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Abstract

This article is devoted to the study of several algebras which are related to symmetric
functions, and which admit linear bases labelled by various combinatorial objects: per-
mutations (free quasi-symmetric functions), standard Young tableaux (free symmetric
functions) and packed integer matrices (matrix quasi-symmetric functions). Free quasi-
symmetric functions provide a kind of noncommutative Frobenius characteristic for a
certain category of modules over the 0-Hecke algebras. New examples of indecompos-
able H,(0)-modules are discussed, and the homological properties of H,(0) are com-
puted for small n. Finally, the algebra of matrix quasi-symmetric functions is interpreted
as a convolution algebra.
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1 Introduction

This article is devoted to the study of several algebras closely related to symmetric functions.
By ‘closely related’, we mean that these algebras can be fitted into a diagram of homomor-

phisms

FSym FQSym

~

Sym QSym, MQSym

N

Sy Qsym

along which most of the interesting structure can pulled back or pushed forward.
Our notation is summarized in the following table, which indicates also the combinatorial
objects labelling the natural bases of the various algebras:

[ Symbol | Algebra | Basis
Sym Symmetric functions Partitions
Qsym Quasi-symmetric functions Compositions
Sym Noncommutative symmetric functions Compositions
QSym, Quantum quasi-symmetric functions | Compositions (C(g)-basis)
FSym Free symmetric functions Standard Young tableaux
FQSym Free quasi-symmetric functions Permutations
MQSym Matrix quasi-symmetric functions Packed integer matrices

The starting point of the construction is the triangular diagram formed by the embedding
of Sym in QSym, and the abelianization map from Sym onto Sym [9]. Since the maps
preserve the natural gradations, we have, for the homogeneous components of degree n of
these algebras, a commutative diagram

Symn, d QSym,

N A

Sym,,

which has a neat interpretation in representation theory: it is the Cartan-Brauer triangle of
H,(0), the Hecke algebra of type A,_; at v = 0 [7, 6, 16]. This means that QSym,, is
to be be interpreted as Go(H,(0)), the Grothendieck group of the category of finitely gen-
erated H,(0)-modules, Sym,, as Ko(H,(0)), the Grothendieck group of finitely generated
projective H,,(0)-modules, and Sym,, as the Grothendieck group R(H,(v)) = Go(Hn(v)) =
Koy(H,(v)) of the semi-simple algebra H,(v), for generic v. Moreover, the inclusion map
d: Sym, — QSym, is the decomposition map. Indeed, the simple H,(v) modules V,(v)
correspond to the Schur functions s, with A I n, and the coefficients of the quasi-symmetric
expansion

sn= Y duF (1)

|[I|l=n
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are the multiplicities of the simple H,(0) modules S; (parametrized by compositions I of n)
as composition factors of the specialized module V;(0).

This interpretation leads to a g-analogue of Q.Sym: the algebra QSym, of quantum quasi-
symmetric functions, defined in [29]. Here, the indeterminate g is introduced to record a
certain filtration on H,(0)-modules. For generic complex values of ¢, QSym, is non com-
mutative, and in fact isomorphic to Sym, but for ¢ = 1 one recovers the commutative algebra
of quasi-symmetric functions QSym.

This construction can be somewhat clarified by the introduction of the larger algebra
FQSym, a subalgebra of the free associative algebra C(A) (whence the name free quasi-
symmetric functions) which admits Sym as a subalgebra, and is mapped onto QSym, when
one imposes the g-commutation relations of the quantum affine space (a;a; = ga;a; for j > )
on the letters of A.

This algebra turns out to be isomorphic to the convolution algebra of symmetric groups
studied by Malvenuto and Reutenauer [21]. It contains a subalgebra whose bases are naturally
labelled by standard Young tableaux, which provides a concrete realization of the algebras
of tableaux of Poirier and Reutenauer [25]. We call it FSym, the algebra of free symmetric
functions. To illustrate the relevance of the realization of FSym as an algebra of noncom-
mutative polynomials, we use it to present a complete proof of the Littlewood-Richardson
rule within a dozen of lines (the idea of the proof is not new, but the formalism makes it quite
compact and transparent). In the same vein, we show that the use of FQSym allows one to
give simple presentations of Stanley’s QS-distribution [28] and of the Hopf algebra of planar
binary trees of Loday and Ronco [19].

The next step is to look for a representation theoretical interpretation of FQSym. It
turns out that FQSym,, can be interpreted as a kind of Grothendieck group for a certain
category N, of H,(0)-modules, which contains in particular simple, projective, and skew
Specht modules. However, this is far from exhausting all the H,,(0)-modules, since we prove
that for n > 4, H,(0) is not representation finite. As a step towards a more exhaustive study
of the 0-Hecke algebras, we determine their quivers for all n, and discuss their homological
properties for small values of n.

Finally, we show that FQSym can be embedded into a larger algebra, MQSym, whose
bases are labelled by packed integer matrices, or, if one prefers, by double cosets of symmet-
ric groups modulo parabolic subgroups. This is a self-dual bialgebra, which accommodates
all the previous ones as quotients or subalgebras, and in which most of the structure of sym-
metric functions survives. It is not known whether MQSym can be interpreted as a sum
of Grothendieck groups. It has, however, some representation theoretical meaning, as the
centralizer algebra of GL(N, C) in a certain infinite dimensional representation.

Acknowledgements. This paper was completed during the stay of the authors at the Isaac
Newton Institute for Mathematical Science, whose hospitality is gratefully acknowledged. F.
H. and G. D. were supported by the European Community, and J.-Y. T. by an EPSRC grant.



2 Background

2.1 Hypoplactic combinatorics

Our notations will be essentially as in [9]. In this paper, we will use the realization of Sym
as a subalgebra of the free associative algebra C(A) over an infinite ordered noncommutative
alphabet A = {a; | 7 > 1}. Then, the ribbon Schur function R; is identified with the sum of
all words whose shape is encoded by the composition 1.

We recall the notion of quasi-ribbon words and tableaux. A quasi-ribbon tableau of shape
I is a ribbon diagram r of shape I filled by letters of A in such a way that each row of r
is nondecreasing from left to right, and each column of r is strictly increasing from top to
bottom. A word is said to be a quasi-ribbon word of shape I if it can be obtained by reading
from bottom to top and from left to right the columns of a quasi-ribbon diagram of shape 1.

The hypoplactic Robinson-Schensted correspondence is a bijection between words w and
pairs (Q(w), R(w)), where Q(w) and R(w) are respectively a quasi-ribbon tableau and a
standard ribbon tableau of the same shape [16]. The equivalence relation on words u and v
defined by

u=v < Q(u) = Q(v) (2)

can be shown to coincide with the hypoplactic congruence of the free monoid A*, which is
generated by the plactic relations

{ aba = baa, bba = bab for a < b,

acb = cab, bca = bac fora<b<e.

and the quartic hypoplactic relations

baba = abab, baca = abac fora<b<e,
cachb = acbc, cbab = bacb for a<b<e,
badc = dbca, acbd = cdab fora<b<e<d.

Despite the apparent complexity of these relations, it can be shown that v = v if and only
if u and v have the same evaluation and the permutations Std(u)~! and Std(v)~! have the
same descents. Here, Std(w) denotes the standardized of the word w, i.e. the permutation
obtained by iteratively scanning w from left to right, and labelling 1, 2, . . . the occurrences of
its smallest letter, then numbering the occurrences of the next one, and so on. Alternatively,
o = Std(w)~! can be characterized as the unique permutation of minimal length such that
wo is a nondecreasing word.

Quasi-symmetric functions can be lifted to the hypoplactic algebra. The hypoplactic
quasi-ribbon F;(A) is defined as the sum of all quasi-ribbon words of shape I in the hypoplac-
tic algebra. It is shown in [16] that these elements span a commutative Z-subalgebra, and that
the image of Fr(A) in Z[X] by the natural homomorphism is the usual quasi-symmetric
function F;(X).



2.2 0-Hecke algebras

The 0-Hecke algebra H,,(0) is the C-algebra generated by n — 1 elements 77, . . ., T;,_; satis-
fying the braid relations and T = —T;. It will be convenient to introduce a special notation
for the generators & = 1 + T; and n; = —T;, which also satisfy the braid relations, £ = &;
and 771-2 = 7;. To a permutation ¢ € &,,, we can therefore associate three elements 7, £, and
7. by the usual process of taking the products of generators labelled by a reduced word for o.

The irreducible H,(0) modules are denoted by S; and the unique indecomposable pro-
jective module M such that M/rad(M) = S; is denoted by P;. Its socle is simple and
isomorphic to Sy, where I is the mirror composition of 1.

The dimension of P; is equal to the cardinality of the descent class D, the set of permu-
tations having I as descent composition. This set is an interval [a(]), w(I)] of the (left) weak
order on &,,. As shown by Norton [23], one can realize P; as the left ideal generated by

€1 = ﬂa(z)ﬁam) 3)

where J™ denotes the conjugate of a composition J.

For a module M over H,(0), let us say that M is a combinatorial module if there ex-
ists a basis m; of M such that n;m; is either 0 or some m;, (this generalizes the notion of
permutation representation of a group).

Projective H,(0) modules are combinatorial. The relevant bases are subsets of a basis of
H,,(0) which can also be found in [23]. Here we will denote it by g,. We set go(1) = €7, and
if o = 7o(I) with £(o) = () + {(a(])) and 0 € Dy,

96 = Tr€r . “4)

It is important to mention that the generators e; are not idempotents. The corresponding
orthogonal idempotents are denoted by e;. One way to compute them is to express the identity

of H,(0) in the basis g,. If
1= Z Go 9o (5)

O'EGn

then
€ = Z A5G - (6)

o€la(l)w(l)]
2.3 Quantum quasi-symmetric functions and quantum shuffles

It is known that H,,(0)-modules are endowed with a natural filtration, which can be taken into
account in the description of the composition factors of the induced modules

S; ® S;=Sr®8S; Tg:&;éof)lm(o) . ™

The multiplicity cX; of Si as a composition factor of this module is equal to the coefficient of
Fy in the product F; F;. The rule to evaluate this product is as follows: take any permutation
wof1,...,n with descent composition C(u) = I and any permutationvof n+1,...,n+m



such that C(v) = J. Then the shuffle of the two words u and v is a sum of permutations of
{1,...,n+m}

ullly = Z CouyW ®)
wESmin
and the product is given by
FiFy= Y cuFow)- ©)
WEGm4n

There exists a g-analogue of the shuffle product, which is defined by
ifu=av andv ="bv' witha,b € A, then wulllw = a(u'Ww)+ ¢¥blully’) (10)

where |u/| is the length of u. It can be shown that this operation is associative, and that when ¢
is not a root of unity, the g-shuffle algebra is isomorphic to the concatenation algebra, which
corresponds to the case ¢ = 0 [6].

