THE LAURENT PHENOMENON

SERGEY FOMIN AND ANDREI ZELEVINSKY

ABSTRACT. A composition of birational maps given by Laurent polynomi-
als need not be given by Laurent polynomials; however, sometimes—quite
unexpectedly—it does. We suggest a unified treatment of this phenomenon,
which covers a large class of applications. In particular, we settle in the affir-
mative a conjecture of D. Gale and R. Robinson on integrality of generalized
Somos sequences, and prove the Laurent property for several multidimensional
recurrences, confirming conjectures by J. Propp, N. Elkies, and M. Kleber.
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1. INTRODUCTION

In this paper, we suggest a unified explanation for a number of instances in which
certain recursively defined rational functions prove, unexpectedly, to be Laurent
polynomials. We begin by presenting several instances of this Laurent phenomenon
established in the paper.

Example 1.1. (The cube recurrence) Consider a 3-dimensional array
(Yije = (4,5, k) € H)
whose elements satisfy the recurrence

_ OYi-1,5,kYi,i-1,k—1 T ﬁyi,j—l,kyi—l,j,k—l + YYi,5,k—1Yi-1,j-1,k
(L1)  gije= .
Yi—1,j—-1,k—1

Here H can be any non-empty subset of Z3 satisfying the following conditions:
(1.2) if (4,5,k) € H, then (i',5',k') € H whenever i < i',j < j',k < k';
(1.3) for any (s',j', k') € H, the set {(4,4,k) € H:i <i',j <5,k <K'} is finite.
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Theorem 1.2. Let Hinis = {(a,b,c) € H : (a—1,b—1,c—1) ¢ H}. For every
(4,4,k) € H, the entry y; . 15 a Laurent polynomial with coefficients in Z{a, B,7]
in the initial entries yYa p ¢, for (a,b,c) € Hinis.

The cube recurrence (with & = 8 = y = 1) was introduced by James Propp [10],
who was also the one to conjecture Laurentness in the case when #H C Z3 is given
by the condition i + 7 + k > 0; in this case Hj;; consists of all (a,b,¢) € H such
that a + b+ ¢ € {0,1,2}. Another natural choice of H was suggested by Michael
Kleber: H = Z3,, in which case Hiyy, = {(a,d,¢) € Z3, : abc = 0}.

Example 1.3. (The Gale-Robinson sequence) Let p, g, and r be distinct positive
integers, let n = p+ g+ r, and let the sequence yg,¥;,... satisfy the recurrence

_ QWktpUk+n—p + BYk+q¥btn—g + VYk+rYktn—r

14

( ) Yi+n v
David Gale and Raphael Robinson conjectured (see [7] and [8, E15]) that every
term of such a sequence is an integer provided yo =+ = yp—1 = 1 and «, 3,y are

positive integers. Using Theorem 1.2, we prove the following stronger statement.

Theorem 1.4. As a function of the initial terms yo,. .., Yn—1, every term of the
Gale-Robinson sequence is a Laurent polynomial with coefficients in Z[a, 3, 7].

We note that the special casea=F=9=1,p=1,¢g=2,r =3, n = 6 (resp,,
r =4, n = 7) of the recurrence (1.4) is the Somos-6 (resp., Somos-7) recurrence [7].

Example 1.5. (Octahedron recurrence) Consider the 3-dimensional recurrence

- _OYit1,5k-1Yi-1,4,k—1 + BYi j+1,k—1Yi,i—1,k—1
(10) yi:jxk -
Yi g k—2

for an array (yijx)(i.j,k)en Whose indexing set # is contained in the lattice
(1.5) L={(i,7,k) €Z®: i+ j+k=0mod 2}
and satisfies the following analogues of conditions (1.2)—(1.3):
(1.7) if (i,5,k) € H, then (i',j', k') € H whenever |1’ —i|+|j' —j| <k — K
(1.8) for any (¢',5', k') € H, the set {(i,5,k) € H : |i' —i| + |7 —j| <K —k}
is finite.

Theorem 1.6. Let Hiny = {(a,b,c) € H : (a,b,c—2) ¢ H}. For every (3,5, k) € A,
the entry yi ;r 13 a Laurent polynomial with coefficients in Z[c, 8] in the initial
entries Yo p.c, for (a,b,¢) € Hinis.

The octahedron recurrence on the half-lattice
(1.9) H={(G,j,k) €L :k>0}

was studied by W. H. Mills, D. P. Robbins, and H. Rumsey in their pioneering
work [9] on the Alternating Sign Matrix Conjecture (cf. [1] and [10, Section 10] for
further references); in particular, they proved the special case of Theorem 1.6 for
this choice of H.

Example 1.7. (Two-term version of the Gale-Robinson sequence) Let p, g, and n
be positive integers such that p < ¢ < n/2, and let the sequence yo, y1,... satisfy
the recurrence

(110) Ye+n

_ OYktpYktn—p + BYrtq¥hin—q
Yk
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Using Theorem 1.6, one can prove that this sequence also exhibits the Laurent
phenomenon.
Theorem 1.8. As a function of the initial terms yq,. .., Yn—1, every term y,, is a
Laurent polynomial with coefficients in Z[a, B].

We note that in the special casea =8 =1,p=1,¢g=2,n =15 (resp., n = 4),
(1.10) becomes the Somos-5 (resp., Somos-4) recurrence [7].

The last example of the Laurent phenomenon presented in this section is of a
somewhat different kind; it is inspired by [2].

Example 1.9. Let n > 3 be an integer, and consider a quadratic form

P(xry,...,2,) =zf+---+zf,+2a,-jz.;wj .

i<y
Define the rational transformations Fi, ..., F, by
(1.11) F,-:(wl,...,wn)r—)(51:1,...,:1:,;1, = ,.’B,’+1,...,:L‘n).
2
Theorem 1.10. For any sequence of indices i1, ...,im, the composition map G =

F; 0---0F;  is given by
G:z=(z1,...,2) = (G1(2), ..., Gn(x)),
where G1,...,Gn are Laurent polynomials with coefficients in Z[ayj: i < j].

