiyy VioV 0

1 _
+ —p(p - I)H{) zFijV,-Hlijl, (220)

2
+ 2pv2p+1Hf<kgk_1Vg, en+1> + kp’UZPHf_lgk_lAg

in M,,, for sufficiently small po > 0 depending only p and the modulus of continuity
of v.

We now set 7(X) = p? — | X|? where p € (0, po]. Let M, = M N By*!. Then
OM, = MNJB}*! because M and OB+ intersect transversally, since Byt N M
is a graph with small gradient; in fact, we may assume that

1
sup |Du| < =. (2.21)
Ba, 2
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We now multiply (2.20) by 7 and integrate over M,. Integrating by parts twice
and using the fact that Fj; is divergence free (see [8]),

ViF; =0, (2.22)

we obtain

—Z— / anPTijhimhjm + (4p2 + 2p) / nH{’Fisz—ijv
M, M,

1 _
+ 3o =1) [ HE RV,
M,
+ 2p/ nu*P T HY (kg* Vg, ent1) + kp/ P HY " lgF1Ag
Me Mo (2.23)
S/ nF;;Vi;V; W
M,

= — / FiijVjW
M

P

.—_/ WF,'jV,‘VjT]—/ WFiijNj
M, oM,

where N denotes the outer unit normal to 8M, in M, i.e., N is tangent to M and
normal to dB+1.

We now proceed to estimate the last two integrals on the left hand side of
(2.23). Using the bounds 1 < v < C(p) on M, as appropriate without further
mention, we estimate

/ Pt HE (kg* Vg, ent1)
M

p

< C(p)k02/ HYg*=1vg|.

M,

Next we integrate the last integral on the left hand side of (2.23) by parts.
We have

/ P HY g 1Ag
M

P

=—(k-1) /M P HP 1 gk=2|v g2

= / v?PHI  g* 1V V.g
M, (2.24)

— 2p/ nvzi"_lH‘f_lgk_lvivVig
M

p

—(p~ 1)/1;/1 nvaH{’_2gk_1Vz-H1V,-g.
P

= - (k — 1)]1 — I2 — ZpI3 — (p - 1)I4
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We estimate these as follows:

1| < C(p)6 /

nHYFi;VivVjv + C(p)a_lf nHY 29 *F-'V.gV;g
M,

M,

e/ nHYF,; V0V v+ C(p)0~ / HP1gk=2|yg)?

for any 6 > 0;

I, < C(p)6 /M nHY*Fy;V,H\V;H, + 671 /M nHY 2g*2F1V,gV g

o P

< C(p)8 f nHP™2F,;V;H,V;H; + C(p)6~p? / HY 1 gk=2|vg)|?
M,

P M,

for any 6 > 0. In these estimates [Fz;l] denotes the inverse matrix of [F;;], and
we have used the inequality

‘ k
g
[F,]] = I, (2.25)

or more precisely, its equivalent form
7 < A (2.25)

(see [13]).

Using these estimates in (2.23) and fixing 6 > 0 sufficiently small, depending
on p, we obtain

/ WF,;V;V;n + / W Fy; VN

(2.26)
C(k, p)p* / HYg*~ 1IV9|+C(k,;D)/M HY " + pgF 2| Vg ?).

Next we compute the derivatives of n. Clearly {e;} and {&;} are related by

n+1 n+1

e;, = E Cijéj, ék: E Cik©;, (2.27)
7=1 i=1
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where ¢;; = (e;,&;) is an orthogonal matrix. We have
ViXe = cii (2.28)
and by Gauss’s formula
ViV Xk = hijvg = hijck i1 (2.29)
Therefore
ViVin=-2(V;X,V;X) - 2(X,V;V;X)

n+1
= -2 Z Ck,;ij - 2hz’j <X, V)
k=1

= —"251']' — 2h” (X, I/)
by the orthogonality of [c;;]. Consequently
F,-sz-an =-2 ZF"' - 2Ejhij (.X, I/)

1=1

= —2(n—k+1)Hy_; — 2kg"(X,v).

