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1. INTRODUCTION

Consider

{—EZA’U» = f(u)7 in Q’ (1'1)

u=0, on 01},

where  is a bounded domain in RY with smooth boundary, £ > 0 is a small number.

In recent years, there are a lot of results on the existence and the profile of solutions
for (1.1). See for example [2, 4, 7, 8, 10, 11, 12, 18, 20, 24, 25, 27]. This problem arises
from biological sciences [17, 21]. It is observed that solutions of (1.1) may exhibit sharp
peaks near a certain number of points. In biology, the locations of the peaks correspond
to the higher concentration places of chemicals, certain population, etc. Therefore, it is
important to know the locations of the peaks of the solutions for (1.1).

In this paper, we consider a kind of nonlinearity f(u), such that the mountain pass type
solution for (1.1) will exhibit a new concentration phenomenon. Assume that f(t) satisfies
the following conditions:

(f1) there exists a < b, a < 0, such that f(a) = f(b) = 0 and f(t) < 0 for ¢ € (a, b);

(f2) [2 f(s)ds < 0if b <0;

(f3) f € CHa,+0)) N C?*((a,+o00)) and f"(t) > 0 for all t > a;

(f4) There is & > 0, such that

(t—a)'™f"(t) 5 c >0, ast— at,

for some ¢y > 0.
(fs) there is a ¢ > 1, such that

f(e)e = nf(t),
for t > 0 large.
(fo) |F@®)] < C(Q + [t|P~t) for some p € (2,2*), where 2* = 2N/(N —2) if N > 3,
9 = +ooif N =1,2.
A typical example of function satisfying (f1)-(fs) is

ft)=(t—af™" = (t—a),

where 2<p <2, a€ (—(’2-’)1/(11-2),0 :

Note that {f1) and f”(t) > 0 for all t > a, imply f'(a) < 0. Moreover, from f"(t) > 0,
we know that f(t) has exactly two zero points a and b.

By [4], we know that (f1), (f2) and (fs) guarantee the existence of a solution u,, which is
a local minimum of the corresponding functional of (1.1), for € > 0 small, with a <u, <0
and u, — a as ¢ — 0 on any compact subset K of 2. Since u, is a local minimum, we can
expect that (1.1) has a mountain pass solution wu,.

In this paper, we shall analyse the profile of the mountain pass type solution. Let
Ve = U, — u,, then v, satisfies
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{—amv = f'(u)v = ge(z,v), inQ, 1.9
v=0, on 01,
where
9e(®,t) = flue +1) — flu) — f(w)t.
Let
1) = 5 [ @D - ) - [ Gulav), e HY@)
Gulayt) = Plu,+0)— Flu) — fw)t— 37 @), FO)= [ f)as.
We define
¢. = inf max L(7(2)), (1.3)

y€el 0<t<1

where T' = {y(t) € C([0,1], H}(®)),7(0) = 0,7(1) = e}, e € H}(Q) is a point with
I.(e) <.

It follows from (fs) and (fs) that there is f; > 2, such that §1G.(z,t) < tg.(z,t) for
t > 0 (see the proof of (¢3) in section 3). By the mountain pass lemma of Ambrosetti and
Rabinowitz [1], we know that (1.2) has a positive solution v, with I.(v.) = ¢.. Thus (1.1)
has a mountain pass type solution u. = u, + v.. For the profile of u,., we have

Theorem 1.1. Let u, = u, +v. be a mountain pass solution of (1.1). There is an ey > 0,
such that for any e € (0, &), we have

(i) there is a € > 0, which is independent of €, such that max, q uc(z) > &;

(ii) for any local mazimum point z. of u. with u.(z.) > ¢ > 0, we have d(z,,00) < Ce,
and for any 8 > 0, |u.(z) — u (z)| < Ce~le=2el/e jf 3 € Q\ By(z.). Herev >0 is a
constant.

(iii) for any sequence of €, there is a subsequence €; — 0, such that z; — zy € OQ with
H(zo) = maxecon H(z), where z; is any local mazimum point of u; with u,(x;) >
c >0, H(x) is the mean curvature of 90 at x;

(vi) {z:u,(z) >0} NIQ # O, and for any 0 > 0, {z : u,(z) >0} C By(zy), where
T € ON2 is the point in (iii).

By Theorem 1.1, we see that (1.1) has a changing sign mountain pass type solution
which has a positive peak near a global maximum point o of the mean curvature of the
boundary, and is negative away from a small neighbourhood of z,.

If f(t) has two zero points b > 0 and 0, and f(t) < 0 for ¢t € (0,b), Ni and Wei [25],
Del Pino and Felmer [12] proved that a positive mountain pass solution of (1.1) has a
unique local maximum point which locates near the center of the domain. The same result
is still true if f(¢) has two zero points b > a > 0, and f(t) < 0 for t € (a,b). See [8].
Our results here look very similar to those for the Neumann problem obtained [22, 23].
The main reason that the local maximum point of w,, is close to the boundary is that the
corresponding problem in a half space possesses a mountain pass solution. See the result
in Section 3. But unlike the Neumann problem, the local maximum point of u, is inside
the domain.

Our result does not claim that u, has exactly one local maximum point, because, except
for N =1, it is not clear that the solution of the form U(z) = u(zn) + u(z) for problem
(3.11) has exactly one local maximum point. But from the proof of the main result, it is

easy to see that if u. has two local maximum points Y and a;£2), then lrrgl) - xg)l < Ce.
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Moreover, both zY and 2 lie near (compare with ) the normal direction of 9 at Z,
where 7. € dQ with |z, — xgl)l = d(zgl), o9Q).

We call a solution u of (3.1) is nondegenerate if the kernel KerL of the linear operator
L defined as

ag 1 (xN ) ’U,)

a u
satisfies KerL = span{2%,---, am‘?:“_l }. 1t is an open problem whether the mountain pass
solution of (3.1) is nondegenerate. If we can prove that (3.1) has a positive solution which
is nondegenerate, then using the reduction method, we can easily construct various kinds
of boundary peak solutions for (1.2) as in [3, 9, 16, 20]. On the other hand, we know that
for certain nonlinearities f(t), such as f(t) = (¢t — a)P~! — (¢ — a), the positive solution of

—Au=f(u+a), ucH;RY)

is unique and nondegenerate. So we can prove the existence of positive interior peak
solutions for (1.2) and find lower estimate for the number of such solutions as in [6, 11,
15, 28]. We shall discuss this problem briefly in this paper. Here we stress that it is
the nondegeneracy not the uniqueness which is important to us. Although the results on
existence of positive interior peak solutions for (1.2} look similar to those for the Neumann
problem [15, 28], the locations of the peaks of the positive interior peak solutions for these
two problems are different.

It is worth pointing out that by the moving plane method of Gidas, Ni and Nirenberg
[13], if Q is convex, the distance of any local maximum point of a positive solution for (1.1)
to the boundary of 2 has a positive lower bound which is independent of the nonlinearities
and the solutions. So it is only possible for a changing sign solution to have a positive local
maximum point close to the boundary of a convex domain. Therefore, the assumption
a < 0 is essential in this paper.

