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Abstract

A purely combinatorial algorithm for computing combinatorial formulas of fi-
nite type knot invariants is described and illustrated.

This work is a direct continuation of [16], where a general geometrical approach to
the construction of combinatorial formulas of cohomology classes of spaces of knots in
R™ n > 3, was proposed. Here we show in detail how it works in the most classical and
well-studied case of zero-dimensional classes, i.e., of invariants of knots in R?,

We present an algorithm producing combinatorial formulas for finite-type knot in-
variants. Starting from a proper weight system of rank k, i.e. the principal part of a knot
invariant of order k, it produces a finite collection of open subvarieties in the space of
knots, any of which is distinguished by at most k standard conditions on the geometrical
disposition of knots, so that the value of our invariant on a knot in R? is equal to the
algebraic number of these varieties containing the knot. The work of the algorithm is
demonstrated in the case of simplest knot invariants of orders 2 and 3, reduced mod 2.

All known to me other algorithms of explicit calculation of all finite type invariants
include drawing the planar pictures (diagrams of knots and singular knots) and deforming
these pictures. The algorithm proposed below is purely combinatorial, i.e. it deals not
with planar or spatial pictures but with easily encodable combinatorial objects similar
to the chord diagrams. The execution of the algorithm is a chain of linear algebraic
operations over these objects, similar to (and starting with) checking the homological
4T- and 1T-conditions for a sum of chord diagrams. In particular, the complexity of the
algorithm and its answers depends on the order k only, and not on the complexity of
arising knot diagrams. Therefore it is ready for effective computer realization.

Probably the first combinatorial formulas for some finite type knot invariants were
proposed by J. Lannes [6]. The most convenient known combinatorial formulas of this
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kind are the Polyak-Viro arrow diagramsintroduced in [9]. By a theorem of M. Goussarov
[4] any finite type invariant can be represented by such a formula; the proof of this
theorem probably implies also a method of computing such formulas.

The algorithm described below is by now apparently worse than the one following
from this approach. Indeed,

a) it is realized over Zj only, i.e. without accounting orientations of arising varieties;

b) the answers are more awkward, containing some terms other than just the Polyak-
Viro diagrams;

¢) the main advantage, the possibility of an effective computerization, is not realized
yet.

This list is in fact a program of the further work. Indeed, the accounting of orienta-
tions is just a technical problem, cf. §V.3.3 in [12].

The inconvenience b) can be explained by the fact that our approach provides too
many choices for spanning the cycles homologous to zero by semialgebraic varieties in the
space of curves, see e.g. §3.2 below. Now I do not select the most economical of them, and
use the way which has the simplest formulation but causes not the simplest calculations.
By this reason the existing algorithm is called stupid. In §4 this algorithm calculates a
combinatorial formula for the simplest invariant (of order two). This formula consists of
three terms. Almost the same algorithm with one nontrivial switch (which is easy for
the human eye but is not formalized yet) gives the Polyak-Viro formula consisting of one
term, see §2 in [16]. One of nearest problems is to make the existing algorithm not so
stupid, i.e. to teach it to select the most economical choices. On the other hand. the
plenty of choices provides many comparison results on the combinatorial formulas like in
[10]. In §6 I describe one other algorithm referring to both the our homological techniques
and the Goussarov’s theorem. It has a slightly simpler formulation and simpler results
(exactly the Polyak—Viro formulas), however the systems of linear equations to be solved
in its execution are exponentially greater (over the order of the invariant). Also, I do not
see how it could be extended to the calculation of other cohomology classes of spaces of
knots.

I invite the volunteers acquainted with the mathematical programming to solve the
problem c). I hope very much that a computer himself will then find some ways to make
best choices in problem b), so that it will remain to systematize its experience.

This work is only a step in the general program of realizing arbitrary dimensional
cohomology classes of spaces of knots, cf. [16] (which, in its turn, is just a sample of a
wide class of similar problems concerning effective methods in the topology of spaces of
nonsingular objects).

Like in [16], our algorithm is based on the study of the discriminant subvariety X
in the space K of smooth parametrized curves f : R' — R (i.e. of the set of maps
f € K that are not smooth embeddings). The main tool is the simplicial resolution of
the discriminant, i.e. a certain topological space o together with a continuous surjective



map 7 : 0 — . Homology groups of ¥ and o are closely related to one another and to
the cohomology groups of the space of knots K \ . The resolved discriminant o admits
a natural filtration Iy C Fy C ... which generates a spectral sequence calculating its
homology groups.

As in [16], the algorithm is essentially a conscientious realization of the work of this
spectral sequence in the terms of relative chains. We start from a weight system of
rank k, i.e. from a relative cycle v in the term F} reduced modulo Fj_; represented
as a sum of open cells of maximal dimension in Fj \ Fjy_;. (Such cells are in one-to-
one correspondence with equivalence classes of the chord diagrams, see [12], [3] and §1
below.) Then we calculate its first boundary d*(y) C Fy_1 \ Fi_2 and span it there, i.e.
we construct a chain v, C Fj_y \ Fy_2 such that 9y, = —d*(y) in Fix_y \ Fr—2. Then
we define d*(vy) as the boundary of the chain v 4+ v, in Fy_y \ Fj_s, span it by a chain
v2 C Fy_2\ Fy_3, etc. By the Kontsevich’s theorem, the entire this sequence of operations
can be accomplished, and we get a cycle v +v; + ... + 44— defining an absolute cycle
in the one-point compactification of the resolved discriminant . Pushing it down, we
get a semialgebraic cycle in the non-resolved discriminant ¥. Finally we span it by a
relative cycle (mod X)) in the whole space of curves: tautologically, this relative cycle is
the desired combinatorial formula.

In [16] this method was used to realize certain positive dimensional finite type coho-
mology classes of spaces of knots. This theory has a deep analogy with the homological
study of subspace arrangements, especially with the explicit realizations of their homol-
ogy classes proposed in [18]. More on this analogy see in [17].

In §1, I describe some standard semialgebraic subvarieties in the space of curves
and in terms F; \ F;_; of the resolved discriminant: all spanning chains v;_; and their
boundaries will be built of these varieties. In §2 I study the boundaries of these varieties,
which is necessary for checking the homological conditions. In §3 the main algorithm is
described. In §4 I show how this algorithm calculates a combinatorial formula (mod 2)
for the unique invariant v, of filtration 2, in §5 the same is done for the next complicated
invariant vs of filtration 3.

I thank A. B. Merkov very much, whose help and critical attention were very essential:
I believe that the idea of this work arose implicitly from our previous conversations. I
acknowledge the hospitality of the Isaac Newton Institute, Cambridge, where a main
part of the work was accomplished.



Figure 1: A long knot

1 Zoo of varieties in the space of curves and in the
resolved discriminant

1.1 Preliminary remarks

We consider long knots, see [16], i.e., smooth embeddings R! — R? coinciding with a
standard embedding outside some compact subset in R!. We denote by K the space of
all maps R! — R? with these boundary conditions, and define the discriminant ¥ C K
as the set of all maps having either self-intersections or singular points. The long knots
are exactly the points of the difference K \ ¥, see Fig. 1. The points of ¥ are called
singular knots.
We work with the space K as with an affine space of a very large but finite dimension.
A justification for this, based on the techniques of finite-dimensional approximations, is
described in [11]-[13]. The quotes * , ’ below indicate formally nonstrict statements and
terms which need such a justification. In particular, we use the ‘Alexander duality” in
IC’ ~
(K S) ~ L1 (%) 0

where H' is the cohomology group reduced modulo a point, H; is the Borel-Moore
homology group, i.e. the reduced homology group of the one-point compactification, and
w is the notation for the ‘dimension’ of K. We realize the homology classes in the right-
hand part of (1) by semialgebraic chains of infinite dimensions but finite codimensions.

As in [11]-[13], [16], we use a simplicial resolution of ¥, i.e. another space o together
with a ‘proper’ map 7 : ¢ — X that induces a homomorphism of ‘Borel-Moore homology
groups’. The finite type cohomology classes in K \ ¥ are defined as those Alexander
dual (1) to the ‘direct images’ under this map of elements of H.(c) in H.(¥). They
form an important subgroup H7 C H*(K \ X). The space o admits a natural filtration
Fy C Fy C ..., generating a spectral sequence £7  calculating the Borel-Moore homology
classes of o, i.e. E7 = Hypy(0), B~ Hypf(F, \ F,—1). The resulting filtration in the
Borel-Moore homology group of ¢ induces a filtration in the ‘Alexander dual’ group H7;.
E.g. the 0-dimensional cohomology classes (i.e. knot invariants) of finite filtration are
known as finite-type knot invariants, and the filtration of an invariant often is called its
order or degree.
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Figure 2: A chord diagram

The naturality of this construction is clear from the fact that in the case of knots in
R™ n > 3, the entire (highly non-trivial) cohomology group of the space of such knots
comes from the similar construction: H7 = H*(K\ ¥). For n = 3 this construction gives
us a priori only a subgroup of H*(K'\ ¥) (however no example is known of a cohomology
class which cannot be approximated by ones coming from our construction). In the
sequel we consider the case of knot invariants in R? only.

In this work we use the construction of the resolution o described in [15]. It is slightly
more economical than the one from [11]-[13].

Any term F; \ Fi_1, ¢ > 2, of its filtration consists of finitely many open cells (so
that its one-point compactification F;/F;_; is a cell complex), and its cells of maximal
dimension w — 1 (responsible for the knot invariants) are in one-to-one correspondence
with equivalence classes of chord diagrams with ¢ chords.

Such a diagram consists of a horizontal line ("Wilson line”) and 2i distinct points
in it matched into pairs. Since [11] such pairs of points are depicted by arcs (”chords”)
with ends at these points, see Fig. 2. The Wilson line symbolizes the source line R of
our long knots and singular knots f : R' — R? We shall consider also some other lines
R', therefore we denote the Wilson line by R.. (In the parallel theory of compact knots
S1 «s R? we have not the Wilson line but the Wilson loop S, the matched pairs of
points in which are connected by segments; this explains the term ”chord”, see [1], [3].)
Two chord diagrams are equivalent if they can be transformed one into the other by an
orientation-preserving homeomorphism of the Wilson line.

The cell of F; \ F;_; corresponding to an equivalence class of chord diagrams with ¢
chords consists of all triples of type

(€, f,1), (2)

where C' is any chord diagram of this equivalence class, f is a smooth map R! — R?
gluing together the endpoints of any chord of (', and ¢ is an interior point of a certain
(1 — 1)-dimensional simplex arising in the construction of the resolution: the vertices
of this simplex correspond formally to our chords. If : = 0, then the unique such cell
(corresponding to the empty chord diagram) coincides with the entire space K of long
curves R! — R3,

So, we have (2i)!/(i!2") maximal cells in F;\ F;_;, in correspondence with all possible
matchings of given 2¢ points. The dimension of any such cell is equal to 20 + (w — 3i) +
(1 — 1) =w — 1, i.e. the dimension of hypersurfaces in K.



Any cycle of maximal dimension in F; \ F;_; is a linear combination of such cells.
The homological condition, which such a linear combination should satisfy to be a cycle,
are formulated in terms of cells of vice-maximal dimension. Such cells arise from maps
f : R! — R? having either i — 2 double points and one triple point or ¢ — 1 double points
and one stationary point * at which f’ = 0. The corresponding homological conditions
are called 4T-relations and 1T-relations, respectively.

The vice-maximal cells of the first (4T) type are related with equivalence classes of
configurations of 2¢ — 1 points in R, separated into ¢ — 2 unordered pairs ("chords”) and
one triple. Namely, with any such class three vice-maximal cells are associated: they
correspond to the additional choices of one pair of points inside the triple. They are

depicted by drawings with tripods like , where the point of the triple
not in the chosen pair is marked by a small circle. A point of such a cell also has the
form (2), where ' is any configuration of our equivalence class, f is a map R* — R?
gluing together all points inside any pair and the triple of C', and ¢ is a point of a certain
(1 — 1)-dimensional simplex arising from the construction of the resolution: some its ¢ — 2
vertices correspond formally to the chords of ', one vertex more to the triple in ', and
the last vertex to the distinguished pair inside this triple.