(2.30)

In addition, by (2.28) we have, on OM,,

——F,-ij/\/'j = ZFij (X, V,X>.N;

n+1
= 2F;; (Z Xkcki) N;

k=1
= 2F; X N;

n
< 2PZ Fi;
=1
= Zp(n —k+ 1)Hk_1,

where X T is the tangential part of X, i.e., the orthogonal projection of X onto
the tangent space Tx M. Using this in (2.26) and estimating the last term (2.30)
we arrive at

/M VPH Hy_y < p /a  PHIH,
? ? (2.31)

+ Cp/ HY(g* + pg* 1 Vg|) + C/ HP (g% + p?g* 2| Vg ),
M, M,

where C' depends only on k,n and p. This is inequality (1.3). This completes the
proof of Theorem 1.1.
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Theorem 1.2 follows easily from Theorem 1.1. For p € (0, pp) we have

XT 1 :
making pg smaller if necessary. Therefore
2PHYH),_ d
/ v?PHPHy_4 < / Y oimkml 2 / vPHVHy . (2.33)
oM oM, IVIX|| dp M,

The last line follows by differentiation with respect to p of the coarea formula

2pHP+1H
v?PHPHy ) dH" / / "1 kol ggn-lgy
,/ oM, IVIX||

(see [9], Chapter 10, or [4] Theorem 3.2.22). We now get the monotonicity formula
(1.5) by using (2. 33) in (2.31), dividing by p? and integrating with respect to p
from r to R. This completes the proof of Theorem 1.2.

We now show how Theorem 1.3 follows from Theorem 1.2. We assume now
that k = 2and ¢ > n —1. Then 2¢ > 2n —2 > n, so g € WH29(M) implies
that g € Lwc(M ), by the Sobolev embedding theorem. We now estimate the last
two terms in (1.3). By straightforward computation using the Holder and Young
inequalities we find (setting ¢ = p + 1) that

R
1
f (—/ H{’(g2+pglVgl)) dp
r P Mp

(2.34)
Sg { H{ + R™"sup g%? + R37t" sup|Vg|2q}
R Mg Mg M
and
R 1 p—1, 2 2 2
7 HY (9% + p*|Vgl*) | dp
r My (2.35)
gg { H] + R™sup g? + R " sup |Vg|‘1} "
R Mg Mg MR

Since v?P is bounded between two positive constants on Mg, we see that for any

€ (0,R], ! [ M, H7 is controlled by the terms appearing on the right hand sides
of (2.34) and (2. 35) Furthermore, H; is equivalent to the length of the second
fundamental form of M, because M is 2-admissible (see [13]). Since |Du| < 1, we
see that for r € (0,R/2], r~! Br |D%u|? is controlled by the same quantities. A

Holder gradient estimate
qup |.D'U:(m) - DU(y)| < C’)"_l/q { Hi} + pnta sup 92q
M41‘

z,y€B? |a7 - y|a M,
zFy

o=

47397 sup |V g|?? + r™ sup g7 + r4t" sup IVg|q}
4r M41- M4r
with « =1 — (n — 1)/q and any r € (0, R/4] then follows from Morrey’s estimate
[5], Theorem 7.19.
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3. Interior curvature bounds

In this section we will use the estimate of Theorem 1.1 to improve our interior
curvature estimates in [13]. We will use some results from that paper.

The following result was obtained in [13] in the course of proving the curvature
bounds.

Lemma 3.1. Let M,g be as in Theorem 1.4. Then for any q > 0 there is a
number p; € (0,do], depending only on g and the modulus of continuity of v on
Mn BE"O“, such that for any p € (0, p1| we have

1 3
/ H{ 'F;V;H\V;Hy < 01((12;2)/ H{ Hy_, (3.1)
Mp q p M2p

where C depends only on k,n and u, where p is the constant from (1.8).

The estimate (3.1) is essentially inequality (2.30) from [13], which is

I

for a nonnegative function n € C’(‘)’°(B£‘;r 1) with = 1 on Bpt! and |Dp| <

Cp~!. The differences between the two arise because in (3.1) we have not used
the estimate

C 1)3
'l']ZHi]_lFijViHIVjHI < %/ H{Hk (3.1)
qcp Ma,

p

Hy_y < C(k,n)HF ! (3.2)

on the right hand side, and we have estimated the left hand side of (3.1) from
below by the left hand side of (3.1). These estimates are proved by multiplying
(2.8) by n2¢(v)Hf+1, integrating by parts, making a suitable choice of ¢, and
estimating various terms, very much as we did in Section 2. Inequality (3.2) is a
consequence of the Maclaurin inequalities

() o

In [13] we also assumed that the C®* norm of v was under control for some
a > 0; consequently we obtained a more explicit bound for p;. However, it is clear
from the proof that any modulus of continuity for v suffices.