The induced representation Sy ® S, is generated by a single vector u. There is a filtration
of this module whose k-th slice M} is spanned by the elements 7,u for permutations o
of length k. Now, if one computes the product F;F); by using the g-shuffle instead of the
ordinary one in formula (9), the coefficient of ¢ Fy; in the result is the multiplicity of Sy; at
level k of the filtration. The algebra Q) Sym, of quantum quasi-symmetric functions is defined
accordingly as the algebra with generators F; and multiplication rule

FiF; =) (w|ullgw) Fow) (11)

for permutations » and v as above, (w | ull,v ) being the coefficient of w in u i v.

All the usual bases of QSym, in particular (M), are defined in QSym, by the same
expressions in terms of the F7 as in the classical case.

For generic values of g, QSym, is freely generated by the one-part quasi-ribbons Fy,, or
as well by the power-sums M,,, or any sequence corresponding to a free set of generators of
the algebra of symmetric functions in the classical case. This means that if we define for a
composition I = (i1, .. ., i,)

Fl=F.F,---F, and M'= MM, - -M, € QSym, 12)

then the F7 (resp. the M7) form a basis of @Sym,. This is clearly not true for ¢ = 1, for in
this case these elements are symmetric functions.

Thus, for generic g, @ Sym, is isomorphic to the algebra of noncommutative symmetric
functions. Actually, it can be obtained by specializing the formal variables of the polynomial
realization Sym(A) of Sym (see [9], Sec. 7.3) to the generators of the (infinite dimensional)
quantum affine space C,[X] = Cy[z1, 2, . . .], the associative algebra generated by an infinite
sequence of elements z; subject to the g-commutation relations

forj > 1, z;T; = qziz;. (13)

More precisely, let Sym(X) be the subalgebra of C,[X] generated by the specialization
a; — z; of the noncommutative symmetric functions. Then, Sym(X) is isomorphic as an
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algebra to Q. Symy, the correspondence being given by

My«—My= Y ait--af. (14)
<<gr
That is, if ones defines B .
Fi=) M,, (15)
J-I
one has for u a permutation of 1, ..., and v a permutationof n +1,...,n+m
F-C(u)FC(v) = Z (w l ulllgv > F-C(w) . (16)

w

Thus, QQSym, provides a kind of unification of both generalizations QSym and Sym of
Sym.

2.4 Convolution algebras

Let H be a bialgebra with multiplication x4 and comultiplication A. The convolution product
of two endomorphisms ¢, ¢ of H is given by

dxp=po(p®@yY)oA. (17)

This is an associative operation, as soon as y is associative and A coassociative. Actually,
(17) makes sense, and is still associative, without assuming any compatibility between y and
A, and such expressions will arise in the sequel. When no bialgebra structure is assumed, we
speak of pseudo-convolution.

Interesting examples of convolution algebras are provided by the centralizer algebras of
group actions on tensor spaces. Let V' be a representation of some group G. Then, the tensor
algebra T'(V') is a representation of G, and one can consider its centralizer algebra

H =EndgsT(V). (18)
It is clearly stable under composition, but also under convolution since

(p*)(gz) = po (¢ ®Y) o Agz)
= po(¢®9)(9® g)A(z)
=po(g®g)o(¢®1p)oA(z)
= g(¢p*9)(z).

When one takes G = GL(N,C) and V = CV, H is a homomorphic image of the direct
sum C6 of all CG,,. By letting N — oo, one obtains a convolution structure on CS. The
resulting algebra has been extensively studied by Reutenauer and his students [26, 21, 25]. In
the following, we will propose a new approach leading to a generalization of this algebra.



3 Free quasi-symmetric functions

Our first generalization is obtained by lifting the multiplication rule (9) to the free associative
algebra, where it becomes multiplicity free. One arrives in this way to an algebra with basis
labelled by all permutations, which turns out to be isomorphic to the algebra studied by
Malvenuto and Reutenauer in [21], Sec. 3.

3.1 Free quasi-symmetric functions in a free algebra

Definition 3.1 The free quasi-ribbon ¥, labelled by a permutation o € &,, is the noncom-
mutative polynomial
Fo= > w €ZL(A) (19)

.Std('w)zzr—1
where Std(w) denotes the standardized of the word w.

The hypoplactic version of the Robinson-Schensted correspondence shows that the commu-
tative image of F,, is the quasi-symmetric function Fy, where I = C(o). Indeed, the standard
ribbon playing the role of the insertion tableau is equal to Std(w)~?, so that F, contains
exactly one representative of each hypoplactic class of shape I.

For a word w = z,%3 - - - T, in the letters 1,2, ... and an integer k, denote by w|k] the
shifted word (z1 + k)(z2 + k) - - - (z, + k), €.g., 312[4] = 756. The shifted concatenation of
two words u, v is defined by

uev=u-vlk] (20)

where £ is the length of u.

Proposition 3.2 Let a € Gy and 3 € &;. Then,

FoFs= ) F, 1)

o€allBlk]

Therefore, the free quasi-ribbons span a Z-subalgebra of the free associative algebra.

Proof— A word w = a;, a5, - . . a;, can be represented by a monomial in commuting “biletters”
(‘;') (which are just a convenient notation for doubly indexed indeterminates z;;). We identify

w with any monomial (%1) (%2} ... (%) such that /; < j» < ... < jn, and in particular with
y J1 12 JIn

the product (%1) (%2) - - - (%), which we also denote by

N P A A TAN £ T
( 12---n )_(id)_(7> @2)

whenever 7 is a permutation such that w'rT = w. Such a representation if of course not unique.
Then, ¢ = Std(w)~! is the unique permutation of minimal length such that (}}) = "),

o
where wt denotes the non-decreasing rearrangement of w. The correspondence w + ("’a )
is a bijection between words and pairs (u, ) where u is a nondecreasing word and « is a
permutation of the same length such that o; < o443 when u; = ;4. In this case, we say



that u is a-compatible, and we write u T a. The concatenation product corresponds to an
operation o on biwords, given by the rule

(Z) ’ (;) - (auovﬂ) - 23)

nes() eE0)

uta vl
where u and v run over nondecreasing words of respective lengths k£ and I, we see that

wr= 3 ()= 2 2 (0): =

Now, if we write

ute,vtf s€awplk] wio
whence the proposition. -
Definition 3.3 The subalgebra of C{A)
FQSym = (P €p CF, (26)
n>0 0€Gy

is called the algebra of free quasi-symmetric functions.

It will be convenient to define a scalar product on FQSym by setting
<Fcr; FT> - 60—1,1' (27)

and to introduce the notation
G, =F, (28)

for the adjoint basis of (F,).
Since the convolution of permutations is related to the shifted shuffle by

(@ %8”)" = allBk] (29)
where f — f" is the linear involution defined on permutations by @ — oV = a7}, we
see that FQSym is isomorphic to the convolution algebra of permutations of [21]. The
interesting point is that the natural map o + Fg(,) from this algebra to Q. Sym becomes
simply the commutative image a; — z;.

The quasi-symmetric generating function of a set of permutations in the sense of [10] can
now be regarded as the commutative image of an element of FQSym. We shall see that in
certain special cases, such as linear extensions of posets, the free quasi-symmetric function
can be more interesting (cf. Section 3.8).

Another property of FQSym is that it contains a subalgebra with a distinguished basis
labelled by standard Young tableaux, which maps to ordinary Schur functions under abelian-
ization, and to which the Littlewood-Richardson rule can be lifted to a multiplicity free for-
mula (see Proposition 3.12). The kind of argument used to establish this formula can also be

10



used to prove Proposition 3.2. Recall that we denote by w — (Q(w), R(w)) the hypoplactic
Robinson-Schensted correspondence. An alternative definition of F is

F,= Y w (30)
R(w)=c

and Proposition 3.2 can be derived exactly in the same way as Proposition 3.12, from the fact
that the hypoplactic congruence is compatible to restriction to intervals (see [18]).

3.2 Duality

One can define on FQSym a bialgebra structure imitated from the case of ordinary quasi-
symmetric functions.

Let A’ and A” be two mutually commuting ordered alphabets. Identifying F' ® G with
F(A)G(A"), we set A(F) = F(A' @ A”), where @ denotes the ordered sum. Clearly, this

is an algebra homomorphism.

Proposition 3.4 FQSym is a bialgebra for A, and on the basis F,, the comultiplication is
given by
AF, = Y Fsu(w ® Fseap) - 31)

U-v=a

where u - v denotes the concatenation of v and v.

Proof — Like Proposition 3.2, this formula is easily obtained in the biword notation. Indeed,
F,(A' @ A”) is the image of the element

=()-.Z,(%)
= J
who g w=w'w"to g
of the free algebra C(A' U A”) under the map

7: C(A"UA"Y - C(A" A") ~ C(A) ® C(A). (33)

The sum runs over all nondecreasing o-compatible words w, which are necessarily of the
form w'w” with w’ € A™ and w” € A", since A’ < A”. Letk = |v'| and | = |w"|. As
a.word, o can be factorized as o = uv, where |u| = k and |v| = . Let o' = Std(u) and
0" = Std(v). Since A’ and A" are disjoint, w' and w” have to be respectively ¢’ and o
compatible, and actually, the sum (32) runs exactly over all such words. Since

ﬂ_(w'wu) _ (w,’> o (’w,"') (34)
log o o

the image under 7 of this sum factorizes into

2 2 (St:ilu(lu)) 2 (s:clljl(lv)> (33)

uv=c w'1Std(u) w1Std(v)

whence the proposition. -

11



Corollary 3.5 FQSym is a self-dual bialgebra. That is, for all F,G, H € FQSym,
(F® G,AH) =(FG,H) . (36)
Proof — Denote by ® the multiplication adjoint to A, that is, such that
(FG,AHYy=(FOG,H), 37
and consider the structure constants

Ga®Gg=) _ g,G,. (38)
Y

Then, g;5 = 1if o = Std(u) and 8 = Std(v) for some factorization y = uv, and g5 = 0
otherwise. Therefore, these structure constants coincide with those of the convolution product
on permutations:

axB=> gl (39)
Y

We have therefore interpreted the two multiplications and comultiplications of [21] as
operations on labels of two different bases of the same subalgebra of the free associative
algebra.

3.3 Algebraic structure

We can now apply to FQSym the results of Poirier and Reutenauer [25] and we see that
FQSym is frecly generated by the G, where ¢ runs over connected permutations (see [3]),
i.e. permutations such that o([1, k]) # [1, k] for all intervals [1,k] C [1,n — 1]. Actually,
this result holds for a one-parameter family of algebras, and we shall now reprove it in this
context.

