ELLIPTIC SELBERG INTEGRALS

J.F. VAN DIEJEN AND V.P. SPIRIDONOV

ABSTRACT. We introduce new Selberg-type multidimensional integrals built
of Ruijsenaars’ elliptic gamma functions. We show that the vanishing of our
integrals for a specific parameter hypersurface implies closed evaluation for-
mulas valid for the full parameter space. The resulting integration formulas
contain the Macdonald-Morris constant term identities for nonreduced root
systems as special limiting cases.

1. INTRODUCTION

In 1944 Selberg introduced the following remarkable and highly nontrivial mul-
tidimensional generalization of the celebrated beta integral fol oY1 —z)f~dz =

H{a)T'(8)/T(a + B) [Se):
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- 10 Mla+ (G - DNTB+ (G - DNTA +47) (11)
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where Re(a),Re(8) > 0 and Re(y) > —min(1/n,Re{a)/(n — 1),Re(8)/(n — 1))
(with T'(-) representing the gamma function). Since that time various elegant new
proofs for this integration formula were presented [A, O, An, AAR]. In a nutshell,
the common idea underlying these proofs is to derive first a functional equation for
the dependence of the integral on the parameters and then solve this equation to
produce the evaluation constant on the r.h.s.

A very influential subsequent development was set in motion by Macdonald, who
presented conjectures for families of Selberg-type integration formulas associated
to the integral root systems [M1, M3]. (From this perspective, Selberg’s original
integral in (1.1) corresponds to the nonreduced root system of type BC,.) These
conjectures were subsequently proven by Opdam by means of a technique involving
shift operators that has its origin in the Heckman-Opdam theory of generalized
hypergeometric functions associated to root systems [O, HS].

As was observed by Macdonald, the Selberg integrals for root systems may be
alternatively formulated in terms of constant term identities of a type studied by
Andrews, Macdonald, and Morris; this connection led to the formulation of fur-
ther generalizations of the Selberg integrals associated to root systems involving a
modular deformation parameter denoted by the basic nome g, see [M1, M3] and
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references therein. The Macdonald-Morris conjectural g-deformed Selberg-type in-
tegrals (or, equivalently, constant term identities) arising this way had been checked
on a case by case basis by several authors for all but the exceptional E series
[BZ, H, G1, GG, K1, K2], when Cherednik came up with a uniform method of
proof valid for all reduced root systems (including the F series) via a generalization
of the shift-operator approach of Opdam [C, M2, M3].

At the one-dimensional level, the presently most general g-deformed beta-type
integration formula is given by the Nassrallah-Rahman integral [NR, R]

L/ (32: 2_2,ZH‘:=0 tr:z_l H‘::o tr;q)coﬁ
T

2mi H::o (t-,-z, trz™1; Q)oo 2
4 o1 7d
2 H'[‘:O (tr ! Hs:O ts; Q)oo
(Q§ Q)oo H05r<354(trts; Q)oo
where |g|,|t;| < 1 (r = 0,...,4), T denotes the unit circle with positive orienta-

tion, and (a1,...,a01;9)0 = le=1(a,;q)oo with (a;@)oc = [Treo(l — ag®). This
integral generalizes the well-known Askey-Wilson integral, which corresponds to
the degeneration t; — 0 [AW, GR]. Selberg-type multivariate generalizations
of the Nassrallah-Rahman integral (1.2) were introduced by Gustafson [G2, G3].
Gustafson’s integration formulas reduce for special parameter values to the Macdonald-
Morris g-deformed Selberg integrals associated to the nonreduced root systems.

In a more recent development, one of us found a generalization of the Nassrallah-
Rahman integral in which the role of the g-shifted factorials is taken over by Ruijse-
naars’ elliptic gamma function [S1, S2]. (See [Ru, FV] for information on the elliptic
gamma function and [B1, B2] for Barnes’ general theory of related multiple gamma
functions.) This introduces a next level of complexity in the beta integration formu-
las in which g is complemented (symmetrically) by a second modular deformation
parameter p. The purpose of the present paper is to put forward a similar elliptic
generalization of Gustafson’s Selberg-type multivariate Nassrallah-Rahman inte-
grals. In previous work, we conjectured such elliptic Selberg integration formulas
and showed that they imply—via multidimensional residue calculus—certain iden-
tities between Jacobi modular functions (in the sense of Eichler-Zagier [EZ]) that
were first formulated by Warnaar as summation conjectures for Frenkel-Turaev
type multiple modular hypergeometric series [DS1, DS2, W]. A complete proof
of these summation identities was found recently by Rosengren [Ro]. At the one-
dimensional level, the modular hypergeometric series have their origin in the theory
of exactly solvable statistical models, where they pop up in the construction of ellip-
tic solutions of the Yang-Baxter equation [D-O1, D-02, FT]; these series have also
appeared in the theory of special functions, where they are used to represent new
types of biorthogonal rational functions on elliptic grids [SZ] and related biorthogo-
nal functions with continuous orthogonality structures [S3]. In the one-dimensional
context, Warnaar’s sum reduces to a previously known summation formula for a
very-well-poised modular hypergeometric series due to Frenkel and Turaev [FT].

The plan of the paper reads as follows. First we formulate two kinds of elliptic
Selberg-type integration formulas (Type I and Type II) that generalize Gustafson’s
multiple Nassrallah-Rahman integrals. Next we show that the vanishing of the
Type I integral on a specific parameter hypersurface (the Vanishing Hypothesis)
implies a closed evaluation formula valid for the full parameter space for both the
Type I integral as well as the Type II integral. Qur method of proof is modelled on
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the ideas of Gustafson and (to lesser extent) Anderson [G2, G3, An, AAR]. The
reasoning is the following. First it is shown that the Type I integral implies the
Type II integral. Next we derive a system of difference equations for the Type I
integral in the parameters. These difference equations hinge on some theta function
identities that have been collected in an appendix at the end of the paper. With
the aid of the difference equations and a residue formula we then show that our
Vanishing Hypothesis implies the evaluation formula for the Type I integral in the
fuli parameter space.

2. NOTATIONAL PRELIMINARIES: THE ELLIPTIC GAMMA FUNCTION

In this section we collect some elementary properties of Ruijsenaars’ elliptic
gamma function. A more elaborate treatment can be found in [Ru] and [FV].

