
VANISHING THEOREMS AND CHARACTER FORMULAS FOR

THE HILBERT SCHEME OF POINTS IN THE PLANE

MARK HAIMAN

Abstract. In an earlier paper [13], we showed that the Hilbert scheme of
points in the plane Hn = Hilbn(C2) can be identified with the Hilbert scheme

of regular orbits C2n//Sn. Using this result, together with a recent theorem
of Bridgeland, King and Reid [4] on the generalized McKay correspondence,
we prove vanishing theorems for tensor powers of tautological bundles on the
Hilbert scheme. We apply the vanishing theorems to establish (among other
things) the character formula for diagonal harmonics conjectured by Garsia
and the author in [9]. In particular we prove that the dimension of the space
of diagonal harmonics is equal to (n + 1)n−1.

1. Introduction

In this article we continue the investigation begun in [13] of the geometry of the
Hilbert scheme of points in the plane and its algebraic and combinatorial impli-
cations. In the earlier article, we showed that the isospectral Hilbert scheme has
Gorenstein singularities, and used this to prove the “n! conjecture” of Garsia and
the author, and the positivity conjecture for Macdonald polynomials. Here we ex-
tend these results by proving vanishing theorems for tensor products of tautological
vector bundles over the Hilbert scheme Hn = Hilbn(C2) and over its zero fiber Zn
(the fiber over 0 of the Chow morphism σ : Hn → SnC2).

The algebraic-combinatorial consequence of the new results is a collection of
character formulas for the spaces of global sections of the vector bundles in ques-
tion. As a special case, we obtain the character formula for the space of diagonal
harmonics, or equivalently, for the ring of coinvariants of the diagonal action of
the symmetric group Sn on C2n. This character formula had been conjectured
by Garsia and the author in [9], where we proved that it in turn implies a series
of earlier conjectures in [10] relating the character of the diagonal harmonics to
q-Lagrange inversion, q-Catalan numbers, and q-enumeration of rooted forests and
parking functions. The formula implies that the dimension of the space of diagonal
harmonics is

(1) dimDHn = (n+ 1)n−1.

It also implies that the Hilbert series of the doubly-graded space (DHn)
ǫ of Sn-

alternating diagonal harmonics is given by the q, t-Catalan polynomial Cn(q, t)
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from [9, 11]. Hence Cn(q, t) has positive integer coefficients. Recently, Garsia and
Haglund [8] gave a different proof of this fact, based on a combinatorial interpre-
tation of the coefficients. In [10] we also conjectured that the space of diagonal
harmonics is generated by certain Sn-invariant polarization operators applied to
the space of classical harmonics. We prove this “operator conjecture” here, using
our identification of the coinvariant ring with the space of global sections of a vector
bundle on Zn.

To describe our results further, we first need to recall from [13] that Hn is
isomorphic to the Hilbert scheme of orbits C2n//Sn for the diagonal action of Sn
on C2n. Full definitions are in Section 2; for now we merely fix notation to announce
our main theorems. On the Hilbert scheme Hn we have a natural tautological vector
bundle B of rank n, while on C2n//Sn we have a tautological bundle P of rank n!,
with an Sn action in which each fiber affords the regular representation. We can
view both B and P as bundles on Hn via the isomorphism Hn

∼= C2n//Sn. The
usual tautological bundle B is the pushdown to Hn of the sheaf OFn

of regular
functions on the universal family Fn over Hn. The “unusual” tautological bundle P
may similarly be identified with the pushdown of the sheaf OXn

of regular functions
on the isospectral Hilbert scheme Xn, which is actually the universal family over
C2n//Sn.

Our first main result, Theorem 2.1, is a vanishing theorem for the higher co-
homology groups H i(Hn, P ⊗B⊗l), i > 0 of the tensor product of P with any
tensor power of B. We also identify the space of global sections H0(Hn, P ⊗B⊗l).
The latter turns out to be the coordinate ring R(n, l) of the polygraph, a subspace
arrangement defined in [13], which plays an important technical role there and
again here. This identification of R(n, l) with H0(Hn, P ⊗B⊗l) explains why the
polygraph carries geometric information about the Hilbert scheme, an explanation
which we were only able to hint at in [13]. Our theorem extends vanishing theo-
rems of Danila [5] for the tautological bundle B and of Kumar and Thomsen [16]
for the natural ample line bundles OHn

(k), k > 0. Indeed, it implies the vanishing
of the higher cohomology groups H i(Hn,O(k) ⊗B⊗l) for all k, l ≥ 0. This is an
immediate corollary, since the trivial bundle OHn

is a direct summand of P , and
the line bundle OHn

(1) is the highest exterior power of B.
Our second main result, Theorem 2.2, is a vanishing theorem for the same vector

bundles on the zero fiber Zn. The vanishing part of this second theorem follows
immediately from the first theorem, applied to an explicit locally free resolution
of OZn

described in [11] and reviewed in detail in Section 2, below. By examin-
ing the resolution more closely, we can also identify the space of global sections
H0(Zn, P ⊗B⊗l). When l = 0 it turns out that H0(Zn, P ) coincides with the coin-
variant ring for the diagonal Sn action on C2n, yielding the applications to diagonal
harmonics.