Similarly, the cells of the second (1T) type are in the one-to-one correspondence with
equivalence classes of configurations of 2i — 1 points in R separated in i — 1 pairs and
one singular point *.

The boundary of a maximal cell in F;\ F;_; consists of 2 — 1 summands correspond-
ing to all segments in R} bounded by neighboring points of any configuration C' of the
corresponding equivalence class. Namely, let us contract any such segment. If its end-
points belong to different pairs, then after contraction this couple of pairs degenerates
to a triple; the corresponding summand in the boundary of our cell consists of some two
vice-maximal cells of 4T type related with the arising configuration. If these bounding
points belong to one pair, then we obtain one vice-maximal cell of the 1T type.

Example 1 The term Fj of the filtration consists of exactly two cells, one of maximal
dimension, and the second equal to its boundary:

5 — = ' (3)

i b

thus there are no cohomology classes of filtration 1 of the space of long knots, in particular
no knot invariants of order 1.

Example 2 The term F, \ F; contains three cells of maximal dimension,

o, LY N apd Lo (4)

three vice-maximal cells od 4T type

NN , /N ,andﬂﬁ&, (5)




and three vice-maximal cells of 17" type

_Q_*_ 5 _*_Q_ and @ (6)

Y

The boundary operator acting from the maximal cells to the vice-maximal ones is
described in the next three equations (7)—(9):

a@f\—=</f\+ /h>+</f\+/N>+</!\+ /k):()

(7)

(where the sum in the first pair of brackets (respectively, in the second, respectively,
in the third) arises from the contraction of the segment between the first and the sec-
ond (respectively, second and third, respectively, third and fourth) points of the chord

diagram; a@:</y\+/h>+@_+</]\+/h>7
g OO = +m_|_<0/]\_|_/|\>_|_@_*_'

(8)
(9)

Therefore the kernel of this operator is generated by the first chord diagram in (4).

Our maximal cell has a boundary not only in the same term F;\ F;_; of the filtration,
but also in the lower term F;_; \ F;_3: it consists of ¢ summands corresponding to all
chords of the chord diagram indexing our cell. Namely, let us choose any such chord.
Erasing it we obtain an (¢ — 1)-chord diagram, i.e. the picture of a maximal cell in
F;_1\ F;_3. The corresponding summand of the boundary of the initial cell is a singular
hypersurface in the latter cell: it consists of all triples (C”, f,#') in it such that the map
f additionally glues together some two points of R. placed among the 27 — 2 points of
the (i — 1)-chord diagram C” in the same way as the endpoints of the erased chord. In
the notation of §1.4 it will be depicted by a drawing obtained from the initial 2-chord
diagram by replacing the chosen chord by a broken line (zigzag) with the same endpoints.

In our algorithm, only the subvarieties of maximal and vice-maximal cells are con-
sidered.

Any picture in this text, describing such a variety, consists of a chord diagram (maybe
with one tripod) indicating the cell in which the variety lies, and some additional fur-
niture (zigzags and arrows with endpoints at the Wilson line of this diagram, and some
subscripts) indicating further conditions distinguishing our subvariety. For examples, see
Fig. 3 and the rest of the paper.

These pictures are very similar to the arrow-segment diagrams introduced by A. Mer-
kov [8] (with some additional features arising from the three-dimensionality of our prob-
lem, and also from the fact that we consider subvarieties in the resolved discriminant,
and not in the functional space K only).
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Figure 3: A subvariety in the resolved discriminant

Additional conditions describing our varieties will be described in §§1.2, 1.4, now we
give some preliminary explanations.

All endpoints of chords and zigzags in the picture will be called its active points,
cf. [7], [8]. They will be numbered from the left to the right in R.. The numbers in
subscripts mean the numbers of points participating in the corresponding conditions.

Let us fix a complete flag of directions in R?. The first direction will be called "up”.
The "table” plane R? in which the knot diagrams are drawn will be considered as the
quotient of R® by this direction. Saying that some point is above or below another one,
we refer to exactly this direction. Further, we choose the direction "to the east” in this
quotient space R? and say that some point in R? is to the east of some other if the
projection to R? of the vector connecting the latter point to the former one has this
direction.

The presence of the single vertical bar | in a subscript or zigzag means that the
corresponding condition deals with the projections of some objects (points or tangent
vectors) to R2.

Similarly, we consider the quotient space R of R? by the direction "to the east”, fix
the direction ”to the north” in it and mark with the double bar || all conditions referring
to the projections to this space along the sum of two directions considered above.

The projection R?* — R? along the direction "up” is denoted by p;, the projection
R? — R! along both directions "up” and "to the east” by py. For any map f: R} — R?
we denote by f; (respectively, by fa) the composition p; o f : RL — R? (respectively,
p2o f:RL — RY.

Any picture with k active points (2 of which are endpoints of chords) defines a
subvariety in the corresponding maximal cell of F; \ F;_y, in particular if i = 0 then in
the space K itself. The desired chains d*~*(y) and v;_; (see page 3) will be constructed
as sums of these varieties.

1.2 Subvarieties of full dimension

Here we describe all additional conditions of the "inequality” type, distinguishing subva-
rieties of full dimension in our maximal cells of F;\ F;_;. Such subvarieties are the blocks
for constructing the spanning chains ~;. (In particular, such subvarieties with no arcs
are the blocks in K of which the desired combinatorial formulas are built.) See Fig. 3
for a picture describing such a subvariety in a maximal cell of I, \ Fj: it can occur as



an intermediate step in the calculation of a combinatorial formula for a knot invariant
of order 9 or more.

There are five types of such conditions. They are described in paragraphs 1, ..., 5
of this subsection. The paragraphs 1! and 2! describe important linear combinations of
varieties distinguished by the conditions from paragraphs 1 and 2 respectively.

1. The oriented zigzag SN\ or /O with endpoints at the Wilson line denotes
the condition ” f(a) is below f(b)” in the case of the first picture, and ” f(a) is above
f(b)” in the case of the second, where f is our map R' — R” and a < b are the points of
R! corresponding to the endpoints of the oriented zigzag. Endpoints of different zigzags
of this form cannot coincide with one another and with endpoints of chords.

1!. The non-oriented zigzag crossed by one bar, A , means that the projections
of corresponding two points f(a), f(b) to R? coincide. The variety defined by this
condition is the union of two similar varieties with this fragment replaced by AN

and /> .

Definition 1 The x-points of the picture are its active points which are endpoints of
chords, oriented (non-crossed) zigzags, and once crossed non-oriented zigzags (in contrast
with @-points which will be defined in the next paragraph). x-points are obviously
matched in pairs. Such a pair of points together with the chord or zigzag joining them
is called a x-pair.

The points of any x-pair have one and the same projection to R% E.g. in Fig. 3 we
have three x-pairs.

2. The oriented zigzag with one crossing bar, /_‘_\« or ﬂ_\ , connecting some
two points of the Wilson line, says us that the image in R? of the point corresponding to
its tail lies to the left of the endpoint with arrow. Exactly one endpoint of such a zigzag
should be an x-point of some x-pair, and the other endpoint will be called a ¢-point.

A point of the Wilson line can be a @-point of at most one such zigzag.

2!. The non-oriented twice crossed zigzag ﬂ expresses the condition of
type fa(a) = f2(b), i.e. that the projections to R' of images of endpoints a,b of this
double crossed zigzag along the plane spanned by both directions "up” and ”to the east”
coincide. The variety distinguished by this condition is the union of two varieties defined
by conditions expressed by once crossed zigzags oriented to different sides and having
the same endpoints.

This picture appears in the same circumstances as these defined in 2, i.e. exactly
one endpoint of the double crossed non-oriented zigzag should be a x-point; the other
its point also is called a w-point and cannot be an p-point of some other zigzag.

Definition 2 The tree formed by a x-pair together with all single crossed oriented
zigzags and double crossed non-oriented zigzags connecting its x-points with some other



points is called a crab, the zigzags of types described in paragraphs 2 and 2! its legs,
and the p-points of such zigzags its feet. Two crabs are congruent if they define one and
the same condition on maps R' — R? i.e. they have equal x-pairs and equal sets of
@-points, and the orientations of legs with one and the same feet coincide (so that all the
difference is that these legs can grow from different points of the x-pair). The normal
crab has all legs growing from the left x-point of its x-pair.

Obviously, there is exactly one normal crab in any congruence class. However, in §5
we shall draw also non-normal crabs for simplicity of pictures. In Fig. 3 we have two
normal crabs (one of which has no legs at all) and one non-normal one.

By definition, if a map f : R! — R? satisfies the conditions expressed by a picture
with a crab, then all the images of its feet points are "equally northern” as the image of
its basic x-pair, i.e. they have the same projection to R

3. The subscript of type

[ [ [ [

K:jor |<jor }<]’or K] (10)
(where j and [ are the numbers of endpoints a;, a; of some x-pair in the list of all active
points of the picture) means that the direction "to the east” in R*is a linear combination
of projections to R? of derivatives of f at these endpoints, and both coefficients in this
combination are positive (respectively, the coefficient at the projection of f'(a;) is positive
and that of f'(a;) is negative, respectively, the coefficient at the projection of f'(«a;) is

positive and that of f'(«;) is negative, respectively, both are negative).
These pictures say nothing on the orientations of frames formed by these projections

[ [
in R2 In particular any of pictures << j and < j deznotes the same condition as

the similar picture with numbers [, j permuted, while <~ j denotes the same condition

. B

4. The subscript of type {}Y or |}/ means that the projection f}(a;) of the derivative
f'(a;) of f at the jth active point to R! is directed "to the north” (respectively, "to the
south”).

5. For some two x-pairs (and their crabs) we can fix the information that the image
of one of these pairs is "more northern” than the other (i.e. its projection to the line R*

is more northern than the grojection of the other). This condition is expressed by the

double crossed arrow or directed from the left point of the more

southern x-pair to that of the more northern one.

Definition 3 Any chord diagram together with finitely many conditions of types 1-5
drawn at or under it is called a ©@-picture. The filtration of such a picture is the number
of chords in it.

10



Any such picture O of filtration 7 distinguishes some semialgebraic chain V() in the
cell of F; \ F;_y corresponding to the "chord diagram” part of the picture.

Namely, suppose that we have an identification (i.e. an orientation-preserving home-
omorphism) of the Wilson line R} of the picture and the source line R' of our maps
f:R' — R? Such a map f € K respects our @-picture if it glues together the endpoints
of any chord and satisfies all other conditions encoded in the picture.

Similarly to [9], a representation of a @-picture in the singular knot f : R' — R?is
any orientation-preserving diffeomorphism % : R} — R! such that the map f ok respects
this @-picture.

Now, consider any point of our maximal cell, i.e. a triple (C, f,t) as in (2). This
point participates in our chain V(0©) with multiplicity equal to the algebraic number of
representations of our picture in the singular knot f. In the present paper we consider
only Zy-homology, therefore the ”algebraic number” means just the parity of the number
of representations. In a future work the orientations of these varieties will be specified,
and the "algebraic numbers” will take any integer values.

In interesting cases (if we have no contradictory conditions, like e.g. the pictures

[
<< i fi' and 1)/ simultaneously) the chain V(©) has full dimension in our maximal

cell.

Example 3 The arrow diagrams of [9] can be considered as @-pictures with empty chord
diagrams, having only the conditions of type 1. In [9] a natural accounting of signs of
corresponding representations was specified. In our terms, it allows one to define the
corresponding integral chains in the space K; the Goussarov’s theorem [4] claims that
any finite-type knot invariant can be realized as a linear combination of such chains.

Definition 4 Any chain V(0O) of full dimension in a maximal cell of F;\ F;_y, defined
by a ©@-picture 0, is called a ©-chain. By the sum of several @©-pictures with one and
the same chord diagram we mean the homological sum of corresponding ©-chains.