Let p and g be complex parameters inside the open unit disc |p|,|q| < 1. We
consider the converging double product

O

@p 9o = [] (1 —ap’dh), (2.1)

4,k=0

which, for p = 0, collapses to the standard g-shifted factorial (¢;¢)eo [GR]. The
elliptic gamma function is defined as the quotient

-1,
(Pgz™"5p: Qoo (2.2)
(z; D, q)oo
It is symmetric in p and ¢ and satisfies the first-order difference equations
I'(gz;p,q) = 6(z; )X (z:p,9), T(pzip,q) = 0(2;9)T(2;p,0) (2.3a)

and the reflection equation

I'(z;p,q) =

1

I'(z;p,9)T(z7;p,9) = —Frr— 2.3b
(z:0,0T(z"";p,q) )T (2.3b)
where the theta function is defined as
8(z;p) = (2,027 P)oo- (2.4)
This theta function satisfies the functional equations
0(pz;p) = 0(z71;p) = —278(z; p), (2.5)
and is related to the Jacobi 6;-function [WW] via the Jacobi triple product identity
(e e]
O1(zlr) = 2 (—1)mpm+D?* B i n(2m + 1)z (2.6a)
m=0
= p/%ie™™ (p; p)oo 8(e*™%; p), (2.6b)

where p = e2*". Quotients of elliptic gamma functions give rise to elliptic Pochham-
mer symbols defined by

m. m—1 .
0(z; P @)m = % = ]1 0(z¢’;p), mEN. (2.7)

For p = 0 the elliptic gamma function and elliptic Pochhammer symbol reduce to
the g-shifted factorials I'(2; 0, ¢) = 1/(2; @) o and 8(2;0;@)m = (2; @)oo/ (24™; @) 00 =
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(z;9)m = H;’_‘___ol(l — z¢%), respectively. Following the standard short-hand con-
ventions of basic hypergeometric analysis for the products of g¢-shifted factorials

(@1,-.-,01@)m = le=1 (ar; q)m, we will employ the compact notation:
F(ala cee P, q) = Hi:lr(a”l‘;pa Q)) (283‘)
8(a,..,050Q)m = [1oey0(ar; P @)im, (2.8b)
6(ar,-.,ap) = [[,16(ar;p). (2.8¢)

3. THE VANISHING HYPOTHESIS

In this paper we will assume the following nontrivial hypothesis for the vanishing
of an elliptic Selberg integral.

Hypothesis. Let 0 < p,g < 1 and let 2o, .. tzn_,.l be complex parameters such
that 0 < |t;| < 1forr =0,...,2n, tan4y1 = Hr—o .1, and with generic argument
values in the sense that #{a,rg(tr) arg(t;l) |r = .,2n+ 1} = 4n + 4. Then

-1
/ H | (z]zkazjzk ,ZJ 2k, 2 4 zk 1p:q)
cn

1<j<k<n

- 1—[3::)-1 I‘(trzj,t,.zj—l;p,q) dz dzp,
ISt o o
j=1 ja j ’psq 1 n

where the contour C C C is a positively oriented Jordan curve around zero such
that (i) the interior is star shaped around the origin: every half-line parting from
zero intersects C just once, (i) C~' :={z € C| 27! € C} = C, and (iii) the points
t, (r=0,...,2n+ 1) all lie in the interior of C.

For n = 1 the Vanishing Hypothesis (3.1) reads

3 —
/ Hr=0 F(th" z lt'r‘;p1 q) d_z — 0 (32)
I(z%,27%p,q) 2

(with totitats = 1). In this special case the hypothesis is a consequence of the
elliptic beta integral in Refs. [S1, S2] (cf. Eq. (4.3) and Remark 4.4 below).
For p = 0 the hypothesis degenerates to

-1 -1 -1_-1.
/ zgzk.,zjzk 125 Rk %5 % 59) oo
an 1<_7<k<n,
J’ J ,(I)oo d21 dzn =0 33
X H (o, bz ) PR (3.3)
1<j<n ,-—0 ) breg aq o0 n

(with ]'[2""'1 t. = 1). In this degenerate situation the hypothesis is a consequence
of the Sp(n) Selberg-type Nassrallah-Rahman integral of Gustafson [G3] (cf. Eq.
(4.4a) and Remark 4.4 below).
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4. MAIN CONSEQUENCES: INTEGRATION FORMULAS

Let
1 _ -1 -3 1 _
Al(zp9) = @rin I T7'(m. 2zt 25 20, 25 2 Y0, 9)
1<j<k<n
2n+2
x ﬁ Hrﬁ+ F(t Z],t Z ,p,Q)
(22,272, Az, Az; 5 p,q)

(4.1a)

j=1 .7’ .7

with A = [[2%4?t,, and let

1 H F(thzk, tZJ'Zk_l, tz‘;lzk,tzj_lzk_l§p’ Q)

Al(#p,q) = 1 —
" (27-”)"7. P(ijkﬂzjzk,—l’zj—lzkazj lzk, 1;p1 Q)

1<j<k<n

4 _
I"I | F(t-rb‘j,t z; 1;10, q) (41b)
F( J7 _7 BZ]aBZ 1D q )

with B = t?72 Hj:o ts. Furthermore, let T denote the unit circle with positive
orientation. As the main results of this paper we will show that the Vanishing
Hypothesis of the previous section implies the following two elliptic Selberg-type
integration formulas.

Theorem 4.1 (Type I Elliptic Selberg Integral). Let |p|,|q| and |t.| (with r =
0,...,2n + 2) be smaller than 1 such that |pg| < |H§Z'g2 ts|. Then the Vanishing
Hypothesis implies that

dz dz
Al(z: Tl L
/T" n(Zp Q)=
27p! H0<r<s<2n+2 D(trts; pyq)
%G 0% [T 4
Theorem 4.2 (Type II Elliptic Selberg Integral). Let |p|,|q|,|t| and [t.| (with

r= .,4) be smaller than 1 such that |pg| < |t?"2 1 s—ots|- Then the Vanishing
Hypotheszs implies that

/ Al(gp,q 2t En -
T'n.

21 Zn

(4.2a)

npl g T Yt p,q)
2™n H T'(#;p,q) H0<r<s<4 ( i rls; P q/. (4.2b)
;0% (6 9)% = T a)  [[o D9t B;p,q)
For n = 1 the integration formulas of Theorems 4.1 and 4.2 specialize both to
the elliptic beta-type integral
/ 7-—0 T'(zty, 27 p, Q) d_Z
27” F(Z2 _2) z HT—'O tT‘a H:—O tr;ps q) z
2H0<r<3<4 L(trts; p, @)

(p, p)oo\q; (I)oo Hr=0 F(tf' Hs=0 ts; D, Q) .

This beta integration formula was proved by one of us, first for discrete parameter
values in [S1], and then for general parameter values in [S2].