Character formulas for the spaces of global sections, and in particular for the
diagonal harmonics, follow from our vanishing theorems by an application of the
Atiyah–Bott Lefschetz formula [1]. The calculation completes a program proposed
by Procesi, who was the first to suggest that the character of the diagonal harmon-
ics might be determined this way. To carry out the calculation, we need to know
the characters of the fibers of P at distinguished torus-fixed points Iµ on Hn. By
our results in [13], these characters are given by the Macdonald polynomials. The
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character formulas we obtain here are therefore also expressed in terms of Mac-
donald polynomials. Specifically, they are symmetric functions with coefficients
depending on two parameters q, t. By virtue of being characters, these symmetric
functions are necessarily q, t-Schur positive, that is, they are linear combinations of
Schur functions by polynomials or power series in q and t with positive integer coef-
ficients. This partially establishes a positivity conjecture in [2]. The full conjecture
in [2] is slightly stronger than what we obtain here. Its proof using the methods
of this paper would require an improved vanishing theorem, which we offer as a
conjecture at the end of Section 3.

Among our character formulas is one for the polygraph coordinate ring R(n, l)
as a doubly graded algebra. Specializing this, we get a formula for its Hilbert series
HR(n,l)(q, t) in terms of symmetric function operators whose eigenfunctions are
Macdonald polynomials. A combinatorial interpretation of HR(n,l)(q, t) is implicit
in the basis construction for R(n, l) in [13]. It can be made explicit (although we will
not do so here), yielding an identity between a combinatorial generating function
and the expression involving Macdonald operators in Corollary 3.9, below. This
is one of only two combinatorial interpretations known at present for q, t-(Schur)
positive expressions arising from our character formulas. The other is the Garsia–
Haglund interpretation of Cn(q, t) alluded to above. An important problem that
remains open is to combinatorialize all the character formulas, and eventually the
Kostka-Macdonald coefficients Kλµ(q, t) as well.

In Section 2, after giving the relevant definitions, we state our two main theorems
in full and then apply Theorem 2.1 to deduce Theorem 2.2. The character formulas
and the operator conjecture follow from the vanishing theorems, as explained in
Sections 3 and 4. For the proof of Theorem 2.1, we combine results from [13] with
a recent general theorem of Bridgeland, King and Reid [4]. This is done in Section 5.
To complete this introduction, we preview the proof of Theorem 2.1.

The Bridgeland–King–Reid theorem concerns the Hilbert scheme of orbits V //G,
for a finite subgroup G ⊆ SL(V ). The theorem has two parts. The first part (which
we will not use) is a criterion for V //G to be a crepant resolution of singularities
of V/G, meaning that V //G is non-singular and its canonical sheaf is trivial. The
second (and for us, crucial) part says that when the criterion holds there is an
equivalence of categories Φ: D(V //G) → DG(V ). Here D(V //G) is the derived
category of complexes of sheaves on V //G with bounded, coherent cohology, and
DG(V ) is the similar derived category of G-equivariant sheaves on V .

Our identification of C2n//Sn with Hn shows that the Bridgeland–King–Reid
criterion holds for V = C2n, G = Sn. It is well-known that Hn is a crepant
resolution of C2n/Sn = SnC2, which is why we don’t need the first part of their
theorem. By the second part, however, we have an equivalence Φ between the
derived category D(Hn) of sheaves on the Hilbert scheme and the derived category
DSn(C2n) of finitely generated Sn-equivariant modules over the polynomial ring
C[x,y] in 2n variables. In this notation, Theorem 2.1 reduces to an identity ΦB⊗l =
R(n, l). Denoting the inverse equivalence by Ψ, we may rewrite this as ΨR(n, l) =
B⊗l, which is the form in which we prove it. The advantage of this form is that
there is no sheaf cohomology involved in the calculation of Ψ, only commutative
algebra. Conveniently, the commutative algebraic fact we need is precisely the
freeness theorem for the polygraph ringR(n, l), which was the key technical theorem
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in [13]. Thus we use here both the geometric results from [13] and the main algebraic
ingredient in their proof.

In closing, let us remark that a number of important problems relating to this
circle of ideas remain open. We have already mentioned the problem of combi-
natorializing the rest of the character formulas. Another set of problems involves
phenomena in three or more sets of variables. We expect, for example, that the ana-
log of the operator conjecture should continue to hold in additional sets of variables
x,y, . . . , z. For exactly three sets of variables, we remind the reader of the empirical
conjecture in [10] that the dimension of the space of “triagonal” harmonics should
be

(2) 2n(n+ 1)n−2,

and that of its Sn-alternating subspace should be

(3) (3n+ 3)(3n+ 4) · · · (4n+ 1)/3 · 4 · · · (n+ 1).