1/m 1/1

~1
< [(’Z’) s,(A)] for1<l<m<mn, A€l, (3.3)

In [13] we proceeded from (3.1)’ by applying the Sobolev inequality of Allard
[1] and Michael and Simon [6] to eventually get

T

where 8 = n/(n — 2) and ~,C are positive constants independent of p and r,
without requiring r to be small (for this we require a C%® modulus of continuity



14 JOHN URBAS

for v). The inequality (3.4) was then iterated to obtain the curvature bound.
The condition g + k > kn/2 guarantees that the exponent of integrability of H;
improves at each step of the iteration. The number 3 is determined by the Sobolev
exponent in n dimensions, while the exponent of H; on the right hand side of (3.4)
is k + g rather than ¢ because of the ellipticity bounds

;I—OI < [Fij] € C1Hp_1I < CoHF1I, (3.5)
1

Here we show that with the aid of an estimate such as (1.3) it is possible to
obtain a variant of (3.4) with 8 = (n — 1)/(n — 3), which comes from the Sobolev
exponent in n — 1 dimensions. An analogous procedure was used in [14] to obtain
a corresponding improvement for k-Hessian equations.

We will perform a finite iteration to improve the exponent of integrability of
H, enough to appeal to [13] to deduce the curvature bound. Since only a finite
iteration will be used, we can ignore the precise dependence of various constants
on ¢; however, the dependence on p needs to be kept explicit for part of the proof.
We assume therefore that ¢ is always bounded from above by some large number
g* < oo; then p < p* for some small positive number p* depending only on ¢* and
the modulus of continuity of v. A further smallness condition on p will arise in
the subsequent proof.

We begin by simplifying our key estimates. First, after estimating the inte-
grand on the left hand side of (3.1) from below using (3.5), we obtain

19 ()

for any p € (0, p*], where C depends on k,n, q, i, p and ¢*.
Next, the estimate (1.3) reduces to

2 T
< o Hf -Hk—la (36)
M3,

/ H]z_’Hk_l < Cip HfHk_1 + Cap Hf =+ Cg/ Hf_l (3.7)
M, oM, M, M,

for any p > 1, where Cy,C> and C3 depend only on k,n and p, and p < pg where
po depends only on p and the modulus of continuity of v. Using the fact that

Hy > c(k:,n)(Hk)(k—l)/’c = c(k,n)gk_l, (3.8)

for p sufficiently small, say 0 < p < ps, we can absorb the second and third terms
on the right side of (3.7) into the left side, to obtain

/ HfHk;_l < Cip HfHk_l + Cs, (39)
M, oM,

for new constants C7,Cs. We will use this with a suitable choice of p, depending
on q.
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We will use the Sobolev inequality of Allard [1] and Michael and Simon [6],
but it will be applied a little differently than in [13]. We will use it in the following
form: for any smooth submanifold ¥ C R™*! of dimension n — 1, any function
w € C3(T) and any r € [1,n — 1) we have

(n—1—r)/(n—1)r
(/ |wl(n—1)1‘/(n—1—1'))
%
1/r
<o) ([ 1vor+ [ Hser)
5 5

where Hy; denotes the mean curvature vector of ¥ and V* denotes the tangential
gradient operator on X.

(3.10)

Let us assume for the moment that n > 4; we will indicate the modifications
that need to be made in the case n = 3 later. We apply (3.10) with ¥ = ¥; =

MNaBM! tco/2,p], w—Hq/2 and 7 = 2 to get

(zt H;("":sl)>:—j<0(n){/ (Hﬂ)’ / Hs,|? H‘I}
<0{/ ’v Hz gy /H" /Hq+2}

with C independent of p. To obtain the last two terms we have used the fact that
[Hs,| < C(p™" + Hy), (3.12)

(3.11)

because t € [p/2, p], and because M and 8B"*' can be assumed to have inter-
section angle bounded away from zero at each point of intersection. We defer the
proof of (3.12) to the end of the paper.