This paper is organized as follows. In section 2, we obtain an asymptotic expansion
of the local minimum solution u, near the boundary of Q2. The estimates in section 2 is
essential to the proof of the main results of this paper. In section 3, we study the existence
of a mountain pass solution for an elliptic problem on half space, which corresponds to
the limit problem when we blow up (1.2) at a boundary point of Q. ;From this mountain
pass solution, we can construct an approximate solution for (1.2) and thus obtain an upper
bound for ¢.. Section 4 is devoted to the proof of Theorem 1.1. In section 5, we discuss
briefly the existence of interior peak solutions for (1.2). Appendix A contains a decay
estimate of any positive solution of (3.1).

Lw =: —Aw — f'(w(zy))w w € Hy(RY),

2. THE EXPANSION OF THE LOCAL MINIMUM NEAR THE BOUNDARY

Let u_ be the solution of (1.1) with @ < u, < 0 and u, — a in any compact subset
of Q as ¢ = 0. In this section, we shall obtain an asymptotic expansion for u_ near the
boundary of €.

Let u(t) be the solution of

a<u(t) <0, t>0, (2.1)

Then u(t) is decreasing and |u(t) — a| < Ce™V '@,

Lemma 2.1. We have that there is a ¢y > 0, such that

+o0
| =@ 2 alvliy,



for any v € Hy(RY).

Proof. First, the proof of Proposition 2 in [5] shows that —y” — f'(u)y with zero Dirichlet
boundary condition has no non-positive eigenvalue and this operator is seen to be Fredholm
at points of the spectrum less than — f/(a). Hence we see that

inf{/0+°°(|v’|2 — f'(wp?) :v € HX(RL), /0+°° v? = 1} =X>0. (2.2)

/0+°°(|U’|2 _ f’(u)'vz) > /\/0+°° 2

So if ¢y > 0 is small enough, we see

Thus,

+oo

(W= f @)
+co +co +o0
=co V') + (1 = ) v'|? — f(wv?
/0+ '/ +o0 +00
Zco/ [+ (1 —co )\/ v +/ f (w)v?) f'(w)v?
0 0

+o00
—ey / 02+ (1 = ep)A / Peco | )
0 0 0
+o0 +o0
260/ |’UI|2+ ((l—Co)A—CCO)/ ’112
) 0 0

’ 2
>chllol a -

O
Lemma 2.2. Let v, be a solution of
—e2Ap — f! M = ;
e“Av—f ( ( ))v h, 1§, (2.3)
v =0, on ON).

Then |veloo < Clh|o for some C > 0, independent of €, h and v,.

Proof. We argue by contradiction. Suppose that there are €,, — 0, hp,, such that the
solution v, of (2.3) satisfies |vm|oo > M|hm|wo- Without loss of generality, we assume
|Umloo = 1. Then, |hp|w — 0 as m — +oo. Let z,, € Q be such that |vy,(zm)] = |vmleo-
Let up(y) = vm(ey + zm), €y + Zp € L

If ﬂ%z — 400, then we see that

—Au— f'(a)u=0, inR",

has a nontrivial bounded solution. By averaging over the unit sphere, we see that —u" —

=1y’ — f'(a)u = 0 has a bounded nontrivial solution in R}, which is impossible since

f'(a) < 0.
If d(m’:—fm < C for some C > 0, then

—Au— f(w)u=0, inRY,

has a nontrivial bounded solution u with %|;,=¢ = 0. This is impossible by Proposition 2
of [5].
O

Let 1(t) be the solution of



=" = fllw@®)p=—-v, t>0 (2.4
%(0) = ¥(+00) = 0. '
The existence of such solution is guaranteed by Lemma 2.1. Then %(¢) > 0 if ¢ > 0 by the

positivity of the operator and u' < 0.
Now we are ready to obtain an asymptotic expansion for u,

Proposition 2.3. Let u, be the local minimum near a, then
_(d(z,00) d(z,09) o
u, (@) = u FE2) + oV - )y (SR HE) + O,

for some o > 0, where u and v are defined by (2.1) and (2.4) respectively, T € 02 is a
point such that |z — Z| = d(z, 09).

Proof. Define

u(?), t€[0,6/e],
u; = { smooth, t € [§/e,2d/¢], (2.5)
u(26/e), te€[26/e,+00).

In [6/e,26/¢], we can choose u* such that @ < u*(t) < 0, |ui(t) — a| < Ce~VF@/e
|Diut(t)| < Ce~le V' @0/e =1, 2.
Let uX*(z) = u (d(m 39)). Then u**(z) is constant for d(z,0Q) > 26. By a simple

calculation, using the equation satisfied by u(t), we see that

A = — d“’e aQ)) —eu’ (@)Ad(m, o0)
£z (2222)) — eut (422 Ad(z,60), if d(z,00) <6,
=Q0(e%e /) - eu (XN Ad(2,00),  if 6 < d(v,00) < 26,
—eu &;@—))Ad(z, 0), if d(z, 50) > 26,
=f(u*) — (fi—(m’sﬂ) Ad(z,00) + O (6"26“5"/5) )

since for d(z,00) > 4,
f(z) = f(a) + O(lu” — af) = 0727 /).
Let & = — u,. Then

—e* A&, =f(ur*) - flu,) — euy (d(m,EBQ) ) Ad(z, 89) + O (e~2%~7F%)

- — (@)t - eur (L2D) aa, 00) + 0(c~2e07),

Ze

where ¢, = ~ [i f/(Tu?* + (1 — 7)u,) dr.
Let &, = €¢.. Then

—&2AY, + e = (d(’” ‘m))Ad(:c 00) + O(e~%e~9/¢), inQ,
. = 0, on 0f2.

Similar to the proof of Lemma 2.2, it is not difficult to prove that |i]|e < C (Here
we need to use Proposition 2.4 in [4] and Theorem 2 in [26] to prove that c.(ey + z.) —
—f'(u(zn)) as e = 0 if d(z,,00) < Ce.).



Let

smooth, ift € [6/e,20/¢],

»(t), ift € [0,4/e],
e (t) =
0, ift € [26/e, +00).

For any z with d(z, 0Q2) < 4, let Z be the unique point on 9 such that |z—Z| = d(z, 69).
Let

*k * d Z, Y —
"ps (.'E) = —(N - 1)¢6 ((—8—__)-)H($),
where H(Z) is the mean curvature of 92 at Z. Noting that
AP =72 + e Ad(z, 0Q)p; = e +O0(e7Y),
we see
—e2Ay;" =eA(N — 1) (H(5)Ay; + 26719 (Dd(z, 60), DH (%)) + $IAH())

!