Our present methods do not readily apply to these problems, as we make heavy
use of special properties of the Hilbert scheme Hilbn(C2) that do not hold for
Hilbn(Cd) with d ≥ 3. Another open problem is to generalize from Sn to other
Weyl groups or complex reflection groups. Such a generalization will not be entirely
straightforward, as shown by some obstacles discussed in [13] and [10]. Finally,
despite the strength of the vanishing theorems proven here, they surely are not the
strongest possible. The conjecture at the end of Section 3 suggests one possible
improvement.

2. Definitions and main theorems

We denote by Hn the Hilbert scheme of points Hilbn(C2) parametrizing 0-
dimensional subschemes of length n in the affine plane over C. By Fogarty’s the-
orem [7], Hn is irreducible and non-singular, of dimension 2n. As a matter of
notation, if V (I) ⊆ C2 is the subscheme corresponding to a (closed) point of Hn,
we refer to this point by its defining ideal I ⊆ C[x, y]. Thus Hn is identified with
the set of ideals I such that C[x, y]/I has dimension n as a complex vector space.

The multiplicity of a point P ∈ V (I) is the length of the Artin local ring
(C[x, y]/I)P . The multiplicities of all points in V (I) sum to n, giving rise to a
0-dimensional algebraic cycle

∑

imiPi of weight
∑

imi = n. We may view this
cycle as an unordered n-tuple [[P1, . . . , Pn]] ∈ SnC2, in which each point is repeated
according to its multiplicity. The Chow morphism

(4) σ : Hn → SnC2 = C2n/Sn

is the projective and birational morphism mapping each I ∈ Hn to the correspond-
ing algebraic cycle σ(I) = [[P1, . . . , Pn]].

We denote by Fn the universal family over the Hilbert scheme,

(5)

Fn ⊆ Hn × C2

π





y

Hn,

whose fiber over a point I ∈ Hn is the subscheme V (I) ⊆ C2. The universal family
is flat and finite of degree n over Hn, and hence is given by Fn = SpecB, where
B = π∗OFn

is a locally free sheaf of OHn
-algebras of rank n. Here and elsewhere
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we identify any locally free sheaf of rank r with the rank r algebraic vector bundle
whose sheaf of sections it is. Then B is the tautological vector bundle, the quotient
of the trivial bundle C[x, y] ⊗OHn

with fiber C[x, y]/I at each point I ∈ Hn.
If G is a finite subgroup of GL(V ), where V = Cd is a finite-dimensional complex

vector space, we denote by V //G the Hilbert scheme of regular G-orbits in V , as
defined by Ito and Nakamura [14, 15]. Specifically, if v ∈ V has trivial stabilizer

(as is true for all v in a Zariski open set), then its orbit Gv is a point of Hilb|G|(V ),

and V //G is the closure in Hilb|G|(V ) of the locus of all such points. By definition,

V //G is irreducible. The universal family over Hilb|G|(V ) restricts to a universal
family

(6)

X ⊆ (V //G) × V

ρ





y

V //G.

The group G acts on X and on the tautological bundle P = ρ∗OX . This action
makes P a vector bundle of rank |G| whose fibers afford the regular representation of
G. There is a canonical Chow morphism V //G→ V/G, which can be conveniently
defined as follows. Since P is a sheaf of OV //G-algebras, it comes equipped with a
homomorphism OV //G → P . This homomorphism is an isomorphism of OV //G onto

the sheaf of invariants PG. Geometrically, this means that the map X/G→ V //G
induced by ρ is an isomorphism. The canonical projection X → V induces a
morphism X/G → V/G whose composite with the isomorphism V //G ∼= X/G
yields the Chow morphism. The Chow morphism is projective and birational,
restricting to an isomorphism on the open locus consisting of orbits Gv for v with
trivial stabilizer.

The case of interest to us is V = C2n, G = Sn, where Sn acts on C2n = (C2)n

by permuting the cartesian factors. This is the same as the diagonal action of Sn
on the direct sum of two copies of its natural representation Cn. Coordinates on
C2n will be denoted

(7) x,y = x1, y1, . . . , xn, yn;

then Sn acts by permuting the x variables and the y variables simultaneously. In [12]
we constructed a canonical morphism C2n//Sn → Hn such that the composite

(8) C2n//Sn → Hn
σ
→ SnC2

is the Chow morphism for C2n//Sn. By Theorem 5.1 of [13], the canonical morphism
is an isomorphism C2n//Sn ∼= Hn.