(4.3)
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For p = 0 the integration formula (4.3) degenerates to the Nassrallah-Rahman
integral (1.2). More generally, for arbitrary n the integration formulas of Theo-
rems 4.1 and 4.2 amount for p = 0 to Gustafson’s Sp(n) Selberg-type multivariate
Nassrallah-Rahman integrals [G2]

1 1 - 1
W/ I Gizeszizit 27 20,257 20 @)oo

1<j<k<n

2 Az; Az 1@ oo dz dz
H J ] J 3 1 I o] 1 n
X 2n+2 — t —

1<j<n | b (trz],trz. ,Q) 21 Zn

T | 2n+2 _]_
(4:9)% H0§r<s§2n+2(t7't81 Qoo

(with |g| and |t,| < 1for r =0,...,2n+ 2) and [G3]

T2 @)oo

1 /‘ (Ziz0) 2525 1 2] ks 2
o -1, -1 o
(2mi)™ Jopa 1<i<h<n (tzjzk, tzj 2, y12; 2R, 025 2 1 %) oo

1<j<n Hr_O(t Zj, rZ ,q) 21 Z2n

H (_11 J2BZJaBz ;q)oodzl Az

n

N | 1—-j3—-1pn.
_ 2l LT (t; Qoo [0 (#' 9t B; @)oo (4.4b)
(Q: I j=1 (tJ;Q)oo H0<r<s<4(t] t'rtsQQ)oo

(with |g|, |¢| and |t,| < 1 for r = 0,...,4), respectively. For special choices of the
parameters ¢,, r = 0,...,4, the Type IT Gustafson integral (4.4b) specializes to Mac-
donald’s g-deformed Selberg integrals associated to the nonreduced (i.e. BC-type)
root systems, or, alternatively, to the Macdonald-Morris constant term identities
for the nonreduced root systems (cf. Remark 4.1 below) [M1, M3, K1].

Remark 4.1. The integration formulas of Theorems 4.1 and 4.2 state that the con-
stant term of the Laurent series of the integrand in the variables 21,...,2, has a
value given by the r.h.s. This gives rise to an alternative formulation of the inte-
gration formulas as constant term identities. Since the Type II Gustafson integral
(4.4b) amounts from this perspective to a generalization of the Macdonald-Morris
constant term identity associated to the root system BC,, [M1, M3, K1], we may
view the constant term identity stemming from Theorem 4.2 in turn as a further
generalization of this Macdonald-Morris identity from the g-deformed level to the
elliptic (or (p, g)-deformed) level.

Remark 4.2. The reflection equation (2.3b) for the theta function permits rewriting
of the Type I integrand AL(z;p,q) (4.1a) in the form

1 _ P
Alzpg) = o I 0Gizk 225 "ip)0(z 2k, 25 2 50)
(2mi) 1<j<k<n
y l—"I 8(23;0)0(27 % 0) [Toms” D(trzss trzy 50, @)
F(AZJ:AZJ' vpaq) .

(4.5)

j=1

The Type II integrand AL!(z; p,q) (4.1b) can also be rewritten analogously.
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Remark 4.3. The integrand Al (z;p,q) (4.1a) has poles in z; inside the unit circle
at {t,p'q™Hmen (1 =0,...,2n +2) and {A7 p!*1g™* 1} nen. Furthermore, due
to the z; — z; ! reflection-invariance of the integrand, the poles located outside the
unit circle are related to these by inversion. Let us assume that 0 < p,g < 1 and that
to,...,tant2 are generic such that #{arg(t,.),arg(t; 1) |7 =0,...,2n+2} =4n+6
and t71A ¢ [1,4o0o] for r = 0,...,2n + 2. We can then deform the integration
contour (without altering the value of the integral) from the unit circle T' to any
(smooth) positively oriented Jordan curve C C C around zero such that (i) the
interior is star shaped around the origin: every half-line parting from zero intersects
C just once, (ii) C~1:={2€ C| 271 € C} = C, and (iii) C separates the poles in
zj at {trp'q™ }men (r =0,...,2n+2) and {A71p! g™}, hen (all in the interior
of C) from those related to it by inversion (all in the exterior of C'). Indeed, the
conditions on C' guarantee that one does not cross over poles when deforming from
T to C, so the value of the integral remains unchanged. This observation permits
an extension of the parameter domain of Theorem 4.1 (assuming the above reality
and genericity conditions) through analytic continuation. Indeed, we can perform
a radial dilation of one or more parameters t, from the interior of the unit circle
to the exterior while simultaneously deforming the integration contour C so as to
maintain the above conditions (i)—(iii) satisfied.

A similar extension of the parameter domain for the Type II integral of Theorem
4.2 was described in [DS1, Section 4] (see also [DS2]).

Remark 4.4. Let us assume 0 < p,g < land ¢ (r =0,...,2n+ 2) nonzero, inside
the open unit disc, and with generic argument values as described in the previous
Remark 4.3. Then we see that, by letting #5,11 tend to Hfio 4% (0 tanta = A)
while simultaneously deforming the integration contour from the unit circle T' to
a Jordan curve C respecting the conditions {i)—(iii) of Remark 4.3, the integration
formula of Theorem 4.1 reduces to the Vanishing Hypothesis of Section 3. Indeed,
the r.h.s. of the integration formula (4.2a) tends to zero in this limit due to the
pole of the denominator factor I'(t5. +2A;p,q) at tanyo = A. This checks that
the evaluation formula of Theorem 4.1 is indeed compatible with the Vanishing
Hypothesis (3.1). In other words, one of the main results of this paper is—in a
nutshell—that we show that the vanishing of the Type I integral for parameters on
the hypersurface tan4+2 = A (or, equivalently, #g - - - tan4+1 = 1) necesarily extends to
the evaluation formula (4.2a) on the full parameter space. Phrased still differently:
the Vanishing Hypothesis (3.1) and the integration formula (4.2a) follow from each
other.

Remark 4.5. The integration formulas of Theorems 4.1 and 4.2 are not the only
possible elliptic generalizations of the Selberg integral (1.1) considered in the lit-
erature. In [F] Forrester found different elliptic generalizations connected to the
theory of random matrices. Forrester’s elliptic Selberg integrals are characterized
by an integrand composed of products of theta functions rather than elliptic gamma
functions.

5. TypeE I = TvypE II

To prove the statements of the previous section we will first show that the Type
II integral (4.2b) follows from the Type I integral (4.2a) by means of a technique



8 J.F. VAN DIEJEN AND V.P. SPIRIDONOV

due to Gustafson for p = 0 [G1, G3]. A similar technique was also employed
independently by Anderson in his proof of the classical Selberg integral (1.1) [An].

Theorem 5.1. The Type I elliptic Selberg integration formula of Theorem 4.1
implies the Type II elliptic Selberg integration formula of Theorem 4.2.