=(N - ) H@)$;" + O(e)

£

Thus,

€
=0(e%),
since
f (}(d(ac,aaﬂ) )) .,
[ OG22 = et ) o
-0 (o422 - . +009)) =06
and

—) (Ad(z, o90) + (N — 1)H(z))
d(z, 89) i} _
_ ! ? _ — 1-7
=0 (u (—s )|w x|) O(e'™™), foranyr > 0.
Here, in the last equality, we have used Lemma 14.17 in [14]. By Lemma 2.2, we obtain
[e” — el = O(7),

for some o > 0.



3. EXISTENCE OF MOUNTAIN PASS SOLUTION IN HALF SPACE

Let u(t) be a solution of (2.1). Consider

—Au — f'(u(zy))u = g1(zN,u), in RY, (3.1)
w e HY(RY), '
where g1(zn,t) = f(u(zn) +1) ~ f(u(zn)) — f'(ulzny))t.
Define
1
Jw =5 [ (D - faen)d) - [ Gilax,u),
RN RY
+ +
where
t
Gi(zn, t) = / g1(aw,7) dr
0
=F(u(zn) +1) — F(u(zn)) — fulzn))t - —f (u(zn))t,
and F(t fo
We summarize the properties of g1(zn,t) as follows:
(1) gi(zn,t) > 0 fort > 0.
In fact, by (fs), we have
(23,00 =0, 2gi(zn,0) =0
g1\Zn, V) =1, atgl NV =4,
32
ﬁgl(xN,t) = f"(u(zy) +1t) > 0.
(92) &t"”t) is strictly increasing in ¢ > 0.
In fact, we have
8 gl(dIN, t) 8 9
5 (T) ( 8tgl(xN’t) gi(zn, 1))/t
But
(t gl .’L'N,t) gl(xN,t))lt—O = 07
d, 0 0? "
Bt( 591 (@ t) = gi(zn,t)) = toz91(an,t) = tf" (u(zn) +1) > 0,
for all ¢ > 0. Thus t%gl(mN,t) —g1(zy,t) > 0 for all t > 0.
(¢3) There is a constant & > 1, such that
figi (zy, t) < tw, Vi>0. (3.2)
First, by (f5), we see that there is a large 7' > 0 such that (3.2) holds for ¢ > T.
Next, we claim that there is a > 0, such that
tf'"(r+t) > 0(f'(r+1t) - f(r), Vte(0,T],a<T<0. (3.3)

It follows from f”(t) > 0 that (3.3) holds if ¢ > ¢, > 0 or 7 —a > 75 > 0, where £,
and 7y are fixed numbers. Thus it remains to prove that (3.3) holds for ¢ € (0,¢] and
7 € (a,a + o).
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If t <7 — a, then it follows from (f,) that
tf'(r+t) = 0(f(r+1) — (7)) =t(f"(r+t) = 0f" (T + nt))

4 Ocl c Och

> 0 B 0 > 0 _ 0

"t((t +7—a)lm (pt+7-— a)l—“) - t((t +7—a)l7* (17— a)l—a)
< fcy

> _

_t(21‘“(7' —a)l-e (- a)l—a) 0

if @ > 0 is small enough.
Suppose that 7 — a < t. From (f;), we can deduce

If’(tl) - f,(tZ)l S Cltl - t2la= tl:tQ € [a7a+ 77]

Thus,
tf"(r+1) = 0(f'(r+1t) = f'(r)) = tf"(r +t) — CO*

Zt((t+7-cf a)l-a - :E;’a) 2 t(21—2§;1—a - :i) >0

Thus we have proved (3.3).
Now take z =146 > 1. Let

0 ,t _
n(zn,t) = t% ~ g1 (zn, ).

Then n(zy,0) = 0. We have

0 0?2 L 0.
=N(zN,t) =t§§!]1 (zn,t) + (1 = ﬁ)agl (zn,1)

Ot
=tf"(ulzy) + 1) + 1 — B)(f'(ulzy) + 1) = f'(ulzn))) > 0,
if £ € (0,7]. As a result, n(zy,t) > 0 for t € (0,T).
(94) We have fi(zn,t) = O(t?) as t — 0, and |fi(zn,t)] < C([tP~" +1).
Define

= inf .
¢ = inf max J(u), (3.4)

where I' = {y(t) € C([0, 1], H}(RY)),7(0) = 0,7(1) = e}, e € H}(RY) with J(e) < 0. By
(¢92), it is easy to check that c¢ is independent of e.

It is easy to see that (3.1) is translation invariant in the z; direction, 1 =1,--- ,N — 1.
Since u(t) — a ast — +o00, we see that the corresponding limit problem in the zy direction
is

—Aw = f(w+a), inRY,
{w € HY(RV). (3:9)

Let

A:%/RN |Dw|2—/RN(/0wf(T+a)dT),

where w is the least energy solution of (3.5).
Using the standard concentration compactness argument [19], we can prove that (3.1)
has a solution with critical value ¢ once we prove the following lemma:

Lemma 3.1. We have ¢c < A.

Proof. Let z; = (0,---,0,1), wy(z) = w(z — ;). Let Pw; be the solution of

—Av — f'(a)v = f(w + a) — f'(a)w;, in RY,
v € H}(RY).



By the maximum principle, we have |Pw; — w;| < max;,—ow; < Ce™V ~f(a! By the
definition of ¢ (see (3.4), we have

< ;
¢ < max J(tPuwy)

Now we estimate J(tPw;).
Step 1. The estimate of J(Puwy).
Denote g(t) = f(t + a) — f'(a)t,
t
G() = [ ar)dr = Pt+a) - P@) - 3@
0
Then

J(Pwy) = / IDPuf’ ~ fue)|Pul’ ~ | Gr(ox, Pui)

RY RY

1
;
:% Lﬁ (f’(a) - f’(g(:l:N)))IPwll2 + ‘/Rﬁ (%g(wz)sz - Gl(.TN,P’wl))
5 [, (1@ = rat) P + [ (Gatapu - Giru)
N( (Pw;) — G4( .’IIN,P'LUI))

N
_ / N(% () Pw, — G(Pu))
+

(F(a + Pw;) — F(a) — (F(u(zn) + Pw) — F(u(zy)) — f(g(xN)Pwl))

N
+
::Jl JZJ
(3.7)
where J; and J; are defined by the last equality of the above relation.
For J;, we have
1_ - 1 B
J1 =/ (§g(wl)’wl - G(wz)) + 5/ g(w) (w; — Pwy)
RY RY
+ O(e VT @)
=/ ~g(w)w, (wl)) + O(e~ WV =)ty
RN
1 !
t3 f (FAw = f(e)w) (wi — Pwy) + O(e*V/ (@) (3.8)
R+
1 Oy d(w;, — Puwy)
:A+—/ —(w; — Pwy) — wj—————2%
9 $N=0(axN( l l) l Ere )

+ 0(6—(1+cr)\/—f’(a)l)
=A + O(e” V-,
Now we estimate Jy. Let
K(tl,tg) ZF(CL + 1 +t2) — F(a + tl) — f(a+t1)t2

— (Fla+12) — F(a) — f(a)ta)
— (fla+t2)ts — f(a)ts — f'(a)tsts).