We denote by C the set of connected permutations, and by ¢, = |C,| the number of such
permutations in &,,. For later reference, we recall that the generating series of ¢, is

Z et =1 — (Z n!t”) N

n>1 n>0
=t +* + 3¢ + 13¢* + 7115 + 46115 + 3447¢" + 29093 ¢°
+ 273343 ° + 2829325 ¢'° + 31998903 ' + 392743957 t'2 + O(¢"3).

For o € 6 and 8 € Gy, recall that o ¢ § = o - B[k] is the shifted concatenation of o
and 8. Any permutation ¢ € &, has a unique maximal factorization ¢ = o; @ - - - ® g, into
connected permutations. Then, the elements

G =Gq -G, (40)

and

F°=F, ---F, (41)

r
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form two bases of FQSym. Since (o' e 371)~! = o e 3, we have F’ = G, and the
multiplication of FQSym is given in both bases by the same formula: G*G? = G**# and
FoFf = Fo*b,

The operations on permutations ¢ e § and aLlG[k| describing the multiplication in the
bases F’ and F,, are the cases ¢ = 0 and ¢ = 1 of the shifted ¢g-shuffle o'l B[k]. This
suggests the consideration of a g-deformed algebra FQSym,, defined as the (abstract) alge-
bra with generators F,, and relations F,F3 = Fay, gx) (Where linearity of the symbol F with
respects to subscripts is understood). As above, let F° = Fo! .- F’~ = F, + O(q). For each
n, the n! X n! matrix expressing the elements F” on the basis F, is of the form I + O(q),
and is therefore invertible over C[[¢]]. Moreover, it is unitriangular with respect to the lexi-
cographic order on permutations, so that it is actually invertible over C[g]. This proves that
the algebras FQSym, are actually isomorphic to each other for all values of ¢g. For ¢ # 0,
the isomorphism FQSym — FQSym, is realized by F, — ¢"“)F,, and for ¢ = 0, by
F, — F°.

3.4 Primitive elements

Let £ be the primitive Lie algebra of FQSym. Since A is not cocommutative, FQSym
cannot be the universal enveloping algebra of L. Let l, = dim £L,,.

Let us recall that G = G, - - - G,, where ¢ = o7 e - -- @ g, is the unique maximal
factorization of o € G,, into connected permutations.

Proposition 3.6 Let V, be the adjoint basis of G°. Then, the family (V4)acc is a basis of
L. In particular, we have 1, = cp,.

Proof - If « is connected, then

AV, =) (AV,,G°®G")V,8V,

a,T

= (Va, GV, 0V, =V,1+18V,

o,7T

since the only possible factorization of a is @ = () e & = « e (), where @ denotes the empty

word.
Conversely, let Z = > o« Ca Vo be a primitive element. If  is not connected, let o = cer
be a non-trivial factorization. Then,

(AZ,G° @Gy =(Z,G) ={Z,G") = ¢, (42)
which has to be zero since the left-hand side is the coefficient of V, ® V. in AZ. -
Example 3.7 In degree 3 we have

Vii2 = Fap2—Fos
Va1 = —Fiz+ Fog
Vian = Fios — Fizo — Foiz + Fan

13



and in degree 4

V4123 = F4123 - F3124

Vs = Fazs — Faia4 + Foas — Fougs
Vago = —Fuias + Fiso4 + Fago — Fasig
Viiz = Fziae — Fougs

Vg = —Fras + Fisoq + Fyziz — Faoug
Vaus = —Figo3 + Fi3o4 + Fonz — Fasug
Vs = Fauz — Fagg

Vaszi = —Fuge +Fus

Vassg = —Fizae + Fazg

Vs = Firaas — Fiszgo — F3i94 + Fa3s — Fora3 + Faog

w
e
N
-

Il

Fis24 — F1a32 — Fas1q + Faggq
Visaaa = Fioas — Fizao — Foigz + Faon
Vasor = —Fi2ss + Fiogs + Fisos — Frase + Foiza — Foigs — Fao1a + Fas

The Hilbert series of the universal enveloping algebra U(L) (the domain of cocommuta-
tivity of A) is

JIa-t)y =1+t +262+5¢% + 19t +934°
n>1

+ 57418 + 4134 ¢7 + 34012¢% + 313231 ¢° + 3191402 ¢'°
+ 35635044 ¢! 4 432812643¢'% + O (¢'%) .

Conjecture 3.8 L is a free Lie algebra.

Assuming the conjecture, denote by d,, the number of generators of degree n of £. Then,
using the \-ring notation, since oy o L = (1 — py)~' (where 01 = >, <y hn, L =35 L bns
and £, = % > din p,(d)pz/ 4 are the Lie characters, or Witt symmetric functions), we have the
equivalent plethystic equations

L [Z dnt"] = cat", (43)
n>1

n>1

and
d(t) = Zdnt" =1-—A_ !Z Cntn] -1 H(l _ tn)Cn ) (44)
nzl n>1 n>1

Numerical calculation gives for the first terms

d(t) =t -+t + 2 +10t* + 55¢° + 377¢°
+2892¢7 + 25007 % + 239286 ° + 2514113 ¢10 + 28781748 ¢!
+ 356825354 t12 + O(t1) .
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We shall now give a formula for the projector 7 : FQSym — L such that

() 0 if o is not connected
T == . .
“ V, if aisconnected .

Let p, denote the projection onto the homogeneous component FQSym,, of FQSym,
and let py : Fo ® Fg — Fqu g be the multiplication map of FQSym,,. The g-convolution
of two graded linear endomorphisms f, g of FQSym is defined by

fOg=pgo(f®g)oA. (45)

For ¢ = 1, this reduces to ordinary convolution, otherwise, it is an example of pseudo-
convolution as defined in 2.4. We shall be interested in the case ¢ = 0. For a composition
I = (i]_, Ca ,im), let

pr = pi, ©o -+ Qo Piy, - (46)

Lemma 3.9 The p; are mutually commuting projectors. More precisely we have

0 I # |l

Propy= { .
prvg otherwise .

where IV J is the composition with descent set Des(I) U Des(J).

Proof - The result is clear when |I| # |J|. Otherwise, we suppose || = |J| = n and proceed
by induction on d = min({(I vV J) — I(I),l(I v J) — I(J)). If d = 0 it is easy to check
that py o prvy = prey © pr = prvgy otherwise, the induction step is a consequence of the
standardization inertia Std(c e 7) = Std(o) e Std(7) -

Before stating the main proposition we need some notation: For a word of length n,
w = a1as---a, and S = {s1,85---3;} C [1..n] a subset in increasing order, we denote the
corresponding subword by w|s = as,as, - - - @5, Let I = (41,12, - - i, ) be @ composition of
weight n. The factorization-standardization operator sfact; is defined by

Std i Std 3 A1 Std n—i n f =T,
stacty (w) = { (w]p.4y) @ Std(wl; 41 z(1)+ 2]) ® (W|p—im+1.n]) ;t}Ll:rlwis:

For example sfact(s,3)(53412) = Std(53) ® Std(412) = 21 ® 312. We can now state:

Proposition 3.10 (i) The operator

T=Y (-1)0"1p, (47)

17121
is the projector onto the primitive Lie algebra with the span of (F4)agc as kernel.

(ii) Moreover, one has V, = w(F,) for a connected.
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Proof — The m-fold shifted concatenation sconc{™ is defined in the obvious way. Then, for
{I)=m,
F (m) o sf ifae Gn ,
F.)= sconc(™) o sfact; (o)
Pir(Fa) { 0 otherwise.

We first prove that, if {(fp) = 2, one has 7 o p;, = 0. For¢ =0, 1, let
Li={Il=n|d(l <I)=1},

it is easy to check that §{(Z;) = 2"~2 and that I — I V I, induces a bijection Zy — Z;. Hence

mopp= Y (-1) D 'prop;, =Y (-1)D 7 ppyp,

(1)1 [|=n

= Z(_l)l(") “prvi, + Z(_l)l(I)—lprn
Iely Iel

= > (-1)Pp; 4+ (-1)D'py =0
Iey Iez,

If o ¢ C,, then for some composition I of n of length 2, we have p;,(F,) = F,. Hence
F, € ker(7). Now, if a € C,, the construction of 7 shows that

m(Fo) =Fo+ Y csFp (48)
BECn

and then 7?(Fo) = w(F,). This finishes to prove that 7 is a projector and from (48), we get
that the generating series of Im(w) is exactly > ¢,t".
The comultiplication on FQSym can be rewritten as’

A=Ild®1+1®Id+ ZsfactI (49)
l(I)=2

s0, to get Im(nw) C L, it suffices to prove

Z sfacty | omr = 0. (50)
l(I):Z

But, from the construction of sfact;, one has sfact; = sfact; opy. Now, if (1) = 2, we
get
sfact; o = sfacty opy o = sfactyo(rops) =0 (5D

which proves that Im(n) C L, the equality of these two spaces follows from the fact that the
generating series are equal.
Equation (48) says that (7(Fy))aec is the unique basis of £ such that

m(Fo) =Fa+ > csFp. (52)
B¢Cn

Since V, also have this property, V, = 7(F,). -
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3.5 Free symmetric functions and the Littlewood-Richardson rule

Definition 3.11 Let t be a standard tableau of shape A. The free Schur function labelled by

tis
S;= 3. Fo= Y w, (53)

P(o)=t Q(w)=t
where w — (P(w), Q(w)) is the usual Robinson-Schensted map.

As pointed out in [18], Schiitzenberger’s version of the Littlewood-Richardson rule is
equivalent to the following statement, which shows that the free Schur functions span a sub-
algebra of FQSym. We will call it the algebra of free symmetric functions and denote it
by FSym. It provides a realization of the algebra of tableaux introduced by Poirier and
Reutenauer [25] as a subalgebra of the free associative algebra. A representation theoretical
interpretation will be given in the sequel.

Proposition 3.12 (LRS rule) Lett', t" be standard tableaux, and let k be the number of cells
of t'. Then,
SSu= 3 8, (54)

teSh(# ,t)

where Sh(t',t") is the set of standard tableaux in the shuffle of t' (regarded as a word via its
row reading) with the plactic class of t"[k].

Proof — This follows from Proposition 3.2, and the fact that the plactic congruence is com-
patible with restriction to intervals. Indeed, denote by = the plactic congruence on the free
algebra Z{A), for some ordered alphabet A = {a; < a3 < --- < a,}. For a word w € A*
and an interval I = [a;, a;] of A, denote by w/|; the word obtained by erasing in w the letters
not in I. Then, since the plactic relations zzy = zzy (2 < y < zandyzz = yzz (z < y < 2)
reduce to equalities after erasing z or z, w = w' = w|; = w'|;. From this, we see that

SeSe= Yy, FoFu= Y 3 F, (55)

P(g')=t,P(c")=t" teSh(t' ") P{w)=t

since the set of permutations {o’Wo"[k] |P(c¢') = t, P(c") = t"} is, by the above remark,
a union of plactic classes. Each class contains a unique tableau, and since the restriction of
a tableau to an initial segment of the alphabet has to be a tableau, such a tableau can appear
only in the shuffles ¢’ wo”[k]. -

The original Littlewood-Richardson rule, as well as its plactic version, are immediate
corollaries of Proposition 3.12 (see [18]).