Remark. We could consider only the normalized pictures in which signs ) or |} are put
at any active point. Indeed, any ©@-picture, some [ points of which are free of such signs,
can be decomposed into the sum of 2! similar pictures with all possible combinations of
arrows. Also, we could consider only the pictures with linear orderings of crabs from
the south to the north (indicated by double crossed oriented zigzags as in paragraph 5),
decomposing any picture with only a partial order into the sum of pictures corresponding
to all its extensions to linear orders.

However all this would increase the number of summands exponentially, which we do
not want to have. Any planar picture like a knot diagram carries all this garbage infor-
mation, which makes the algorithms referring to the graphical calculus quite inefficient
for real computerization.

11



R X

NS

X

Figure 4: X-degenerations

Remark. The virtual knots of [5], [4] (and equivalence classes of virtual knots) can be
also realized as domains in the space of maps R! — R>. Similarly, the singular virtual
knots of [4] should be thought of as certain domains in appropriate terms of the simplicial
resolution of the discriminant.

1.3 Standard degenerations

We are going to study some subvarieties of codimension one in our maximal cells, namely,
the subvarieties forming boundaries of all ©-chains considered in the previous subsection.
They can be achieved by the following standard degenerations of singular knots from
these full-dimension varieties.

X. One additional self-intersection can occur at some pair of points distant from the
endpoints of the chords and also from the ¢-points, see Fig. 4.

R1, R2, R3: Degenerations occurring during the standard Reidemeister moves, see
Fig. 5. In the left bottom picture it is assumed that the derivative of f at the "cusp”
point is not equal to zero and is directed "up” (respectively, "down”) if the parameter in
R} grows "from the right to the left” (respectively, "from the left to the right”) in this
plcture

R2, R3: Reidemeister moves of singular knots, cf. [1]. In the left bottom picture of
Fig. 6 it is assumed that the projections of two branches to R?% are tangent, but these
branches form a nonzero angle in the vertical plane at their intersection point.

Since we have fixed the flag of directions in R?, there are many non-isotopic (via
isotopies preserving the foliations into fibers of the projections p; and py along these
directions, but not the particular fibers) degenerations of these types: in total 4 of type
R1, 2 of type R2, 16 of type R3, 4 of type R2 and 12 of type R3. If we distinguish
the orientations of branches of our curve participating in the degeneration, then the
number of possibilities will be even more: it should be multiplied additionally by the
corresponding power of 2.

M1, M2, M3 (cf. [8]): essential changes of the Morse structure of the function
fo=peof: R — RY see Fig. 7. The crossing points of solid lines in these pictures
denote any possible x-pairs, i.e. over/under crossings corresponding to oriented zigzags
or intersection points corresponding to chords.
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Figure 5: Standard Reidemeister degenerations
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Figure 6: Reidemeister degenerations of singular knots
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M1 M2 M3

Figure 7: Essential Morse moves

The explicit formula for the homological boundary of any ©@-chain is a formalization
of these degenerations applied to points (2) of these chains, see §2 below. From this
point of view, each of degenerations R3 and R3 should be separated into two essentially
different kinds. Namely, in any of these degenerations three double points of the knot
diagram meet. It can happen that all these three points correspond to x-pairs of the
initial @-picture, or to only two of them. (If to one or zero then the corresponding
degeneration causes no contribution to the boundary.)

1.4 Chains of codimension one

In this subsection we specify a class of semialgebraic chains of codimension one in the
maximal cells of F; \ F;_;. The boundaries of all ®-chains described in §1.2 can be rep-
resented as sums of chains of this class (plus something in other cells). Any of the latter
chains can be distinguished by all the same conditions as in §1.2 plus exactly one con-
dition of "equality” type or a nongeneric coincidence of some active points participating
in the description of @-chains. These standard chains of codimension one will be called
©-chains, and the pictures distinguishing them the ©-pictures.

These pictures and corresponding conditions are described in the following paragraphs
1-6. In square brackets we indicate the type(s) of degenerations at which a singular knot
satisfying the corresponding condition can occur.

1. [X]. One non-oriented zigzag _/\_ or maybe _/_ _  denotes the
condition f(a) = f(b) for its endpoints a,b. These points cannot coincide with endpoints
of chords of our picture. A subvariety with such a condition appears as a piece of the

14



boundary of the ©-chain V(0) of full dimension, described by the same picture, but
with the non-oriented zigzag replaced by oriented (to either side) one, see Fig. 4 and
formula (17) below. Moreover, such non-oriented zigzags appear from the chords when
we take boundary operators H.(Fiyi \ F;) — H.(F;\ Fi_1) of our spectral sequence, see
the paragraph after Proposition 14 and formulas (27), (33), (39), and (80)—(88) below.

The pair of points connected by such a zigzag should be also considered as a x-pair.
It carries all the possibilities specified in the previous §1.2 for such pairs. In particular,
it can be the body of a crab, and the conditions (10) can be imposed on the endpoints of
such a non-oriented zigzag as well. Also, the conditions of type )7 or ||/ can be attached
at them.

2. [R3]. An endpoint of (exactly one) non-crossed oriented zigzag can coincide with

an endpoint of a chord. The arising picture like ~\__/ is congruent to (i.e. defines
the same condition as) another one having the same chord and the same ”free” endpoint
of the zigzag, but with their common endpoint coinciding with the other endpoint of the

chord:
PANNVAN

A ~
-, - S G e S AN T T

Again, we choose one of these two possibilities as the normal one: the corresponding
endpoint of our zigzag should coincide with the left endpoint of the chord. In particular,
in both equalities (11) the right-hand pictures are normal and the left-hand ones are not.
Any condition of type (10) can be posed for any two of three active points participating
in the figure formed by our zigzag and the chord.

J
2a. The additional condition of type ‘%’kl (where j, k, [ are the numbers of active
points a;, ay, a; participating in a configuration of type 2) means that the vector fi(a;)
(i.e. the projection of the derivative f'(a;) to R?) is a linear combination of vectors f;(a;)
and fi(ay) with positive coefficients. k

Conversely, the condition J i ; says us that no one of these three vectors in
R? lies in the angle between the other two. _

The last two conditions can arise in degenerations of type R3 if all three double
points of the singular knot diagram meeting at this degeneration correspond to x-pairs
of our @-picture. These conditions can be expressed also as Boolean functions of more
standard conditions like the ones described in paragraphs 3 and 4 of §1.2.

2!. The sum of two -chains whose sets of conditions coincide up to the orientation of non-
crossed arrows participating in the degeneration 2 will be expressed by a single picture with all
the same furniture, but with these opposite arrows replaced by the once crossed non-oriented

N N
zigzag: / \/ /
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3. [R3]. Exactly one endpoint of some non-crossed oriented zigzag can coincide with that
of exactly one other. The corresponding varieties satisfy obvious relations like

NN AN
~_ ~_ . (As usual, this expression assumes that these

three pictures coincide outside this fra%ment )

Again, the conditions of type %’kl or J : ; can be imposed on the derivatives of
maps f1 at these three points. It happens if all three double points of the planar knot diagram
meeting at this degeneration define X-pairs of our -picture.

3!. The sum of all 4 varieties coinciding with our one up to the reverse of one or both zigzags
participating in this degeneration will be shown by a similar picture with these oriented zigzags
replaced by non-oriented crossed zigzags:

AL AN A AN D

This picture expresses the condition that the projections to R? of all three involved points

coincide. It is congruent to two other pictures obtained from it by cyclic permutations of

vertices: /+\/+\ _ /+ _ /+\

| | . (13)

One of these three pictures is normal, namely the one indicated by the very right-hand picture

n (13).
4. [R2]. The conditions of type

]\/ZOI’]\/ OI’Z\‘/‘] (14)

(where j and [ are numbers of endpoints a;, a; of one and the same chord) means that the
direction "up” in R? is a linear combination of derivatives f/(a;) and f’(a;), both with posi-
tive coefficients (respectively, f'(a;) with a positive coefficient and f/(a;) with a negative one,
respectively, both with negative coefficients).

- l
4!. [R2]. a) The condition —+= j (where [ and j are numbers of points a;, a; of one and
the same X-pair) means that the projections of f/(a;) and f’(a;) to R? are co-directed. If our
X-pair is a chord, then the corresponding variety can occur also as the union of two varieties
defined in the previous paragraph:
I _ 1 J J l

)

b) The condition e j means that the projections of f'(a;) and f'(a;) to R* are of
opposite directions. If a;, a; are endpoints of a chord, then the corresponding variety can occur
also as the union

I _ 1 J ) J

Any of these two conditions is symmetric over the letters [ and j.
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Figure 8: Normal couple of crabs of type 6!

5. [M1, M2]. The condition j ++ or j <1, where j is the number (among all active points
of the picture) of an X- or @-point a;, means that the projection to R* of f'(a;) is directed
to the east (respectively, to the west). This X-point cannot be an endpoint of a non-oriented
zigzag, otherwise we have two conditions of equality type. .

5!. The sum of these two conditions is denoted by 4 .

In combination with conditions of type 5 or 5! the condition ﬂ‘] or ﬁ] can occur. (If
the projection of the first derivative to the meridian R' is equal to zero, as it follows from
the conditions of type 5 or 5!, then the projection of the second derivative can be positive or
negative.)

An important linear combination of the above-described conditions is expressed by the

subscript of type e ‘; . Tt says us that the vectors f5(a;), f4(a;), i.e. projections to R! of
the second derivative f”(a;) and the first derivative f’(a;), are directed into one and the same

side. The similar picture with opposite directions i ; can also appear.

6. [M3]. (Clinching crabs). For some crossed zigzag ﬂ_\ or »/_‘—\ both its endpoints
can be endpoints of (different) chords or oriented zigzags. Alternatively, some feet of exactly
two different crabs can coincide, or both these conditions can be satisfied simultaneously.

6!. The pictures like in Fig. 8, i.e. trees consisting of exactly two x-pairs (none of which is a
non-oriented non-crossed zigzag) and some more points joined with them by non-oriented single
crossed zigzags, indicate that the "longitudes” of all these points (i.e. projections fo = paof(-) of
their images to the "meridian” line R') coincide, and there are no restrictions on the "latitudes”
of all these images fi(-) (i.e. on their orders from the west to the east in R?). There can
be many pictures describing one and the same condition of this type. Only one of them is
normal (see Fig. 8): all its non-oriented crossed zigzags should grow from the left point of the
lexicographically more left x-pair, and the only one of these zigzags that joins it with the other
X-pair ends at the left point of the latter pair.

Important remark. Nowhere in our conditions 1—5, 1-6 the orientation of R? or R® can be
referred to (say, in the form that the projections to R? of derivatives of f at the points of a
x-pair form a positive frame). This is related to the fact that the entire theory (if it is good)
should be transferable without problems to the theory of knots in R™ with any n > 3, where
such references will fail.

Definition 5 Any chord diagram together with finitely many requirements of types 1-5 of
§1.2 and exactly one condition of types 1—6 of §1.4 drawn at or under it is called a -picture.
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Any such picture defines a ‘semialgebraic chain’ in this cell: it consists of all points (C, f, t)
as in (2) such that the picture has representations in f: these points should be taken with
multiplicities equal to the parities of numbers of these representations.

In all interesting cases such a subvariety has codimension one in the cell of F; \ F;_; corre-
sponding to its chord diagram.

Definition 6 Any semialgebraic chain of codimension one defined by a -picture in the cell
corresponding to its chord diagram is called a  -chain.

2  On differentials

The boundary of any -variety consists of three essential parts that lie respectively a) in the
same maximal cell of F;\ F;_1, b) in vice-maximal cells of F; \ F;_1, and ¢) in the lower term
F;_1\ Fi_3 of the main filtration of . In §§2.1-2.7 of this section we describe the part a), in
§2.8 the part b), and in §2.9 the part ¢).

Let us recall that for any ¢ > 1 the maximal cells of the canonical cell decomposition of
the term F; \ F;_; of the resolved discriminant are in one-to-one correspondence with i-chord
diagrams.

Proposition 1 For any mazimal cell of the canonical cell decomposition of F; \ Fi_y, i > 0,
and any -chain V(0©) in it (see Definition /), the boundary of this chain in the cell is equal
to a finite sum of -chains, defined by -pictures, any of which has no more active points than

the initial  -chain V(0).