Proof. The main idea is to consider the composite integral

1 —
WL,, /‘T" 1 H r- (zjzk,zjzk ,ZJ lzka ] zkl;paq)

T i1<i<k<n
4 _
y H Hr—o F(t,.zj,t,.zj l;p’ Q)
i1 D2 252, 2t Tloggca b 25 07 Tlogoca Boi 2, 4)

x JI TE7zws,tzwpt, 025 o, 4225wt p, )

1<j<n
1<k<n—1

-1 -1 ,.,-1 -1,,—1.
X H r (ijk,ijk YWy "Wk, Wy~ Wy ,p,Q)

1<j<k<n—1
X ﬁ F(w it Tlogscater; "2 [lococa ts P2 0)
= T(w?,w; 2w, t2n—s/2 Tlo<ocs ter wj—ltzn—3/2 Tlo<o<a tsiP,9)

dwy | dWn-rdzn | de (5.1)
un Wn—1 21 zn’ .

with p, ¢, t, and ¢, (r = 0,...,4) inside the open unit disc such that [pg] <
|t27=2 [TA_, t+|- Let us abbreviate the integral on the Lh.s. of (4.2b) by IZ! (¢, ¢.; p, ).
Integration over the w-cycles by means of formula (4.2a) produces an evaluation
for the composite integral (5.1) as
2 (n-1)! T"(tp,q) I
(pip)% (g 9)% " (™5 pr9) f
Similarly, integration over the z-cycles by means of formula (4.2a) evaluates the
integral (5.1) as
2"n! m- l(t p,q )H0<r<s<4 F(t s D, q) I'”
PP D% [[oo D187 [Th, ts; 2, 9)
Comparing the expressions (5.2a) and (5.2b) for the composite integral yields the
following recurrence for I! in the dimension n:
L't tip,q) = (5.3)
2n I'(t";p,q) H05r<sg4 I'(trts;psq)
(P P)oo (@ @)oo T(t52,0) [T o T(tn1t7 "t [Tosg ts; 0, q)
Iteration of the recurrence—starting from the known value (4.3) for n = 1 taken
from [S1, S2]—entails

t,tr;p,9)- (5-2a)

1(t,8%t:;p,0).  (5.2b)

I (t, 1%, p, q).

2"n! H t/;p, q) ]-_-[0<r<s<4 D(t 1 trts; py q) (5.4)
@P)%(69% 1 TEpa) I, Tt B;p,q)

which is precisely the formula of Theorem 4.2. a

LIt tepg) =
=1
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6. DIFFERENCE EQUATIONS

In the remainer of the paper we will derive Theorem 4.1 via a generalization of
Gustafson’s method in [G2] from the trigonometric case p = 0 to the generic elliptic
case 0 < |p] < 1. The first step is to exhibit a system of difference equations for the
Type I integral in the ¢, parameters. The proof of these difference equations hinges
on identities for the theta function (2.4) that are collected and proved in Appendix
A below.

Let us write IS (tr;p,q), i (tr; p,q), and A, (z;t.;p, q) for the r.h.s., the Lh.s.,
and the integrand of the integration formula stated in Theorem 4.1.

Theorem 6.1. Both the Lh.s. ID (tr;p,q) and the r.h.s. i (tr;p,q) of the inte-
gration formula stated by Theorem 4.1 satisfy the q-difference equation

6(At,, At;1;p
Z H t ts,t ts—l, ) ’n-(tﬂa'"thri""t2n+2;p’q)
1'—00<a< & s ’p)

3 T
:In(tﬂy--'at2'n+2;p1Q) (61)
and a dual p-difference equation with the role of p and q interchanged.

Proof. From the g¢-shift property (2.3a)} of the elliptic gamma function it is immedi-

ate that the integrand A, (z; o, . . -, t2n42; 0, ¢) and the r.h.s. i (to,---stont2; 0, q)
of the Type I integration formula satisfy the first-order difference equations

An(z;t01"'aqtr:"'at2n+2;p)q) = II a(trzj’trzj—l;p) (6 2&)
An(z;t0,- - bant2; P, 9) 1Zi<n (A2, Az p) '
and
I(r) (t01 t2n+2;p, q) H g(trts;p) (6 2b)
I(r) (tO; t2.,,,+2,p, Q) OSJS¢21I.+2 O(Ats_l;p) ’ .
s#T

respectively. It now follows from (6.2a) and the theta-function identity of Propo-
sition A.3 (Appendix A) that the integrand (and thus the integral) satisfies the
g-difference equation (6.1). The fact that the r.h.s. also solves this g-difference
equation is inferred similarly with the aid of (6.2b) and the theta-function identity
of Proposition A.4. The dual p-difference equation now follows by the symmetry in
pand gq. a

Remark 6.1. In view of the permutation symmetry in the parameters #g, ..., tant2,
it is clear that both sides of the integration formula of Theorem 4.1 in fact satisfy
(*™+3) (the number of ways to select n+1 out of these 2n+3 parameters) g-difference

equations of the type in Theorem 6.1 and an equal number of dual p-difference
equations.

Remark 6.2. In the proof of Theorem 6.1 it was used that the r.h.s. of the integra-
tion formula of Theorem 4.1 satisfies the difference equation (6.2b). It is instructive
to note that for proving the integration formulas (4.2a) and (4.2b)—without an ap-
peal to the Vanishing Hypothesis of Section 3—it would at this point already be
sufficient to demonstrate that the 1.h.s. of (4.2a) also satisfies this difference equa-
tion. Indeed, it follows from the difference equation, the p < ¢ symmetry (and
an irrationality argument), together with the analyticity in the parameters, that
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the Lh.s. and the r.h.s. of the Type I integration formula must be equal up to a
constant factor c,(p,q) not depending on tg,--.,t2n+2. Following the reasoning of
Section 5, one is then led to formula (5.4) for the evaluation of the type B integral
up to multiplication by the same constant factor c,(p,q) (which does not depend
ontandt. (r=0,...,%)). Here one uses along the way that for n = 1 both types
of integrals coincide. From the fact that for ¢ — 1 the integral reduces to the n-fold
product of the n = 1 elliptic beta integral (4.3), one furthermore deduces that the
proportionality factor ¢,,(p,q) must in fact be identical to 1. (To infer the ¢ — 1
limiting behavior of the r.h.s. one uses that lim; 1 I'(t; p, q)/T'(t; . @) = 1/35.)

7. RESIDUE CALCULUS

We will now infer the Type I integral by induction on the dimension n. First
we consider the case tan41 = ¢T1A™L, tapre = ¢ A with [ € N\ {0} (where A =
[12%%¢t, = q[12"t-). The integrand A(z;¢-;p,q) = AL(z;p,q) (4.1a) becomes
for this special choice of the parameters ton.41, t2nt2 of the form

AD(2) = Apn(z) 69 (2), (7.1)
where
1 1 —
Apm(z) = G H T (2528, 22, 1, lek,zjlzkl;p,q) (7.2a)
1<j<kLn
nTE™ Dtz tr
XHPHT =0 (:J : aP;Q) O<m<n+l),
j—l (]J ] 3 z]’ Z )pl )
n
oW (z) = HI‘(q“‘lA‘lzj,ql"'lA_lzj_l,q_lAzj,q“lAzj_l;p,q). (7.2b)
j=1

Apart from the difference equations of Theorem 6.1, the main tool for computing
the integral [, AP (z)"’T"‘lL e % consists of the following residue formula.