The universal family over C2n//Sn will be denoted Xn. We identify C2n//Sn
with Hn by means of the canonical isomorphism, so that the projection ρ of the
universal family onto C2n//Sn becomes a morphism from Xn to Hn. We have a
commutative square

(9)

Xn
f

−−−−→ C2n

ρ





y





y

Hn
σ

−−−−→ SnC2,
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in which Xn ⊆ Hn×C2n is the set-theoretic fiber product, with its induced reduced
scheme structure. In other words, Xn is the isospectral Hilbert scheme, as defined
in [13]. We again write P = ρ∗OXn

, as we did above for a general V //G. Now we
regard P as a bundle on Hn rather than on C2n//Sn. Thus Hn has two different
“tautological” bundles, the usual one B and the unusual one P . The unusual tauto-
logical bundle P has rank n!, with an Sn action affording the regular representation
on every fiber. Our notation for the various schemes, bundles and morphisms just
described is identical to that in [13].

The two-dimensional torus group

(10) T2 = (C∗)2

acts linearly on C2 as the group of 2 × 2 diagonal matrices. We write

(11) τt,q =

[

t−1 0
0 q−1

]

for its elements. Note that when a group G acts on a scheme V , elements g ∈ G
act on regular functions f ∈ O(V ) as gf = f ◦ g−1. The inverses in (11) serve to
make T2 act on the coordinate ring C[x, y] of C2 by the convenient rule

(12) τt,qx = tx; τt,qy = qy.

The action of T2 on C2 induces an action on the Hilbert scheme Hn and all other
schemes under consideration. In particular, T2 acts on the universal family Fn
and the isospectral Hilbert scheme Xn, so that the projections π : Fn → Hn and
σ : Xn → Hn are equivariant. Hence T2 acts equivariantly on the vector bundles
B and P . There are induced T2 actions on various algebraic spaces, such as the
coordinate ring C[x,y] of C2n, the space of global sections of any T2-equivariant
vector bundle, or the fiber of such a bundle at a torus-fixed point in Hn. In these
spaces, the T2 action is equivalently described by a Z2-grading. Namely, an element
f is homogeneous of degree (r, s) if and only if it is a simultaneous eigenvector of
the T2 action with weight τt,qf = trqsf . Where there is an obvious natural double
grading, as in C[x,y], it coincides with the weight grading for the torus action.

We have now defined the bundles whose tensor products will be the subject of
our vanishing theorems. The theorems also specify the spaces of global sections
of the bundles in question. To identify these spaces, we first need to recall the
definition of the polygraph Z(n, l) from [13]. There, Z(n, l) was defined as a certain
union of linear subspaces in C2n+2l, but it is better here to describe it first from a
Hilbert scheme point of view. Let

(13) W = Xn × F ln /Hn

be the fiber product over Hn of Xn with l copies of the universal family Fn. The
scheme W is thus a closed subscheme of Hn×C2n+2l, since we have Xn ⊆ Hn×C2n

and Fn ⊆ Hn×C2. We now define Z(n, l) ⊆ C2n+2l to be the image of the projection
of W on C2n+2l.

To see that this agrees with the original definition in [13], let us identify the
set Z(n, l) more directly. From (9), we see that a point of Xn is an ordered tuple
(I, P1, . . . , Pn) ∈ Hn×C2n such that σ(I) = [[P1, . . . , Pn]]. In particular, this implies
V (I) = {P1, . . . , Pn} as a set. A point of F is a pair (I,Q) ∈ Hn × C2 such that
Q ∈ V (I). Hence a point of W is a tuple

(14) (I, P1, . . . , Pn, Q1, . . . , Ql)
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such that σ(I) = [[P1, . . . , Pn]] and Qi ∈ {P1, . . . , Pn} for all 1 ≤ i ≤ l. Projecting
on C2n+2l, we see that

(15) Z(n, l) = {(P1, . . . , Pn, Q1, . . . , Ql) ∈ C2n+2l : Qi ∈ {P1, . . . , Pn} ∀i}.

This is equivalent to the definition in [13]. The scheme W is flat over Hn and
reduced over the generic locus (the open set in Hn where the Pi are all distinct).
Hence W is reduced. The set-theoretic description we have just given of the projec-
tion of W on Z(n, l) therefore also describes a morphism of schemes W → Z(n, l),
in which we regard Z(n, l) as a reduced closed subscheme of C2n+2l.

As in [13], the coordinate ring of the polygraph Z(n, l) will be denoted R(n, l).
Writing

(16) x,y,a,b = x1, y1, . . . , xn, yn, a1, b1, . . . , al, bl

for the coordinates on C2n+2l, we see that R(n, l) is the quotient of the polynomial
ring C[x,y,a,b] by a suitable ideal I(n, l). Given a global regular function on
Z(n, l), we may compose it with the projection W → Z(n, l) to get a global regular
function on W , which is the same thing as a global section of P ⊗B⊗l on Hn.
Hence we have a canonical injective ring homomorphism

(17) ψ : R(n, l) →֒ H0(Hn, P ⊗B⊗l).

We can now state our first vanishing theorem, which will be proven in Section 5.

Theorem 2.1. For all l we have

Hi(Hn, P ⊗B⊗l) = 0 for i > 0, and(18)

H0(Hn, P ⊗B⊗l) = R(n, l),(19)

where R(n, l) is the coordinate ring of the polygraph Z(n, l) ⊆ C2n+2l.