We claim that there are C > 0 and ¢ > 0, such that
K (t1,t2)] < Clta[*|ta] .



[RV)

In fact, if |t} < |¢1], then

K(t,t) =(f(a+t2+€h) = fla+ &) = f'(a+Et)t)
~ (fla+1) - f(a) - f(@)ts) |t
= [(f'(a + &ty + &) — f'(a+&6)) — (F'(a+ &) — f’(a))]t1t2.
By (f4), we see |f'(t1) — f'(t2)| < Clt1 — t2]*. As a result,
|K (t1,2)| < Clta|*[tata| < Clta M2 [t o2,
If |¢1] < [to], then
K(in,t) =3 (f(a+ 1+ €0) — f(a+ &)
— (f'(a+ &t1) — f'(a))tats.

Thus,
K(t1,t2) =Clt2]* + C|t1|*|tato]
SC|t1|1+a|t2|1+a.
We have
/ (fla+ Pu) — (@) ~ (@) Pur) (u(on) — a) - / K(u(zy) — a, Pu)
RY
/N(f a+ Pw;) — — f'(a)Pw) (u(zN) — a) +O / lu(zy) |1+"|Pwl|1+")
RN

/ (f (a + Pw,) — — f'(a)Pw;) (u(zn) — a)
n O( / o~ (1H0)y/ @)z e—(1+'a)\/—7@|m—z,|>
RY

— /R (£(a+Pwy) - £(a) - £'(a)Pwi) (u(zy) - a) + O (= T+VT @),

So we have

J(Pw) =A- [ ( fla+ Pw) — f(a) — f'(a) Pw;) (u(zy) — a)
R+
4 O(e—(1+a)1/—f’(a)l)'
Using the convexity of f, we see
fla+t)— flla)t >0, Vi>D0.
Noting that u(zy) — a > 0, we obtain

/RN (F(a+Pwy) - f(a) - £'(a) Pur) (u(zn) - )

2 [ (fo+Pu) = @) - £ @)Pu) ulen) —)
Zcoe_ml

for some ¢y > 0. So we have proved J(Pw;) < A.
Step 2. The estimate of max;> J(tPw;) — J(Pw;).
Let ¢; be the maximum point of max;»q J(tPw;). Then

(J’(thwl),Pwl> =0. (39)

We claim that ¢, — 1 as [ — +o0.
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In fact, from gi(zn,t) = O(t?) as t — 0, and —9—1—(?’—’” — 400 as t — +oo, we see
0<ty<t; <T,VI Suppose that t; = t. Letting | — +00 in (3.9), we see

by /R |Dul? = /R flattw)w. (3.10)

It is easy to see that from (g2) there is exactly one ¢ > 0 satisfies (3.10). On the other
hand, ¢t = 1 satisfies (3.10). Thus, t, = 1.
But

(J'(Pw), Pw) :/RN f'(a) Pw;(Pw;, — w) —|—/ (f(u(zn)) — f(a)) Pw

RY
+ / (f(wi + @) — f(Pw + w(zn))) Pwy = O(e™V /),
Ry
J"(Pwy)(Pwi, Pwy)
= _p _ [ Oalen, Puy)
-/ (PPult = fwIPuf) / L
S —Cy < 0

since t2aﬂ(§t"’—’t2 —tg1(zn,t) > (B — 1)tgy(zy,t). Thus wesee t; — 1 = O(e V@) Aga
result,

J(tPwy) — J(Pw) =(t — 1){J'(Pwy), Pui) + O(|t; — 1]%)
=O(e_2ml).
Combining Step 1 and Step 2, we obtain
max J(tPw) =J (4t Pw;) = J(Pw;) + O(e‘z\/T@)l)
<A~ c,eVT@1 O(e_(”")ml) < A.

Using Lemma 3.1, we have
Theorem 3.2. Problem (3.1) has a least energy solution u with J(u) = c.

Proof. Let u,, € H(RY) be a sequence with J(uy,) — ¢ and J'(un,) — 0 as m — +oo0.
By Lemma 2.1, we see that

[, (1Dunl? = £ i) 2 colfum
Ry
for some ¢g > 0. Then by (g3), we see that u,, is bounded in Hg(RY). Using the
concentration compactness argument [19] and Lemma 3.1, we can deduce that there are
Tm € {Ty = 0}, m = 1,---, such that un,(z + z,,) is compact in Hj(RY). As a result,
(3.1) has a solution with J(u) = c. On the other hand, it is easy to check that for any
nontrivial solution v of (3.1), J(v) > c. So u is the least energy solution.

U
Remark 8.5. By Proposition A.1, u(z) < Ce~V%l#l for some Ay > 0. Since (3.1) does not
depends on z’, we can the moving plane method of [13] in the directions z;, i =1,--- ,N—1
to prove that (3.1) has a least energy solution u(z) = u(|z'|,zn), ' = (21, -+, TN_1)-

Remark 8.4. Let U = u(zy) + u. Then U is a solution of

{—AU = f(U), inRY,

. . (3.11)
U(z',0) =0, U(z',zy) — a,uniformly in 2’ as zy — +oc0.
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Clearly, U > u, and U < 0 if |2'| is sufficiently large and zx > 0 is small enough. Suppose
that U has fixed sign, then y < U < 0. By Proposition 2.5 in [4], we have U = u. This is
a contradiction. So U is a changing sign solution. In next section, we shall give a direct
and simple proof of this fact. See Remark 4.2.

Remark 3.5. To prove that the mountain pass type solution u, = u, + v for (1.1) has
exactly one positive local maximum point, it is important to show that U has exactly one
positive local maximum point It is easy to prove that this is true if N = 1 by using the
relation (U'(t))*— (U'(0))? = -2 v 5 7)dr. It is an open problem whether U has exactly
one positive local maximum pomt if N 2 2.

Remark 3.6. 1t is possible to replace the convexity assumption on f by other conditions
to obtain the existence result for (3.1). Under the condition that L& — a, € (0, +00),

tPIn?¢
as t — +oo, where 1 < p < f42 and g is finite, or 0 < A < t7Pf(t) < B < +o0 for large ¢,
where 1 < p < ¥ we can prove that the Dirichlet problem on {|z'| < M,zx € (0,m)}
has a positive mountaln pass solution upsm(|z'|,zx), which are uniformly bounded (by
using a blow-up argument). The idea is to let m — +oo first, and then let M — +oco to
obtain a decaying solution for (3.1). To make this work, we need to assume f(a+t) > f'(a)t
for t > 0 and f(t)(t — %) > 2F(¢t) for t > £, where ¢ = inf{t : F(t) = 0}. Using the second
condition, we can rewrite the energy of the solution to an integral, where the integrand is
positive. Thus we can use the first condition to stop part of the solution moving to infinity

in the zy direction.

