The Newton interpolation formula, with more variables

Alain Lascoux *

Newton addressed the question of transforming discrete sets of data, say
the positions of planets at different times, into algebraic functions, before
submitting them to the differential calculus that he had just constructed.

Of course, anybody faced with the sequence 1, 2,4, 8,16, . .. will exclaim
32, except for the unwise Khalif who pledged to fill the squares of a chess-
board with wheat, doubling the number of grains from one square to the
other. To recognize the function f(n) = an?+bn+c,n=1,2,..., which
is not much more complicated, one already needs to have recourse to finite
differences, that is, to evaluate the functions g(n) := f(n) — f(n — 1) and
iterate. Indeed, polynomials can be characterized by the fact that iterating
finite differences ultimately produces the constant sequence 0, 0,0, . ...

However, comets are not likely to appear at regularly spaced lapses of
time, and to handle their seemingly erratic apparitions, Newton found the
solution of normalizing differences of positions by the interval of time to
which they correspond.

In other words, he writes, starting from the table f(¢1), f(t2), f(t3), .- .
the normalized differences

1 2 2 3 3 4
then the differences

[1,2] - [2,3]
t1 —1t3

[2,3] — [3,4]

1,2,3] =
[’ 73] t2_t4

, [2,3,4] =

g e n

Since already at the first step one obtains functions of two variables, the
proper way to interpret Newton’s operations is to define divided differences
0; as operators on functions of, say b1, b, b3, ... :

denoting by s; the transposition of b; and b;41.

Divided differences are “local” (they act only on two variables at a
time), rational (the coeflicients 1/(b; — b;y1) are rational), and decrease
degree by 1. More general operators of the same kind can be found in [LS2].

* text written during the Conference Applications of the Macdonald Poly-
nomials, at the Newton Institute in April 2001.
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They provide a discrete version of differential calculus, and one would
have avoided two centuries of controversy, initiated by Bishop Berkeley, by
sticking to them instead of introducing such puzzling entities as epsilons
vanishing at different orders.

Given a function of one variable, let

fa’faa’faaa’___

denote

81/ (01)), B2(B1(F(2))) , 0 (2(A2(F(B))) ) ...

respectively.
Then the formula of Newton to interpolate f(¢) from its values at time
bl, bz, ... 18
ft) =
F(B1) 42 (6=ba)- 1 (6=b)(t=Ba) +%9 (t=b) t=ba) (t—bs) -+ (3)

the expansion being exact if n + 1 points b; are used and f is a polynomial
of degree < n.
Modernists will object that the set of polynomials

{t° (& —by), (t —b1)(t —b2), ...}

is triangular in the usual basis {t°, ¢!, ...}, and therefore, there is no mys-
tery in the fact that it is a linear basis of polynomials. However, what is
remarkable in Newton’s formula is the process by which he obtained the
coefficients of his polynomials (¢ — by) - - - (£ — by,).

When by, by, ... all collapse to 0, then (x) becomes Taylor’s formula

F@) = fO)+ F/(O)t+ f/(0) /242 +- -,

the factorials in the denominator being clear by putting b; = i€ and letting
€ tend to 0.
Since divided differences are the discrete analogues of derivatives, the
question is :
What is the discrete analogue of Taylor’s formula in several variables 7

In other words, what are the coefficients of the images of f(a1,as,...)
under the possible different divided differences (evaluated in b1, bs, b3, .. .)
in the expansion of f(aj,as,...) ?

The answer, that I obtained with Marcel-Paul Schiitzenberger some
vears ago (cf. for example [LS1]), is as simple as in the case of one variable.
The universal coefficients, called Schubert polynomials due to their relevance
to geometry, can be defined recursively as follows:
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1) They are polynomials Y, (A, B) in two infinite totally ordered sets of
variables A = {a1, a2, ...}, B = {b1, by, ...}, indexed by vectors v € N*°
(from now on, we shall suppose that they have only a finite number of
non-zero components).

2) They are globally stable under divided differences in the a;’s, that
is, the image of a Schubert polynomial is either 0 or a Schubert polynomial.

3) When v is weakly decreasing (one says v is dominant, or is a partition,
deleting the terminal zeros), then

o= [ (-5, (o)

(i,j)€Diagr(v)

product on all boxes in the diagram of v: one stacks vy, vg, v3,... boxes in
successive rows, packing them to the left. A box in position (4,7) gives a
factor (a; — b;).

4) Given v € N* and i € N such that v; > v;41, writing vs; for
[v1,. .., Vi1, Vit1, ¥ — 1,Vit2,.. .|, one has

8:(Y) = Ya, . (00)

One does not write what happens when v; < v; 13, because in that case
Y, is the image of some Y, under 9;, (precisely v’ = [v1,...,v5—1, ;41 +
1,;,;i12,...]). The vanishing 82 = 0 implies that 8;(Y,) = 0 in that case.