This paper is an outgrowth of [6], where we initiated the study of a new class
of commutative algebras, called cluster algebras, and established the Laurent phe-
nomenon in that context. Here we prove the theorems stated above, along with a
number of related results, using an approach inspired by [6]. The first step is to
reformulate the problem in terms of generalized exchange patterns (cf. [6, Defini-
tion 2.1]), which consist of clusters and ezchanges among them. The clusters are
distinguished finite sets of variables, each of the same cardinality n. An exchange
operation on a cluster x replaces a variable z € x by a new variable z' = %, where
P is a polynomial in the n — 1 variables x — {z}. Each of the above theorems can be
restated as saying that any member of the cluster obtained from an initial cluster
Xo by a particular sequence of exchanges is a Laurent polynomial in the variables
from xg. Theorem 1.10 is explicitly stated in this way; in the rest of examples
above, the rephrasing is less straightforward.

Our main technical tool is “The Caterpillar Lemma” (Theorem 2.1), which es-
tablishes the Laurent phenomenon for a particular class of exchange patterns (see
Figure 1). This is a modification of the namesake statement [6, Theorem 3.2],
and its proof closely follows the argument in [6]. (We note that none of the two
statements is a formal consequence of another.)

In most applications, including Theorems 1.2 and 1.6 above, the “caterpillar”
patterns to which Theorem 2.1 applies, are not manifestly present within the origi-
nal setup. Thus, we first complete it by creating additional clusters and exchanges,
and then apply the Caterpillar Lemma.

The paper is organized as follows. The Caterpillar Lemma is proved in Sec-
tion 2. Subsequent sections contain its applications. In particular, Theorems 1.2,
1.4, 1.6, and 1.8 are proved in Section 4, while Theorem 1.10 is proved in Sec-
tion 5. Other instances of the Laurent phenomenon treated in this paper include
generalizations of each of the following: Somos-4 sequences (Example 3.3), Elkies’s
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“knight recurrence” (Example 4.1), frieze patterns (Example 4.3) and number walls
(Example 4.4).

We conjecture that in all instances of the Laurent phenomenon established in this
paper, the Laurent polynomials in question have nonnegative integer coeflicients.
In other contexts, similar nonnegativity conjectures were made earlier in [4, 5, 6].

ACKNOWLEDGMENTS. We thank Jim Propp for introducing us to a number of
beautiful examples of the Laurent phenomenon, and for very helpful comments on
the first draft of the paper. In particular, it was he who showed us how to deduce
Theorem 1.8 from Theorem 1.6.

This paper was completed during our stay at the Isaac Newton Institute for
Mathematical Sciences (Cambridge, UK), whose support and hospitality are grate-
fully acknowledged.

2. THE CATERPILLAR LEMMA

Let us fix an integer n > 2, and let T" be a tree whose edges are labeled by the
elements of the set [n] = {1,2,...,n}, so that the edges emanating from each vertex
receive different labels. By a common abuse of notation, we will sometimes denote

by T the set of the graph’s vertices. We will write ¢ —E_ ¢ if vertices t,t' € T are

joined by an edge labeled by .

From now on, let A be a unique factorization domain (the ring of integers Z
or a suitable polynomial ring would suffice for most applications). Assume that
a nonzero polynomial P € Alz:,...,Zy,], not depending on zy , is associated with

every edge t = ' in T. We will write ¢ —t or t % ' , and call P the

exchange polynomial associated with the given edge. The entire collection of these
polynomials is called a generalized exchange pattern on T. (In [6], we introduced a
much narrower notion of an ezchange pattern; hence the terminology.)

We fix a root vertex to € T, and introduce the initial cluster x(tp) of n in-
dependent variables z1 (o), ..., 2, (fo). To each vertex t € T, we then associate a
cluster x(t) consisting of n elements z;(t), ..., z,(¢) of the field of rational functions
A(z1 (), -- ., Zn(lo)). The elements z;(t) are uniquely determined by the following

exchange relations, for every edge ¢ % t':

(2.1) zi(t) = z;(t') for any i # k;
(2.2) zk(t) 2, (t') = P(x(t)).
(One can recursively compute the z;(t)’s, moving away from the root. Since the
exchange polynomial P does not depend on zj, the exchange relation (2.2) does
not change if we apply it in the opposite direction.)

We next introduce a special class of “caterpillar” patterns, and state conditions
on their exchange polynomials that will imply Laurentness.

For m > 1, let Ty, r, be the tree of the form shown in Figure 1.

The tree T, ., has m vertices of degree n in its “spine” and m(n — 2) + 2 vertices
of degree 1. We label every edge of the tree by an element of [n], so that the n
edges emanating from each vertex on the spine receive different labels. We let the
root tg be a vertex in T, ,, that does not belong to the spine but is connected to
one of its ends. This gives rise to the orientation of the spine, with all the arrows
pointing away from ¢y (see Figure 1). We assign a nonzero exchange polynomial
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to thead
1

FIGURE 1. The “caterpillar” tree Ty, ,,, for n =4, m =8

P € Alzy,...,z,] to every edge t — t' of T, s, thus obtaining an exchange

pattern.
For a rational function F = F(z,y,...), we will denote by F|;. g(5y,...) the
result of substituting g(z,y,...) for z into . To illustrate, if F(z,y) = zy, then

F !24—% = y;.
Theorem 2.1. (The Caterpillar Lemma) Assume that a generalized exchange pat-
tern on T, y, satisfies the following conditions:

k
P

(2.3) For any edge o e, the polynomial P does not depend on z, and is not

divisible by any z;, i € [n].

(2.4) For any two edges o e —é—) e, the polynomials P and Qo=Q|z,=0

are coprime elements of Alzq,...,z,]-

(2.5) For any three edges o % . %) o % o labeled i, §,i, we have

LQg-PZRIzJ(—%Q’

where b is a nonnegative integer, Qo =Q|z,=0, and L is a Laurent

monomial whose coefficient lies in A and is coprime with P.