4. THE LOCATION OF THE PEAK OF THE MOUNTAIN PASS SOLUTION

Let u.(z) be a solution of (1.1) such that |u, — a| is small on any K cC Q. Now we
consider (1.2). Similar to the proof of Proposition 2 of [5], we can check that the first
eigenvalue \.; of —2A — f'(u,)] in H}(Q) satisfies A\.; > Ag > 0. Thus by a similar
argument to that in the proof of Lemma 2.1, we see

/9(52|Du|2—f'(g€)u2) > c’/ﬂ(52|Du|2+u2), Vue HY(Q),

for some ¢’ > 0. So it is easy to check that (1.2) has a positive solution v, with I.(v;) = c,.

In this section, we shall prove that all the local maximum points of v, tend to the same

point zy on the boundary, at which the mean curvature H(z) attains its global maximum.
First, we have an upper bound for c,.

Proposition 4.1. Let u € Hy(RY) be any solution of (3.1) with J(u) = c. Then we have
c. < eV (c—eB(u)Hu + O(e')),

where Hyr = maxmeagH ), and

1
Bw) =— [  Dyud(ay)e]? -+ / Dy ul2l' P
=0 4 zn=0

Moreover, we have B(u )

Proof. Take any solution u(r, zy) of (2.1) with J(u) = ¢. Let zo € 90 be a point such that
H(zy) = maxzean H(x). After translation and rotation, we may assume that o = 0 and

QN B;(0) = {z : zx > (')} N Bs(0), (4.1)
90 N Bs(0) = {z : zx = ¢(z')} N Bs(0), (4.2)
where ¢(z') € C2(RN-1), ¢(0) = 0, Dp(0) = 0 and

! 1 — 2 /|2
)= §Zaixi + O(|Z'|%).
i=1



Let n € CP(Bs(0)), n =1 for z € Bs;3(0), 0 < n < 1. Define
we = n(z)u(e™'r, ez — (a"))).
Then w, € H}(S2). So we have

ce < I?;bx I (tw,).

Now we estimate I, (w;). We have

=L [ [(Favur- R - fa)
=L -1

Since u, = u(e~1d(z, 00)) + (N — 1) H(Z)yp (e 'd(z, 0)) + O(e'*7), where Z € 09 with
|z — Z} = d(z, 052), we have

b= [ (B2 w) - Flu

e - [ (ra®E

d(z, 00)

£

)+ ) - F(ul
9 0, ) 22

9

)~ Fa @20y,

3
d(z,00)
£

))

)H(z)

+ O(8N+1+0')

(4.4)
_N [ /Q E ( F(u(d(z, 09)) + ;) — F (u(d(z, 80))) — f(u(d(z, Bﬂe)))we)

e =) [ (Fluldte, 000) + @) - f(uld(z,00.))

— F'(u(d(z, 09)))ie ) (d(z, 00:)) H (e7) |
+ O(EN+1+0),
where Q, = {z : ex € Q}, ¥, = w.(ex), z € Q..
Let o.(z') = e tp(ex’). Let Z, € 0, be such that |z — Z.| = d(z,0€2). Then we have
T; — Ze i+ (v — @e(Z))Dipe(z') =0, =1,--- , N —1. Thus |z’ — 7’| = O(g). As a result,

d(z,00.) = (1+ |Dee(z')])(zn — 0:(7'))
=an — e(Z') + O(|Dee(2)[") = zn — 0 (a') + O(e%).

Thus, making the change of variabie y' = z’, yxv = z§ — p(2'), we obtain

I, =V [/Rﬁ
+eV=1) [ (flulon) + ) - fulen) - fuen)pena©)]  ©)

+ 0(5N+1+a').

(Flu(ew) +v) - Flulan)) - fu(en))u)

Here, we have used the fact that u decays exponentially.
For the estimate of I;, we have
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52/ | Dw|? = 52/ |Dw.|* + O(e77%)
Q NB;s,2(0)

_ !
262/ (|Du(r TN <P($))|2
9035/2(0) € €

—2D,. (: i I))ZD& T’M)Dw(m’) (
4.6)

+ |Dayu(Z, >|2Z|Dw, 7))

+ O(e™/¢)

N-1

:EN(/ \Duf? — 25/ DzNuZaleD u+0(e ))

=1

In the last equality, we have used again the fact that u decays exponentially.
Since u is a solution of —Au = f(u(zn) + u) — f(u(zn)), we have

_ /RN Auz?D, u = /RN (f(y(x;v) +u) — f(u(xN)))fvawNU

fori=1,---,N—1.
But for each fixed 2, we have

— AufomNu
RY
N
ou
=_/ 5 12Dy u+ 2 D, uz; Dy u+ E / fozjquﬂNu
=0 RN " RN
+ +

N
1
= DyyuziDyyu+ 2 Dyyuz; Dyu+ 2 Z/ :v?DmN|iju|2
j=1 Y BY

=0 Rﬁ

1
=—/ x?IDmNu|2+2/ D, uz; Dy u,
2 zn=0 Rﬁ



since Dy;u = 0 if zy = 0, for j = 1,---,N — 1. Here we do not use the summation
convention. So
2 D, uz;Dyu
Ry
1
= [ (salom) +) - ftulon)))aDayu=5 [ oDyl
RN 2 .’I:N=0

+

d 2
:/R (F(g(:pN) +u) — Fu(zn)) — f(ﬁ(xN))U)-Ti

_1*\_r diL‘N

- [ (tutew) + ) - faam) - )y @)

—— 57 L (Feem) +0) = fulam) - Flulen)n) @mle?

_ 12 2
2(N — 1) /mzo = FIDeyul”

Combining (4.6) and (4.7), we obtain

1 H(O
I = EN(— | Dul? + eH(0) / |7’ |21 Dy u|? + O(e?)
2 Rﬁ 4 zy=0

. cH(0) (4.8)

[ (Ftutom) +9) = fulow)) - Flulom)u)adom)|2 ).

Putting (4.5) and (4.8) together, we see

I(w) =€V (c + 61{1(0) /z . |Z'|?| Dy ul? + O(e'7)
+ T [, (Fatem) )~ St = S o)l el
- (V= 1eH(©) [ (fulon) +1) = flulon)) - [ @am)u)blan).

(4.9)

Using the exponentially decay of the solution u, u = 1 = 0 if zy = 0, and self adjointness
of the Laplacian, we see

/I;N (f(M(HJN) +u) — flu(zy)) — f’(g(mN))u)qﬁ(mN))

+

— [ (-au-f ) (4.10)

-+

=— /Rﬁ v (zn)u.