Proposition 7.1 (A Residue Formula). Let the parameters to,...,t2n be inside
the punctured open unit disc {w € C| 0 < |w| < 1} with generic argument values
in the sense that #{arg(t,),arg(t;1) |r =0,...,2n} = 4n + 2, arg(t,), arg(t;!) #
arg(to -otgn) forr =0,...,2n, and to---tan & R. Then we have for 0<p< ¢ <
12"t < ¢*~* <1, with I € N\ {0}, that

dz dz dz dz
Mz)2L... 25— (ffA~Y)2n (-1 (g 2L ... 250
[ MW@P T = gayn [ M@
_ - dZ]_ dzn
= @Ay [ AR
Ci_yy 21 Zn
—2nx® Anc1n(2)VY (2 )dﬁ...__dzn—l,
Tn—1 21 Zn—1

where A (z) is given by (7.1)~(7.2b), A = q[[*"yt-, and
=
v2.@ = [l6a " Az,q7 425" p),

(@A7)™ (g~ A%p) [2o T(trd' A7 trg " Aip,0)

(75 P) 00 (€5 @)oo 0(g; 05 @)1—1 I'(g—4%;p,q)
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Here T denotes the unit circle with positive orientation and Cyy C C, I' €N, is
a positively oriented Jordan curve around zero such that (i) every half-line parting
from zero intersects Cyyry just once, (#) 0(7,1) ={ze€C|z7'eCyy}=Cu, and
(iii) Cyyy separates the points to, ..., tan, ¢ LA™Y and ¢ A (all in the interior)
from the poinis related to these by inversion (all in the exterior).

Proof. The equality on the first line is immediate from the shift property s (z) =
(qlA_l)z"J,(,l -1 (z). To pass to the expression on the second line, we first observe
that by deforming the integration contour for the 2, variable from T' to Cj;_;) one
crosses over a pair of poles at z, = ¢'!A™! (entering the interior of the contour)
and z, = ¢~'A (leaving the interior of the contour), respectively. The residues
of the integrand A,(f_l)(z) at these poles are equal to :l:(27ri)‘1Aﬂ_1,n(z)1/,(,f_)_1 (z),
where the plus sign corresponds to z, = ¢'A™! and the minus sign corresponds
to z, = g 'A. Since the above residue is holomorphic as a function of z; (with
1 < j < n —1) on the symmetric difference of the interiors of C;_;y and 7', and
the integrand is permutation-invariant, it is clear that the proposition now follows
by successive deformation of the integration contours for the variables z1, z9,...,2,
from T to C(;_1) and application of the Cauchy residue theorem. O

The residue formula of Proposition 7.1 enables the evaluation of the integral
- Agll)(z)‘%L ‘e % upon invoking of the Vanishing Hypothesis from Section 3.
It is precisely at this point (and only at this point) that we actually employ the
Vanishing Hypothesis.

Proposition 7.2 (The case ! = 1). Letty,...,t2, be complex parameters inside the
punctured open unit disc {w € C |0 < |w| < 1} subject to the genericity conditions
in Proposition 7.1, and let 0 < p < ¢ < |[[?%yt,| < 1. Then the Vanishing
Hypothesis implies that

dz dz
AD (2L B
/ A L
2mn! H0§r<s§2n F(trts;p: Q) HiZO I‘(t,.q2A_1, t,,.q_lA;p, Q)
@ P (4 9% [12", T(t- 4; p, q) T{g~2A2; p, q)

(with A = ¢T12% tr)-

Proof. We consider the residue formula of Proposition 7.1 for ! = 1. Evaluation of
the (n — 1)-dimensional integral with the aid of the formula of Theorem 4.1 (here
we use induction on the number of variables) readily entails that

dz dz, _ dz
/ AW ()= ZE0 = (gA 1)2n/ AO (7)== ...
T 21 O(no) 21

dzs

Zn Zn

270! Tlocrcacan Dtrts; 2, @) [Tt T(trg® A2, 8,7 A;p, q)

)% (@ 9% 122, Dt A; p, ) T(q2 A% p, q)
where the contour C(g) is in accordance with the conditions stated in Proposition
7.1. By the Vanishing Hypothesis we have that fCZB) A (z)";"‘lL e ‘%‘ = 0, whence
the integration formula follows. O

H
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8. ITERATION

With the help of the difference equation of Theorem 6.1 and a theta function
identity from Appendix A {below), we arrive at the extension of Proposition 7.2 to
the case of arbitrary positive integral [.

Proposition 8.1 (The casel > 1). Letty,...,tan be complez parameters inside the
punctured open unit disc {w € C| 0 < |w| < 1} subject to the genericity conditions
in Proposition 7.1, and let 0 < p < ¢* < |[[*Fotr| < ¢ < 1 with I € N\ {0}.
Then the Vanishing Hypothesis implies that
d d
/ Aff)(z)% e . (8.1)

Zn
2nn! H05r<352n F(tTtS;pa q) Hi:o I‘(trqH_lA_l’ trq_lA;pl q)
BP%G 0% 122, Tt 4 p,¢) T(a~—142;p,9) 0(g; p; @)i—1
(where A = qH g br )

Proof. For I =1 the statement, of the proposition reduces to that of Proposition 7.2.
In the rest of the proof we will therefore restrict ourselves to the case l > 1. Starting
point is the residue formula of Proposmon 7.1. Proposition A.3 with B = ¢~!'A

enables us to expand the factor v (z) as

n—1
H O(Q_IAzj, q_lAzj_l;p) = (8.2)

j=1

-1
nZ I 0(g "t Aty q™ Atsl,p Hﬁ(tz i),
')
7=00<s<n—1 e(trta:trts ,p) j=1
8FT

Substitution of this expansion in the residue formula yields

Ag)(z)dﬁ...dﬁ = (qlA—l)zn/ Ag—l)(z)dﬂ..,dﬁ
Tn Z1 Z C

" -1 21 2n
-l 1.
- 2“/9(1) Z H At-9 q Ats 1p) (83)
r=00<s<n—1 o(trts,trts ,p)
$FTr
dz dz,_
X Ap1n(Z;to,- 5 qtr, ... tan; qlo - - - tan; P, ) — 1 02n 1>,
Tn-1 21 zn_l

where Ap m(2;to,--.,t2m; A;0,9) = Ap,m(z) is given by the r.h.s. of Eq. (7.2a).
The (n — 1)-dimensional integral on the last line of Eq. (8.3) is evaluated through
the formula of Theorem 4.1 by induction on the number of variables:

dz dz,—
An—l,n(z;t07---’qt'ra"-,th;th t2n’p’q) L... s = (84)
Tn—1 Zn_l
n=1(n— 1)1 I r<on T(tsts ;@)
: (oD Hosscosn BBy, ltT *4;p) [ 6Gtrtsin).
(p;p) (¢ 9) T2, T(ts " A4;p,q) 0<s<an

S#ET

We will now use Eq. (8.3) to compute the desired integral [., A AP z)d—zL dzz""

by induction on [ starting from the known value for ! = 1 from Proposmon 7.2.
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Evaluation of the integral [, Ag_l)(z)dfll -+- %24 i the regime 0 < p < ¢~ <