Then each element z;(t), for i € [n}, t € Tpm, s a Laurent polynomial in
z1(t0), - - - » Zn(to), with coefficients in A.

{(Note the orientation of edges in (2.4)—-(2.5).)

Proof. Our argument is essentially the same as in [6, Theorem 3.2]. For t € T, o,
let

L(t) = Alza (1), ., 2n(t)*]
denote the Laurent polynomial ring in the cluster x(t) with coefficients in A. We
view each L(t) as a subring of the ambient field of rational functions A(x (o).

In this notation, our goal is to show that every cluster x(t) is contained in £(%;).
We abbreviate Lo = L(to). Note that Lo is a unique factorization domain, so
any two elements z,y € £y have a well-defined greatest common divisor gcd(z,y)
which is an element of £y defined up to a multiple from the group £ of invertible
elements in Lo; the group L] consists of Laurent monomials in z1 (%), ..., Zn(to)
whose coefficient belongs to A%, the group of invertible elements of A.

To prove that all x(¢) are contained in Ly, we proceed by induction on m, the
size of the spine. The claim is trivial for m = 1, so let us assume that m > 2, and
furthermore assume that our statement is true for all “caterpillars” with smaller
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spine. It is thus enough to prove that X(thead) C Lo, Where theaq is one of the
vertices most distant from to (see Figure 1).
We assume that the path from ¢y to tpeaq starts with the following two edges:

to i t1 AN ty. Let t3 € Ty m be the vertex such that t; ¢, The following

P Q R
lemma plays a crucial role in our proof.

Lemma 2.2. The clusters x(1), x(t2), and x(t3) are contained in Lo. Further-
more, ged(x;(t3), 2:(t1)) = ged(z; (t2), z:(t1)) = 1.

Proof. The only element in the clusters x(¢;), x(¢2), and x(¢3) whose inclusion
in £y is not immediate from (2.1)—(2.2) is z;(¢3). To simplify the notation, let us
denote z = zi(to), ¥ = j(to) = z;(t1), 2 = zi(t1) = z:(t2), u = z;(t2) = z;(¢3),
and v = x;(t3), so that these variables appear in the clusters at %o, ...,ts, as shown
below:

E . z,y . u,z v,u
L] L L] J > ® ) [ ]
P Q R
to i1 t2 23

Note that the variables zy, for k ¢ {i,5}, do not change as we move among the
four clusters under consideration. The lemma is then restated as saying that

(2.6) v € Lo;
(2.7 ged(z,u) =1;
(2.8) ged(z,v)=1.

Another notational convention will be based on the fact that each of the polynomials
P,Q, R has a distinguished variable on which it depends, namely z; for P and R,
and z; for Q. (In view of (2.3), P and R do not depend on z;, while @ does
not depend on z;.) With this in mind, we will routinely write P, @, and R as
polynomials in one (distinguished) variable. For example, we rewrite the formula
in (2.5) as

(2.9) R (@) — Lw)QO)P(),

where we denote L(y) = L|s;+y. In the same spirit, the notation @', R', etc., will
refer to the partial derivatives with respect to the distinguished variable.

We will prove the statements (2.6), (2.7), and (2.8) one by one, in this order.
‘We have:

.= P,
z

e (%)
y y

_rw _R(%)_R(%)-R(%Y) R(W)
z z F4 z

Since
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and
R(%2) _ 10)00°Pw) _ L4)QO)s € Lo,

(2.6) follows.
We next prove (2.7). We have

Q) = —Q(O) mod 2.
Y y
Since z and y are invertible in £y, we conclude that ged(z,u) = ged(P(y), Q(0)) =1
(using (2.4)).
It remains to prove (2.8). Let

f(z)=R(%2).

_ 1(2) - £(0)
Z

U =

Then

v + L(y)Q(0)’x .

Working modz, we obtain:

=IO _ py) = o (a0 .20

Y

Hence '
v=R' (%91) : Q—Iy(gl + L(y)Q(0)*z mod = .

Note that the right-hand side is a polynomial of degree 1 in z whose coefficients
are Laurent polynomials in the rest of the variables of the cluster x(¢). Thus (2.8)
follows from ged (L(y)Q(0)%, P(y)) = 1, which is a consequence of (2.4)-(2.5). O

We can now complete the proof of Theorem 2.1. We need to show that any
variable X = zx(thead) belongs to Lo. Since both t; and ¢3; are closer to tpeaqg
than ¢y, we can use the inductive assumption to conclude that X belongs to both
L(t1) and L(t3). Since X € L(t1), it follows from (2.1) that X can be written as
X = f/z;(t1)" for some f € Loy and a € Zx¢. On the other hand, since X € L(¢t3),
it follows from (2.1) and from the inclusion z;(t3) € Lo provided by Lemma 2.2
that X has the form X = g/z;(t2)°z;(t3) for some g € £y and some b,c € Zx.
The inclusion X € Ly now follows from the fact that, by the last statement in
Lemma 2.2, the denominators in the two obtained expressions for X are coprime
in Eo. (]

3. ONE-DIMENSIONAL RECURRENCES

In this section, we apply Theorem 2.1 to study the Laurent phenomenon for

sequences Yo, ¥Y1,--- given by recursions of the form
(8.1) Ym+nYm = F(Ymt1,- - s Ymtn—1),
where F' € Alz1,...,Zp-1].
For an integer m, let {m) denote the unique element of [n] = {1,...,n} satisfying

m = (m) mod n. We define the polynomials Fy,...,F, € Alz1,...,2Z,] by

(3.2) Fm = F(.’L‘(m+1), :l:(m+2), ey -'L'(m-—l));
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. (0

1) (2) (3) (0)
Feoy Foy ° ° ® e

Feay Fs, Fio)

G2

(0) |G1 (0)

FIGURE 2. Constructing a caterpillar; n = 4.

thus F,, does not depend on the variable z,,. We introduce the infinite “cyclic
exchange pattern”