On the indices of Schubert polynomials, the action of divided differences
amounts to sorting (and decreasing), in other words, amounts to use the
symmetric group. Thus to check whether the equations (¢¢) are consistent
essentially reduces to check that

0;0;410;(Yy) = 0i410:0;41(Yy) ()

for any ¢, any v, because s;5;4+15; = Sit+15iSi+1, and s;5; = 8;8;, |j — i| # 1
are the defining equations of the symmetric group, as generated by simple
transpositions s;. There is no need to check 0;0;(Y,) = 9;0;(Y,) because
operations on two disjoint pairs of variables clearly commute.

Relation (&) is in fact a property of divided differences, substituting in
it Schubert polynomials is irrelevant . One indeed has

0;0;1+10; = 0;4+10i0i41 , 1 > 1 (dodh)

To check this, one can without loss of generality take ¢ to be 1. Functions of
ai,as,das, ... can be expressed as linear combinations of the six monomials

2 2
17 ai, a2, 7, ai1az, G142 ,

3



with coefficients which are functions symmetrical in a,, a2, a3 and arbitrary
in 4,05, . ...

Now, the divided differences 0,, 02 commute with multiplication by
symmetric functions in a1, as,as, and thus the identity 010207 = 320109
needs only to be tested on the above set. However, both 8;0;01 and 050,0;
decrease the degree by 3. Thus it is only necessary to check, and we leave
this pleasure to the reader, that 8:8:0;(a%az) and 8,08,02(a3as) are the
same constant (which is 1), the other images being null for reason of degree.

To get a general v, one can start from different possible dominant vec-
tors. Because the set of partitions is a lattice (with respect to intersection
and union of diagrams), compatibility of the different choices boils down to
the following lemma.

Lemma. Given a dominant v € N, and n € N such that v < p :=
[n—1,n—2,...,1,0,0,... (componentwise), then there exists at least one
chain of divided differences such at each step a 0; is applied to a dominant
Schubert polynomial of the type (a; — b;) g, with g symmetrical in a;, a;41
(and therefore the image is a dominant Schubert polynomial corresponding
to a diagram with the box of coordinate (3, ) erased, the factor (a; — b;)
becoming 1 under &;).

The proof of the lemma consists in peeling off boxes of a staircase
diagram, in such a way as to have, at a step where J; will be used, columns
¢ and 7 + 1 of lengths differing by 1. This can be realized by erasing boxes
from top to bottom, in successive diagonals, as indicated by the following
example for v = [6,6,6,2,2,0,0,...], n = 9 (boxes are numbered in the
order they are peeled off).

1
812
131 9 {3
10| 4
1411} 5
6
12 7

Now, if Y, was the product Hi, jivi<n (a; —bj;), then Y,, as obtained by
the above process, will be the product of factors (a; — b;) corresponding to
the boxes which are left. Therefore, the definition of Schubert polynomials
is consistent.



Newton’s polynomials could be characterized by their vanishing prop-
erties, because they are written in terms of their roots. Similarly, when
v is dominant, and different from [0,0,...], one can also easily write the
vanishing properties of Y,.

Indeed we shall only need the property that the specialization a; =
b1, ag = ba, ag = b3, ... in Y, (A, B), which we shall write as Y, (B, B), van-
ishes (all the factors in the main diagonal of the diagram vanish).

More generally, one can prove (this will be the only property in this
text that we admit. Otherwise, we would need to appeal to properties of
the Ehresmann-Bruhat order on the symmetric group, for which we refer to
Macdonald [M]), that

v €N v #£(0,0,..]=Y,(B,B)=0. (3)

The relation 019207 = 020:02 shows that products of divided differ-
ences are not independent. We shall only use the following products (which

are, in fact, canonical representatives of all possible products of divided
differences). Given K = [k, ks, ...] € N*, let

0% := (81 Ok,) (B2 Bryy1) (O3 Oks2) -

that is, 8% consists in products of blocks of consecutive divided differences,
of respective lengths k1, ks, . . ., starting with 8, s, ... respectively, divided
differences operating on their left.

We can now state the multivariate Newton interpolation formula. For

any polynomial in aq,as, ..., one has :
fA)= > 7 (B)Yx(A,B). (%% %)
KeN®™

Proof. One has to test (% x %) on a linear basis of polynomials in A (with
coefficients in anything, for example functions of B). One takes the Schubert
polynomials {Y;} as such a basis. The question is : Is is true that

Ys(AB)= Y (¥1)%" (B)Yk(A,B). (77)
KeNT

But the YJE’K are either zero, or Schubert polynomials, and they all vanish

under the specialization A = B, except for Y|, = 1. Now, Yf)K can
be Y[ 0,..] only when k;y + kz +--- = j1 + ja + - -, for degree reason. By
recursion on the righmost non-zero component of J, say j,, one sees that
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k; = 0,1 > £ and kg = 7. Finally K = J and equation (?7) becomes the
irrefutable identity

Y; (A7 ]B) = },[0,0,...] (]Ba ]B) YJ(A, B) £

This proves (% % x) in full generality.

The original Newton formula has not been lost. When f depends only
on a;, then f‘9K is 0 if K is not of the type K = [n,0,0,...] for some integer
n. In that case, Yx is dominant, corresponding to a row diagram with n
boxes, and indeed the Newton polynomial is

Yin,0,0,.] = (a1 — b1) (a2 — b2) -+ - (an — bp) .
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