Zn

| HE:O tr| < ¢=% < 1, with an appeal to the induction hypothesis, and performing
the analytic continuation to the regime 0 < p < ¢* < |[[>%, %, < ¢~ < 1 while
deforming the contour from 7' to Cj;_1) so as to avoid crossing over the poles at

z; =¢'A7! and 2; = ¢7'A (cf. Remark 4.3), produces the evaluation

/,, AU (g9 G (8.5)

z Z,
G-1) 1 n

2™nl H05r<552n F(trts;pa Q) HiZD F(trqlA_la t-rql_lA; D, Q)
PP)%@ D%  TLo I 4;p,9) D@ 4% p,9) (g P @2
Substitution of Eqgs. (8.4) and (8.5) in the expansion (8.3) gives rise to an explicit

evaluation of the integral [, NS (z)d?zll e d;‘? in terms of a complicated sum:

Ag)(z)ﬁ...dﬁ =
T 21 Zn
270! (! A™1)2" [Tocreocan Dltrts; , @) [T T(trg' A2 10 A5 p, 0)

EiP)%(6 )%  TI22,T(t*4;p,9) D(g— A% p, ) 0(¢; 15 @)1

2n
x (9(4"1;17) [16¢ta Aip) -

r=0

n—1 2n
_ _ 6(g ' At,,q ALY, p)
8¢ 4%p) Y (g Atrsp) [[ O(trtsim) [] (¢ o g p’).
r=0 s=n 0<s<n—1 (t’"t" ,p)
sFET
Simplification of the part within brackets by means of the summation formula (cf.
Proposition A.5 with n = n —1 and B = ¢'~})

n—1 2n
0(qtAt,, gt ALY
S0l 40 [[ 6t [ 2ot 2 in) (5.6)
r=0 s=n 0<s<n—1 (trts ’p)
SFT
8(q"';p) [Tomo 0(a " Ats;p)  (¢7'A)*"0(q 1 A% p) [Tomp 6(g' A~ 145 1)
(g~ A% p) (g~ A% p) ’
finally entails the desired integration formula stated by the proposition. a

9. INTERPOLATION

Proposition 8.1 states (roughly) that the Vanishing Hypothesis implies that the
Type I integral (4.2a) holds for a discrete parameter sequence of the form ton41 =
g A, tant2 = g7 A with | € N\ {0}. We will now remove these restrictions on
the parameters. For this purpose we first need some detailed information on the
structure of the Taylor expansion of the Type I elliptic Selberg integral (4.2a) in
the deformation parameter p.

Lemma 9.1. Let p,q andt, (r =0,...,2n+2) be parameters inside the punctured
open unit disc {w € C| 0 < |w| < 1} such that |pg| < |A| (where A = Hffgz t.)
and, furthermore, let z € T™. Then the Taylor ezpansions around p = 0 of the
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integrand Ay, (z;tr;p,q) = AL(2;p,q) (4.1a) and the r.h.s. 187ty p. q) of the Type
I integration formula (4.2a), given by

[o.0]

An(zitrip,q) = ) Sa(zmityigsm)p™,
m=0

INtspg) = Y, W (tsgm)p™,
m=0

converge in absolute value. Furthermore, the structure of the expansion coefficients
is of the form

Sn(Zitr;sm) = An(z;t;0,9)La(z, tr; gy m),
teigm) = I (650,9) Li(tr; 3m),
where La(z,t,; ¢;m) denotes a permutation-invariant Laurent polynomial in 21, . .. , 2,
and in ty,...,topt2 with a pole of order 2m at z; = 0 end o pole of order m at

t. = 0, and Ly(t,;q;m) denotes a permutotion-invarient Laurent polynomial in
to,. - ., tany2 with a pole of order m at t, = 0.

Proof. The fractions An(z;tr;p,q)/An(2;tr;0,q) and An(z;tr;p,9)/An(z;tr;0,9)
are built of doubly-infinite products of the type (ap;p,q)E! (for certain arguments
a). From the estimates

{(ap; 2, @)oo | < [(=lapl; P, 1q]) ool

and
1 1

[(ep; P, @)oo| ~ [(lapl; 7, lg])ool’
it is clear that the Taylor expansions of these factors around p = 0 converge in
absolute value provided the relevant quantities ap in the denominators satisfy the
restriction |ap| < 1. This is guaranteed by the conditions on ¢, and z, and hence
the Taylor expansions of A, (z;t,;p,q) and I")(t,;p,q) around p = 0 converge

absolutely as so do the expansions of individual factors of the form (ap;p, ¢)Z!.

The stated structure for the expansion coefficients d,,(z; t-; ¢;m) and Lsf) (tr;q;m)
is immediate from the expansion formulas

Iy, — Al (. S~ __P"gm
An(zp,9) = Ap(z;0,q) exp (— > m),
m=1 p
where
gm= Y, @+ G+ Y, (B )
1<i<j<n 1<j<n
+(1 _ qm)—l (Am _ qu—m + Z (qmt;—m _ t;n)) Z (sz + zj_m)’
0<r<2n+2 1<j<n
and o
1 trsp,0) = 1D 0, @) exp(~ Y —EPm),
" m=1 m(l - pm)
where
hom = —n+ Z > — + Z 1—gm ’

1—gm
0<r<s<2n+42 0<r<2n+2
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respectively. These expansion formulas are obtained with the aid of the rep-
resentation (a;p)ec = exp(}jo,log(l — ap’)) and the expansion log(l — z) =
=Yoo, ™ /m for the logarithm. a

With the aid of Lemma 9.1, we now lift the discreteness restriction on the pa-
rameters tony1,font2.

Proposition 9.2. The Vanishing Hypothesis implies that the Type I elliptic Selberg
integration formula (4.23) holds for parameters in the hypersurface tapii1tont2 = ¢
of the parameter domain in Theorem 4.1.

Proof. Analytic continuation extends the parameter domain of Proposition 8.1 to
0< [t <1(r=0,...,2n),0 < |p| < |¢}| < | T2 t-| < ¢ < 1 with l € N\ {0}.
Via the substitution ts, — g't2,, we arrive at the integration formula of Theorem
4.1 for parameters of the form

tons2 = Qtymys,  ten=¢ [ & (9.1)
0<r<2n+1
T#2n

(so A =g"*lpn ), with 0 < [t,| < 1 (r =0,...,2n— 1), 0 < |g| < [tznt1| < 1,
l¢1| < [TI2%5" t,], and |p| < |g'|. Hence, for parameters of the form (9.1) (subject
to the domain restrictions), the expansion coefficients in Lemma 9.1 are equal:

/ O (2 tr; G; m)dz—z = (t,; g;m), (9.2)
Tn

for an infinite integer sequence of [ € N\ {0}. Since both sides of (9.2) are meromor-
phic in 5, in a neighborhood of t, = 0 {this is a consequence of Lemma 9.1) and
moreover equal for a discrete sequence of values of t2,, converging to zero, it follows
that the equality (9.2) of the expansion coeflicients in fact holds for arbitrary ta,
with 0 < |tap| < 1 (while still assuming that tanyi1tente = ¢). The same equality
is then true for the Lh.s. and r.h.s. of the Type I integration formula due to the
absolute convergence of the Taylor expansions. O

Finally, we remove the hypersurface condition to,41tant2 = g with the aid of
the difference equation in Theorem 6.1.