(0) (1) (2) (3) ...
(3.3) to Fo b Fiy b2 F9) ta Fa) ta ’
and let the cluster at each point %,, consist of the variables ¥, . .., Ym+n—1, labeled

within the cluster according to the rule y, = T (s)(tm). Then equations (3.1) become
the exchange relations associated with this pattern.
To illustrate, let n = 4. Then the clusters will look like this:

Y1.Y2,¥3,%0 Y1.Y2,¥38,04 Y6,Y2,Y3,:Y4 Y5,96,Y3.Y4 Y5,Y6.Y7,V4
® 4 [ ] 1 [ ] 2 [ ] ®
to ty 2] S i3 [

In order to include this situation into the setup of Section 2 (cf. Figure 1), we create
an infinite “caterpillar tree” whose “spine” is formed by the vertices t,,, m > 0.
We thus attach the missing n — 2 “legs” with labels in [n] — {(m — 1), (m)}, to each
vertex i,,.

Our next goal is to state conditions on the polynomial F’ which make it possible
to assign exchange polynomials satisfying (2.3)—(2.5) to the newly constructed legs.
The first requirement (cf. (2.3)) is:

(3.4) The polynomial F is not divisible by any z;, i € [n — 1].
For m € [n — 1], we set

(3.5) Qum = Fplz.c0 =F(@m+1, -, 2n-1,0,2Z1,. .., Trm—1)-

Our second requirement is

(3.6) Each Q, is an irreducible element of alzE?,... a1

To state our most substantial requirement, we recursively define a sequence of
polynomials G, _1,-..,G1,Go € Alz1,...,2,-1]; more precisely, each G, will be
defined up to a multiple in A*. (Later, Gi,...,Gn—2 will become the exchange
polynomials assigned to the “legs” of the caterpillar labeled by n = (0); see Fig-
ure 2.)

We set (G, = F, and obtain each G,,_; from G,,, as follows. Let

(3.7 Gm-1= Gmlmfﬂ_QA .
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Let L be a Laurent monomial in x,...,Z,_1, with coefficient in A, such that
~ am—l

3.8 1=

( ) Gm 1 7

is a polynomial in A[z,...,Z,—1] not divisible by any z; or by any non-invertible
scalar in A. Such an L is unique up to a multiple in A*. Finally, we set

Grm1
(39) Gmo1 = én?n y

where Q% is the maximal power of @, that divides Em_l. With all this notation,
our final requirement is:
(3.10) Gy = F.

Theorem 3.1. Let F' be a polynomial in the variables z1,...,%,—1 with coefficients
in a unique factorization domain A satisfying conditions (3.4), (3.6), and (3.10).
Then every term of the sequence (y;) defined by the recurrence

F(ym+1,- - Ymtn—1)
Ym
s a Laurent polynomial in the initial n terms, with coefficients in A.

Ym4n =

Proof. To prove the Laurentness of some yy, we will apply Theorem 2.1 to the
caterpillar tree constructed as follows. We set thead = tN—_n+1; this corresponds to
the first cluster containing yn. As a path from ¢y t0 thead, We take a finite segment
of {3.3):

) ) @ ... - ()
(311) fo —q ot —p oty —p Py V" oy

tN—'n,+1 .
We then define the exchange polynomial Gjr_1 associated with the leg labeled j
attached to a vertex t; on the spine (see Figure 3) by

Gj,k_]_ = G(k—j—l) (-’E(j+1) yrees Ly Tlyeney m(j—l)),

where in the right-hand side, we use the polynomials G, ...,G,—2 constructed in
(3.7)-(3.9) above.

(k=1 (k) ,
Fir-1y Fay

7|Gik—1

FIGURE 3

It remains to verify that this exchange pattern satisfies (2.3), (2.4), and (2.5).
Condition (2.3) for the edges appearing in (3.11) is immediate from (3.4), while for

the rest of the edges, it follows from the definition of Gy_1 in (3.8).

Turning to (2.4), we first note that we may assume 7 = (0) = n (otherwise apply
a cyclic shift of indices). Under this assumption, we can identify the polynomials P
and Qg in (2.4) with the polynomials G,—1 and @, in (3.9), for some value of m.
(The special case of P attached to one of the edges in (3.11) corresponds to m = 1,
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and its validity requires (3.10).) Then the condition gcd(Grp—1, @) = 1 follows
from (3.6) and the choice of the exponent & in (3.9).

Finally, (2.5) is ensured by the construction (3.7)-(3.9), which was designed
expressly for this purpose. As before, the special case of P attached to one of the
edges in (3.11) holds due to (3.10). O

In the rest of this section, we give a few applications of Theorem 3.1. In all of
them, conditions (3.4) and (3.6) are immediate, so we concentrate on the verification
of (3.10).

Example 3.2. Let ¢ and b be positive integers, and let the sequence yg, 91, ...
satisfy the recurrence
_ y2—2y2—1 +1
B Yr-3 '
‘We claim that every term of the sequence is a Laurent polynomial over Z in yq, ¥1,
and y2. To prove this, we set n = 3 and construct the polynomials G3, G1, and Gy
using (3.7)~(3.9). Initializing G = F(z1,z2) = 2§23 + 1, we obtain:

Q2 =F(0,21) =1, G1= F|zz(_qJ_=w‘1‘a:2_b+1, Gy =Gy= z% + 28,
z3

@1 = F(z2,0) =1, éo= G1|z1(_g1_: ml_“+:z;‘2’, Go =a0=1+$‘111‘l2’=F,
=1

as desired.
Example 3.3. (Generalized Somos-4 sequence) Let a, b, and ¢ be positive integers,
and let the sequence yg,¥1,... satisfy the recurrence
Yr_a¥i1t Yh_s
Ye = .
Yk—a

(The Somos-4 sequence [7], introduced by Michael Somos, is the special case a =
¢ =1, b=2) Again, each y; is a Laurent polynomial in the initial terms o, ¥1,
Y2, and y3. To prove this, we set n = 4 and compute G, ..., Gy using (3.7)—(3.9)
and beginning with G3 = F = z$z§ + z}:

— — b — pnotbe,—c b — nat+be b
Qs =F(0,z1,20) =27, G3|m3<_g_3_—$1 z3° + 3, Ga=2i"" + zoa§,
z3

b —b,ab b
Q2=F(z3,0,21) =5z}, Gzlh(_gl=a:‘1"+ c+ziexy taitte Gy =zixl + z§tte,
2

— — b —p—ab ab ab+c — b —
Q1=F(z2,3,0)=13, Gil|, _ai=a7%abzg + 23"t Go=z3+ziz§=F,
®1

Iy

and the claim follows.