Similarly, we have
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/RN (f(u(xN) +u) — f(g(mN)))g’(xN)Wl?
—— [ @)l

__ / 2 )l - / uA @ (2n)|2')

+

= [ Dl - [ w2V - Diden)
rny=0 Rf
[ Dol + [ u(f o) on)is P - 2N — 1) (o).
2N=0 R+
As a result,

/RN (f(@(mN) +u) — f(u(zn)) - f’(g(mN))u>y'($N)|x’|2

(4.11)
= Duur(ay)e - 2N —1) / TG,
zn=0 R}
Combining (4.9), (4.10) and (4.11), we obtain
I (w) =" (c — eB(u)H(0) + O(e'*7)), (4.12)
where
1 1
Bw=-3 [ Deowd@F-; [ |Douflel
2 zny=0 4 zn=0

It is easy to check (I'(w.),w.) = O(e™*1), I (w,.)(we, w:) < —cee™ < 0. Thus similar
to the proof of step 2 of Lemma 3.1, we see that if ¢, achieves max;>o I (tw.), then ¢, =
1+ 0(g). So

L (tewe) =L (we) + (te — D{I{we), we) + O™ [t — 1)
=I.(w.) + O(eN*?).
Thus, the upper bound follows from (4.12) and (4.13).

It remains to prove that B(u) > 0. Let U = u+u. Then U satisfies of —AU = f(U) on
Rf, U=0onzy=0and U = a <0 as zy = +o0. It is easy to check that

B =7 [ (WO? 1DV 0)) e

(4.13)

First we claim that
/ (v (0)* — | D, U(2', 0)]*) = 0. (4.14)
zny=0

Multiplying —AU = f(U) by D,,U and integrating over BY 1(0) x [0,400), where
BY~1(0) is the ball in R¥~', centered at the origin with radius R, we obtain

- Uso U / U2 (o, 0)
;/BN 1(0)x[0+oo) T2 BY-10)

+o0 Q
/ / d U)dzydz' =/ F(a)=/ f f(r)dr
BY~1(0) mN BY~1(0) BY~Y0) Jo



But 1|u/(0)|*> = [; f(r)dr. So we have

’ 2 _ —
\/;N_I(O) (y— (0) |D U .'L' 0 2 Z / zlz‘l UZ'N'
R

10)x[0,4-00)

On the other hand, we have

/ Umizi UzN d.’E’ == / niUml UmN - / Umi Uxind.’L"
BN-1(0) aBN~1(0) BR7Y(0)

= Uy — 20 U2 de'.
aB]RY_l(O) 2dl‘N Bg—l(o)

So

/ UZ‘L:E‘IU / ’n"LUm, UzN — 0,
BY~1(0)x[0,+00) 8BY~1(0)x[0,400)

as R — +oo, since Uy, = u,, decays exponentially as |z| — +o0o. Thus (4.14) follows.

Now we prove that B(u) > 0. Since U(|z'|,zx) is a decreasing function of |z'|, we see
that Uy, (J2’|, 0) is nonincreasing in |z'|. Let ro be such that «'(0)? — |D,,U(z',0)]*> > 0
if |2'| > 7o, ¥/ (0)® — |Dg,, U(z',0)> < 0 if |2'| < rp. Since u,, (2/,0) tends to zero as
|z'| = +o0 and gy (z',0) > 0, we see that u'(0)? — |D,,U(z’,0)[* > 0 if |z'| is large. So
7o < +00. Hence, by (4.14), we obtain

Bw=[ (WO~ D U N [ (O - Dl 0l

> (v (0)* — | Dy U5, 0) )75 + («'(0)* — | Do U(2', 0)%) [2'[?

2’| <ro |z’|>7r0

= (¢ (0)% — | D, U (2", 0)[*) (|7 — 78) > 0.

|z’ 270

Remark 4.2. Since Uy, (z',0) > 2/(0), it is easy to see from (4.14) that
Usy (0) = ma}é Uz (z',0) > —u'(0) > 0.
TN=

Moreover, it is easy to see that Ug, (z’,0) is negative if |z'| is large. Thus U is positive
near the origin and is negative if |2’ is large and zx > 0 is small. So we have proved that
U is a changing sign solution.

Next, we shall obtain a lower bound for c,.

Lemma 4.3. Suppose that v. is a solution of (1.2) with I.(v.) = c.. Let z. be a location
mazimum point of u.. Then

(i) We have d(z.,09Q) < Ce.
(ii) Suppose that u. has another local mazimum point Y. Then |:c(1) —z.| < Ce.
(ii) For any @ > 0, there is a v > 0, such that v, (z) < Ce™#=%l/s ¥ 1 € Q\ By(z.).

Proof. Suppose that e~ld(z., 02) — +o0. Let T:(y) = ve(ey+ze), y € Qe = {y : ey+z. €
Q}. Then, from the upper bound for c., we see that 7. is bounded in H'(R"). So we may
assume (up to a subsequence) that

7, = vp,in C} (RY)
and
—Avy = f(vo + a),in RV,
Thus, noting that 1g.(z,t)t — G(z,t) > 0, we see
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1
= »/I;ER(:::E) (E'lgs(x’ UE)UE B GE(x’ UE))
=V /B o (Egs(sy + Ze, Ue) Ve — Ge(eY + Ze, Ue))
qg(é(mgf@+w@%-4Fm+ug—pm»y+%ug
>eV (A + o, g(1)),

where o, g — 0 as € = 0 and R — +4o00. This is a contradiction to Proposition 4.1.
()
Next, we prove (ii). Suppose that J%l — 400, then it is easy to check

I (ve) > eV (2c + 0(1)),

where o(1) — 0 as € — 0. This is a contradiction.

It remains to prove (iii).

First, we prove that as ¢ — 0, v — 0 uniformly in Q \ By(z.), for any § > 0. In fact,
suppose that there is Z. € 2\ By(z.), such that v.(Z.) > ¢ > 0. Then v.(ey+Z.) — Ty # 0.
As a result,

Is(vs) :[Z(%ge(xave)va - GE(IE,’U&-))
1
Z LER(EE) ('2'95(-7"7 Ue)vs - GE(IQ:) UE)) + /

1
(59&'(‘7’.7 'UE)’UE - Gs(xv UE))
BsR(jE)
>eN(2¢ + 0:,r(1)).
This is a contradiction.
Next, from —f'(u.) > 25 > 0, for z € Qg =: {z € Q,d(z,0Q) > eR} if R > 0 is large
enough, we can check easily by using the standard comparison theorem that

ve(z) < Ce~VHle—zlle 2 e Q) p.