Theorem 9.3. The Vanishing Hypothesis implies that the Type I elliptic Selberg
integration formula (4.2a) holds for the full parameter domain in Theorem 4.1.

Proof. Swapping the parameters t, and ton49 in the basic difference equation of

Theorem 6.1 for the Lh.s. I (tr;p,q) and r.h.s. " (tr;p, q) of the Type I integra-
tion formula produces the relation:

aan+2(p)In(to, . - ., qtont2; , @) = In(to, .. ., t2nt2;0,Q)

n—1
- E a’r(p)In(tO) e )th7 e 1t2n+2;p1 q):
=0
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with
n—1
8(At,, At p)
aznt2(p) = o ( tst £ prSpny
s—0 (tantats, tantats i P)
0(Atanta, Algmr2iP) T 7L
ar(p) — ( 2n+2> 2n+2)p) O(Ats:At.s 7p) — 0, = 1

8(tantatr, tanyatr 3 p) - O(trts, tets ' p)
u¢0
SFET

Since the coefficient asny2(p) does not vanish, it is clear from the difference equa-
tion that if I,(,l) (tr;pq) = I,(f)(tr; p,q) for tyniitonte = ¢, with I some posi-
tive integer, then the same equality also holds for fanpyitonye = g't! (provided
|p| < |to...t2ng'|). By an induction argument in I, starting from Proposition 9.2,
we arrive at the desired equality for a finite discrete sequence of parameter surfaces
of the form t3p41tans2 = ¢ with [ € N\ {0}. The same type of interpolation ar-
gument as in the proof of Proposition 9.2 removes the discreteness condition: first
we pass to a corresponding equality for the coefficients of the Taylor expansions at
p = 0 of both sides of the Type I integration formula, valid for an infinite discrete
sequence of parameter surfaces of the form tn11tans2 = ¢'; then the discreteness
condition on [ is removed by means of an analyticity argument; finally, the equality
is lifted to the level of the integration formula by the absolute convergence of the
Taylor expansions. O

This completes the induction in the number of variables n. We thus conclude that
the Vanishing Hypothesis of Section 3 implies the elliptic Selberg type integration
formulas of Theorem 4.1 and Theorem 4.2.

APPENDIX A. SOME THETA FUNCTION IDENTITIES

In this appendix we have collected a number of identities for the theta function
(2.4). These identities hold as equalities between analytic functions of the inde-
terminates. They are used in the proof of the difference equations for the Type I
elliptic Selberg integral stated in Theorem 6.1 and in the induction prodecure of
Section 8 (viz. the proof of Proposition 8.1). The identities in question may be
seen as generalizations of a classical identity due to Weierstrass (cf. Remark A.2
below).

We start off with two preparative identities. Their proof is by induction on the
size.

Lemma A.1. Let n € N\ {0} and let z1,...,2p—1 and to,...,t, be (nonzero)
complez indeterminates. Then one has that

& Mg Mo bs) "
= Tlogucn Otrta tots 50) '
= =2

Proof. For n =1 we get
to . t _ to (1 t o(totfl;P))
O(tots, tot; ) O(tito,tatg'5p)  O(tots, toty';p) to O(t1tysp) )’
which is identically zero in view of the z — z~! reciprocity relation (2.5) for the

theta function. For arbitrary n it is clear from the quasi-periodicity property (2.5)
of the theta function that the p-shift z; — pz; amounts to multiplication of the
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Lh.s. by an overall factor of the form 1/ (pzjz) Hence, upon setting z; = p%
(F = 1,...,n — 1), it is clear that the expression on the Lh.s. can be written
as c(to, .- . ,tn;p)p_(”?"‘""'":) where c(to, ..., tn;p) is a constant not depending on
Z1,...,Zn—1. (Here we have used the quasi-periodicity, entireness, and permutation
symmetry in zj,...,2,—1.) By writing the Lh.s. as

Zt Hl<]<n— o(t, Zjytr2; 1p) e(trzn—latrz;,il;p)
r —
Ho<.,<ﬂ 1O(trts, tits ip)  O(trtn, trtn®;p)

r=0

I[li<j<n—10(tnz)) tnzj_l :p)
[Mo<e<n O(tnts, tntst;p)
s#r

+tn

bl

we see—upon evaluating at z,—1 = ¢, and application of the induction hypothesis—
that the proportionality constant c(to,...,%s;p) is in fact equal to zero. a

Lemma A.2. Let n € N\ {0} and let to,...,tant1 be complex indeterminates

subject to the constraint Hfzgl tr = 1. Then one has that

r=0 HOSagn e(trts_l;p)
s#£r

Proof. The proof is similar to that of the previous lemma. For n = 1 we have for
the Lh.s.
8(totz, tots; p) | O(tata, tats; ;D)
8(tot; '; p) O(t1tg s p)
8(tots, tots; p) (1 O (tot] l,tltz,tlts;p))
8(tot; " p) O(t:ty ', totz, tots; p)
which is seen to vanish after elimination of the arguments ¢, and ¢;¢3 by means of
the relation #ot;t3t3 = 1 and application of the z = 27! reciprocity relation (2.5).
For arbitrary n one infers with the aid of the quasi-periodicity property (2.5) that,
after elimination of ¢3,41 (or £,) by means of the relation H2"+‘ t, = 1, the p-shift
tn — ptn (Or tapt1 — P ltani1) amounts to the multiplication of the Lh.s. by the
overall factor £,f3,4.1. Furthermore, it is clear that the residues of the (generically
simple) poles congruent to ¢, = ¢, (1 < s # r < n) cancel due to the permutation
symmetry. Hence, upon setting ¢, = p% (r = 0,...,2n + 1) with Efﬁ“ g- =0,
we see that the Lh.s. is of the form c(p)p(9s++9n~ 9n+1_'“_92"+1)/ % where c(p) is a
constant not depending on go, - .., gan+1- (Here we used the quasi-periodicity, the
entireness, and the permutation symmetry in go,...,gn and in gny1,-.-,92n+1-)
Rewriting the Lh.s. as

= 1_-[n+1<-sv<2n 8(t-ts; p) 8(trtont1;p) Hn+1§s§2n+1 8(tnts; p)
=0 Tlosygpa 065 Lp) 0-tntip)  Tlocecnot O(tats 'sp)

and substitution of ¢, = 1/ts,+1, reveals that c(p) = 0 by the induction hypothesis.
O

Armed with these two preparative lemmas, we are in the position to prove the
theta-function identities behind the difference equation of Theorem 6.1.
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Proposition A.3. Letn € N and let z1,...,2n, to,. .-, tant2 ond B be (nonzero)
complez indeterminates. Then one has that

| e
trtsatrts ,P) 1<j<n O(sz’sz—l;p)