Remark 3.4. The Laurent phenomena in Theorems 1.4 and 1.8 can also be proved
by applying Theorem 3.1: in the former (resp., latter) case, the polynomial F' is
given by F = azptn_p + BZqTn—q + YT+ Tn_r (resp., F = atpTn_p + BTeTn—q).
The proofs are straightforward but rather long. Shorter proofs, based on J. Propp’s
idea of viewing one-dimensional recurrences as “projections” of multi-dimensional
ones, are given in Section 4 below.

4. TWO- AND THREE-DIMENSIONAL RECURRENCES

In this section, we use the strategy of Section 3 to establish the Laurent phenom-
enon for several recurrences involving two- and three-dimensional arrays. Our first
example generalizes a construction (and the corresponding Laurentness conjecture)
suggested by Noam Elkies and communicated by James Propp. Even though the
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Laurent phenomenon in this example can be deduced from Theorem 1.6, we choose
to give a self-contained treatment, for the sake of exposition.

Example 4.1. (The knight recurrence) Consider a two-dimensional array (yi;)s,j>0
whose entries satisfy the recurrence

(4.1) Yi,ji¥i—2,j—-1 = OYi,j—1Yi-2,5 + BYi-1,i¥i-1,j-1 -
We will prove that every y;; is a Laurent polynomial in the initial entries
Yinit = {¥ap : a <2 0r b < 1},

with coefficients in the ring A = Z[e, 5].

We will refer to Y, as the initial cluster, even though it is an infinite set.
Notice, however, that each individual y;; only depends on finitely many variables
{Yab € Yinit : a <4, b <Jjh

Similarly to Section 3, we will use the exchange relations (4.1) to create a se-
quence of clusters satisfying the Caterpillar Lemma (Theorem 2.1).

This is done in the following way. Let us denote by H = Z2>0 the underlying set
of indices; for h = (3,j) € H, we will write y» = y;;. The variables of the initial
cluster have labels in the set

Hip ={(5,j) e H :i<20rj<1}.

In Figure 4, the elements of Hip;; are marked by e’s.

0 o e & il Cl

0

FIGURE 4. The initial cluster and the equivalence classes (h)

We introduce the product partial order on #:

(4.2) (i1,51) < (i2,52) & (i1 <43) and (1 < o).

For an element h = (4,5} € H — Hinit , let us denote b~ = (i — 2,5 — 1); in this
notation, the exchange relation (4.1) expresses the product yp, - y5- as a polynomial
in the variables ¥, for A~ < h' < k.

We write A~ ~ h, and extend this to an equivalence relation ~ on #. The
equivalence class of h is denoted by {(h). These classes are shown as slanted lines in
Figure 4. All our exchange polynomials will belong to the ring Alz, : a € H/~].

Note that Hi,;; has exactly one representative from each equivalence class. We
will now construct a sequence of subsets Hy = Hipji, Hi, Ha,. .., each having this
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property, using the following recursive rule. Let us fix a particular linear extension
of the partial order (4.2), say,

(il,jl) = (ia, j2) gg (31 + j1 < iz + J2) or (41 + J1 = iz + j2 and 4; < ip).
Restricting this linear ordering to the complement H — Hin;; of the initial cluster,
we obtain a numbering of the elements of this complement by positive integers:

ho = (271)7 hi = (2)2)’ hy = (3a 1), hs = (213), hy = (37 2)1

h5 = (4) 1)1 h6 = (274)1 h7 = (3: 3)1 h’B =4 (4) 2),
and so on. Having constructed H,,, we let Hpyy = Hp U {hm} — {hy}. To
illustrate, the set Hy is shown in Figure 5.

FiGURE 5. Indexing set Hy

We next create the infinite exchange pattern

4.3 t (ho) ¢ (h1) i (h2) " {h3)
(4.3) O T Py L Py Pinay Ping)

tyg —— -

(cf. (3.3)) The cluster at each point ¢, is given by x(tm) = {yn : h € Hp}; as
before, each cluster variable y, corresponds to the variable zsy. The exchange

polynomial P, for an edge e £h) o with b= (4,7) is given by

(44) Pipy = a((i,j-1))2((i—2,)) T BB(-1.)F((i-1,5-1))-
Then equations (4.1) become the exchange relations associated with this pattern.

To establish the Laurent phenomenon, we will complete the caterpillar pattern by
attaching “legs” to each vertex ¢,, and assigning exchange polynomials to these legs
so that the appropriate analogues of conditions (3.4), (3.6) and (3.10) are satisfied.
Since we now work over the polynomial ring Alz, : ¢ € H/~] in infinitely many
indeterminates, the number of legs attached to every vertex t,, will also be infinite
(one for every label a different from (hpy—1) and (hy,)). This will not matter much
for our argument though: to prove the Laurentness for any y,., we will simply
restrict our attention to the finite part of the infinite caterpillar tree lying between
to and thead = tmy1, and to the legs labeled by (hy) for 0 < k < m.