Example 3.13 The smallest interesting example occurs for the shape (2,1), e.g., with

3
1{2]

t’ — t” —
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the product S S, is equal to ) , S; where ¢ ranges over the following tableaux:

6| 4
3[6 314[6 3 316
1/2]4]5] 11215 112[4]5] 1/2]5]
_ 6 16
6 416 4 4
34 35 3 35
1{2]5] 1[2 1[215] 1[2

The scalar product of two free Schur functions is equal to 1 whenever the corresponding
tableaux have the same shape, and to 0 otherwise. Indeed,

(Se,Sey= > (F;,Go) =1 (56)
P(o)=t',Q{o)=t"

since a permutation is uniquely determined by its P and () symbols.

Note that the algebra of noncommutative symmetric functions Sym(A) is a subalgebra
of FSym, since

Ri(A)= ). S, (57)

Rec(¢)=Des(I)

where Rec(%) denotes the recoil (or descent) set of the tableau t.

3.6 An example: the ()S-distribution on symmetric groups

The definitions of this section are well illustrated by a certain probability distribution on sym-
metric groups investigated by Stanley in [28]. Let x = (z;);>1 be a probability distribution
on our infinite alphabet A = {ay, as, ...}, thatis, Prob(a;) = z;, z; > 0, and )_z; = 1.
From this, one defines a probability distribution @.S(z) on each symmetric group &,, by the
formula

Prob(o) = G,(z) . (58)
That this is actually a probability distribution follows from the identity G = > s Go.
Then, Theorem 2.1 of [28] states that Prob(c) = Fg(,-1)(z), which follows from the equali-
ties G, = F,-1 and F,(z) = Fe(o)(2).

Next, Stanley introduces the operator

Ta(z)= Y Prob(o)o € CG, . (59)

G’EGn

Actually, T’y () is in the descent algebra ¥,,, and the corresponding noncommutative sym-
metric function is S,(zA). Therefore [15], the eigenvalues of I',(z) are the py(z), with
multiplicities n!/z,. Also, the convolution formula I',(z)T',(y) = I'»(zy) amounts to the
identity S, (zA) * Sp(yA) = Sp(zyA) of [15].
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Another result of [28] is that the probability M, (k) that a random permutation (chosen
from the () S-distribution) has & inversions is equal to the probability that it has major index
k (Theorem 3.2). This is equivalent to the identity

3 G, (z) = ) ™G, (z). (60)

ccGy 0eG,

The right-hand side can be rewritten as

S @iy (a) = > gD (rp,v5) Fi(z)

|[|=n 1,7

_ Z Z qmaj(cr) Fy(z) = Z Z ql(a) Fy(z) = Z ql(")Ga(.’L‘)

J \C(e~1)=J J \C(e-1)=J 0EGn

since (o) and maj(c ') have the same distribution on a descent class (¢f. [27, 8]).

Finally, we note that the specialization S;(z) of a free Schur function is the probability
that a QS-random permutation has ¢ as insertion tableau, and that R;(z) is the probability
that a random permutation has shape I (Theorems 3.4 and 3.6 of [28]).

3.7 Quantum quasi-symmetric functions again

Recall that we denote by C,[X] the algebra of quantum polynomials, generated by letters x;
subject to the relations z;z; = gz;x; when j > 1. The following proposition clarifies the
constructions of [29].

Proposition 3.14 The natural homomorphism g : a; — x; from C(A) to the algebra of
quantum polynomials C,[ X| maps F, to the quantum quasi-symmetric function ql(")FC(,).

Proof — For any word w, one has

pq(w) = qe(a)‘Pq(w+)
where 0 = Std(w)~! and w™ is the nondecreasing rearrangement of w. -

Therefore, QSym, is a quotient of FQSym. The multiplication formula (11) appears
now as an immediate consequence of Proposition 3.2. The g-generating function I'y(P) of a
poset, introduced in [29] to derive (11), can also be regarded as the image under ¢, of of a
free generating function I'(P) described in the forthcoming section. Most formulas of [29]
are easy consequences of Proposition 3.14. For example, formula (38) of [29], which can be
stated as

0o(R1(A)) = crs(q)F; (61)
J
where
= >, ¢ (62)

C(o)=I, Clo—1)=J
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follows from the expression

Ri(A)= ) Go. (63)

C(o)=I

3.8 Posets, P-partitions, and the like

Here, by a poset, we mean any partial order P on the set [n] = {1,2,...,n}. We write <p
for the order of P and < for the usual total order on [n]. Stanley [27] defines a P-partition as
a function f : [n] — X for some totally ordered set of variables X, such that

i<pj= fG)<f() and i<pjandi>j = f(i) < f(5). (64)

In [10], Gessel associates to a poset P a generating function

T(Py= Y f)f(2)---f(n) (65)

FEA(P)

where A(P) denotes the set of all P-partitions. This generating function turns out to be
quasi-symmetric, actually,

I(P)= Y T()= > Feu (66)

sEL(P) * . oEL(P)

where L(P) denotes the set of linear extensions of P, which can be identified with permu-
tations ¢ € G, such that i <p j = 071(i) < ¢71(4). Identifying a P-partition f with the
word wy = ag1)ag2) - * - Gf(n), We arrive at the following

Definition 3.15 The free quasi-symmetric generating function I'(P) € FQSym of a poset
Pis
r(P)= Y F,. (67)

cE€L(P)

This amounts to encode a poset by the set of its linear extensions. It is well known, and easy
to see, that if P, is an order on [k] and P, an order on [{], the order P = P;LUP; on [n] = [k+]
definedby ¢ <p j & i <p, jori—k <p, 7 — k has for linear extensions the shifted shuffles

of those of P, and FP;:
Yooo= > Y awpK. (68)

ogeL(P) aeL(P1) BEL(P;)
Thus, for the free generating functions, one has as well
'(PUPR,) =T(P)T'(P) (69)
in Z(A).
It will be convenient to introduce the notation P,[k] for the order on [k + 1, k + ] defined
above, so that L(P; U Py) = L(Py) W L(Py[k]).
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Example 3.16 The free Schur functions S; are of the form I'(P) for the posets associated
to plane partitions. Malvenuto [20] has shown that if I'(P) € FSym, then P is associated
to a plane partition. This is a step towards a famous conjecture of Stanley, asserting that the
conclusion remains valid as soon as the commutative image of I'( P) is symmetric.

Example 3.17 The concatenation P, U P, is not the only interesting poset which can be
constructed from P, and P,. One can also define P = P, A P, as the poset obtained by
adjoining a maximal element to the juxtaposition of P, and P,. The correct way to do this is
to take as maximal element » = k + 1 if P; is a poset on [k]. Therefore, ¢ <p jiff¢,7 < k
andi <p jori,j>k+1landi—k —1<p, ¢ —k—1,0rj=k+ 1. The linear extensions

of P are clearly
L(P, A P5) = (L(P)WWL(Py[h])) - h. (70)
The posets generated from e = [1] by the operation A are in one-to-one correspondence
with binary trees, since they correspond to all possible bracketings of the words e e - - - e, Let
F(T) = I'(T") be the free quasi-symmetric generating functions of such posets. We will see
that they span a subalgebra of FQSym, which is precisely the Hopf algebra of binary trees
introduced by Loday and Ronco [19]. Indeed, let T = T3 A T3 and T" = T] A T} be two
binary trees. From the above considerations, we see that

LTUT)=LMWLTR)= > >  [(cWsh)h] W W K])A]
a€L(T1) o' €L(Ti[n])
BEL(T2) B'eL(Ti[n])

= > ((«WBR)W (' WATRDA A+ Y [((alUR])R) W (' WA R A

(using the formula (ua) W (vd) = (ulWuvb)a + (uallv)b, valid for a,b € A and u,v € A*).
Therefore,

LTuTY=L(MA(TUT))+ L(TUT]) AT) (71
which proves that F(T)F(7") is a sum of elements F(7") which are given by the above

recursion.
The connection with the algebra of Loday and Ronco comes for the fact that F(T") =

ZT(U)ZT G, where T(o) is the underlying binary tree of o, defined as follows: if n = 1 (¢
is the empty word), T{(c) = s, otherwise, write ¢ = unv, a = Std(u), 8 = Std(v). Then,
T(o) = T(a) A T(B), where Ty A T3 is the binary tree having Ty as left subtree and T as
right subtree.

3.9 Posets as 0-Hecke modules

There is a striking similarity between the behavior of the quasi-symmetric generating func-
tions of posets under concatenation, and the characteristic quasi-symmetric functions of 0-
Hecke modules under induction product. Actually, the former is a special case of the latter:

Definition 3.18 The 0-Hecke module Mp associated with a poset P is the (right) 0-Hecke
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module with basis the set of linear extensions L(P) and structure defined by

oo; ifi & Des(o) and oo; € L(P),
oT; = 0 ifi & Des(o) but oo; ¢ L(P), (72)
—o ifi € Des(o).

Proof — We have to prove that Mp is actually a 0-Hecke module. Here we need some defini-
tions.

Definition 3.19 A poset P is rise free if there isno it < j such thati <p j.

Recall that each poset has a minimal linear extension E(P) defined by
i <gp)Jj iff i<pjor(i<jandj £pi). (73)
One easily has

Proposition 3.20 Let P a rise free poset. The set of permutations that are larger for the right
weak order than Ep is exactly the set of linear extensions of P.

It has for consequence that if P is a rise free poset, the submodule of the regular represen-
tation generated by its minimal linear extension has the structure defined above. Then Mp is
a module for P rise free.