=0 0<a<

Proof. For arbitrary n it follows from the quasi-periodicity property (2.5) that the
Lh.s. is invariant with respect to the p-shift B — pB. Furthermore, the residues of

the (generically simple) poles in B congruent to B = z; and B = zj_1 G=1,...,n)
vanish. This is clear from the permutation symmetry and z; — z; ! reflection-
invariance in 21, ..., 2, combined with the observation that the residue at B = z,,

which is given explicitly by

n

(p;p)goo(zg;p) H1<j<n—1 9(znzj,znzj_l;p) =0 " Hos;sn e(trtS)trt;l;p)
=I= s#r

272 Hogsgn g(zntsyznt;l;p) i HlSjSﬂ—l 6(trzj7trzj_1;p)

vanishes in view of Lemma A.1. Hence, by the the periodicity and analyticity it
follows that the 1.h.s. is equal to a constant c(to, ..., n; 21, - - ., 2n; p) DOt depending
on B. Substitution of B = ¢ reveals that the constant in question must be zero,
as at this value the term for r = 0 is equal to 1 and the terms for » > 0 vanish. O

Proposition A.4. Let n € N and let &g, . ..,tan+2 be (nonzero) compler indeter-
minates and A = ]_[2""'2 . Then one has that
f(At ;
Z H s’p H a(tr?ap) =1. (A4)
B(tets ;) 9(Ats ' p)
r=0 0<a<n T8 2P pti1<s<ant2 s
S v

Proof. For n = 0 the stated identity holds manifestly. For arbitrary n, it follows
from the shift property (2.5) that the l.h.s. is invariant with respect to the p-
shift ton4o — ptap+o. Furthermore, the residue of the Lh.s. at the (simple) pole
congruent to tan+2 = A reads

_ A—l HOSsSn G(Atsa p) i Hn+1sss2n+1 a(trts;p)
(p) p)go Hn+1ssszn+1 g(Ats_‘;p) —o Hof"f"’ G(t'r'ts_ljp)

?

with H2“+1 = 1. Hence, this residue vanishes by Lemma A.2. The upshot is (us-
ing the perlodicity, analyticity, and permutation symmetry in tp41,...,%3n42) that
the Lh.s. is equal to a constant c(tg,...,tn;p) not depending on tp41,...,tanta.
Writing the Lh.s. as

H(At“’p) = e(trt2n+21p) H e(AtSJP) H e(trts;p)
9(At2n+2,p) r=0 a(trt" o< <n 1 t rla ,p) n+1<s<2n+1 O(At;1§p)

[ Jdtwn o Aatin)
0<i<n—1 B(tnts5;p) t1<s<anta 0(At; L p)’

and evaluation in ts,49 = 1/t, entails that c¢(to,...,t,;p) = 0 by the induction
hypothesis. a
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By dividing out overall factors, the identities of Propositions A.3 and A.4 can
be rewritten in the (interpolation) form

HlSan G(sz,sz_l;p) B

i = (A.5)
HOSrSn g(Bt"'! BtT 17p)
n
1
S —_ O(trzj, trz; ;D)
T;)G(Bt,,Btrl;p) 0511. o(t, ts,tt 1<,I-£n T
s#T
and
Hn+1<.s<2n+2 Q(Ats :p Hn+15352n+2 G(trt35p) (A 6)

HOSSSTL (Ats;p) T;O a(AtT;p) HDS;S"- 0(t'r'ts_1,p) ]

respectively. The next proposition provides an elliptic summation formula general-
izing Eq. (A.6) that was used in the proof of Proposition 8.1.

Proposition A.5. Letn € N and let g, ..., tant2, B be (nonzero) complez inde-
terminates and A = ]_[2"-"z . Then one has that
8(A2B%p) « Z 6(At; ;) Ilht1<s<onta 0(trts; p)
8(B~1;p) < 6(ABt,, ABt; \;p) [logye- 8lets ')
8FT

_ 9(B;p) [Tos” 6(ABts; p) — 6(A”B; p) 1‘['7;2;,“2 9(ABt;L;p)

=0

8(B;p) [1>_, 6(ABt,s, ABt;*; p)

Proof. Let us divide both sides of the identity by 6(4?B;p) and view the resulting
expressions as functions of B. It is seen from the quasi-periodicity property (2.5)
that after this division both sides become invariant with respect to the p-shift
B — pB. Furthermore, the residues of the (generically simple) poles in B congruent
to B = 1 and to B = 1/A? (caused by the common factor 1/8(A2B; p)) are equal on
both sides by Proposition A.4 (cf. also Remark A.1 below). Since the residues of the
(generically simple) poles congruent to A='#+! (r = 0,...,n) are also manifestly
equal on both sides, it follows that the division by #(A%B;p) produced an equation
that has both sides differing by at most a constant ¢{ty, . . ., tant2; p) not depending
on B. Evaluation in B = 1/A shows that this constant is zero. |

(A7)

Remark A.1. For B — 1 the identity of Proposition A.5 reduces to that of Propo-
sition A.4. Indeed, multiplication of Eq. (A.7) by 8(B~1;p)/6(A%B;p) and letting
B tend to 1 reproduces Eq. (A.6).

Remark A.2. For n = 1 the identities of Proposition A.3 and Proposition A.4
reduce to
H(BthBt]__l,tOz:tOz_l;p) G(BtO’BtO latlz t127 1p)

=1 A8
B(tot1,tot; "}, Bz, Bz=1;p)  O(t1to, taty", Bz, Bz~1;p) (4.8)

and
O(Aty, tots, tots, tots; D) 0(Ato, t1ta,t1t3,t1t4; p)
e(tOtl_ls Atz_la At:;lsAtzl;p) 6(t1t611 At2—1’At3_1: Atzl;P)
where A = tot1t9t3ts. In this special case both identities amount to a well-known
three-term equation for the theta function due to Weierstrass (cf. [WW, Sec. 20.53,

=1, (A9
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Ex. 5])
f(vw,vw™t, zy, 2y~ p) =
8oy, vy~ ow, 2w ) - 2y~ 0(uz, 05~ ywywhp). (A1)
Indeed, Eq. (A.8) is recovered via the substitution z = ¢y, y = t1, v =B, w =z
and Eq. (A.9) is recovered via the substitution x = ty(¢3ts)'/2, y = t1(t3ts)/2, v =
totita(tsta)'/2, w = (t3/ts)'/?, respectively. Similarly, the identity of Proposition
A.5 becomes for n = 0:

(A B, toty, tota, t1ta; p) = (A.11)
H(B_l, ABty, ABt;, ABtz;p) + B_10(A2B, Bipty, Btgto, Btltz;p),

with A = tgt1t2. This also amounts to Weierstrass’ three-term equation (A.10), but
now with z = (totl)l/ztz, y= B(t0t1)1/2t2, v = B(tot1)3/2t2 and w = (to/tl)l/z.
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