The role of conditions (3.4) and (3.6) is now played by the observation that each
exchange polynomial P,y is not divisible by any variable z, , and furthermore every
specialization P Izu4—0 is an irreducible element of the Laurent polynomial ring.
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To formulate the analogue of (3.10), let us fix an equivalence class a € H/~
and concentrate on defining the exchange polynomials for the legs labeled by a and
attached to the vertices squeezed between two consecutive occurrences of the label
a on the spine:

(4.5) ° ; o 2L o 22 o & o IN=2 g IN-1 o _&
a a
a|G1 a|Ga a a a|GN_2
® ® . ® ®

We note that the labels a3,...,any—1 € H/~ appearing on the spine between these
two occurrences of a are distinct. Form = N —2, N - 3,...,1, we denote by G,,
the exchange polynomial to be associated with the a-labeled leg attached between
the edges labeled a,, and am41 (cf. (4.5)).

The polynomials G, are defined with the help of a recursive procedure analogous
to (3.7)—(3.9). We initialize Gny_1 = P,, and obtain each G, 1 from G,,, as follows.
The step (3.7) is replaced by

am—lz Gmlmam(_ﬂa.
with
(4'6) Qm = Pam

Tae0"

We then compute Gm—1 and Gm_1 exactly as in (3.8)-(3.9). By the argument
given in the proof of Theorem 3.1, the equality Gy = P, would imply the desired
Laurentness (cf. (3.10)).

To simplify computations, we denote the equivalence classes “surrounding” a, as
shown below:

4.7 cee  f c a € b

In other words, if a = ((4, 7)), then & = ((4,5 — 1)}, ¢ = {(i — 1, 7)), etc. With this
notation, we can redraw the pattern (4.5) as follows:

(4.8) o o L ... 4 L gt 44 g, g b 4.8,
[ Gle—l a Gk a Gl—l a G(
L] [ ] [ ] L]

for appropriate values of & and £.

We will call a value of m essential if Gp—1 # G, . We are going to see that the
essential values of m are those for which a,, € {b,¢c,e, f}; in the notation of (4.8),
these values are £+ 1, £, k + 1, and &.

We initialize Gy_1 = P, = azyzs + Bzcx.. The values of m in the interval
¢ < m < N are not essential since the variable z,, does not enter P,, which is
furthermore not divisible by @, (because the latter involves variables absent in P,).
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The first essential value is m = £ + 1, with a,, = b:

Q£+1 = Pbl:za(—O = (Ol:l:al‘d + ﬂmemg)lzu<—0 = ﬂxemg )

= _ BTy
Ge= Palzb(_‘?tﬂ =a ;b Ty + Bzcze,
zy
Gy = azgzs + Thzc .
Step m = £ (here a,, = ¢):

Qt = Pelz.0 = (aZeTp + BTaTt)|z.+-0 = 0T Tp,
Cr1= = azezy
Ge-1= Gt|w_%— oy Ts + Tyt

Gi—1 = TcLgTs + TpTeZp .

Notice that G;_; does not involve x4, s0 the value m = k + 2 is not essential, as
are the rest of the values in the interval k +1 < m < £.
Step m =k + 1, with a,,, = e:

Qk+1 = Pe|z¢4—0 = (azcl'g + ﬂzazb)lzu(—o =0Ty,

g QT.T
Gr=ZTczgzy + zb:vp# .

Gy = TfTe + OTpTp .
Step m = k, with a,, = f:

Qk S Pflan,(—O = (axaxq + ,Bfﬂczp)h.,«_—o = ,Ba:c-'zp 3

p _ Pz.z
Gk—1= =" Te + QTpTp

Gi-1 = fz.ze + azpTy .
The values of m in the interval 0 < m < k are not essential since none of the
corresponding variables z,_ appears in Gy_; in particular, m = 1 is not essential,
since Gj—1 does not involve z, . Hence
GO =Gr_1 = ﬁwcze +oazpzy = Paa
as desired. The Laurentness is proved.

Remark 4.2. The Laurent phenomenon for the recurrence (4.1) actually holds
in greater generality. Specifically, one can replace H by any subset of Z? which
satisfies the following analogues of conditions (1.2)—(1.3) and (1.7)—(1.8):

(4.9) if h € H, then h' € H whenever h < h';
(4.10) for any A' € H, the set {h € H : h < h'} is finite.
Then take Hiny ={h € H : b~ ¢ H}.
The proof of Laurentness only needs one adjustment, concerning the choice of

a linear extension <. Specifically, while proving that y, is given by a Laurent
polynomial, take a finite set #(*) C # containing h and satisfying the conditions

(4.11) if B € H®, then h" € H™ whenever A” < b’ and A" € H;
(4.12) for any h' € H such that &' < h, there exists A" € #( such that
k' > h and h” ~ h.

(The existence of H(*) follows from (4.9)-(4.10).) Then define < exactly as before
on the set H®); set ' < A" for any b’ € H™ and h" € H — H™); and define < on
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the complement # — #(*) by an arbitrary linear extension of <. These conditions
ensure that the sets H,, needed in the proof of Laurentness of the given yj are well
defined, and that the rest of the proof proceeds smoothly.

Armed with the techniques developed above in this section, we will now prove
the main theorems stated in the introduction.

Proof of Theorem 1.2. Qur argument is parallel to that in Example 4.1, so we
skip the steps which are identical in both proofs. For simplicity of exposition, we
present the proof in the special case H = Z3;; the case of general # requires the
same adjustments as those described in Remark 4.2.