The proof follows from the list of degenerations given in §1.3. Below we outline these
differentials. Although we deal here with Zo-chains only, the similar statement is true in the
case of any coefficient group and follows from the same considerations.

2.1 Degenerations preserving the number of active points

The most important for us are the degenerations that do not decrease the number of active
points. They can be formulated as degenerations of the conditions themselves, and not of the
configurations of active points. They are listed in the following eight equations:

0/ N =0 N = N (17)
o /N =0 /= /M (18)
o /M=o /M = fh (19)
J
o = oy = (20)
_ ! :
aK:{ = :tzj + I + j= 21)
_ ! :
a|¢<j— e R A (22)
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J (23)

1 .
SO :ﬁ:j bl 4+ ge

(24)

Namely, if the picture of our -chain contains some fragment indicated in the left part of
some of these equations under the @ sign, then its boundary contains the -chain in whose
picture this fragment is replaced by any summand of the right-hand part of the same equation
(i.e. in the part not containing the sign 9).

2.2 Other part of the boundary

The other part of the boundary operator, formulated in terms of degenerations of active point
configurations, is more difficult to describe because of the plenty of possibilities. In the rest of
this section we give a conceptual description of this part. Roughly speaking, we have to contract
into points an arbitrary set of intervals separating active points of the -picture, consider the
limit set to which our -chain tends when the active points of its elements undergo this collision,
check whether the codimension of this limit set is equal to 1, and describe it in terms of our
standard conditions 1-5 and 1-6.

In §2.3 we describe the way in which different X-pairs can coalesce (this can happen in
degenerations of types R2, R3, f{2, f{3) In §2.4 we study what can then happen with their
legs. In §2.5 we shall see how the segments connecting active points of one and the same
crab can be contracted (it happens in degenerations of types M1, M2). In §2.6 we study
collisions of points of different crabs not reflecting the collisions of their x-pairs: this happens
in degenerations of type M3.

Before starting, we introduce several general notions.

Definition 7 Given a -picture © of filtration ¢ and a collection of segments in its Wilson
line bounded by some its neighboring active points, the easy contraction of this collection is
the new picture, in which all these segments are replaced by points, all chords and zigzags
of © joining endpoints of these segments with some other points are replaced by analogous
chords and zigzags joining the resulting points, all chord and zigzags joining points which are
contracted to one point are erased, and any point obtained as a contraction of segment(s)
inherits all conditions of types 3—5 imposed previously on all endpoints of this segment (or
these segments).

The easy contraction is contradictory if the set of points (2) such that the resulting picture
has representations in f is of codimension greater than one in the corresponding maximal cell

OfFi\Fi—l-

The simplest example of a contradictory contraction is a single segment with conditions {}/
and /1! imposed at its two endpoints. Another one appears if both endpoints of our segment
are endpoints of chords: in this case the resulting limit variety lies in another cell. The third
important example is as follows. Consider the graph whose vertices are the active points of
the initial -picture ©, and the edges are its chords, oriented non-crossed zigzags, and also our
chosen segments of the Wilson line. An admissible path along this graph can go along the chords

19



A SN / A
SN T SN N

% % L l

T . AR
NVAN NA NVAN /

Figure 9: Contradictory and reduced contractions of pictures

and segments in any direction, but going along the zigzags it should follow their orientation.
If this graph has a nontrivial admissible cycle, then our contraction surely is contradictory.

For instance, the contraction of three thickened segments in any of two -pictures in the
upper row of Fig. 9a) is contradictory.

On the other hand, some of conditions expressed by the zigzags of a contracted picture can
be corollaries of some other zigzags and chords. Say, if we contract the thickened segments
in two pictures of the upper row in Fig. 9b) then we obtain three zigzags (respectively, two
zigrags and one chord) where one of zigzags is a corollary of two other (respectively, of the
other zigzag and the chord) and can be removed. The reduced contraction of a  -picture is the
composition of its easy contraction and the subsequent elimination of such superfluous zigzags,
see the bottom row of Fig. 9b).

2.3 Collision of different x-pairs

In this subsection we consider the boundary components of -chains, occurring in contractions
of segments, at least one of which is bounded by X-points.

We describe here only a very restricted part of such possible collisions. Namely, we suppose
that no conditions of type 4 are imposed at the points of the x-pairs participating in our
collisions, and these pairs are not related by conditions of type 5.

There are the following principal cases.

2.3.1 Collision of three x-pairs

This collision is a formalization (in terms of - and -pictures) of degenerations R3 and R3
in the case when all three double points of the knot diagram participating in this degeneration
(see upper right pictures of Figs. 5 and 6) are X-pairs of the initial -picture.

It is illustrated by last summands of formulas (90)—(93), (96), (97), (127)—(129).

Suppose that our -picture contains three x-pairs (a;,, @;,), (@5, @;,), and (a;,, a;,), at most
one of which is a chord and at least two are non-crossed oriented zigzags, such that |i; —i3| = 1,
lig — i5| = 1, |ig — ig]| = 1. (We do not assume that iy < i3 or i < iy or i5 < Ig.)

The easy contraction of all three segments [a;,, a;.], [ai,, @], [@i,,@is] turns these three
X-pairs to a triangle whose vertices correspond to these segments, and the sides are formed by
three zigzags (or two zigzags and one chord) inherited from these X-pairs. Suppose that this
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triangle is not contradictory. Then the boundary of our -chain contains a -chain, whose
picture is the reduced contraction of our three segments, with additional condition of type 2a
imposed at the newborn three points, see e.g. the last summands in formulas (90) and (127).
Namely, if all three vectors [a;, , ai,], [ai,, @] and [a;,, a;,] are equally ori(?]nted in R!, then we

k
|k }%* )
have the condition 7 | > otherwise we have the condition L where the middle
arrow corresponds to the point obtained by the contraction of the segment for which this sign
is different from these for other two segments.

2.3.2 Complete collision of two x-pairs

This is a formalization of degenerations R2 and R2. It is illustrated by the last summands in
(28) and (29).

Suppose that our -picture contains two x-pairs (a;, < a;,) and (a;, < a;,), at most one of
which is a chord and at least one is a non-crossed oriented zigzag, and |i; —is| = 1, |[io —i4| = 1.

Again, we contract the segments [a;,, a;,] and [a,,, a;,] into points. This contraction can
be contradictory only if both x-pairs are zigzags, and the resulting two zigzags have opposite
orientations. If it is not contradictory then the corresponding reduced contraction consists of
one chord or one zigzag. In this case, the boundary of our -chain contains the -chain, whose
picture is this reduced contraction with one additional condition of type (14) or (15) or (16)
(where [ and j are the numbers of points of the newborn X-pair in the complete list of active
points of the new -picture). Namely, if we had two (non-contradictory) zigzags, so that the
reduced contraction is one zigzag, then we have additional condition (15) or (16) depending on
the sign of the product (a;, — a;,)(a;; — a;,). If we had a chord and zigzag, and the reduced
contraction is one chord, then we get an additional condition of type (14).

2.3.3 Partial collision of two x-pairs

This is a formalization of degenerations R3 and R3 in the case when only two of three double
points of the (singular) knot diagram correspond to X-pairs of the initial -picture.

Suppose that our -picture contains two X-pairs (a;,,a;,), (ai,,a;,), and |a; — a;] = 1
(again, we do not assume that a;, < a;, or a;, < a;,).

Then the boundary of the initial -chain contains the -chain obtained from it by the easy
contraction of the segment [a;,, a;,].

Remark. This is true even if the more strong condition considered in §2.3.1 or §2.3.2 is
satisfied. For instance, the formula (127) on page 54 shows that the boundary of the -chain
—<~X—="" contains not only the variety shown in the end of (127) (described in §2.3.1)
but also some five varieties obtained by partial collisions of different Xx-pairs of our picture (see
summands 4 through 8 in the right-hand part of (127)). Similarly, the formula (34) on page 34
contains not only its last term (predicted in §2.3.2) but also three terms obtained by partial
contractions.
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2.4 What can happen with their legs

If points of several x-pairs of a -picture tend to one another, then the feet of their crabs also
can coalesce.

The components of the boundary indicated in the subsection 2.3 correspond to the case
when it is not so, i.e. all the feet of different crabs tend to different points of the source line
R! and, moreover, they do not tend to the x-points of these crabs. In the present subsection
we count all the other possibilities corresponding to the same collisions of x-pairs.

First we consider a complete collision of two X-pairs as in §2.3.2. Suppose that we can

distinguish several feet a;, ,...,a;. of one of these pairs, and equally many feet a;,,...,a;, of
the other in such a way that for any o =1,....,r
a) |joz - loz| =1,

b) either both corresponding legs are oriented towards these feet or both are oriented from
them.

(Again, for simplicity we assume that conditions of type 4 are not imposed at all these
points.)

Then the boundary of our -chain contains a -chain in whose picture our two X-pairs are
changed in correspondence with §2.3.2, and additionally any couple of legs with endpoints at
a;, and a;, is replaced by only one such leg.

In the case of the partial collision as in §2.3.3, the situation is almost the same as in the
case of a complete collision, with only one possibility more (see e.g. the last summands in
formulas (96)—(105), (130)—(134)).

Namely, suppose that the x-pair (a;,a;,) has a foot a;, such that |iy —i5| = 1, i5 ¢
{j1,--yjr,l1,..., 1. }. Then the boundary of V(©) contains also the -chain in which the x-
pairs are changed in correspondence with §2.3.3 (i.e. by the easy contraction of the segment
[ai,,a;,]), any pair of legs with feet a;,,a;,, o = 1,...,r, is replaced by one leg, and the leg
with the foot a;, disappears, but additionally a condition of type (10) on the tangent vectors
of f at the resulting degenerate curves appears. Moreover, in the same way one more leg of
the x-pair (a;,, a;,) with a foot a;,, |ig — 4] = 1, can perish.

Finally, suppose that we have the collision of type §2.3.1 of three x-pairs, and several
disjoint subsets of the union of their feet are distinguished, such that

a) any subset contains two or three feet all whose crabs are different;

b) these subsets consist of neighboring active points of the picture, i.e. they are not sepa-
rated by other such points;

c) either all feet in any such set are the arrows of corresponding legs, or all these feet are
their tails;

d) for all such sets of cardinality three, their middle points belong to one and the same
crab.

Then the boundary of our -chain contains a -chain in whose picture our three x-pairs
are changed in correspondence with §2.3.1, and additionally any couple or triple of legs with
feet at the points of one subset fixed above is replaced by only one leg.

Additionally, some one, two or three legs (no more than one for each of these x-pairs) can
disappear imposing instead some conditions on the derivatives of f; at the three X-points of
the arising configuration. If there are three such perishing legs, then all their feet cannot be
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tails or arrows simultaneously; one of them whose type (in this sense) is different from that of
other two should belong to the crab mentioned in condition d) above. This leg (if it exists)
has one characterization more: its foot lies in one of three contracting segments. There can
be only one leg with this property; if it exists then the segment containing this foot should be
bounded by the points of x-pairs different from the Xx-pair from which this leg grows.

If there are only two such perishing legs and they have one and the same type (i.e. are
oriented to or from their feet simultaneously), then the corresponding two crabs have only
marginal feet in any above-considered set of cardinality three, see especially item d) above.

2.5 Collisions inside crabs

If two feet of one and the same crab of our -picture are neighbors (i.e. are not separated by
other active points), and both corresponding legs are either directed to them or from them,
then the boundary of the corresponding -chain contains a similar picture with these two legs
replaced by one leg and the condition of type 5! imposed at its foot. This is a formalization of
the degeneration M2.

If a foot of some crab is a neighbor of some x-point of the same crab, then we can eliminate
this foot (and the corresponding leg) imposing instead one of two conditions 5 at this x-point:
the choice of this condition depends on the orientation of this leg. This is a formalization of
the degeneration M1. See e.g. two last summands in (31)

Remark. A priori there is one possibility more, when both these points belong to the x-
pair of the crab, i.e. are connected by an oriented non-crossed zigzag, and the corresponding
degeneration is of type R1. However, this situation cannot occur in the real calculations related
with the knot invariants, because the initial data of our algorithm should satisfy the 1-term
relation. On the other hand, this situation can occur in an essential way in the calculation of
higher-dimensional cohomology classes, see e.g. [16].