The equal sign in (19) is to be understood as signifying that the homomorphism
ψ in (17) is an isomorphism.

Our second vanishing theorem is the analog of Theorem 2.1 for the restriction
of the tautological bundles to the zero fiber Zn = σ−1({0}) ⊆ Hn. In [11] we
showed that the scheme-theoretic zero fiber is reduced, so there is no ambiguity as
to the scheme structure of Zn. The ideal of the origin {0} ⊆ SnC2 = C2n/Sn is

the homogeneous maximal ideal m = C[x,y]Sn

+ in the ring of invariants C[x,y]Sn .
Pulled back to Hn via σ, the elements of m represent global functions on Hn that
vanish on Zn. The bundle P ⊗B⊗l is a sheaf of OHn

-algebras, so we have a
canonical inclusion

(20) H0(Hn,OHn
) ⊆ H0(Hn, P ⊗B⊗l).

Our choice of coordinates x,y,a,b on Z(n, l) identifies C[x,y] and C[x,y]Sn with
subrings of R(n, l), in such a way that the diagram

(21)

H0(Hn,OHn
) →֒ H0(Hn, P ⊗B⊗l)

σ∗

x





ψ

x





C[x,y]Sn →֒ R(n, l)

commutes. It follows immediately that ψ maps every element of the ideal mR(n, l)
to a section of P ⊗B⊗l that vanishes on Zn. Composing ψ with restriction of
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sections to the zero fiber, we get a well-defined homomorphism

(22) ψ1 : R(n, l)/mR(n, l) → H0(Zn, P ⊗B⊗l).

A priori, ψ1 need neither be injective nor surjective, but according to our next
theorem, it is both.

Theorem 2.2. For all l we have

Hi(Zn, P ⊗B⊗l) = 0 for i > 0, and(23)

H0(Zn, P ⊗B⊗l) = R(n, l)/mR(n, l),(24)

where R(n, l) is the polygraph coordinate ring and m is the homogeneous maximal
ideal in the subring C[x,y]Sn ⊆ R(n, l).

Again, the equal sign in (24) signifies that the homomorphism ψ1 in (22) is an
isomorphism.

In a sense, Theorem 2.2 is a corollary to Theorem 2.1. Its proof uses an OHn
-

locally free resolution of OZn
, which we now describe. Afterwards, we will prove

that Theorem 2.1 implies Theorem 2.2. The resolution we construct will be T2-
equivariant. To write it down we need a bit more notation. Let Ct and Cq denote the
1-dimensional representations of T2 on which τt,q ∈ T2 acts by t and q, respectively.
We write

(25) Ot = Ct ⊗OHn
, Oq = Cq ⊗OHn

for OHn
with its natural T2 action twisted by these 1-dimensional characters. The

T2-equivariant sheaves Ot and Oq may be thought of as copies of OHn
with respec-

tive degree shifts of (1, 0) and (0, 1).
There is a trace homomorphism of OHn

-modules

(26) tr : B → OHn

defined as follows. Let α ∈ B(U) be a section of B on some open set U . Since
B is a sheaf of OHn

-algebras and also a vector bundle, there is a regular function
tr(α) ∈ OHn

(U) whose value at I is the trace of multiplication by α on the fiber
B(I). The sheaf B is a quotient of C[x, y] ⊗OHn

, so it is generated by its global
sections xrys (i.e., they span every fiber). The trace map is given on these sections
by

(27) tr(xrys) = pr,s(x,y) =
def

n
∑

i=1

xri y
s
i .

Here we regard the symmetric function pr,s ∈ C[x,y]Sn , called a polarized power-
sum, as a global regular function on Hn pulled back from SnC2 via the Chow
morphism. To verify (27) we need only check it on points I in the generic locus,
where the fiber B(I) = C[x, y]/I is the coordinate ring of a set of n distinct points
{(x1, y1), . . . , (xn, yn)} ⊆ C2. There it is clear that the eigenvalues of multiplication
by xrys in B(I) are just xr1y

s
1, . . . , x

r
ny

s
n. In particular, 1

n tr(1) = 1, so

(28)
1

n
tr : B → OHn

is left inverse to the canonical inclusion OHn
→֒ B. Thus we have a direct-sum

decomposition of OHn
-module sheaves, or of vector bundles,

(29) B = OHn
⊕B′, where B′ = ker(tr).
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The projection of B on its summand B′ is given by id− 1
n tr, so from (27), we see

that B′ is generated by its global sections

(30) xrys −
1

n
pr,s(x,y).

Here we can omit the section corresponding to r = s = 0, which is identically zero.
Let J be the sheaf of ideals in B generated by the global sections x and y and

the subsheaf B′. An alternative way to describe J is as follows. There are T2-
equivariant sheaf homomorphisms Ot → B and Oq → B sending the generating
section 1 in Ot and Oq to x and y, respectively. Combining these with the inclusion
B′ →֒ B, we get a homomorphism of sheaves of OHn

-modules

(31) ν : B′ ⊕Ot ⊕Oq → B.