We define the product partial order < and a compatible linear order < on H by

(i1, 41, k1) < (i3, 52, k2) & (i1 <42) and (1 < ) and (ks < ka),
(i1, 41, k1) X (2, g k2) B (i + 1 + k<2 + 2 + ko)
or (i1 + j1 + k1 =i + j2 + k2 and 41 + J1 < 42 + ja2)
or (i1 + j1 = 92 + j2 and ki = ko and i; < ip).
For h = (i,4,k), we set h~ = (i — 1,4 — 1,k — 1); thus, the exchange relation (1.1)
expresses the product g5 -y~ as a polynomial in the variables y, , for A~ < ' < h.
All the steps in Example 4.1 leading to the creation of the infinite exchange
pattern (4.3) are repeated verbatim. Instead of (4.4), the exchange polynomials
P,y along the spine are now given by
(TR
= QB ((i-1,5,k)) (5= 1,k =1)) FBT((i,5-1,0)) B((i-1,5,k-1)) T VT3, 8-1) T((i=1,5—1,k)) -

The role of (4.7) is now played by Figure 6, which shows the “vicinity” of an
equivalence class a. This figure displays the orthogonal projection of H along
the vector (1,1,1). Thus the vertices represent equivalence classes in #/~. For
example, if o = ((¢, 7, k)), then

b={(5,k—-1)), c=((i,5~1,k)), d=((i-1,5,k),
e={(6j-Lk-1), f={E-15k-1), g=({(-17-1k)).
With this notation, we have:
P, = azqz, + Pr.zs + 1T8Z4 -

With the polynomials G1,G5,... defined as in (4.5), the essential values of m
are now those for which a,, € {b,¢,d, e, f,g}. (The verification that the rest of the
values are not essential is left to the reader.) We denote these values by m;,...,mg,
respectively.

The computation of the polynomials G, begins by initializing

Gn-1 =P, = azqze + Bz.zs + yTpy .
Step m = ma, an, = b
le = Pbla:.,4—0 =QTflq +,8-'L'e$p;
Gmi-1= Gm, Izbe—l-q': = azate + fTc2y + '7%%&!%’”9 }

Gmi—1 = QTpTiTe + PLTpTTf + QYT FLoLq + BYTeTgZp



16 SERGEY FOMIN AND ANDREI ZELEVINSKY

FIGURE 6. The cube recurrence

Step m = mg, ay, =c:

sz . Pc|.'z:..<——0 = QTgTyr +YTes;

e _ OTgTr+ YTl .
Gma—1= QZpTyTe + ﬁwb’wa +aYTsTgTg + PYTeTgTp ;

Cma—1 = OTpToTiTe+APBTYTFToTr+LBYVToTTfTs+ QYT L fTgTg+ BYTTTgTp .
Step m = m3, a,, = d:
Qma = Pd'za(—O = ,31251‘,, +YTiTy;

~ _ Brgz,+yrsz
Gms—1= azZpTc— T2,

+aBTyT sz Tr + BYTyTeTsTs + QVLT L 2Tq + BYLLeTyTp ;s
Grg—1 = OBTpTLeTeTy + QYT ToTeT f Ty + PYToZaTTfTs + BYT LT Lo Tp
+ofTyTaT ;T Tr + QYT TIT LTy -

Step m = ma4, a,, = e

Qm4 = Pel:n.,,(—O = ﬁmbmr + Y¥cZq s

Gms—1= Qm':‘ (@BTL Ty Ty + OYTHT T Ty + BYTHTAT §Ts + BYT LTy Tp)
+aziTiTgQm, ;
Grmi—1 = QYTpTT1Ty + BYToTaT5 T, + QBT LTy

+afzyTcTyTy + BYToTaTeTp .

Step m = ms, am = f:
Qms = Ptlo,0 = aTpTy + 1TaTp;
Gmg—1= QT";i(a'yzba:czu + ByTpZaZs + aTaZeTy) + PreTgQmy ;

Gms—1 = OZyTeZy + PTTpLy + QYTELT Ty + BYZpT4Ts -
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Step m = mg, am = ¢:

Qms = glzai—O = QTcTy + ,BIL'd.’l?s;

Gme—1= Qm—’:i(azdwe + Bzczs) + 726 Qms ;
Gmg—1 = axa%e + Brcxs + yT029 = Fo |
completing the proof. O
We will now deduce the Gale-Robinson conjecture from Theorem 1.2.

Proof of Theorem 1.4. To prove the Laurentness of a given element yy of
the Gale-Robinson sequence (y.,), we define the array (zix)(i,j ke by setting
Zijk = YN+pitqj+rk with the indexing set

H =H(N)={(,5,k) €Z* : N +pi+qj+rk > 0}.
Then (1.4) implies that the z;;; satisfy the cube recurrence (1.1). Note that #
satisfies the conditions (1.2)—(1.3). Thus Theorem 1.2 applies to (2;;5), with Hipiy =

{(a,b,c) € Z*: 0 < N + pa + gb+ rc < n}. It remains to note that yny = 200,
while for any (a,b,¢) € Hinit , we have 2apc = Y With 0 < m < n. O

Proof of Theorem 1.6. This theorem is proved by the same argument as The-
orem 1.2. We treat the Mills-Robbins-Rumsey special case (1.9) (cf. also (1.6));
similarly to Theorem 1.2, the case of general H requires the standard adjustments
described in Remark 4.2. We use the partial order on the lattice L defined by

(4,5,k) < (@, 5", k) < [i' —d] + l§' = §] <K — k.

For h = (i,7,k) € L, we set h™ = (4,4, k — 2), and define the equivalence relation ~
accordingly. Figure 7 shows equivalence classes “surrounding” a given class a (cf.
Figure 6).

p b q
1
>d e )c )
=N
8 ‘6 T
FIGURE 7

The initialization polynomial Gy_1 = P, is given by P, = az.zq4 + Bzsz. . The
table below displays a,,, Qm, Gm-1, and G,,_; for all essential values of m.

Gm Qm &m—l Gm—l

Tl
b az,z, az.rq + af ;bq T, TpToTq + BTeTpTy

Tqgl
¢ Pzgx, B . Toa + BTTpTy  TpTaTr + ToTeZp

TpZ
d PBzpzs ﬁ—de" TyTy + TeTelp PTpTrTs + ToTdle

ZTrTs

22 z.Ta  PTeTe + aTcTy

e oz,z; Pryz.Ts+ O
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We see that Go = G.—1 = P, , completing the proof. 0

Proof of Theorem 1.8. The proof mimics the above proof of Theorem 1.4. To
prove the Laurentness of an element yy of the sequence (y,,) satisfying (1.10),
we define the array (ziji)(,j.k)en by setting zijx = Ynyegi j ), where £(i,5,k) =
nﬁgﬂf — pi — gj. The indexing set H is now given by

H =H(N) ={(i,j,k) € Z> : N +£(i,j,k) > 0}.