Suppose now that z € (€2 \ Qg) \ Bs(z:). Without loss of generality, we may assume
ze = 0. Denote Z € 9 such that d(z,00Q) = |z — Z|. Let £(t) be the positive function
defined in Appendix A. Let

d(z, 09)

we(z) = f( ( )e“7|j|/€, z € Q\ Qr,

£

where 7 > 0 is a small number. Noting that (De~"/¢, Dd(x,Q) = 0), we have for
x € Q \ QER)

— 2 Aw,
- 626—B|5|/5A§(d($7669)) _ 252(De"7|5|/5,Dg(d(x’sam))
. Ezf(d(ma 89))Ae—;7|rrc|/e .
£
=(_€,,(d(w,€89)) N O(E))e—ﬁkzl/e _ Ezg(d(m; aQ))Ae—ﬂm/s

=(—§”(d(xfﬂ)) +O(E)€(d(x,68§2)))e_ﬁlfl/i B E2E(d(m;89))Ae_,7lil/E’
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since E(—w—aﬂl) > ¢y > 0for z € 2\ Qg As a result,

—®Aw, — (f'(u,) — 7).

f( d(z, 39)) Ae7lEl/e
N (_5 ( (xsaﬂ)) _(f,(g( d(z, BQ)))+0() )g(d(“fm))e-ﬂlﬂk
( (=, BQ))( e2Ae~73/5 4 (300 + O(e) —T)e-"lwl/f) >0, VzeQ\Qnx

JFrom —Av, — f'(u,)ve = O(|ve|?) and v, — 0 as € — 0 uniformly for z € 2\ By/2(0), we
see that —Av, — (f'(z.) — T)ve < 0if z € 2\ By/2(0). So by comparison in the domain
(2\ Qr) \ Bg/2(0), we have

ve(z) < Czenrrw%%f,(,z(o) (we(z))_lws(m), Vz e (Q2\Qr)\ By(0),

since

v < Czenr?é%"mm) (we(2)) we(z) iz € B((Q\ er) \ Bay2(0)).

Thus, if z € (2 \ Q:r) \ B2s(0), then

-1 _530/4c —0|3|/4e
<
v () _Czenr%%}(m(o) (we(z)) e e

SCI max eu|2|e—1730/4se—17|1':|/46 < Ole—ﬂ|i|/45‘
zEQﬂaBg/g(O)

O

Proposition 4.4. Let z. be a global mazimum point of v. and T. € 02 be such that
|ze — Ze| = d(z.,09). Then,

¢ > €V (c — eH(z)B(u) + o(e)),

where u € HF(RY) is a solution of —Au = f(u+u) — f(u), B(u) is defined as in Propo-
sition 4.1.

Proof. Let v, be a solution of (1.2) with I.(v.) = ¢c.. Let Z. € Q be such that |z, — z.| =
d(ze, 0S2). We assume that Z, = 0.
Similar to Proposition 4.1, we define
Te(2) = n(@)ve(a', an + p(a")) € Hy(RY),

where n(z) € C§°(B5(0)), with 0 <7 <1, n =1 for z € By/»(0).
Denote 7, = ¥ (ey). Then

_ . 1 N
Ve = U, n Oloc(R+ )7
and

~du= f(u(ay) +u) - flu(zy)), in RY,
u € H}(RY).
Because 7. attains its maximum at y' = 0, we see that u(y) = u(|y/|, yn)-

Since v, is a mountain pass solution, we have

c. =1 (ve) = max I (tv,)

a0 f Dol = [ (Pla+tu) = Flw) - furee) |

t>
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Similar to the estimate of the upper bound for ¢., using the fact that v. is exponentially
small outside Bj/2(0), we can prove that

1 1 :
_62/ |Dv|? = _52/ |Dv|? + O(e™%/%)
2 Q 2 QﬁBE/z((Es)

=5N[-;- /R ) |Dﬁ5|2+E—Hi—fE) / _ |2/ 2| Dy uf? + ofe)
+ T [ P (rtatew) + ) = Saten) - laten)u)ul o]

Similarly, we have

J (Pl 1) = Fw) - Flwene)
=e[ [ (Plulon) + t0) — Flulon) - flulon))en.)

+ (V=D [ (fulon) + ) = Flulow) - Flulam)te) bam) HE) + ofe)]

R+
Thus
I (tve)
2 R
=V [% /ﬂ | D |? — /Rg (F(g(mN) + t7,) — F(u(zy)) — f(u(:vN))tz‘)E)]
4 6N+1H(.’i'5) E:it2 / |1L',|2|DmNU|2
zny=0

+ % /Rg |2/ (f(ulan) +w) = Flulzn)) - F/(ulon))u)d (on)

~w-1 [ (7o) +10) = Fluto)) = £ ulax ) lan)] + o)
=I4(t) + Ls(t) + o(e").
Choose £, such that I.4(f.) = max;>o L.4(t). Since o, € H{(RY), we see that
Ly(t) > c.

On the other hand, from %, — v in Hj (RY), and  is a solution of —Au = f(u+u)— f(u),
we can deduce easily that ., — 1 as € — 0. Thus, Ls(t.) = Ls(1) + o(e¥*1). As a result

Ce = I?Zagc I(tv)) > L(t.v.) > eV (c —eH(z:)B(u) + 0(6)),

where u € Hj(RY) is a solution of —Au = f(u + u) — f(u). So we have completed the
proof of this proposition. a

Now we are ready to prove the following results.

Theorem 4.5. Let v, be a positive mountain pass solution of (1.2). We have

(i) For any local mazimum point z. of v, we have d(z,,00) < Ce. If v, has another
local mazimum point ) , then |z, — 7 | < Ce. Moreover, for any 8 > 0, there is a
v > 0, such that |v.(z)| < Ce V1*==l/¢ for z € Q\ By(z.).

(i) For any sequence of €, there is a subsequence €; — 0, such that z; — zo € 0Q with
H(zo) = maxgzeaq H(z), where z; is any local mazimum point of v., H(z) is the mean

curvature of 0Q at z.
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Proof. Tt is easy to see (i) follows from Lemma 4.3. To prove (ii), we can combine Propo-
sitions 4.1 and 4.4 to obtain

—H(zo) < _fé%?%H(x) + o(1).
As a result, H(zy) = max,econ H(z).
O

Proof of Theorem 1.1. Let z. be a global maximum point of v.. Then u.(ey+ 2.) converges
in CL.(RY) to U(y) = u(yn) + u, where u is the mountain pass solution of (3.1). By
Remark 4.2, we know that max,cpn U(y) > 0. Thus (i) follows. It also follows from

Remark 4.2 that Uy, (0) > 0. So we see that 2u,(ey+z.) > 0 at z., where v is the inward
unit normal of 6Q at 2., z. € 99 satisfies |z, — Z;| = d(z,0%), Q. = {y : ey + 2z, € Q}.
As a result, u.(ey + z) > 0 in a neighbourhood of Z and (vi) follows. On the other hand,
(ii) follows from (i) of Theorem 4.5.

To prove (iii), we claim that for any local maximum point z, of u, with u.(z.) > ¢ > 0,
we have |z. — z.| < Ce, where z, is a local maximum point of v.. In fact, suppose that
there is a sequence of z,, such that e7!|z, — z.| — 400 as € — 0 for any local maximum
point z, of v.. Then v, > & in a small neighbourhood of z.. So we can blow up v, at z.
and see the energy of v, is strictly larger than c.. So we get a contradiction. See the proof
of Lemma 4.3. Thus (iii) follows from (ii) of Theorem 4.5. O

5. EXISTENCE OF INTERIOR PEAK SOLUTIONS

In this section, we shall briefly prove the existence of interior peak solutions for (1.
and estimate the number of such solutions. For simplicity, we only discuss the case f(z)
(t —a)?~! — (t — a). So the mountain pass solution of (3.5) is nondegenerate. See [23].