Now composing 1 ⊗ ν : B ⊗ (B′ ⊕Ot ⊕Oq) → B ⊗B with the multiplication map
µ : B ⊗B → B, we get a homomorphism of sheaves of B-modules

(32) ξ : B ⊗ (B′ ⊕Ot ⊕Oq) → B,

whose image is exactly J . Note that since x and y generate B as a sheaf of OHn
-

algebras, the canonical homomorphism OHn
→ B/J is surjective. Thus B/J is

identified with a quotient of OHn
, which turns out to be OZn

.

Proposition 2.3. Let J be the sheaf of ideals in B generated by x, y and B′. Then
B/J is isomorphic as a sheaf of OHn

-algebras to OZn
.

Let us recall the proof from [11, 12], skipping some details. Denote by Z ′
n the

set-theoretic preimage π−1(Zn), regarded as a reduced closed subscheme of the
universal family Fn. Clearly the regular functions x, y and pr,s(x,y) for r + s > 0
vanish on Z ′

n. By an old theorem of Weyl [25], the pr,s generate C[x,y]Sn , so their
vanishing defines Zn as a subscheme of Hn. Hence Z ′

n is defined set-theoretically
by the vanishing of x, y and all pr,s, or equivalently of x, y, and every xrys− 1

npr,s.
But these sections generate J , so the subscheme of Fn defined by the ideal sheaf
J ⊆ B coincides set-theoretically with Z ′

n. We already know that B/J ∼= OZ for
some subscheme Z ⊆ Hn, and this shows that Z coincides set-theoretically with Zn.
Now Fn is flat and finite over the non-singular scheme Hn, hence Cohen-Macaulay.
Since Z ′

n projects bijectively on Zn, it has codimension n+1 in Fn. But B′⊕Ot⊕Oq

is locally free of rank n+1, so J is everywhere locally generated by n+1 elements.
It follows that SpecB/J is a local complete intersection in Fn. Finally, one shows
that SpecB/J is generically reduced, hence reduced, which implies B/J ∼= OZn

.
The point of reviewing this is to note that J is locally a complete intersection

ideal in B generated by the image under ξ of any local basis of B′ ⊕Ot ⊕Oq. Hence
the Koszul complex on the map ξ in (32) is a resolution of B/J ∼= OZn

. Since
everything in the construction is T2-equivariant we deduce the following result.

Proposition 2.4. We have a T2-equivariant locally OHn
-free resolution

(33) · · · → B⊗∧k(B′ ⊕Ot⊕Oq) → · · · → B⊗ (B′ ⊕Ot⊕Oq) →
ξ
B → OZn

→ 0,

where ξ is the sheaf homomorphism in (32).

As in [11], it follows as a corollary that the scheme-theoretic zero fiber is equal
to the reduced zero fiber, and that it is Cohen-Macaulay.
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Proof that Theorem 2.1 implies Theorem 2.2. Let V . denote the complex in (33)
with the final term OZn

deleted. The fact that (33) is a resolution means that
V . and OZn

are isomorphic as objects in the derived category D(Hn). Here and
below we work in the derived category of complexes of sheaves of OHn

-modules with
bounded, coherent cohomology. Note that V . is a complex of locally free sheaves,
each of which is a sum of direct summands of tensor powers of B. It follows from
Theorem 2.1 that P ⊗B⊗l ⊗ V . is a complex of acyclic objects for the global section
functor Γ on Hn, so we have

(34) RΓ(P ⊗B⊗l ⊗ V .) = Γ(P ⊗B⊗l ⊗ V .).

Now P⊗B⊗l⊗V . is isomorphic to P⊗B⊗l⊗OZn
in D(Hn), so H i(Zn, P ⊗B⊗l) =

RiΓ(P ⊗B⊗l ⊗ V .) is the i-th cohomology of the complex in (34). This complex
is zero in positive degrees, so we deduce that H i(Zn, P ⊗B⊗l) = 0 for i > 0,
which is the first part of Theorem 2.2. This is just the standard argument for
the higher cohomology vanishing of a sheaf with an acyclic left resolution. Since
Hi(Zn, P ⊗B⊗l) is zero in negative degrees, we also deduce that the complex in
(34) is a resolution of H0(Zn, P ⊗B⊗l).

Consider the last terms in this resolution:

(35) Γ(P ⊗B⊗l+1 ⊗ (B′ ⊕Ot ⊕Oq)) →
Γ(1⊗ξ)

R(n, l+ 1) → H0(Zn, P ⊗B⊗l) → 0.