Next we need to deal with the term [;, H?? in (3.11). This could be done
slightly more simply at a later stage of the proof by using the Sobolev inequality
(3.10) in n dimensions, but the argument we use now would still be needed to deal
with the case n = 3. If the term in question is left as it is, the iteration inequality
that we eventually obtain has a term [ Me, H f+2 on the right hand side, forcing

us to start the iteration at too large a value of ¢. For & = 2, however, this term
causes no difficulties. We will now show that for k£ > 3, the term in question can be
absorbed into the left hand side of (3.11) for a sufficiently large set of ¢ € [p/2, p].
This will be sufficient for the proof.

By Holder’s inequality we have

n—3
g(n—1) \ =1 n—1
Hit? < ( H " ) (/ H{“1> : (3.13)
N pIN B¢

Consequently it is sufficient to show that

n—1 ﬁ 1
< — .
(/H ) <o (3.14)
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where C' is the constant from (3.11).

We will use the following two facts. First, since M, is a graph with small

gradient, we have
H™ (M) < Crp" (3.15)

for each ¢ € (0, p|. Second, we are assuming that for some s > k(n—1)/2>n—1
we have

/ H$ < Cs. (3.16)
MP

By the coarea formula and the fact that |[V|X|| < 1 we have
p
[ owi@gde= [ VX <HO0L) <O
p/2 My—M,;2
Thus for any € € (0,1) we have

2clpn—1

n <
H™(Z) < .

(3.17)

for ¢ belonging to a subset I = I{€) C [p/2, p] of measure at least (1 — €)p/2. By
the coarea inequality again we have

o
[ ([m)a=[ ivxims[ #<c
p/2 \J X Mp—Mpys M,

Therefore for any € € (0,1) we have
20,

3.18
52 €'p ( )

H: <

for ¢ belonging to a subset J = J(€') C [p/2, p] of measure at least (1 — €')p/2.

Let us now fix € = ¢ = 1/8. Then |INJ| > 3p/8, and for t € I N J we have,
by Hoélder’s inequality and (3.17), (3.18),

n—1

mos(f | ) = i)

160 nT—l _n—1
< ( 2) (lﬁclpn—l)l s
p

o

The exponent of p in the last line is positive because s > k(n — 1)/2 and k£ > 3.
Therefore (3.14) follows for sufficiently small p, for all t € INJ C [p/2, p]-

Returning to (3.11), we now have, for k > 3 and for sufficiently small p,

a(n—1) %:_:: q 2
( H ) gc{/ v (Hf)‘ +/ H{f}, (3.19)
Et zt Et
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forallt € INJ C [p/2, p], where now the constant C depends also on p. For k = 2

we have instead
+/ Hf“}, (3.19)
pIn

aln—1)
([ =) <e{[ oo
25 Et
for all t € [p/2, p].

Let us now assume that k£ > 3. By Holder’s inequality, the estimate (3.4) and
Young’s inequality, for any p > 0 we have

"‘xu}a

+1

plg+k) a¥ gtk k+;lt
stz ([ )™ (| k)’
2 pI P
pla+k) 1
gc{/ H, Tt +/ HI* Hk_l}’
Et Et

_alg+D(n-1)

(g +k)(n—3)
(this condition will be satisfied by our eventual choice of ¢) and using (3.9) and
(3.19) we get, for allt € INJ,

g(g+i}(n—1)

Hl(q+k)(ﬂ—3) Hk:—l

Applying this with

>1

M,
a(g+1)(n—1)
S Hl(q+k)(n—3) Hk_1+C
p

g(rn—1) 1
<c{/ H, "3 +f HIM H, 1+1}
3
21
<C’{[/ v (B} l +/ Hq] +/ Hf+1Hk_1+1}.
Et Et

—3
CEAMUERY =
q n—
f H, :
M,

2
gc{/ V(Hﬁ)l + Hf+1Hk_1+1}
SN 2,

forallt e INJ.

Next, integrating with respect to ¢t over I N J and using the coarea formula
we get

Therefore

glat1)(n1) ey
/ 70w g " g
g \J .

gC{/Mp v ()

<C [ HIY'Hp,
M,

+/ HIV'H, 1 +1 (3.20)
M,
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where we have used (3.6) to estimate the gradient term, and where we have used
that H, and Hy_, are bounded away from zero.