As we see in Section 4, the main contribution to the energy of I,(v.) comes from the
error term in the expansion of u, near the boundary of €2. To construct the interior peak
solution for (1.2), we need the following proposition.

2)

Proposition 5.1. We have
u (z) =a+ g~V ~F'(@){d.09)+o(1))/e

for any x € Q with e~'d(z, Q) large. Here, o(1) = 0 ase — 0.
Proof. See the proof of Theorem 2.1 in [7]. O

Let w be the unique positive solution of (3.5), which is nondegenerate. Define

Weg(y) = w(y . :c)

€

Let P o, » € H}() be the solution of
—Av = f'(a)v = fla+wez) — f'(0)Weq.
Using Proposition 5.1, we can prove
Proposition 5.2.
I(Poqwes) =€V A— 7y p + O(e—(1+a)\/:f’—(a_)d(x,89)/s),
where Tz = [o(f(a+ wez) — f'(@)wez) (u, — a). Moreover, 7., satisfies
co e—(1+9)\/Tm)d(a:,60)/e <t <o e—(l—H)\/T@)d(z,aﬂ)/e.,

for any 8 > 0, and cg > 0 and ¢; > 0 are some constants.
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Proof. The proof of this proposition is similar to that of Step 1 of Lemma, 3.1 and thus we
omit it.
O

By direct calculation, it is not difficult to prove the following proposition (see for example

[9]):

Proposition 5.3.

I(zx: PE,Qwe,zj)
J=1
I(PE,QwE,mJ‘) - /Q(Fa (il ws,m,—) - Z Fy (ws,zj) - Z fa(wE,mi)w€,$j)
J:

j=1 i<j

-

j=1

k
L0 (Z e~ (1+0)/=F(@)d(z; 09) e | v e—(1+a)\/—f’(a)ij—zil/s) ,
j=1

i#]
where fo(t) = f(a+1), Fu(t) = [§ fu(r) dr.

Propositions 5.2 and 5.3 shows that the energy of the approximate multipeak solution
Z§=1 P, quw, z; will become larger if the peak z; moves away from the boundary of Q, or
if a pair of peak (z;,z;) moves away from each other. Thus this estimate is similar to
that for the interior peak solution of Neumann problem [28]. But one should note that in
Proposition 5.2, the first small term is e~V 7 (@4(=:00/¢ instead of e=2V /' (@)dzd/e oq ip
the Neumann problem.

Arguing in exactly the same way as in [6, 28], we have

Theorem 5.4. For any positive integer k, there is an eq > 0, such that for any e € (0, &),
(1.2) has a solution of the form

k
Ve = Z Pe,ﬂws,we,j + ©e, (51)

j=1

where . satisfies

k
/ |-DQ05|2 + (Pg — O(Z e—(1+a)\/—f’(a.)d(:z:s,j,aﬂ)/s + Z e—(1+a)\/—f’(a)|zslj—zs,i|/e)_
2 j=1 i
Furthermore, we have

(i) if k =1, the number of the interior single peak solution is at least Cat(Q);
(i) if k > 2, the number of the interior k peak solution is at least N.

Remark 5.5. By Propositions 5.2 and 5.3, we see easily that for ¢ > 0 small, (1.2) has
an interior peak solution of the form (5.1) such that (1, - ,Zcx) = (o1, -+, Zox) and
(o1, ** ,Tok) is a maximum point of the function:

min(d(mj,aﬂ), |z; — z],5,5=1,--- k4 ;éj)

Thus we see that the locations of the peaks of the positive interior peaks solutions of (1.2)
are different from those for the Neumann problem, where there is a positive interior peak
solution, whose peaks are near a maximum point of the function

mln(zd(mjaag)a |-’L'i - leﬂ;aj = 17' oo )kai 71‘-.7)
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APPENDIX A.

Let u be a positive solution of (3.1). In this section, we shall prove that u decays
exponentially as |z| — +oo. Since we do not assume that f'(¢) is negative in [a,0], we
can not use the comparison theorem as usual to obtain the decay estimate. More work is
needed.

Proposition A.1. Suppose that u is a positive solution of (3.1). Then there are C > 0
and Ay > 0, such that u(z) < Ce~Volel,

Proof. Choose R > 0 large enough, such that f'(u(zn)) < —2p9 < 0 for zy > R. Here
1o > 0 is a small constant. By standard comparison argument, we can get easily that

u(z) < Ce VPRl ¥ gy > R. (A.1)
On the other hand, by Lemma 2.1, we have

/ Tler - rae) a2 oo [ (€8 +€) i vee (O o),

for some Ay > 0. So we see that the following problem has a positive solution £(2):

{—E" — f'(u(®)€ =3A&, te(0,R), (A.2)
£(0) =¢(R) = 1.

In fact, let £(t) = £(¢) — 1. By Lax-Milgram theorem, we see that the following problem
has a unique solution:

{—f‘" — F'(u(®)E — 320 = —f'(u(t)) — 3, t€(0,R),
&(

0) =¢(R) =0.
Thus (A.2) has a unique solution. Besides, using ¢ = ¢~ = min(0,£) € H}((0,1)) as a test
function, we see £~ = 0. Hence, £ is nonnegative. Suppose that the minimum of £ equals

to 0, then £ = 0 at the minimum point. By the uniqueness of the ordinary differential
equation, £ = 0. This is a contradiction. So £ is positive.
Let v = Ce V¥ ¢(zy), zy € [0, R]. Then

— Av — (f'(u(t)) + do)v
=am@@CAa¢Wﬂ+oanﬂ
=£(zy) (~CAe™V 1 4 23 Ce=V™I1) 5 0,

if |2'| > Ry > 0 is large enough.
Since u € Hg(RY), we see that u(x) — 0 as |z| = 4oco. Thus we may choose R; > 0
large enough, such that Mﬂl < X for |2'| > R;. As a result,

—Au — (f'(u(zn)) + do)u <0, if|z'| > Ry.

" () — (f'(u(t)) + Xo)é(zn ))
f(l’N)

Thus we see
~Au —v) — (f'(u®) + X)(w—v) <0, if|z'| > R;and zy € [0, R].

In view of (A.1), we see we can choose C > 0 large enough, such that u(z) < v(z) if
|z'| < Ry and zy € [0,R], or zy = 0, or zy = R (We can always choose Ay < o).
Let n=(u—v)T ifzy € [0,R], n =0 if zy > R. Because v < v for zy = R, we see
n € H}(RY). Thus

_/};N (|D(u — )" > = (F'(u(t)) + o) |(u — ,U)+|2)

= f D(w—v)* Dy — (f'(u(t)) + Xo) (u — v)*7) <0,
{l='[2Ra}n{zn €[0,R]}
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which implies (u — v)* = 0. That is u < v. Here we have used the natural generalization
of Lemma 2.1 to the half space. O

Acknowledgment: The authors would like to thank Prof. Sweers for a useful conversa-
tion.
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