2.6 Clinching crabs

Consider all active points of some two crabs and suppose that there is a non-empty set of
non-intersecting pairs (a;,,a;,) C R, a=1,...,r, such that for any

a) all points a;, are active points of the first crab, and all points a;, are active points of
the second;

b) [jo = lal = 1

¢) aj, and a;, cannot be x-points simultaneously;

d) the simultaneous contraction of all segments [a;,, ¢;,] is not contradictory in the sense
of §2.2.

Again, we assume for simplicity that the conditions of type 4 are not imposed at all points
of these crabs. Then the boundary of the initial -chain contains the variety whose picture is
the reduced contraction of all segments [a;,, ar,].
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Figure 10: Degenerations into smaller cells

2.7 Impact of other conditions

Finally, suppose that some conditions of type 4 or 5 were imposed at the active points of the

initial -chain V(©) participating in the degeneration. Then, generally speaking, the part of

its boundary 0V (0©) defined by all possible degenerations of configurations of active points of

O will be only a part of the -chain described in the previous subsections 2.3 — 2.6. It is easy

to check that anyway the homological boundary of our -chain will be a linear combination of
-chains, in correspondence with Proposition 1.

2.8 The boundary in vice-maximal cells

In the previous subsections of §2 we have considered the pieces of the boundary of a -chain

that lie in the same maximal cell of F; \ F;_; as the initial chain. Now we consider some other

part of this boundary: the one inside the vice-maximal cells of the same term F; \ F;_; of the

filtration of the resolved discriminant. It is related with the degenerations of chords of our
-picture, see Fig. 10.

In the left bottom picture of Fig. 10 it is assumed (unlike the similar picture of Fig. 5) that
the derivative of the parametrizing map f : R} — R itself is equal to zero at the "cusp” point,
and not of its projection f; only. In the right-hand bottom picture it is assumed that the vector
"up” in R? belongs to the octant formed by three segments oriented from the intersection point
towards their "longer” parts.
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Proposition 2 The degeneration R1 actually cannot occur in our calculation of knot invari-
ants.

Proofis by induction over our algorithm; here is its idea. The initial data v of our algorithm
(i.e. the "weight system”) satisfies the 1T-relation, i.e. the endpoints of any chord of any chord
diagram constituting v are separated in R! by endpoints of some other chords. On the next
steps of the algorithm some of these separating chords can be destroyed, but not traceless. It
follows from the construction of the algorithm, that for any chord of any -picture actually
occurring in its execution one of two holds:

a) there is an active point of this picture between the endpoints a, b of this chord,

b) the vectors f{(a) and fi(b), i.e. the projections to R? of tangent vectors at these end-
points, are co-directed.

Any of these two conditions prevents the degeneration of type full, i.e. the corresponding
piece of the boundary will have too large codimension to participate in homological calculations.

A similar consideration allows us not to consider the degeneration R1, see Remark in §2.5.

The study of the degeneration R3 is very similar to that of degenerations R3 and R3
above. Again, from the point of view of formal calculations it should be subdivided into two
subcases depending on whether the unique overcrossing point of the singular diagram in its
upper picture is counted in the -picture by an oriented zigzag or not. These two possibilities
are illustrated by two last (respectively, all but two last) summands in the right-hand part of
any of equations (59)—(67). Asin §2.4, some legs can vanish in this collision, see e.g. two last
summands in any of equations (68)—(71) or four last summands in (72).

The notation of pieces of the boundary of a -chain in the cell obtained by this degeneration
is very similar to what we had previously: it consists of the notation of the cell with conditions
of type 1, ..., 5 drawn at or under it.

Additionally, we should consider one geometrical condition more. Namely, suppose that we
have a vice-maximal cell of 4T type, i.e. its notation consists of ¢ —2 chords and one tripod with

. k
a marked foot, see (5). Suppose also that the condition J ‘_< ; described in paragraph 2b
of section 1.4 is imposed on the three endpoints of this tripod. Then the additional subscript
(respectively, ) means that the direction "up” (respectively, "down”) in R? lies in the octant
formed by three tangent vectors of f at the e}.ldpoints of this triple.

Similarly, if we have the condition }%’kl on the projections of tangent vectors at these
three points, then the condition (respectively, ) means that the direction "up” and the
vector f/(a;) penetrate the plane in R?® spanned by f’(a;) and f’(a;) in one and the same
direction (respectively, in different directions). For illustrations, see last two terms in any of
equations (59)—(67).

2.9 The boundary in the lower term of the filtration

Given a -chain in some maximal cell of F; \ F;_y, its boundary in F;_; \ F;_o consists of i
-chains of filtration ¢ — 1, corresponding to all chords of the initial -picture and obtained
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from them by replacing the chord by an nonoriented noncrossed zigzag.

3 Description of the algorithm

3.1 Hierarchy of subvarieties of codimension 1

Our algorithm will use the induction over the complexity of -chains, i.e. over some partial
order on the set of such chains in an arbitrary maximal cell of F; \ F;_;. Let us describe this
partial order.

First of all, we order these -chains by the number of active points in the corresponding

-picture. If these numbers of two pictures are equal, then we subordinate them by the type

of the (unique) condition of equality type described in items 1, 2, 3, 4, 5, or 6 of §1.4: the -
chain with condition 1 is older than that with condition 2, etc. If these numbers also are equal
for some two -chains with equally many active points, then in cases 1—5 we subordinate
these chains by the lexicographic order (in the Wilson line, counting from the left to the right)
of the collection of active point participating in such a condition. In the case of conditions 1,
3, 4, 5 this is all, but the case 2 has three subcases. Namely, the "free” (i.e. not belonging to
the chord) endpoint of the zigzag can lie to the left (in the Wilson line) of both endpoints of
the chord, or between them, or to the right. We subordinate these subcases in this order.

The -chains with degenerations of type 6 are partially ordered in the following complex
way. First, we compare the "longitude” (i.e. the projection f; = pyo f to RY) of the clinching
couple of crabs, participating in this degeneration, with that of all other crabs, using only the
information contained in the double crossed arrows of our pictures as in part 5 of § 1.2. Namely,
the highest order is due to such pictures that no other crab is definitely more southern than this
couple. Such pictures that exactly one crab definitely is more southern have the next order,
etc. If these data for some two -chains are equal, then we compare the lexicographic orders
of the four points participating in two X-pairs of this degeneration among all active points of
the Wilson line.

This is still not a linear order of the set of all possible -pictures. Say, two pictures that
differ only by the directions of several non-crossed or once crossed arrows or by the signs in
certain conditions of inequality type (described in §1.2) will be incomparable.

3.2 How the algorithm works

It starts from a weight system of rank k, i.e. from a cycle v in Fy \ Fy_y given by a linear
combination of several maximal cells corresponding to k-chord diagrams. Then we calculate its
first boundary d* (7), which is the sum of several -chains in maximal cells of Fj_1 \ Fj_2, see
the paragraph after Proposition 14 on the page 31 and also formulas (27) and (39). Similarly,
the initial data of the rth step of the algorithm, r = k — ¢, is some cycle d"(y) C F; \ Fi_y
constructed on the previous steps.

On this step we try to span this cycle by a relative chain 7, such that dy, = —d"(v) in
F;\ F;_1. We do it in any maximal cell of F;\ F;_; separately. Namely, we fix such a cell M,
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consider the chain d”(y) N M of codimension 1, and try to span it by a chain yM C M of full
dimension such that dyM 4 (d"(y) N M) C M.
Denote by A this chain d”(y) N M which we should kill by the chain vM.

Inductive conjecture. A is a finite linear combination of -chains in our cell, any of which
is distinguished by at most r — 1 conditions of inequality type 1-5 and exactly one condition
as in item 1 of §1.4 (i.e. a non-crossed non-oriented zigzag).

Consider the group of all linear combinations of -chains in our cell, distinguished by at
most  — 1 conditions of inequality type as in §1.2 and one arbitrary condition of equality type
(i.e. as in items 1-6 of §1.4).

The above-described ordering of -chains defines an increasing filtration in this group.
Given any such -chain, the term of the filtration lead by it consists of sums of similar varieties
lower than or incomparable with it.

We kill the cycle A by an inductive process, any step of which will decrease the filtration
of our sum A of -chains.

Namely, we select those of -chains in A which have the greatest possible number of active
points. Denote this number by N. Among -chains with N active points we select those which
contain a non-oriented non-crossed zigzag as in condition 1 of §1.4. Among all such -chains we
choose the ones for which this zigzag is (lexicographically) as left as possible; let A be the sum
of all such -chains in A. Denote by A the sum of -chains whose -pictures are obtained
from -pictures of varieties from A by replacing the non-oriented non-crossed zigzag by an
zigzag oriented to the left (or maybe to the right: it is important only that all such replacing
zigzags should be directed to one and the same side for all summands in fl)

Example 4 If A is given by the sum (27) then the leading chain A is the first summand in
(27), and A is indicated in the left-hand part of (28). The filtration of the chain A48 A is then
strictly lower than that of A. The leading term of this sum is equal to the second summand in
(27). We kill it by the left-hand part of (29). The remaining sum consists of -chains with no
more than 3 active points, in particular its filtration is even smaller.

A similar situation holds also in the general case. Namely, we have the following general
statement.

Proposition 3 If A # 0 then the filtration of the cycle A+ A is strictly smaller than that of
A.

Proof. Let W be one of -chains constituting A. By Proposition 1 its boundary W is the
sum of several -chains whose -pictures have no more than N active points. For any such
bounding -chain obtained from W by any degeneration other than of type X (see §1.3), its
filtration is strictly smaller than that of all components of A. Thus the unique reason by which
the chain A 4+ dA could have filtration greater than or equal to that of A is as follows: the
non-oriented zigzags in pictures of components of dA arising as degenerations of some oriented
non-crossed zigzags of A can be lexicographically ”more or equally left” than these from A.

For instance, consider the equation (93). Suppose that A contains the -chain given by the
second summand of the right-hand part of (93) and we try to kill it by the -chain W shown

27



in the left-hand part. Then, aside of our killed -chain, 9W contains the first summand in
(93), whose filtration is strictly greater. Fortunately, the sum of such harmful -chains in the
boundary of A always vanishes.

Indeed, denote by A the sum of -chains in A+ A having N active points and such "more
or equally left” zigzags.

Lemma 1 If the chain A is not equal to zero, then A # 0 in our cell, in contradiction to the

definition of A.

Proof. By construction, the pictures of all summands in A have a common oriented zigzag,
arising from the common non-oriented zigzag of -chains of A. Replacing the latter oriented
zigzag by a non-oriented one in any of these -chains, we obtain a subvariety of codimension
2 in our cell. If A # 0, then the chain formed by all such subvarieties also is not equal to
zero. But this chain is a part of the boundary in the cell M of the cycle A = d"(v) N M; this
part cannot be killed by any other components of boundaries of summands of this cycle. A
contradiction.

Applying this trick several times we kill all the summands in A whose -pictures contain N
active points and a non-oriented zigzag as in paragraph 1 of §1.2. Denote by A; the resulting
cycle in M, homologous to A but having no such summands.

Consider all the -chains in Ay with the same number N of active points and the equality-
type condition of type 2. Denote the sum of them by B.

Proposition 4 The chain B can be described by -pictures in which all the equality type
conditions are of type 2! only. ILe., any its summand in which a chord is connected with a
third point by a non-crossed oriented zigzag, can be matched by another summand with almost
the same -picture (up to an orientation-preserving homeomorphism of the Wilson line), only
with the reversed orientation of this zigzag, so that the sum of these two pictures can be replaced

by one picture with one crossed non-oriented zigzag

Proof follows immediately from the condition 0A; N M = 0.