Here we have identified Γ(P ⊗B⊗l ⊗ B) with R(n, l + 1) using Theorem 2.1. To
keep the notation consistent, we denote the coordinates in R(n, l+1) corresponding
to the tensor factor B coming from V . by x, y instead of the usual al+1, bl+1.
The subring of R(n, l+ 1) generated by the remaining coordinates x,y,a,b is just
R(n, l), since the projection of Z(n, l + 1) on these coordinates is Z(n, l). The
homomorphism R(n, l+1) → H0(Zn, P ⊗B⊗l) sends x and y to zero and coincides
on R(n, l) with ψ1 composed with the canonical map R(n, l) → R(n, l)/mR(n, l).
Using Theorem 2.1 we can also identify Γ(P ⊗B⊗l+1 ⊗ (B′ ⊕Ot ⊕Oq)) with

(36) R(n, l+ 2)′ ⊕R(n, l+ 1) ⊕R(n, l+ 1),

where R(n, l + 2)′ is the direct summand Γ(P ⊗B⊗l+1 ⊗B′) of R(n, l + 2) =
Γ(P ⊗B⊗l+1 ⊗B). In R(n, l+2) we write x, y, x′, y′ for al+1, bl+1, al+2, bl+2. By
(30), R(n, l+ 2)′ is the R(n, l+ 1)-submodule of R(n, l + 2) generated by all

(37) (x′)r(y′)s −
1

n
pr,s(x,y).

More precisely, R(n, l+ 2) is generated as an R(n, l+ 1)-module by the monomials
(x′)r(y′)s, and the projection on the summand R(n, l + 2)′ is the homomorphism
of R(n, l + 1) modules mapping (x′)r(y′)s to the expression in (37). Although we
are implicitly relying on Theorem 2.1 to guarantee that this is well defined, it can
also be shown directly.

The map Γ(1 ⊗ ξ) in (35) now becomes the R(n, l + 1)-module homomorphism

(38) R(n, l+ 2)′ ⊕R(n, l+ 1) ⊕R(n, l+ 1) → R(n, l + 1)

given on the first summand by (x′)r(y′)s 7→ xrys and on the second and third
summands by multiplication by x and y, respectively. Its image is therefore the
ideal in R(n, l+1) generated by x, y and all xrys− 1

npr,s(x,y), or equivalently, the
ideal

(39) J = (x, y) + mR(n, l+ 1).
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Since x and y generate R(n, l + 1) as an R(n, l)-module, the inclusion R(n, l) ⊆
R(n, l+ 1) induces a surjective ring homomorphism

(40) R(n, l) → R(n, l + 1)/J

with kernel

(41) I = R(n, l) ∩ J.

By (35), we have R(n, l)/I ∼= R(n, l + 1)/J ∼= H0(Zn, P ⊗B⊗l). The isomorphism
here is induced by ψ1. Thus it only remains to show that I = mR(n, l).

Clearly, I contains mR(n, l), so we are to show that the homomorphism

(42) ζ : R(n, l)/mR(n, l) → R(n, l)/I ∼= R(n, l + 1)/J

is injective. For this we construct its left inverse. From the equation R(n, l+ 1) =
Γ(P ⊗B⊗l+1) and the decomposition B = OHn

⊕B′, taken in the last tensor factor
B, we see that R(n, l) is a direct summand of R(n, l+1) as an R(n, l)-module. Using
(27) and (28), we obtain the formula

(43) θ(xrys) =
1

n
pr,s(x,y)

for the projection θ : R(n, l + 1) → R(n, l). Now, θ is a homomorphism of R(n, l)-
modules and m is generated by a subset of R(n, l), so θ carries mR(n, l + 1) into
mR(n, l). The monomials xrys with r + s > 0 generate (x, y)R(n, l + 1) as an
R(n, l)-module, so (43) shows that θ also carries (x, y)R(n, l + 1) into mR(n, l).
Hence θ induces a map

(44) θ : R(n, l+ 1)/J → R(n, l)/mR(n, l).

The endomorphism θ◦ζ of R(n, l)/mR(n, l) is a homomorphism of R(n, l)-modules,
so it is the identity, and θ is the required left inverse of ζ. �

3. Character formulas

Theorems 2.1 and 2.2 allow us to identify the ring of diagonal coinvariants and
the polygraph coordinate ring R(n, l), among other things, with spaces of global
sections of T2-equivariant coherent sheaves on Hn. When the higher cohomology
vanishes, we can calculate the T2 character of the space of global sections, or what is
the same, its Hilbert series as a doubly graded module, using the Lefschetz formula
of Atiyah and Bott [1]. We will apply this method to obtain explicit character
formulas for spaces of interest in the Hilbert scheme context. As we shall see, the
resulting formulas are naturally expressed in terms of operators arising in the theory
of Macdonald polynomials.

Let M =
⊕

Mr,s be a finitely-generated doubly graded module over C[x,y] or
C[x,y]Sn . The Hilbert series of M is the Laurent series in two variables

(45) HM (q, t) =
∑

r,s

trqs dim(Mr,s).