Now, if P is not rise free, let RiseFree(P) be its associated rise free poset defined by

& <RiseFree(P) J iff (i>jandi <pj). (74)

Note that P and RiseFree(P) have the same minimal linear extension. Consider the module
MRiservee(p)- It has for basis the set of permutations that are greater than the minimal linear
extension of RiseFree(P) and P. If a permutation ¢ in this set is not a linear extension of P
then there is a ¢ < 7 such that i <p j but 0; > o;. And then all the permutations bigger than
o are not linear extension of P. This means that the set of permutations larger than £(P) but
that are not linear extensions of P span a sub-module NV of Mpjserree(p). NOW it is €asy to see
that

MP = MR_iseF&"ee(P)/N . (75)

is a realisation of Mp. And hence Mp is a module. -
Then one has following proposition.
Proposition 3.21 (i) Let P be a poset. Then ch(Mp) = I'(P).
(ii) MpLp = Mp®Mpr and consequently
ch(Mp,p) = T'(P)T(P') = ch(Mp) ch(Mp:) = ch(Mp&Mp) (76)

See Figure 1 for an example.
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Figure 1: Example of module associated with a poset

To each vertex of the graph enclosed in a box corresponds a basis element associated with
the depicted linear extension. There is a straigth arrow labelled ¢ from u to v if uT; = v. A
loop labelled ¢ means that «T; = —u. If there is no arrow labelled ¢ leaving the vertex u, then
ul; = 0.
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3.10 Shuffle and pseudo-convolution

In this section, we will encounter another example of pseudo-convolution, in the sense of 2.4.
Let O be the operation on @ CS,, defined on permutations by

a0f = Z ta(1) -+ * Tak) WIp(1) - -~ JBQ) 77
TuJ=[1,k+]

This operation arises naturally in the problem of calculating the orthogonal projection onto
the free Lie algebra. One can show that this problem boils down to the inversion of the
element

T, = Z k)O(1---n—k) (78)

of QG,, [5, 14]. No closed formula is known for 7, t, but numerical experiments suggest that
it should be possible to give a combinatorial descnptlon of its characteristic polynomial.

Example 3.22 The characteristic polynomial of Ty as an operator on the regular representa-
tion of &4 is

(z — 2)%(z — 6)*(z — 14)*(z — 18)*(z — 42)%(z — 70)(z* — 28z + 84)2.

It is natural to introduce g-pseudo-convolution Oy, which is defined similarly, with w
replaced by W,. Actually, this operation can be interpreted in FQSym in the same way as
the ordinary convolutlon Let (o|7) = &, be the scalar product on the group algebra for
which permutations form an orthonormal basis, so that

a0,8=>) (o|ad,B)c. (79)

Proposition 3.23 The algebra of free quasi-symmetric functions is a q-shuffle subalgebra
of C(q)(A), and in the G-basis, the structure constants coincide with those of q-pseudo-
convolution

Gall,Gsg =D (c]ab,pB)G,. (80)

Proof — (sketch) We proceed as for Proposition 3.2. In the biword notation, we have

GollGp= Y (azil) L“q(ﬁzil) - u%; ((atﬁjﬁ)")

ute~?!
vg= vt

=3 ¥ ( ) Z (o]ad,B8) Gy .

g€alyf wto—1

In particular, for ¢ = 1, identifying G3..n) to the noncommutative complete function
S,., we see that

T, = Sp+ Sy WSn 1 + -+ + Sp_1 WSy + Sy = hp(2X) (81)
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if we identify the wW-subalgebra generated by the .S,, with the algebra of commutative sym-
metric functions of some alphabet X. At this point, it is natural to introduce g-analogues
Tn(q). If we define them as

Tn(q) = Sn + q5'1 |_|_|an_1 + -+ ann (82)

we see that 7,,(¢) = S,((1 + ¢)B), if we now identify the L ,-subalgebra of FQSym gen-
erated by the S,, with Sym(B,) for a noncommutative alphabet B,. That is, we have a
one-parameter family of identifications of the S? with elements of the group algebra.

Example 3.24 The characteristic polynomial of T3(g) is
(z —2)%(z —4— 49— 2¢°)*(z — 8 — 6g — 6¢°)(z — 4 + 29 — 2¢%).

It makes sense to consider the quasi-symmetric generating functions of the elements T;,,
which amounts to take the commutative images of the corresponding elements of FQSym
(here it does not matter whether one interprets ¢ as F, or G, since T;, is self-adjoint. One

finds that
n a1 z t m
I, = E (Z.>hihj =[t ]m E (m) hmhn—m . (83)

itj=n m=0

The first values are, on the Schur basis
231, _432 + 2311, 833 + 6821:. 1684 + 14831 + 6822 L

The elementary symmetric functions of the wi-algebra generated by the S, = Gyiz...) also
seem to be interesting. It would be interesting to investigate the structure of FQSym as a
LW -module over this commutative subalgebra, and also the g-analogue of this situation.

This suggests the possibility of using the machinery of noncommutative symmetric func-
tions to invert 7,,(g). The problem is to interpret the internal product of Sym/(B,) in terms
of the structure of FQSym, and more precisely to connect it to the ordinary composi-
tion of permutations. That is, if one defines *, on Sym(B,) by the standard formulas
giving S? x S7, for example, does there exist an automorphism ¢, of C(g){A) such that
Fx G = ¢ (¢4(F) 0 ¢4(G))? (here o is the composition of permutations).

3.11 Identities

A few identities between series of free quasi-symmetric functions (mainly conjectures) can
be found in [30]. For example, the inverses of the series

H = Y (-1)"DF,q

I
H2 = Z(_l)an(Z")

n>0

Hy = ) (-1)*DFyq
I
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are conjectured to be as follows. For a permutation o of shape I, let § = ca(I). Then,

Hl_l = ZG&

Hy' = ) Gy
8

> Gy

»

where « runs over all permutations, 3 € ©,, runs over permutations of shape 2%, and
v € Gy, runs over permutations with descent set contained in {2, 4, ...,2p — 2}.

H1

4 The 0-Hecke algebra revisited

4.1 H,(0) as a Frobenius algebra

Recall that a bilinear form (, ) on a K-algebra A is said to be associative if (ab, ¢) = (a, bc)
for all a,b,c € A, and that A is called a Frobenius algebra whenever it has a nondegenerate
associative bilinear form. Such a form induces an isomorphism of left A-modules between
A and the dual A* of the right regular representation. Frobenius algebras are in particular
self-injective, so that finitely generated projective and injective modules coincide (see [4]).

For a basis (Y,) of H,(0), we denote by (Y;*) the dual basis. We set xy = T*, where
“w=(nn—1...1) is the longest permutation of &,,.

Proposition 4,1 (i) The associative bilinear form defined by

(f,9) = x(f9) (84)

is non-degenerate on H,(0). Therefore, H,(0) is a Frobenius algebra.

(ii) (o, Mr-1,,) = 8(0 > T), where > is the Bruhat order on G, and for a statement P,
8(P) is 1 when P is true and 0 otherwise.

(iii) The elements {, = (—1)%wo ¢, 1 satisfy
(CD') 777') = 60',1' . (85)

Proof — The bilinear form defined in (i) is clearly associative. That it is non-degenerate
follows from (ii), which implies that the matrix (7,, 7, ) is, up to a permutation of columns,
the incidence matrix of the Bruhat order, which is obviously invertible. The proof of (ii) is a
simple induction on £(¢). Finally, (iii) follows from (ii) and [17], Lemme 1.13, which says

that
o = ZT,B and 7, = Z(—l)e(ﬁ)gﬁ : (86)
Bia Bia
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Remark 4.2 As recently shown by L. Abrams [1], a Frobenius algebra is endowed with a
comultiplication § : A — A ® A which is a morphism of A-bimodules, that is, d(azb) =
ad(z)b. It can be defined by the formula

§=(AT®@A o(uoT) oA 87)

where A : A — A* is an isomorphism of left A-modules, i : a®b — ab is the multiplication
map, and 7 : a ® b — b ® a is the exchange operator. Since ¢ is a bimodule map, it is
completely specified by the element §(14), which we will now calculate explicitly for H,(0).
Let X be defined by A(z)(y) = (y, ). Then,

A(ne) = Z mr

wr—i<eo

so that A™1(n?) = {,. If we define the permutation {c, 3} by the rule 7,73 = 7(4,, then,

6(1) = Z Cﬂ ®Ca

{arﬁ}=w

= Z Z (—1)8P e 50 | ®

@ {a,ﬂ}:w
- % (D) o6 = Tmac

o T o o1

Therefore, the canonical comultiplication of H,(0) is given by
1))=Y 1.8¢ (88)
O'EGn

and 6(z) = 28(1) = §(1)z.

4.2 FQSym as a Grothendieck ring
Let (g,) be the basis of H,(0) defined by

9o = Loa(I)-1€1 (89)

where I = C(o) is the descent composition of ¢ and ¢; the generator of the principal inde-
composable projective module P;. Then, {g,|c € [a(]),w(I)]} is a basis of P (the interval
is taken with respect to the weak order).

Definition 4.3 For any permutation o € &,,, we denote by N, the submodule of P (where
I = C(o)) generated by g,.

All the N,, are indecomposable H,(0)-modules, since any submodule of a P; must con-
tain its one-dimensional socle, and therefore cannot be a direct summand. The simple H,(0)
modules are the N,,(1), and Py = Ny(p).
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Of course, the N, do not exhaust all submodules of the P;, but, as we will see, they
generate an interesting subcategory N, of H,(0) — mod. In particular, all the specializations
q = 0 of the Specht modules V(q) of H,(g), as well as their skew versions V,,(q), with
A/ connected, are of the form N, where ¢ is the row reading of the hyperstandard tableau
of shape A (or A/u) i.e., the tableau whose columns are filled with consecutive integers. As a
consequence, all the V),,,(0), with A/u connected, are indecomposable.

Define a characteristic map with values in FQSym by

ch(N,)=N,= Y G,. (90)
T€[ow(I)]

This definition is compatible with the former one for projective modules, since ch(P;) =
R;. More generally, the characteristic of a Specht module is a free symmetric function:
ch(V,(0)) = S;, where t is the tableau congruent to the contretableau of shape w()) whose
rows consist of consecutive integers (e.g., 456 23 1 for A = (321)).

Proposition 4.4 The characteristic map is compatible with induction product, that is, we

have an exact sequence
0 — Ng — N,&N, - N, — 0 1)

where o = geT, and ifas words =t = ukv, T71[k] = u'(k+1)v' then 37! = uwv'(k+1)kvv’,
and also
ch(N,&N,) = N,N, = N, + Nj . ©92)

In the case of skew Specht modules indexed by connected skew diagrams D, D', the formula

reads
0— VD2 — VD®VDI — VD1 -0 (93)

where D, and D, are the two ways of glueing the first box of D' to the last box of D.

Proof — Remark first that if C(¢) = I and C(7) = J, M = N,®N, is a submodule of
P;5P; = Pr.; @ P.s. Also, M is a combinatorial module. It is generated by the element
Jdo @ g-, which can be represented by the skew ribbon r, obtained by making the upper left
comer of the first cell of the ribbon of 7[k| coincide with the bottom right corner of the last
cell of the ribbon of ¢. The combinatorial basis of M is formed by those skew ribbon of
the same shape as ry which can be obtained from 7y by application of a chain of operators
1; = —1;. Their action is given by the same formulas as for the case of connected ribbons
representing the bases of the projective indecomposable modules: if ¢ is a recoil of r, then
7i(r) = r. If i 4+ 1 is in the same row as %, then 7;(r) = 0, and otherwise, 7;(r) = r', the skew
ribbon obtained from r by exchanging ¢ and 7 + 1.