We now estimate the left hand side from below in an obvious way, using the
facts that INJ C [p/2, p] and |[INJ| > 3p/8. After replacing p/2 by p, we finally

arrive at the iteration inequality
n—3

(g +1)(n—1) n-T
( Hl(‘”’““"“s) Hk_l) <C H{’“Hk_l. (3.21)
M, M,

A straightforward calculation now shows that the exponent of H; on the left is
greater than the exponent of H; on the right, provided ¢ + & > k(n — 1)/2.
Moreover, the improvement in the exponent increases as ¢ increases. Therefore we
may iterate (3.21) finitely many times to obtain a bound for the L? norm of H;
on M, for small enough r > 0, for some p > kn/2. A bound for H;(0) then follows
by appealing to curvature bound proved in [13]. Finally, as shown in [13], for
2-admissible hypersufaces a bound for H; is equivalent to a bound for the second
fundamental form.

In the case £ = 2 an almost identical argument leads to the estimate (3.21),
because HI"? = HIP H,_; if k = 2.

We now indicate the minor modifications that need to be made in the case
n = 3. In this case, by (3.10) and Holder’s inequality we have, for any r € [0, 2),

2—-r

qr T
(L7)
Iy

<C(r) {L‘t ‘VE‘ (ng) ' +/zu |H>3t|rH1g§}% (3.2
<C(r) (H2(z) " { /S | v (mf) “y /2 t |Hzt|2Hf}

2C1p\ " 2
gC(r)< elp) {/2 V<H1%)| +p‘2/E Hf+LHf+2}

for all t € I(€) C [p/2, p], where we have used (3.17). The positive power of p in
the coefficient causes no difficulties in the subsequent argument. We now proceed
exactly as before, with (n —1)/(n — 3) replaced by r/(2 —r) for any r € [1,2) such
that

(g + 1)r
(g+kK)(2-7)
this is automatically satisfied for any ¢ > 0, provided r is sufficiently close to 2.
We note that r needs to be made sufficiently close to 2, depending on s, in the
argument used to remove the term fzt H f+2.

> 1;

We arrive at the inequality

2—r

g(q+1)r T
( HERED Hk_1> <c | HMYH,, (3.23)
M,

My,
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for all r € [1,2) sufficiently close to 2, where now C depends on r in addition to
the other quantities. There clearly is no need to iterate the inequality in this case.
Notice, however, that C' — oo and p > 0 as r — 2.

This completes the proof of Theorem 1.4 except for the proof of the geometric
estimate (3.12). This is a consequence of the following simple lemma.

Lemma 3.1. Let M and N be two smooth n-dimensional submanifolds of R"+!
and let X = M NN # 0. Suppose that that near a point Xo € ¥, M and N
intersect transversally, so that

vam,vn) > XA >0 on TN BPH(X,) (3.24)

for some positive constants A and r, where vy and vy are the normal vector fields
to M and N respectively. Then the mean curvature vector Hy of ¥ satisfies

[Hx(Xo)| < C(n, \)(|An(Xo)| + |An(Xo)l) (3.25)
where Ay and Ay are the second fundamental forms of M and N respectively.
Proof. Let e;,...,e,_1 be a local orthonormal frame field on ¥ near X;5. On X
near Xy we choose an orthonormal basis field ny, ny for the normal space to ¥ by
defining n; = vy and ny = avy + bvy, where a and b are chosen so that n; and
n, are orthogonal and |ny| = 1. (3.24) guarantees that this can be done with a, b

bounded by a constant depending only on A\. We may assume that eq,...,e,_j,
n; and n, have been extended to a neighbourhood in R*t! of Xj,.

Let D denote the standard connection on R™t!. Then by definition
2 fn—1
Hy = Z <Z Deaea,nj> n;.
j=1 \a=1
Substituting the expressions for n; and n, into this we find that

n—1 n—1
Hy = (1+a?) <Z Deaea,vM> vMm + ab <Z Deaea,uM> VN

a=1 o=1

n—1 n—1
+ ab <§: De_eg, I/N> v + b2 <Z Deaea,VN> VN

a=1 a=1

n—1 n—1 n—1
= (1+a? Z RM var + ab (Z M vy + Z hg’auM)
a=1 a=1

a=1
n—1
2 § : N
+—b haaVNﬁ
a=1

where vy, vy and hfj’-f , hg are the normal vector fields and components of the
second fundamental forms of M, N respectively. The estimate (3.25) now follows.

The estimate (3.12) follows by applying the lemma with N = 8B**!. Since
t €[p/2,p],|An| < C(n)p~!. In addition, |Ays| < CH; because M is 2-admissible.
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