Let us write the chain B in this way. Let B’ be the sum of all -chains in B having the
maximal possible order in the sense of §3.1. Let B be the sum of similar pictures, obtained

from all the pictures of B’ by replacing any crossed non-oriented zigzag , connecting
a chord with a third point, by the similar zigzag oriented to the right in the Wilson line (or
maybe to the left, but uniformly over all pictures of B').

Proposition 5 If B # 0 then the filtration of the cycle Ay + OB is strictly smaller than that
Of Al.

Proof is very similar to that of Proposition 3.

So, we can kill all the summands in Ay with N active points and condition of type 2.
Among the -chains forming the remaining cycle (which we shall call Aj), consider the chains
with N active points and degeneration of type 3 only. The sum of all these -chains in Ay will

be denoted by C.
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Proposition 6 The chain C can be represented as a sum of -varieties, whose -pictures
contain equalily type conditions of type 3! only.

Proof is the same as for Proposition 4.

Let us write (' in this way. We assume that the condition of type 3! of any its -picture is
written in the normal way, i.e. its two crossed non-oriented zigzags have common left points,
see (13). Let C' be the sum of the -chains in C' having the maximal possible order in the
sense of §3.1. Denote by C' the sum of -chains, whose pictures are obtained from pictures of

C" by the rule

, i.e. by replacing the more left crossed non-oriented zigzag in

any such condition by the crossed zigzag oriented to the right (or maybe to the left, but then
uniformly for all -chains in C).

Proposition 7 If C' # 0 then the filtration of the cycle Ay + OC' is strictly smaller than that
Of AQ.

Proof coincides with that of Proposition 5.

Repeating this, we obtain a chain As homologous to A in M, all whose -chains have no
more than N active points, and those with exactly N points have no degenerations of types 1,
2 or 3. Denote by D the sum of such -chains in A3 with degeneration of type 4.

Proposition 8 The chain D can be represented as a sum of -chains whose -pictures contain
equality-type conditions of types 41a) and 41b) only.

Proof is the same as that of Proposition 6.

Let us write D in this way. Let D’ be the sum of the -chains in D having the maximal
possible order in the sense of §3.1, i.e. with the most left (lexicographically) possible position
of the pair of points participating in these conditions. Denote by D the sum of similar -chains

obtained from pictures of D’ by replacing all pictures :‘: J — l (or maybe by

L ~—1J , but then uniformly), and replacing all pictures :‘:: j with [ < j by b~ {

(or maybe by Ut~ but then uniformly).

Proposition 9 If D # 0 then the filtration of the cycle Az + dD is strictly smaller than that
Of Ag.

Proof is the same as that of Proposition 7.

Repeating this reduction, we obtain a chain A4 homologous to A in M, all whose -pictures
have no more than N active points, and those with precisely N do not have degenerations of
types 1, 2, 3, or 4. Denote by I the sum of all such pictures in A4 with exactly N active
points and degeneration of type 5.
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Figure 11: Killing a variety of type 6!

Proposition 10 The chain I can be described by the -pictures whose equality-type conditions
are of type 5! only.

Proof is the same as that of Proposition 8.

Let us write F in this way. Order the -pictures of F in respect with the number of the
point at which the condition of type 5! occurs (among all active points) and denote by F’ the
sum of such varieties with the minimal value j of this number. Let E.be the sum of similar
varieties obtained from varieties of E’ by replacing these conditions g]|_> of type B! by 1}/ (or
maybe by 7).

Proposition 11 If F # 0 then the filtration of the cycle Ay + OF is strictly smaller than that
Of A4.

Proof is the same as that of Proposition 9.

Repeating this reduction, we obtain a chain Ag, all whose pictures have no more than N
active points, and those with exactly N points have degenerations of type 6 only. Denote the
sum of these varieties by F.

Proposition 12 The chain ' can be combined into a sum of -chains, all whose equality-type
conditions are the clinching crabs having no oriented non-crossed zigzags joining their X-pairs
to one another or to some p-points: all links between these X-pairs or between X-pairs and
their feet can be described by non-oriented single crossed zigzags as in paragraph 6! of §1.4
only.

Proof coincides with that of Proposition 10.

Let us write the chain F’ in this form and select those of its summands which have the
greatest order in the hierarchy of §3.1 (i.e., with the smallest number of other crabs definitely
more southern than these participating in the condition of type 6!, and among varieties mini-
mizing this number only those with the lexicographically most left position of the four points
participating in this degeneration). Denote by F’ the sum of these selected summands. Let
F be the sum of similar -chains, in which the clinching crabs of -pictures of summands of
F’ are divorced in the following way: the x-pair having smaller lexicographic order than the
other one inherits all the legs, and the other x-pair losses all legs but becomes more northern
than it.
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Le., in the normal picture of the -chain (see Fig. 8) we replace the unique non-oriented
once crossed zigzag, joining the X-pairs, by a double crossed zigzag oriented from the lexico-
graphically more left X-pair to the more right one, see Fig. 11. (Again, we can replace the
orientation in this rule by the opposite one, but then to do it uniformly for all -chains in F'.)

Proposition 13 If F = 0 then the filtration of the cycle As + OF is strictly smaller than that
Of A5.

Proof coincides with that of Proposition 11.

Repeating, we finally kill all the -chains with N active points, i.e. reduce the cycle A to
a sum of -chains with < N — 1 such points. Continuing by induction over N, we eliminate
all the -chains in our cell M C F; \ F;_;. The sum of all varieties A,B,... F participating
in this inductive process on all its steps is the desired chain ¥ in the cell M.

Remark. On any step of the algorithm we have two choices of the variety of full dimension
killing the leading (of highest filtration) summands of a cycle of codimension 1 in M. In
our stupid algorithm, the first of these choices is always selected: the other possibilities are
indicated in italic letters before the statements of Propositions 3, 5, 7, 9, 11, and 13. A
more smart algorithm (working faster and providing more compact answers) should choose
them using some criteria which are not clear to me yet. Also, the demands of uniformity
of switchings in these possibilities probably can sometimes be weakened, which will give us
additional degrees of freedom.

Suppose now that such chains vM are constructed in all the cells M of maximal dimension
in I; \ F;_1 (i.e. in the cells corresponding to the i-chord diagrams). The sum of these chains
M over all cells M provides a homology in F;\ F;_; between our cycle d” (v) of codimension 1
and a semialgebraic cycle in the union of all other cells. By dimensional reasons, the latter cycle
is a linear combination of some cells of vice-maximal dimension. It should be homological to
zero in F; \ F;_1: otherwise our cycle v cannot be extended ("integrated”) to a knot invariant,
and the algorithm stops. By the Kontsevich’s stabilization theorem, this cannot happen in
similar calculations of rational knot invariants; the homotopy splitting conjecture for knot
discriminants (see e.g. §5.1 in [14]) would imply the same for arbitrary coefficients.

Therefore this linear combination of vice-maximal cells is equal to the boundary of a linear
combination of maximal cells (corresponding to chord diagrams). Thus we need only to add

the latter linear combination to the chain M%M constructed previously. The obtained sum
is the desired chain v, C F; \ F;_1 such that 9v, = —d"(vy) in F; \ Fi_1.

Proposition 14 (step of induction) If all the chains v C Fi\ Fr—1, 71 C Fr—1 \ Fr—2, ...,
v, C F;\ Fi—1 (where i = k —r), were constructed as above, then the next boundary d"T1(y) of
their sum v+ ~vy1+ -+, in Fi_1 \ Fi_3 is a semialgebraic cycle, whose intersection with any
mazimal cell of F;_1 \ Fi_q consists of finitely many -chains, any of which is distinguished by
no more than r conditions of inequality type as in items 1-5 of §1.2, and exactly one condition
of equality type as in item 1 of §1.4.

More precisely, the sum y+...47,_1 contributes nothing to this homological boundary (as
its geometrical boundary has too small dimension there), and any -chain participating in -,
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contributes precisely 7 summands (some of which can then annihilate with some others) whose
-pictures are obtained from the -picture of this -chain V' by replacing one of chords by a
non-oriented non-crossed zigzag as in item 1 of §1.4.
The step of induction is complete.

Remark. Exactly the same algorithm will give a combinatorial formula in the case of integer-
valued invariants: it remains only to specify the (co)orientations of all subvarieties and condi-
tions from §1.

Problem. Is it possible to realize the entire sequence of spanning chains +q,...,vx by the
sums of -varieties with conditions of type 1 only?

4 Calculation of a combinatorial formula for the knot
invariant of second order

In this section we give the first illustration of our algorithm, showing how it calculates a
combinatorial formula for the unique order 2 knot invariant vs reduced mod 2.

Theorem 1 The value of vy on a generic long knot f : R1 — R? is equal (mod 2) to the sum
of three numbers (see three summands in (25)):

a) the number of configurations {a < b < ¢ < b} C R such that f(c) is above f(a) and
f(d) is above f(b);

b) the number of configurations {a < b < ¢} such that f(c) is above f(a) and the projection
of f(b) to R? lies to the east of the (common) projection of f(a) and f(c);

c) the number of configurations {a < b} such that f(b) is above f(a) and the direction "to
the east” in R? is a linear combination of projections of derivatives f'(a) and f'(b), such that
the first of these projections participates in this linear combination with a positive coefficient,
and the second with a negative one.

A
7

The proof takes the rest of this section.

A A
N e

4.1 Principal part
The principal part of vg in Fy \ F} is expressed by the chord diagram

£
N (26)
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4.2 First differential and its homology to zero

The boundary of the principal part (26) in F} is equal to

NNV )

Let us span this boundary by a chain in the maximal cell of Fy. The stupid algorithm
associates to the elements of (27) the -chains described in left parts of equations (28), (29).

AN AN
NS A

(28)

g N AN
T T T
(29)

(Formally, there should be two summands more in any of these two formulas, in particular in
(29) they coincide with two pictures of the left part of the equation (11). But these summands
are equal to one another and annihilate; the same will happen in the case of integer coefficients
as well.)

According to these equations, the sum of these two -chains provides a homology between
the cycle (27) and the chain (30).

\l>+\¥4
=+, (30)
The stupid algorithm transforms the latter chain to the sum of left parts of equations (31),
(32).

—ﬁ\++
LJLJ%J%J

AN/ N A NN
- 1 2 i

2 2 (32)

According to these equations, the cycle (30) is equal to the boundary of the sum of varieties
indicated in left parts of (31), (32).
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Finally, we get that the chain v, equal to the sum of four -chains indicated in left parts
of equations (29), (28), (31) and (32) provides a homology in Iy between the cycle (27) and
the vice-maximal cell of I} taken with some coefficient.

Lemma 2 The latter coefficient is equal to zero, so that the cycle (27) is equal to dy1 in Fy.

Proof. The boundary of the chain ~; in the vice-maximal cell of F} can be calculated in the
following way. For any of four -chains constituting v; we let the endpoints of the unique chord
of the -picture tend to one another in R. and consider the subvariety in the vice-maximal
cell swept out by all the limit positions of singular knots from our chains after this contraction.
In all four cases this limit variety consists of pairs (a point * € R, a map f € K such that
f'(¥) = 0) satisfying one condition more. Namely, for the picture in the left-hand part of (28)
(respectively, of (29)) this condition is as follows: there exists a point a < * (respectively, a > *)
in R. such that f(a) lies below (respectively, above) f(*) in R3. For both varieties indicated
in left-hand parts of (31) and (32) the limit condition claims that the second derivative f}'()
is directed "to the east” in R2.

All these additional conditions specify subvarieties of codimension one in the vice-maximal
cell of Fy, and lemma is proved.

4.3 Second differential and its homology to zero

The projection of the chain v; to ¥ is indicated in (33):

AN AN A

1

=

2 (33)

The stupid algorithm transforms these -chains to -chains indicated in left parts of equal-
ities (34)—(36).

e v S vl
A *@*Q

Vi

1
2 (34)

P S
N

-
_|_
_|_

[N

g

1+ —



A AN
1 1 1
e - 1 2 :’::2

2 2 (36)
The sum of the third, fourth, and fifth terms in the right-hand part of (34) equals the
second summand in (35). Therefore the sum of right-hand parts of (34)—(36) is equal to the
cycle (33), and the sum of -chains indicated in left-hand parts of (34)—(36) is the desired
combinatorial formula.
Theorem 1 is thus proved.