Now, the skew ribbons generated from r, can be converted into connected ribbons of
shape IJ or I > J, according to whether the first entry of the right connected component is
greater or smaller than the last entry of the left component. The generator ry corresponds
to the shape I © J, filled with the permutation . According to the above rules, the action
of H,(0) will generate all permutations of this shape which are greater than o for the weak
order, plus some other ones of shape 1J.

All the permutations of shape IJ are greater than those of shape I > J, and span therefore
a submodule, which is easily seen to be generated by 3. Indeed, define 3 as the smallest (for
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the weak order) permutation of shape IJ which is greater than c.. Set 8 = st as a word, with
|s| = k. Since B > o, we have Std(s) = o and Std(t) = 7. This means that the letters
1,...,k occur in the same order in ¢! and in 871, and also, k + 1,...,k + [ occur in the
same order in 7! and 8~1. Hence, ' € o' wrt[k]. Also, k must be a descent of 3.
Hence, in 871, the letter k + 1 appears on the left of k. The smallest permutation with these
properties is 371 = uu'(k + 1)kvv’, as claimed.

Hence, Ny is a submodule (even a subgraph) of M, and the quotient is isomorphic to
N,. Now, the permutations obtained by applying the n; to r, can also be described as those
v which, as words, satisfy v = uv with Std(u) € [o,w(I)] and Std(v) € [r,w(J)]. These are
exactly the standardizations of the words occurring in the product N, V. -

In particular, we obtain a description of the induction products of simple modules, which
is much more precise than the one given by the product of quasi-symmetric functions:

Corollary 4.5 Any induction product of simple modules S;,® - - - ®8;, has a filtration by
modules N, which can be explicitely computed.

By using a standard result on self-injective algebras, we can now define another family
of indecomposable modules. Indeed, for any self-injective Artin algebra A, and any exact

sequence
0-N—-P—->M-—=0, %4)

of left A-modules, with P projective, N is indecomposable non injective, and N — P an
injective hull, iff M is indecomposable non projective, and P — M a projective cover (cf.
[4]). It is customary to set N = QM and M = Q7 'N. Q is called the syzygy functor (as
defined here it is only a map on the set of modules, but it becomes a functor in the stable
category; here it is well defined as a map because of the unicity of the minimal projective
resolution). '

Since the inclusion N, — P; is clearly an injective hull, we have:

Lemma 4.6 For o €la(l),w(I)], M, = P;/N, is indecomposable.

Starting with M simple, next taking a projective cover of IV, and iterating the process,
one can construct a sequence of indecomposable modules Q2™ M. In this way, one can see
that for n > 3, H,(0) is not representation finite: the sequences 2"S; are neither finite nor
periodic for I # (n), (1*), and dim¢ 2"S; — oo.

4.3 Homological properties of H,(0) for small n

Being a finite dimensional elementary C-algebra, H,(0) can be presented in the form CQ/Z,
where Q is a quiver, CQ its path algebra, and Z an ideal contained in J2 where 7 is the ideal
generated by all the arrows of ) [2]. The vertices of ¢} are the simple modules S;, and the
number ey of arrows S; — S is equal to dim Ext'(S;, S;) = [rad P;/rad®* P; : S;].
Therefore, er; = c(IIJ), where cf,kJ) = [rad® P;/ rad*"' P; : S,] are the coefficients of the
g-Cartan invariants
cri(g) =Y et (95)

k>0
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associated to the radical series. Let C(q) = (c15(@))1,7=n- For n < 4, these matrices are as
follows.

| [3]21]12] 1111

3 10O 0
211101 | ¢q 0
12 0] q | 1 0
111010 | O 1

] [4]31] 22 [211]13] 121 [112]1111]

4 |I1|0 0 0|0 0 0 0
31 (0] 1 q 0 |¢* 0 0 0
22 (0] qgf1+q*| 0 | ¢q q 0 0
211 [0{ O 0 110 q ¢ | 0
13 [[0] ¢ q 01 0 0 0
121 (0] O q q |0(1+¢%] ¢ 0
112 10| O 0 g |0 q 1 0
1111 |0 f O 0 00 0 0 |
The corresponding quivers are given on Figures 2 and 3.
B
’ 5 g
1
o m—-f F
1
2]

5

Figure 2: The quivers of H3(0) and H,(0).

The vertices of the quivers are labelled by descent sets, depicted as column shaped tableaux,
instead of the corresponding compositions. This is to emphasize the curious fact that the
subgraph on tableaux of a given height can be interpreted as the crystal graph of a funda-
mental representation of gl,,, or as the graph of the Bruhat order on the Schubert cells of a
Grassmannian.

For n > 3, H,(0) has always three blocks, a large non trivial one, corresponding to the
central connected component of the quiver, and two one-dimensional blocks, corresponding
to the two simple projective modules S,, and S;». We denote by [',, the quiver of the non
trivial block.
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(0)H Jo xuyeur uepe)-b sy, <1 S[qEL

T 0 0 0 0 0 0 0] 0 0 0 0 0 0 0|0 11111
0 il b 0 D 0 0 0| (b 0 0 0 0 0 00| 2ITT
0 b 1 b+1| 0 |b+,D b 0 0| b P b 0 0 0 0|01l 1211
0 0 0 T 0 b D 0| 0 P b 0 P 0 00| €11
0 D 1b+.p| 0 | Hh+T b 0 0| b b b 0 0 0 00| 1121
0 0 b b b H+Num m@+@ 0 0 m@._.u Nmm+¢@ b mo mu 010 r#Al
0 0 0 D 0 +b | D+T1| 0 0 P b +b i D b 0 /0] 1¢€1
0 0 0 0 0 0 0 1| 0 0 0 b 0 D b0l 1
0 N P 0 b 0 0 0 1T 0 0 0 0 0 00 111C
0 0 D D D b+ b b 0| 0 |P+T1| H+b 0 b 0 0|0l zIT
0 0 m@ m@ b Num._.w@ mu._.@ 0 0 m@._.@ ﬁ._.mvm ma b b 010 122
0 0 0 0 0 b P b1 o 0 b HHT] 0 | b+h| D0 €T
0 0 0 P 0 b ) 0| 0 P b 0 T 0 0|0 T1I€E
0 0 0 0 0 P DL 1HPl 0 0 b b+.b| 0 |b+1| b |0l ¢
0 0 0 0 0 0 0 D10 0 0 P 0 b 10 1%
0 0 0 0 0 0 0 0| 0 0 0 0 0 0 011 S

| TTTTI | eT11 | 1211 [STT] 1121 | g1 | 1e1 [y |t1ite| gle | 1ge | € |11e| ee | 1w ]| ¢S]
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Figure 3: The quiver of H5(0).

For n = 2, Hy(0) = CG, is semi-simple. For n = 3, ['s is of type A;. From the well-
known representation theory of such quivers, we see that H3(0) has only 6 indecomposable
modules: the 4 simple modules Sy, I |= 4, and the two non-simple indecomposable projective
modules Py; and Ps,.

For n = 4, I'y is of type Ds. This allows us to conclude that H,(0) is not of finite
representation type. Indeed, choosing an orientation of Dy such that the corresponding path
algebra is a quotient of H4(0), for example
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(no path of length > 1), and according to a result of Kac [13], there is at least one inde-
composable representation of dimension o for each positive root , and there is an infinite
number of them.

For n > 5, then I',, is considerably more complicated, and does not belong to any familiar
class of quivers. Anyway, since Hy(0) is a quotient of H,(0) for n > 4, all these algebras are
of infinite representation type.

The quiver I',, can nevertheless be described for all n. Indeed, since the simple modules
are one-dimensional, non trivial extensions

0—+S;,-M—=>S8;—-0

are in one-to-one correspondence with indecomposable two-dimensional modules M such
thatsoc M = Sy and M/rad M = S;.

Let M be such a module, and denote by ¢; the matrix of 7; in some basis {u,v} of
M. Then, M is decomposable if and only if all the ¢; commute. If it is not the case, let
1 be the smallest integer such that ¢; does not commute with ¢;,,. The restriction of M to
the subalgebra H3(0) generated by 7; and T;4, is indecomposable, and must therefore be
isomorphic to Py; or to P15. In both cases, it is possible to choose the basis such that the

matrix of T} be
-1 0

(05) = 6

Next, t;,2 commutes with ¢; and satisfies the braid relation with #;,;. This implies that it is
either scalar (with eigenvalue 0 or —1) or equal to ¢;. For j > 2, ¢{; commutes with £;-and
t;+1, SO it must be a scalar matrix, again with eigenvalue 0 or —1. Also, the matrices ¢ for
k < 1 commute with £;,; and have to be scalar.

From these considerations, one obtains a complete list of indecomposable two dimen-
sional modules, and the following description of T,

and £;,, is either

Theorem 4.7 There is an arrow A — B between two subsets A, B of {1,...,n — 1} ifand
only if one of the two subsets is obtained from the other

(1) by replacing an element i either byt + 1 ori — 1,
(2) by deleting i and inserting i — 1 and © + 1 if none of them were already present,
(3) by deleting a pairi — 1, ¢ + 1 and inserting 1, if it was not already there.