Then (1.10) implies that the z;;; satisfy the octahedron recurrence (1.5). It is easy
to check that # satisfies the conditions (1.7)—(1.8). Thus Theorem 1.6 applies to
(2ijx), with Hiniy = {(a,b,¢) € L : 0 < N+£(a,b,c) < n}, and the theorem follows.
O

We conclude this section by a couple of examples in which the Laurent phenom-
enon is established by the same technique as above. In each case, we provide:

e a picture of the equivalence classes “surrounding” a given class a, which
plays the role of (4.7) in Example 4.1;

e the initialization polynomial Gy_1 = Pj;

¢ a table showing a.,, Qm, Gm-1, and G,,_1 for all essential values of m.

Example 4.3. (Frieze patterns) The generalized frieze pattern recurrence (cf., e.g.,
(3, 11]) is

(4.13) YijYi-1,j—1 = EYij—1Yi-1,; + B,

where ¢ € {1,—1}. To prove Laurentness (over Z[f]), refer to Figure 8. Then
P, = exp z. + B, and the essential steps are:

[227°% Qm am—l Gm—l

b B 5—%+ﬁ ETc+ Tp

c p %+xb B+etayx,

a

FIGURE 8

Example 4.4. (Number walls} Consider the 2-dimensional recurrence

(4.14) Yis¥ij—2 = Y1 j-1¥ir1,j-1 T Y1)
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where p, g, and r are nonnegative integers. To prove Laurentness, refer to Figure 9.
Then P, = xﬂxg + 22, and the essential steps are:

am Qm Gm-1 Gm—1

q
q D(Zr\T q D,.qT g..r
% zd(mb) + ¢ ehzf + iz}
P T
Do P, .47 TeTr\e 1 D .q DG T
¢ ZTYTE TTy + ( oo )iz} TyZe + T3 Ty

q
d (;i-)p:z:g + zb9z] zd + z}zh
ea
¢ T d le b
1
—_—
g a f
FIGURE 9

Remark 4.5. As pointed out by J. Propp, the Laurent phenomenon for certain
special cases of Examples 4.3 and 4.4 can be obtained by specialization of Exam-
ple 1.5.

5. HOMOGENEOUS EXCHANGE PATTERNS

In this section, we deduce Theorem 1.10 and a number of similar results from
the following corollary of Theorem 2.1.
Corollary 5.1. Let A be a unique factorization domain. Assume that a collection
of nonzero polynomials Py, ..., P, € Alzq,...,z,] satisfies the following conditions:

(5.1)  Each Py does not depend on zy, and is not divisible by any z;, i € [n].

(6.2) For any i # j, the polynomials Pj; def (Pj)|ei=0 and P; are coprime.

(5.3) For any i # j, we have
L- pJPi . pz.zpl.|

P
z_.,'(———lljl ’
where b is a nonnegative integer, and L is a Laurent monomial whose
coefficient lies in A and is coprime with P;.

Let us define the rational transformations F;, i € [n], by

P
Fi:(z1,...,2Z0) — (ml,...,xi_l,j,xi+1,...,:cn).
K]

Then any composition of the form Fj, o---o F;  is given by Laurent polynomials
with coefficients in A.
Proof. Let T, denote a regular tree of degree n whose edges are labeled by

elements of [n] so that all edges incident to a given vertex have different labels.
Assigning P; as an exchange polynomial for every edge of T, labeled by i, we
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obtain a “homogeneous” exchange pattern on T, satisfying conditions (2.3)~(2.5)
in Theorem 2.1. This implies the desired Laurentness. a

Example 5.2. Let n > 3 be an integer, and let P be a quadratic form given by
P(zy,...,zp) =22 + -+ 22 +Zaij$imj .
i<j
Theorem 1.10 is a special case of Corollary 5.1 for F; = P|z.=0 and A = Z[a;j:4 <
7]- Conditions (5.1)—(5.2) are clear. To verify (5.3), note that

P, =Py + a:f +z; (Z Qi Tk + Zajlzl) )
k ’

where k (resp. £) runs over all indices such that k£ # ¢ and k& < j (vesp. £ # ¢ and
£ > j). It follows that

Pj;
pl pu = Pji + Fsi (E Qg Tr + 5 a]lzl) = —2
.’I J

verifying (5.3).
In the remainder of this section, we list a few more applications of Corollary 5.1.
In each case, the verification of its conditions is straightforward.

Example 5.3. Let P and @ be monic palindromic polynomials in one variable:
Pz)=(14+zY)+a(z+z5 ) +a(z® +242) +...;

Qz)=(1+2z%) + Bi(z +z°71) + Ba(z® +z°7%) + ...

Then every member of the sequence yg, 1, .. .defined by the recurrence
2
B P(yr-1/2) if k is odd;
Yk = , Yk—2
X QWk—1/n) Qe-—1/) if k is even
Yr—2
is a Laurent polynomial in y and y; with coefficients in A = Z[A:IEl ,a,,,,B,].
This follows from Corollary 5.1 with n = 2, P, = u2P(z2/}), and P; = A2Q(z1/ ).

Example 5.4. Consider the sequence yo,¥1, - -- defined by the recurrence
Y| +cyp1+d

5.4 -
(5.4) Yk —

Every term of this sequence is a Laurent polynomial in yo and y; with coefficients
in Z[c, d].
Example 5.5. Define the rational transformations F, Fy, F3 by

To +z2 +.'z:2:z:3
Fi: (21,22, 73) V= ( “_—“;1—2, T2, T3 )s
T+
(55) Fz : (.’1:1,.'1}2,.’1:3) — ( z, 1:1:—23, x3 ),
Ty + 22 + 221y
F3: (z1,22,23) — ( 21, T2, # )-

Then any composition F}, o F;, o--- is given by (z1, 22, 23) —= (G1, G2, G3), where
G1,G3,G3 are Laurent polynomials in z1, 25, 23 over Z.
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