5 Calculation of a combinatorial formula for w3

This is the next demonstration of the algorithm: the calculation a combinatorial formula for
the unique order 3 invariant vs reduced mod 2.

Theorem 2 A combinatorial formula for the third order invariant (mod 2) is given by the sum
of 14 -chains indicated in (37).

ANAN
~_

™

N
S
N

+w+

AN
7
<<

L
AN

N
AN
NS
<<

_|_
_|_

\/A+A+

2 3 4
A ) )

w =

}

LA
N

1
= 3 (37)
5.1 Principal part
The principal part v of v in F3 \ F is equal to the sum of three chord diagrams
: -+ —— \
N N Y, N/ (38)

(It is essential here that we consider the mod 2 homology: the similar formula with integral
coefficients is true for homology of knots in R” with even n > 4 only.)
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5.2 First differential and its homology to zero

The boundary d'(v) of this principal part in Fy \ Fy is equal to the sum of nine -chains

+ + i
N N A N A

Y Y
== t T — = T

+ + : + \
7 7 (39)

These -chains lie in all three maximal cells of F, \ Fy: the second chain in the second cell
of (4), 6th and 7Tth chains in the third, and all six remaining chains in the first cell of (4).

Let us span this sum by a chain in F, \ Fy. The stupid algorithm associates to elements of
(39) the -chains indicated in left parts of equations (40)—(48).

)~ = -+ — +
< ot X7
| =
NS N (40)
40
9 . _
N A A N N )
9 N _ Y + /A +
N N N
+ —L 5% + \
X/t </ )
0 : L = : e >+
N — |—; NN
PANEY S e A
N N N
>~ (43)
N -, (AN,
N __J
b AN N N L Y
YA — >
1~ 3
(44)
I —— N Ay R s W e
(45)



[\ A U [\ A (46)
o : = L~ + L
LN — — T
I AN — Y —
- X -,
o> "4 (47)
o ‘ = L ‘ T A
N N, ~—
TR ASVA NS SR /A N W
AN Ve N— -
N (48)

These equations imply easily the following statement.
Proposition 15 The cycle (39) is homologous to the chain (49) in the union of maximal cells

of F3 \ Fy. This homology is provided by the nine varieties indicated in left parts of equations
(40) —(48).

Ja— +/—\/++/ ) +fﬂ N

e N P
4 /N I
— N N
=+ 5 —+ (19)

Indeed, the summands in the right-hand parts of these equations satisfy the following
relations (where (a;b) denotes the bth component of the right-hand part of the equation (a)).

(40;4)=(43;4), (40;3)=(43;3), (45;2)+(46;2)=(49;5), (43;5)+(44;6)=(49;6),

(4735)+(48:6)=(49:7), (42:2)=(47:2), (42;3)=(47;3), (42;:4)+(48;2)=(49:2),

(40;2)+(44;5)=(49:1), (44:3)4(48;5)=(49:4), (44;2)+(48;4)=(49:3),

(44:3)=(47:4), (43:2)=(48:3).

The stupid algorithm transforms the chain (49) into the sum of left parts of equations
(50)—(56).

P N A W A U AR
TN - ,
1+ (50)
8/—\ﬁ\:/—\ﬁ\+/_\ﬁ\+/_\
N N N N 651
4
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g L Y Y LN
N N T 52)
N S NI

a / /
2 (53)
5 A = al
— [ /AR /A
J % S A N A B
<7 — 1 1— 3
1 3 (55)
gL N = \ + LN + LN
4 N N N
< — 2 2 4
2 4 (56)
According to these equations, the cycle (49) is homologous to the chain
N + LN
N N
3 4 (57)

Indeed, we have (50;3)=(52;2), (51;2) =(53;3) (52;3) + (55;3) =(57;1) and (51;3) + (56;3)
=(57;2).

Varieties indicated in (57) are the boundaries of two varieties shown in (58).

e N
- N—
(N f (58)

Finally, we get the following statement.

Proposition 16 The cycle (39) is homologous in Fy \ Iy to some linear combination of vice-
mazimal cells of the canonical cell decomposition. This homology is provided by the sum of
eighteen  -chains indicated in left parts of equations (40)—(48) and (50)—(56), and in the
formula (58).

Proposition 17 The linear combination of vice-mazimal cells mentioned in the previous lemma
is equal to zero. In particular the cycle (39) is equal to the boundary in I3 \ Iy of the sum of

these eighteen -chains.

Proof. Consider the part J of the boundary operator associating to any -variety the
intersection of its full boundary with the union of vice-maximal cells (see the beginning of §2).
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Accordingly to §2.8 this operator J acts on our eighteen

equations (59)—(76).

3 /_\ — /‘\O_I_ O/l\—|- O/‘\_I_ /(L\—|—

N NS % N N
+—A——|——A

%»12 %»12

3 3
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AN A A VA I A 1+A@1
%»2 é»z
R N S S S
S NS ~ T NS S
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%»12 %»12

R e N S S S
_|_4@AL + A,
%»21 %»21

3 3

9 \o://\l\/\+/\y/\+ 0/1\2 + AQ
< <

3 3
5 N TN _|_/l\O _|_o/!\ _|_/CL\ n
T IR R Ry
%»21 %»21

3 3

-varieties as is shown in the next

(63)
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(69)

(70)
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(71)

(74)

(75)

(76)

It remains to prove that the sum of right-hand parts of all these operators is equal to zero.
They satisfy the the following relations, reducing them. Denote by (a;b) the bth summand of

the right-hand part of the equation (a). Then we have

(59:1) = (65:2), (59;2) = (59:3), (59:4) = (65;1), (59:6) = (61:5),
(60;1) = (63;2), (60;2) = (67:2), (61;1) = (61;3), (61;2) = (64:4),
(61:4) = (64:3), (62;1) = (62:3), (62;2) = (65;:4), (62;4) = (65:3),
(63:1) = (67:3), (63:4) = (64:5), (64;1) = (66;4), (64;2) = (66:2),
(65:6) = (67:3), (66:1) = (66:3), (68;1) = (68;)3, (69;2) = (69:4),
(68:2) = (70:2), (68:4) = (70:1), (69;1) = (70:4), (69;3) = (70:3),
(70:6) = (74:6), (T1;1) = (72:1), (71;2) = (72;2), (T1;3) = (72:3),
(TL:4) = (72:4), (73:2) = (73:4), (73:6) = (74;1), (74;3) = (74:5),
(75:2) = (75:4), (75:5) = (76:3), (75:6) = (76;1), (76;2) = (76:4).

Any remaining summand containing the condition is matched by a similar summand with
this condition replaced by , and their sum is equal to a similar term without these conditions

41



at all. The summands remaining after all these reductions can be combined in the sum shown
in the next three lines (77)—(79); here a formula consisting of a picture and a sum in cartouch
below it denotes the sum of -varieties with one and the same main picture and subscripts
shown in the cartouch.

I~

(<§+K§+ﬁ2+ﬁ3+ K;+KI;+K;+P<1\

- 2

(77)
+ ‘ o— +
1 9 1 2 1
<+ }<:3+)<»2+ <1+ - 3+
3 3 2
+K;+ ’<3+ |<<;
(78)
. o]
1 1 9 1 2 1
QL SOE S SO! +%—32+%—31+}<~23+
2 3
+K3+ |<2—|—ﬁ2—|—ﬂ3
(79)

It remains to prove that the sum indicated in any cartouch is identically equal to zero on
all generic singular knots respecting the picture over this cartouch.

A. The sum of first four terms in the cartouch of (77) is identically equal to 1 € Z,. Indeed,
the sum of first two terms (respectively, of the 3d and 4th terms) is equal to 1 if and only if
the vectors f}(ag) and f}(as) are directed into equal (respectively, different) sides in R. The
sum of remaining four terms in (77) is obviously also equal to 1, and entire line (77) vanishes.

B. The sum of upper six terms in the cartouch of (79) also is identically equal to 1. Indeed,
if all three vectors f{(a1), f1(a2), fi(a3) are directed into some halfplane in R? then exactly one
of last three conditions is satisfied and none or two of the first three conditions are satisfied.
If these three vectors do not lie in one halfplane then exactly one of first three conditions and
none of the last three conditions is satisfied.

The lower four terms in (79) coincide with first terms in (77) and also form a tautology.
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1
C. Adding the term << 9 to both levels of the cartouch (78) we obtain two functions
identically equal to 1. Proposition 17 is completely proved.

Therefore we can take the sum of eighteen -chains mentioned in it for the chain v, spanning
the cycle d*(v) in entire [\ Fy.

5.3 Second differential and its homology to zero

The boundary of this chain v in Iy (see §2.9) is equal to the sum of thirty-six -chains
indicated in the next nine lines (80)—(88):

AN N T N N
NN NN (50)
—
N

AN
N T T TR i 7 s

+ L + + LN
N NN ~— (82)
A= " fk—/ " L/J T s

(87)
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+ + + +
/ NN _/
0’ 0’ N N (88)
To span this cycle, the stupid algorithm supplies us with the -chains indicated in left parts

of the next equalities (89)—(115); note that any of first 9 of them kills two of our 36 summands
in (80)—(88).

VANV VANEVAN VAN
N N NN
NFANV AN AWV NIFANVANIVA

N _/ N g9

P U .
N\ NS
LN NN
VoL TV L NAL N

1
%32 (90)

P N P N
NS NS L
h NN S AN
NIVAVE VAR VANV VAR N

=~ (91)

5 _ S~ e N
N N N
AN AN AN AN

_/ _ _/ _/
I N AN
N N A
:‘__'!% %’31 (92)
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(100)
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N
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_I_
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)
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(102)
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N
VA
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N
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N
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N
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N
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N

(106)

2
1
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(111)

(112)

(113)

(114)

(115)

All the terms of the sum (80)—(88) are contained in the right-hand parts of equations
(89)—(115). Indeed, let us denote by (a;b) the bth component of the right-hand part of the

equation (a). Then we have



(80;1) = (89;2),  (80;2) = (90;2), (80;3) = (90;1), (80:4) = (91;2),
(BL;1) = (91;:1),  (81;2) = (89;1),  (81;3) = (93;2),  (81;4) = (92;2),
(82;1) = (94;2),  (82;2) = (92;1),  (82;3) = (94;1),  (82;4) = (93;1),
(83;1) = (95;2),  (83;2)=(97;2), (83;3)=(96;2), (83:4)=(97:1),
(84:1) = (96;1),  (84:2) = (95;1), (84:3) = (98;1),  (84:4) = (99;1), (116)
(85:1) = (100;1), (85:2) = (101;1), (85;3) = (102;1), (85:4) = (103;1),
(86;1) = (104;1), (86;2) = (105;1), (86;3) = (106;1), (86:4) = (107;1),
(87:1) = (108;1), (87:2) = (109;1), (87:3) = (110;1), (87:4) = (111;1),
(88:;1) = (112;1), (88;2) = (113;1), (88;3) = (114;1), (88:4) = (115;:1).