From this, it is easy to see that the total number of 2-dimensional indecomposable H,,(0)
modules is (3n — 7) - 2”3 forn > 3.
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4.4 Syzygies

A way to generate infinite families of non isomorphic indecomposable modules is to calculate
the syzygies Q%S; and Q~*S; of the simple modules S;. The dimensions and composition
factors of these modules can be read off from the g-Euler characteristics x,(Sz, Ss), where

Xo(M,N) = ¢* dimExt}; (M, N) (97)
k20
Indeed, if
0 S; ¢ P« P « P ..t P, (98)

is a minimal projective resolution of Sy, and if we write

Pt~ (HPE™ (99)
then
> mb qF = x,(S1,8). (100)
k>0
Also, since Q*S; = ker(P* — P*~1), we have
ch(92FS;) = ch(P*1) — ch(QF1S)). (101)
Moreover, for n < 4, we have the more precise information
chy(Q5S;) = g7 (chy(P*1) — ch,(Q*'S))) (102)
where Q°S; = S; and P° = P;. This formula is equivalent to the following property. Let
A(g) = (ars(9))1s =Cl@) . (103)
Proposition 4.8 For n < 4, the Poincaré series of Exty, (81, Sy) is given by
Xq(Sr1,875) = ars(—q) . (104)

Proof — For n = 2, this is trivial, and for n = 3 the direct calculation of both sides is
straightforward. So let us suppose n = 4. As we have seen, H,(0) is a self injective algebra
of infinite representation type, with radical cube 0, but radical square nonzero. Hence, we can
apply Theorem 1.5 of [22], and conclude that H,(0) is a Koszul algebra. Also, we know that
the ideal I such that H,(0) = CQ/I is graded (it is generated by a set of words of lengths 2
or 3). Then, Theorem 5.6 of [11] implies the required equality. -

Example 4.9 For n = 4, the nontrivial part of the g-Cartan matrix, corresponding to the
compositions (31), (22), (211), (13), (121), (112) (in this order) is

[ 1 q 0 ¢? 0 0
g 1+¢> 0 ¢ q 0
_|o 0 1 0 qg ¢
0 q g 0 14+4% ¢

| 0 0 ¢ 0 q 1]
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and its inverse is

1 —q(1 +q*) - 1+ —q
—q(1+4¢*) (A+A1+¢") A+ —ql+¢) —q(1+¢*)* FOl+d)
1 - *(1+¢%) 1 —-¢ —-q(1+¢*) q°
(1-¢>)(1 —¢f) q° —-q(1+q*) —q° 1 g*(1+¢%) -3
F(1+¢%)  —q1+d*)? -ql+¢*) A+ (1+¢)A+q¢Y) —-gl+4gY)
-¢ *(1+¢) q° - —q(1+4*) 1

3

(]

3

By taking the Taylor expansions in the first row, one can read the minimal projective reso-
lution of S3;. The complex is naturally encoded by the noncommutative symmetric function

Py(S31):
(1-¢*)1 - ¢%) " (Ra1 + q(1 + ¢*)Raz + ¢°Rors + ¢°Rus + ¢*(1 + ¢*) Riz1 + ¢°Runa)
= Ra1 + qRos + ¢*(Rs1 + Ran) + ¢°(Ra2 + Ron + Runz) + ¢*(Ra1 + 2Rua1) + O(°)
so that the beginning of the resolution is
04831 < P31 < Po ¢ P31 @ Pugy < P @ Py @ Pz + P3; ©2Pyg -+

and the g-characteristics of the successive syzygy modules are chy(2S3;) = Fie + gFis,
chy(Q%S31) = Fay + Fior + qFp, chy(Ss1) = Fae + Fay + Fiip + g(Fis + Fia),
ch,(Q%S31) = Fs1 + 2F191 + q(Fao + Foyp + Fi12), and so on. The dimensions of these
modules are given by the generating function

(1+¢)(1+4%
1-9)(1-4¢?

Y d"dimQ*Sy = =1+2g+3¢*+5¢° +6¢* +7¢° + -

k>0

Example 4.10 The minimal projective resolution of the Specht module V35(0) is encoded by
the noncommutative symmetric function

Py(Va2(0)) = (1 — ¢®) " (Rizn + qR112 + qRon1 + Rz + ¢*Roa + ¢* Rz + ¢* Ray + ¢° Ryo)

which has period 6, and whose commutative image tends to ss2 for ¢ — —1. The Poincaré
series of the Ext (Yoneda) algebra of V32(0) is

1+ ¢°
1—¢g8°

Xq(V22, V22) =

5 Matrix quasi-symmetric functions

5.1 Definition

To define our next generalization, we start from a totally ordered set of commutative variables
X ={z; < -+ < z,} and consider the ideal C[X]|" of polynomials without constant term.
We denote by C{X} = T(C[X]*) its tensor algebra. The product of this algebra will be
denoted by p.
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In the sequel, we will consider tensor products of elements of this algebra. To avoid confu-
sion, we denote by “-” the tensor product of the tensor algebra and call it the dot product. We
reserve the notation ® for the external tensor product. The reader should keep in mind that, in
an expression of the form m = m; - my - - - my, none of the m; are constant monomials. Such
a product is said to be in normal form. Otherwise we rather write m = p(my, mg, - -+ , my).

A natural basis of C{X} is formed by dot products of monomials (called multiwords in
the sequel), which can be represented by nonnegative integer matrices M = (m;;), where
m; is the exponent of the variable z; in the jth factor of the tensor product. Since constant
monomials are not allowed, such matrices have no zero column. We say that they are hori-
zontally packed. A multiword m can be conveniently encoded in the following way. Let A
be the support of m, that is, the set of those variables z; such that the ith row of M is non
zero, and let P be the matrix obtained form M by removing the null rows. We set m = A,
A matrix such as P, without zero rows or columns, is said to be packed.

arll2
5]030
For example the multiword m = a - ab®e® - a?d is encoded by ; [g 0 (1)] . Its support is the
eloso
112
set {a, b, d, e}, and the associated packed matrix is [g : ‘1]] ;
050

Let MQSym(X) be the linear subspace of C{X } spanned by the elements
MSy = » AY (105)
AEPL(X)

where Py (X) is the set of k-element subsets of X, and M runs over packed matrices of height
h(m) < n.

For example, on the alphabet {a < b < ¢ < d}
arll?2 arll?2 arll? ar000
_blo3o0 b|lo30 blooo bl112
MSri12 _c|:001:|+c|:000:|+c|:030:|+c|:030:|
ggg dlooo dloo1 dloo1 dlooi

Proposition 5.1 MQSym is a subalgebra of C{X }. Actually,

MSpMSg = Y MSg
Rew(P,Q)
where the augmented shuffle of P and Q, W (P, Q) is defined as follows: let r be an integer
between max(p, q) and p+q, where p = h(P) and ¢ = h(Q). Insert null rows in the matrices
P and Q so as to form matrices Pand Q of height r. Let R be the matrix (13, Q) The set
W (P, Q) is formed by all the matrices without null rows obtained in this way.

For example :
MS|[]]MS(31 =

00 2100

00] +MS[2339] +MS[o0a1| + MS[2333] + MS|

0
1
31 0

[= =7

oo
| SOSS— |

21
MS[IO
00

=N Oo
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Let us endow MQSym with a Hopf algebra structure. LetY = {y; < --- < y,} be a
second totally ordered set of variables, of the same cardinality as X. We identify the tensor
product MQSym(X) ® MQSym(X) with MQSym(X @ Y'), where X ® Y denotes the
ordered sum of X and Y. The natural embedding

A : MQSym(X) — MQSym(X ®Y) ~ MQSym(X) ® MQSym(X)  (106)

defined by A(MS (X)) = MSy(X @ Y') can be interpreted as a comultiplication.

For example

103
A(Ms[gg;
102

From now on, unless otherwise stated, we suppose that X is infinite.

Let u : f ® g — fg be the multiplication of MQSym (induced by the multiplica-
tion of the tensor algebra), and let e be the restriction to MQSym of the augmentation of
T(C[X]*"). Introduce a grading by setting deg(MSys) = Y m;; and denote by MQSym,
the homogeneous component of degree d.

Proposition 5.2 (MQSym, y, 1, A, e) is a self dual graded bialgebra, the duality pairing
being given by (MSp, MSg) = 0ptq.

The Hilbert series of MQSym can be expressed directly or in terms of scalar products
of ribbon Schur functions. One has

L1\ /1) 2
dim(MQSym,) = Z (d ;rhlﬁl )(§> _ Z 92d—UD)~tJ) () 11

1>0, h>0 |I|=]J|=d
(107)
which yields

>z dim(MQSym,) td
=1+¢+ 5t + 33t3 + 2814 + 2961#° + 37277t% + 546193t7 + 9132865¢8 + - - -

To a packed matrix P, we can associate two compositions / = Row(P) and J = Col(P)
formed by the row-sums and column-sums of P. The Hilbert series in an easy consequence
of the classical fact that packed matrices of degree d are in bijection with double cosets of
G7\8a/6 where G;, 4,,...i,) is the Young subgroup &;, X G;, X - - - x &;, . It is well known
(cf. [10]) that their number is 224~ 4D~ (r; r;).

Let Ev be the linear map defined by

Ev : MQSym — QSym

MSp —— Ev(MSp) = Mrow(r) (108)
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Proposition 5.3 Ev is an epimorphism of bialgebras. Dually, the transposed map

‘Ev : Sym — MQSym (109)

is a monomorphism of bialgebras.

Therefore, MQSym admits ()Sym as a quotient and Sym as a subalgebra. The basis
MSp can be regarded as a simultaneous generalization of the dual bases M; and ST. More-
over, C(X) is naturally a subalgebra of C{ X}, words being identified with multiwords with
exponent matrix having only one 1 in each column. It is clear that this embedding maps
FQSym to a subspace of MQSym.

5.2 Algebraic structure

We now elucidate the structure of MQSym as an algebra. To describe a generating family,
we need the following definitions. Let P be a packed matrix of height . To a composition
K = (ki,...,kp) of h, we associate the matrix P)K defined as follows. Let Ry, Ry, ..., Ry,
be the rows of P. The first row of P)K is the sum of the first k; rows of P, the second row is
the sum of the next k2 rows of P, and so on. We end therefore with a matrix of height p. For
example,

1202

0121 25923
gggg]>(3,2)= [1625]-
1310

Generalizing the idea of [21], we set

1
$Sp= > iMSpx (110)

|K|=h

where K! = kylko!---k,!. The family {¢Sp}, where P runs over packed matrices, is a
homogeneous basis of MQSym.
Let us say that a packed matrix A is connected if it cannot be written in block diagonal

form
B 0
+=(¢ 0)
where B and C are not necessarily square matrices.

Theorem 5.4 MQSym is freely generated by the family {$S 4}, where A runs over the set
of connected packed matrices.

5.3 Convolution

The goal of this subsection is to find an interpretation of MQSym in terms of invariant
theory. The first part of the construction applies to any Hopf algebra.
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Hopf Algebra background

First, let (#,1, 1, d,€, @) be a graded Hopf algebra. One can define a bialgebra structure
on the augmentation ideal T'(H*). The coproduct is ¢ is defined as follows. Let m =
my - My - - - My, be a normal form dot product (m; € H¥). Let 6(m;) = >_m! ® m{. Then,
one sets
For example, with # = C[z, y], one has

c(mz-y) =22 y@1+2z YRz +yRr’+2°Qy+2zQz-y+ 1@z y.

If é is cocommutative, then c is obviously so. The co-unit is the coordinate of the empty
tensor
e(1)=1 and e(my-mz---my) =0ifp>0andm; € H*. (112)

If H is graded, one defines a gradation on T'(H™) by
deg(my - my - - -myp) = deg(m,) + deg(ms) + - - - + deg(my,) , (113)
Note that this gradation differs from the standard one on tensors, which we will call length

{my-me---my) =p. (114)

Now, f and g being two endomorphisms of #, the convolution of f and g is defined by
f*g = po(f®g)od. Inthe sequel, all the endomorphisms will be homogeneous. The convo-
lution of an endomorphism of degree p with an endomorphism of degree g is of degree p + g.
One denotes by Convol(#) the convolution algebra of the homogeneous endomorphisms of
‘H and by End"™ () the vector space of homogeneous endomorphisms of degree n.

Operator associated with a packed matrix

To each packed matrix A of total sum n we associate a canonical endomorphism f4 of the n®
homogeneous component of (7). First of all, let K = (k1,...,k,) € N7 Let us define

5 H — HOT
m — (T, @ - -+ @ my,) 0 69(m) (115)

where 74 is the projector on the homogeneous component of degree d of . Thus §¥) takes
an element of degree | K| and sends it to an element of 7{®7 of degree (ki . . ., kq), killing all
components of other degrees.

Let A = (a;;) be a packed p x g matrix of total sum n. The row sum of A is a composition
r = (r1,...,7p) and the column sum is ¢ = (cy,...,¢q). Let us denote by Ry, ..., R, the
rows of A. Finally suppose that m = m;y - my - - - m, is an element of T'(H*). Then we define
faby
up(07 (my), - 67 (m,)) ifr =p,

i (116)
0 otherwise,

fA(ml'm2"'mr):{
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where pu? = (uP)®? is the product of the p tensor 6%(m;) of length g. Thus we get an

element of (#*)®? of degree (cy,...,c,). Remark that f4(m) is null unless m is of degree
l= (l]_, ...,lp).
Example 5.5 let A = [731]. The associated morphism f kills all tensors of degree differ-

ent from (3, 5). Let m = abc - a*b. Then

6(2’0’1)(0,1)0) = ab®1®c+ac®1®b+bc®1®a:
4 4
(5(0'2’3)(a4b) — (2> 1 2 ® a2b) + (1) (1®ab® a3) .

Finally,
Fa(abc-a*b)=6(ab-a®-a’bc+ac-a®-a?b? +bc-a?-a’b)
+4( ab-ab-a*c + ac-ab-a®b + bc-ab-a* ).

The following example, which is some sense generic, is of crucial importance.

Example 5.6 Let A = (a; ;) of size p x ¢ and degree (total sum) . Let us consider

K{X} = T(K[zy,zs,...,z,)7). 117)
To the composition r = (rq, ..., rp) of the row sum of A, we associate the generic multiword
of degree r denoted by my,) and defined as follows: let dy = r;, d3 = 7y + 12, ...,
di=r,+---+ri ..., and d, = n the descents of r. Define
d: dy dp
m(,) = (Hm) (H mi) I =) (118)
i=1 i=di+1 i=dp-1+1
or, equivalently,
M) = X101 T202T3903° 7 Op_1Tn, (119)

where ¢; is the commutative multiplication if ¢ is not a descent of r, and the dot product
otherwise. Let Xp = [[,., z; where D is a subset of {1...n} and moreover, let D; denote
the integer interval {d;_; +1,...,d;}. Then

mg) = Xp, - Xp, - Xp, - (120)

P

Let us compute the image of m,y by fa. For all K = (ky,...,k;) € N? of sum s one
has

N Xpyyopta) = Y (Xn®---®Xy,), (121)
A
where the sum is over all set-partitions Iy, . .., I, of the integer interval {u, ..., u + s} such
that #(I1) = ky, ..., #(I) = k. It follows that
fA(m(T)) = Z (XUI,;,l Q---® XUIi,q) ! (122)

(1i,5)

the sum is over all p x g-matrices (I; ;) whose entries are subsets of {1, ...n} and such that
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e for all 4, 7, one has #(I; ;) = a;;,

o forallitheset {I;y,...,I;,} defines a partition of the interval D; = [d;_; +1,...,d;].

For example, with A = [J 3], one has r = (2, 3). Then the generic multiword m,) reads
m3) = T1T2 - T3T4T5 - (123)
Then
SO (zyxy) = 1@z @z + 1@z ® 1,
800 (paxyrs) = T3Q1Q@T4z5 + TaR1Q 325 + 25 1® T324.
Finally
Fy(z1z9 - T3Z4Ts) = T3-Ty-TaZals + T4-T1-TaT3Ts + Ts-Tp- ToT3T4

4+ T3-%9-T1TaTs + T4-T2-T1T3Ts + T5-To-T1T3T4 .
Theorem 5.7 The map
MQSym — Convol(T'(H1))
MS,+— fa (124)
is a homomorphism of algebras.

Proof — The first step of the proof is to see that the definition of the morphism f4 can be
extended to non-packed matrices. If B is an integer p X ¢ matrix the preceding definition

gives a morphism )
fs : HP — T(H™), (125)

With this notation, one has the following easy lemma:
Lemma 5.8 Let A be a packed matrix of height h. Let
m = p(my, ma, ..., mp)

a tensor, not necessarily in normal form (m; can be constant). Then,

fam)= > fe(my,ma,...,mp), (126)
)

Be(Alp

where B runs over the set (A],) of matrices of height p obtained by inserting 0 rows in the
matrix A.

Now, let m = my - my - - - m,. Suppose d(m;) = > m; ® m;. By definition

And therefore, if A and A’ are two packed matrices,
(fA®fA’}oc(m): Z fB (m{h"wm;)@fB' (mgl’77m;;) ’ (128)

Be(Alp), B'€(A'lp)
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which gives

po(fa® fa)oc(m) = > fee (my,...,mp) , (129)

Be(Alp), B'e(A'Tp)

where BB' is the concatenation of B and B'. This is exactly the set of unpackings (C'],) of
the matrices C' appearing in the product M'S 4 MS 4 which acts non-trivialy on m. -

Note that the theorem is true even if H is not cocommutative.

Interpretation

First, we reformulate the definition of C{X} (with X = {z1,...,z,}) in a slightly more
abstract way. Let V' be an n-dimensional vector space with basis X. The polynomials in
X can be seen as the symmetric algebra of V. The graded bialgebra structure on C{X} =
T(C[X]*t) gives a structure on T'(S*(V)). Moreover, since the definition of the operations
does not depend on the basis, this structure is canonical. Let p be the natural representation
of GL(V) in End(T(S*(V))).

Theorem 5.9 There exists a canonical homomorphism
¢ : MQSym — End(T(S*(V)))

from MQSym to End(T'(S*(V))) regarded as a convolution algebra, such that for all d,
¢(MQSym,) is the commutant Endervy(T(S*(V))a) of po(GL(V)) in the homogeneous
component of degree d of End(T'(S*(V))). Moreover, ¢ is one-to-one for d < n.

Proof — The endomorphism f4 associated with a matrix A is defined by means of the product,
coproduct, and the homogeneous projector of 7'(S*(V')). But all these operations commute
with the action of GL(U). Then f4 commutes with GL(U).

We will prove the theorem in two steps:
e In the first step, we suppose that the dimension N of V is greater than n. We will prove

that ¢ is one-to-one and, by an argument of dimension, we get that ¢(MQSym,) is
exactly the commutant End gz (T(S*(V))a).

e Then by a restriction argument we will conclude in every case.

Let us choose a basis X = {z1,...z,} of V. In example 5.6, we have computed the
image of the generic multiword my,) by f4 where A is a matrix of row sum r. Notice that n
is sufficient to express my,) since N is bigger than the sum n of A.

Let us recall some notation: dy, . . ., dp denote the descents of r and D; the integer interval
[di-1 +1,...,d;]. Let us suppose that m' is a multiword of the form

m':Xll-XIZ---XIq. (130)
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where I3, . . ., I, is a partition of the set {1,...,n}. There exists only one matrix A such that
m' appears in the image of my,) by fa:

#(LNDy) -+ #({,NDy)
A= : : - (131)
#(II n Dp) e #(Iq N Dp)

This proves the injectivity of ¢.

Now we will show that the dimension of MQSym" and of the commutant of GL(U)
in End®(T'(S*(U))) are equal. Let us compute the graded character of the representation
GL(U) on T(S*(U)). It is well known that the character of $%(U) is the Schur function s(q)
which is equal to the complete function h4.

The graded character of S*(U) is then:

ch(SH(U)) =D hat?. (132)
d>0
Therefore
ch(T(SH(U))) = ) hrtl"l, (133)
I

where I runs over the set of all compositions. Note that ~; only depends on the partition
associated with I. Then one uses the classical identity

> hutD =" rut (1 4 w4, (134)
J

Now, we extract the homogeneous components, with z = 1. This gives

chs(T(SH(U))) Zr 24~ 47)¢lV| (135)

The multiplicity of the irreducible representation x, of GLy in the homogeneous component
of degree d of T'(S*(U)) is therefore given by the scalar product

Z Z 02n—E(I)—4(J) (r1,5x) (5x,77) - (136)

Abn IEn, JEn

The sum is extended to partitions all A of length smaller than the dimension N of U. Thus if
N > n, all the Schur functions s, appear. Moreover, since they form an orthonormal basis of
Sym
Z (rr,sa) (sa,r3) = (r1,71) - (137)
Abn
This proves that the dimension of the commutant of GL(U) in the n-homogeneous space
of T(S*(U)) is equal to the dimension of MQSym,,, which implies the first part of the
theorem.

Now we are in the case where the dimension NV of the vector space U is less than n. Let
V = U & W be of dimension n.
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Lemma 5.10 Let U C V be two vector spaces. Then the restriction

Restycy EndGL(V)(T(S+(V))n) — EndGL(U)(T(S+(U))n)
f— frs+w))a

is surjective.

Using this lemma one has that every element of Endgy ) (T(S*(U)),) is the restriction
of some element of py(MQSym). But it is clear that the endomorphism F§ associated with
a matrix A on U is the restriction to T'(S*(U)) of FY associated with A on V. This concludes
the proof of the theorem.

It remains to prove the lemma. First we have to prove that the image of an element of
T(S*(U)) by fisstill in T(S*(V)).

Let us set Commy = Endgrw)(T(S*(U))). Let m be an element of T(S*(V)). Let
Vect(m) be the smallest subspace W C V such that m € T'(S*(W)). Then clearly if g €
GL(V) then Vect(g(m)) = g(Vect(m)). But if f commutes with GLy, it also commutes
with the projectors on Vect(m), so that

forall f € Commy, f(m) e T(SH(Vect(m))). (138)

Now, let us prove the surjectivity. Let ¢ € Commy. Let m € T(S*(V)). Under
the assumption dim(Vect(m)) > dim(u), one can define the image f(m) by conjuga-
tion as follows: choose an injective morphism h,, : Vect(m) — U. Then obviously
hm(Vect(m)) = Vect(hm,(m)) and one can set

fm) { h' 090 hun(m) if dim(V(m)) < v, (139)
0 - otherwise.

Since g commutes with GL(U), the vector f(m) = hZ! o g o hy,(m) does not depend on the
choice of h,,. Hence if m € T(S*(U)), one can take hy, = id, and thus fy = g. Moreover
it is easy to see that f commutes with GL(V). -
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