Therefore the equations (89)—(115) provide a mod 2 homology between the cycle (80)—
(88) and the sum of all remaining terms of right-hand parts of these equations. These terms
satisfy many relations which very much reduce this sum. Namely, we have:

(89:3)+(94:6) =(98;2), (89:4) =(93:4), (89:5)+(93:5)+(97:3) = (107;2),

(89:6) =(97:4), (89;7)+(95:4) =(101;2), (90;3)+(90:4)+(92:6) = (99;2),

(90:5) =(92:7), (91;3)=(96:3), (9134)+(91:5)+(96:4) =(100;2),
(92:3)+(95:5)+(95:6) =(103:2), (92:4)+(95:7) =(105:2), (92:5)=(97:5),
(92:8)=(109;4), (93;3) =(9635), (93;6)+(94;8) =(108;4), (94;3)+(96;6) =(102;2),
(94:4)+(94;5)+(96;7) =(104;2), (94:7)4(95:3) =(1062), (95:8)+(97;6) =(111:4),
(96:8) =(110:4), (98;3) =(108:2), (98:4) =(102:4), (98:5) =(104;3),

(99:3) =(109:2), (99;4) =(103:4), (100;3) =(104;5), (100;4)+(110;3) =(114;2),
(101:4) =(105:6), (101:5) =(105:5), (101;6)+(111;3) =(115;2), (102;3)=(107;3),
(102;5)+(108;3) =(112;2), (102;7) =(104:7), (102;8) =(110;7), (103;3) =(105;3),
(103:5)+(109;3) =(113:2), (103;6) =(107:4), (103;7) =(105;7), (104:4) =(110;2),

(104;6) =(10634), (105;4) =(111;2), (112;3

)
Therefore we obtain that the cycle (80)—(88) is homological in F} to the chain consisting
of all elements of left parts of equations (89)—(115) not participating in either (116) or in the
previous twelve lines. Namely, this are the following terms:

(9056), (91:6), (92:9), (93:7), (96:9), (97;7), (98;6), (98;7), (99:5),

(100;5), (101;3), (101:7), (102;6), (103;8), (104:8), (105:8), (106;3), (106:5),
(106:6), (106:7), (107:5), (107:6), (107;7), (108:5), (109:5), (109:6), (109:7),
(110:5), (110:6), (111:5), (113;3), (113:4), (113:5), (115;3).

=(114;3), (112;4) =(114;4), (113;6) =(115:4).

It is convenient to combine these terms in the following five lines (117)—(121). Here the
picture (117;5) stays for the sum (106;5)4-(107;5), and any of lines (118)—(121) represents the
sum of several -chains, whose notation consists of one and the same main picture and different
subscripts listed in the cartouch under the line.

M Am Aﬁ\ LA
LJ AN,

=3
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PN — +
1 2 1 1 2 1
2t 1 -3 R+ +RC 4+
3 3 2 2 3 3
+K2 +K2 T
3 3
(119)
PN -
\ /)
1 1 1 1 1
CK +e o+ K+
2 2 2 2 3 (120)

N N
N J

() o) <)) .

It is convenient to think on the subscripts under all terms of these five formulas as on the
characteristic functions (mod 2) of certain subvarieties in the manifolds distinguished by the
pictures above these subscripts.

This cycle (117) + -+ -4 (121) can be reduced very much.

Proposition 18 The chain (117)—(121) is equal in Fy to the chain

A, AN M N
NN/ —
:‘_—'é Kg (122)

The proof consists of Lemmas 3-6 below.

Lemma 3 The chain (118) is equal to zero.
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First proof. The boundary of this chain contains a similar chain with the same expression in
the cartouch but with the main picture replaced by a similar picture without arrows. This part
of the boundary cannot be killed by the boundaries of any other sums (117) or (119)—(121).
Thus the whole chain (117)—(121) has the chance to be a cycle (which it is by its construction)
only if the expression in the cartouch defines an identically zero function mod 2.

Second proof. The sum of conditions listed in the cartouch (118) coincides with that of the
formula (78). Therefore it is equal to 0 at any generic curve respecting the main picture of
(118): the proof of this coincides with the corresponding part of the proof of Proposition 17.

Lemma 4 The chain (119) is equal to zero.

The first proof almost repeats that of Lemma 3, and the second refers to the triviality of
the line (79), see Proposition 17.

Lemma 5 The contents of any of two cartouches under the lines (120), (121) defines one and
the same function on the union of varieties defined by the main pictures of these lines.

The first proof is almost the same as for the previous two lemmas: the difference of these
two functions would define the intersection of the boundary of our cycle (117)—(121) with
the common boundary of varieties defined by these two main pictures. The direct proof is as
follows. The sum of first four subscripts under the line (120) defines the function identically
equal to 1. The sum of two last subscripts of this line and two first subscripts of the line (121)
also is equal to this function. Finally, the remaining terms No. 5 under (120) and No. 3 under
(121) coincide and Lemma 5 is proved.

These three lemmas imply that we can just erase both lines (118) and (119), and replace
the contents of the cartouch under (120) by that under (121). Therefore, we have reduced the
sum of all lines (118)—(121) to the expression given in the second row of the next formula:

MM NN
—

[5

\_JQ N )
|<3 =~ 3 k= 3 (123)

The first row in (123) is obviously equal to (117), and we have proved that the sum (117)—
(121) is equal to the sum (123).

Lemma 6

NN o AN AN
A — e N —
= < 3 : (124)
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Indeed, the sum of subscripts in the left part of this formula is equal to 1 if and only if
the vectors f](as), fi(a3) (i.e. the projections to R? of derivatives of the map f at the second
and the third active points of the configuration) cross the horizontal line in one and the same
transversal direction. For a generic curve, this is equivalent to the condition that the segment
of this curve between these two points intersects the same line an odd number of times.

Substituting this identity into (123) we complete the proof of Proposition 18.
The stupid algorithm transforms the chain (122) into the left-hand parts of two equalities

o NN NN NN
NS N S N A N—

1~ 3= , (125)

s JAaN T L

\_lek_J

1
Lo e L S, (126)

where the second subscript under the last picture is explained in paragraph 5! of subsection
1.4. This condition is equivalent to the condition that the segment of the plane curve f;(R!)
between our two active points ay,a, intersects the horizontal line passing through the point
fila1) = fi(az) an odd number of times. Another description of this condition is equal to the
sum of subscripts under the second from the end picture in (125) and the third from the end
picture in (126). Thus the sum of right-hand parts of equalities (125), (126) is equal to (122).

We have proved the following statement.

Proposition 19 The chain representing the second differential d*(v3) C Iy (and expressed
by the formulas (80)—(88)) is equal to the homological boundary of the sum of twenty-nine
-chains in Fy shown in the left parts of equations (89)—(115), (125) and (126).

5.4 The third differential and the chain spanning it

The third differential d®(v3) € H,_;(X) is represented by the image of the spanning chain
mentioned in the previous proposition under the canonical projection 7 : F; — 3. It consists
of twenty-nine -chains, whose pictures can be obtained from the pictures in the left parts of
equations (89)—(115), (125) and (126) by replacing the unique arc of any picture by a zigzag
(without arrows).

By the construction, the sum of these 29 varieties is a cycle in 3.
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It remains to span this cycle by a relative chain in K (i.e. to represent it as a boundary

of such a chain). The stupid algorithm provides us immediately with the following equations
(127)—(140).

5NN AN N AN .

_|_/v\\/»/\_|_/\\?\_|_/\/\_|_

NS
+/§//\+/\\//\+/\/\
}%’;2 (127)
8/7\v\\/: /\\/+/_V\v+//_\\ +
+V§/+»®/+®/+@/+
AN VANV
S o %il
3 (128)
AN ™ AN AN
+/\‘\ﬁ+A\/+/\A
1
‘_—.:?1 %23 (129)
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Proposition 20 The sum of right-hand parts of equations (127)—(140) is equal to the chain
d*(v3), i.e. to the sum of projections to 3 of varieties in Iy encoded in the left-hand parts of
equations (89)—(115), (125) and (126).

Theorem 2 follows immediately from this proposition, because the formula (37) consists of
pictures given in the left parts of these fourteen equations.

Proof of proposition. All these projections participate in the formulas (127)—(140). Namely,
for any a equal to one of numbers 89, ..., 115 or 125 or 126, let us denote by [a] the -chain
in ¥ obtained by the projection x from the -variety in F; encoded in the left part of the
equation (a). Then we have

(127;1)=[91], (127;2)=[89], (127;3) =[90], (128;1) = [94],
(128;2) = [93], (128;3)=1[92], (129;1)=1[96], (129;2) = [95],
(129;3) = [97], (130;2) =[98], (130;3) =[99], (131;1) = [100],
(131;2) = [101], (132;1)=[102], (132;2)=[103], (133:1)=[104], ol
(133;3) = [105], (134;1) =[106], (134;2) =[107], (135;1)=[108], (141)
(135;2) = [109], (136;1)=[110], (136;2)=[111], (137:1)=[112],

(137;2) = [113], (138;1) = [114], (138;2) =[115], (139:1) = [125],

(140; 1) = [126].

So we need only to prove that the sum of remaining terms of right-hand parts of equations
(127)—(140) is equal to zero. These terms satisfy many obvious relations, which reduce very
much this sum. Namely, we have

(127,4)+(127,5)+(128,7)=(130,1), (127,6)+(128,8)+(129,4)=(134,3),
(127,7)+(127,8)+(129,5)=(131,3), (128,4)+(129,6)+(129,7)=(132,3),
(128,5)+(128,6)+(129,8)=(133,2), (130,6)+(130,7)+(132,4)=(139,3),
(131,7)+(136,4)=(138,3), (132,6)+(135,4)=(137,3), (139,4)+(140,3)=(140,6),
(128,9)=(135,5), (129,9)=(136,5), (130,5)=(132,5), (130,4)=(135,3),
(131,6)=(133.6), (132,8)=(133,8), (132,9)=(136,8), (133,4)=(134,4),
(133,5)=(136,3), (133,7)=(134,5), (134,6)=(140,5), (137,6)=(138,6),
(137,7)=(138,7), (139,5)=(140,4).

The remaining summands are the following ones: (127,9), (128,10), (129,10), (130,8),
(131.4), (131,5), (131,8), (132,7), (133,9), (134,7), (134,8), (135,6), (135,7), (135.8), (136.6),
(136,7), (137,4), (137,5), (138,4), (138,5), (139,2), (140,2).
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They can be combined as shown in following four formulas (142)—(145):

PAVALNY, VAL AR\ NVA N N
N N TN O—T "N N
K:; (142)
P N N
|<»12+}<»1+|<»13+<1 +|<:2 + 2 —|—ﬂ3>
2 2 3 (143)
+ —= ~ o *
(o e )
k}<3 +K3 +}<:5J (144)
+ &
~_
CK;+#<;+}<;+}<:;+}<:;+W —|—ﬂ3> -

Elements of (142) satisfy the following two relations:

A

\ \—ﬁ>¥ N L (146)
Aty Oy A

2 2
(=)
3 37 (147)
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Therefore the sum (142) is equal to

AN
(et

The subscript under (148) coincides with that under the line (144). Similarly to the direct
proofs of Lemmas 3, 4, 5, it is easy to show that the expressions in subscripts under other two
lines, (143) and (145), also are equal to the sum of these three terms. But the varieties given
by main pictures (without subscripts) of formulas (143)—(145), (148) satisfy the condition

VAV AN L _ /M
N NS AN (149)

Proposition 20 is completely proved, and the proof of Theorem 2 is complete.

6 Another algorithm

Suppose that a knot invariant of order k is defined by a linear combination of Polyak—Viro
arrow diagrams, with < k arrows each. The weight system of this invariant can be then easily
reconstructed from these diagrams: we take the part of this linear combination consisting of
diagrams with exactly k arrows, forget the orientation of arrows in any of these diagrams (so
that they become chord diagrams) and additionally multiply these diagrams by certain signs 1
or —1 (if we calculate the integer-valued invariants), see [9].

This implies an easy algebraic method of computing arrow diagrams representing an in-
variant with a given k-weight system. Indeed, there are only §:0(2j)!/j! arrow diagrams
with < k arrows. Consider the space of all linear combinations of these diagrams. Then we
have a system of linear equations on these combinations. The first Qk!/(Qkk!) equations are,
generally, non-homogeneous, and ensure that the weight system of our invariant is the given
one. The remaining equations are homogeneous and reflect the fact that our linear combina-
tion actually is an invariant. Namely, we consider these arrow diagrams as -pictures (with all
arrows replaced by oriented zigzags) and calculate the boundaries of corresponding -chains
as indicated in section 2 (and in the future analog of this section ”with integer coefficients”).
Then the corresponding linear combination of these boundaries should vanish.

The Goussarov’s theorem implies that this system of linear equations always can be resolved.

This algorithm is more elementary than the one described in the previous sections, but the

systems of linear equations arising in its execution are greater (approximately by the factor
2%).
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