If M is finite-dimensional as a vector space over C, then HM (q, t) = tr(M, τt,q)
is the character of M as a T2-module in the strict sense. In general, it is a good
idea to think of HM (q, t) as a formal T2 character, for reasons that will become
apparent below. The Laurent series HM (q, t) is a rational function of q and t.
When M is a C[x,y]-module this is well-known and can be shown easily by cal-
culating the Hilbert series using a finite graded free resolution of M . When M is
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a C[x,y]Sn -module, one obtains the same result by regarding M as a module over
C[p1(x), p1(y), . . . , pn(x), pn(y)], since the power sums pk(x), pk(y) form a doubly
homogeneous system of parameters in C[x,y]Sn . Now let A be a T2-equivariant
coherent sheaf on Hn. The Chow morphism σ : Hn → SnC2 is projective, and
SnC2 is affine, so the sheaf cohomology modules H i(Hn, A) are finitely-generated
T2-equivariant—which is to say, doubly graded—C[x,y]Sn-modules. We denote
their Hilbert series by

(46) Hi
A(q, t) = HHi(Hn,A)(q, t).

The Atiyah–Bott formula expresses the Euler characteristic

(47) χA(q, t) =
def

∑

i

(−1)iHi
A(q, t)

as a sum of local contributions from the T2-fixed points of Hn. These local con-
tributions are described by data associated with partitions of n. Let us fix some
notation. We write a partition of n as µ = (µ1 ≥ µ2 ≥ · · · ≥ µl > 0), with the
understanding that µi = 0 for i > l. The Ferrers diagram of µ is the set of lattice
points

(48) d(µ) = {(i, j) ∈ N × N : j < µi+1}.

The arm a(x) and leg l(x) of a point x ∈ d(µ) denote the number of points strictly
to the right of x and above x, respectively, as indicated in this example:

(49) µ = (5, 5, 4, 3, 1)

• l(x)

• • •
• • • •
• x• • • • a(x)

(0,0)• • • • •

a(x) = 3, l(x) = 2.

To each partition µ is associated a monomial ideal

(50) Iµ = C · {xrys : (r, s) 6∈ d(µ)} ⊆ C[x, y].

A C-basis of C[x, y]/Iµ is given by the set of monomials not in Iµ,

(51) Bµ = {xrys : (r, s) ∈ d(µ)}.

In particular, dimC C[x, y]/Iµ = n, so Iµ is a point of Hn.

Proposition 3.1. The T2-fixed points of Hn are the ideals Iµ for all partitions µ
of n. The cotangent space of Hn at Iµ has a basis of T2-eigenvectors {ux, dx : x ∈
d(µ)} with eigenvalues

(52) τt,qdx = t1+l(x)q−a(x)dx, τt,qux = t−l(x)q1+a(x)ux.

Proof. An ideal I ⊆ C[x, y] is T2-fixed if and only if it is doubly homogeneous,
or equivalently, a monomial ideal. This establishes the first part. The eigenvalues
(expressed somewhat differently) were determined by Ellingsrud and Strömme [6].
The basis elements ux, dx are given explicitly in terms of local coordinates in [11,
Corollary 2.5]. �

Now we give the Atiyah–Bott formula as it applies in our context. For simplicity
we only state it for vector bundles, i.e., locally free sheaves, which is all we need.
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Proposition 3.2. Let A be a T2-equivariant locally free sheaf of finite rank on Hn.
Then

(53) χA(q, t) =
∑

|µ|=n

HA(Iµ)(q, t)
∏

x∈d(µ)(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))
.

Proof. What we have written is the classical formula in Theorem 2 of [1], evaluated
on the data in Proposition 3.1. Since Hn is not a projective variety, however, and
the left-hand side in (53) is only a formal T2 character, some further justification
is required. Various authors have extended the classical formula to more general
contexts and given algebraic proofs. We will use the following corollary to a very
general theorem of Thomason [24, Théorème 3.5].

Proposition 3.3. Let T = Td = Spec C[t1, t
−1
1 , . . . , td, t

−1
d ] be an algebraic torus,

X and Y separated schemes of finite type over C on which T acts, and f : X → Y
a T -equivariant proper morphism. Assume X is non-singular. Let K0(T,X),
K0(T, Y ), etc. denote the Grothendieck groups of T -equivariant coherent sheaves,
and K0(T,X), etc. the Grothendieck rings of T -equivariant algebraic vector bun-
dles. Recall that (for any X) K0(T,X) is a K0(T,X)-module and K0(T,X) is
an algebra over the representation ring R(T ), which we identify with Z[t, t−1] =
Z[t1, t

−1
1 , . . . , td, t

−1
d ]. Define

(54) K0(T,X)(0) = Q(t) ⊗Z[t,t−1] K0(T,X),

and similarly for Y , etc.. Then the following hold.
(1) Let N be the conormal bundle of the fixed-point locus XT in X, and set

∧N =
∑

i(−1)i[∧iN ] ∈ K0(T,XT ). Then ∧N is invertible in K0(T,XT )(0).
(2) Let f∗ : K0(T,X)(0) → K0(T, Y )(0) be the homomorphism induced by the

derived pushforward, that is, f∗[A] =
∑

i(−1)i[Rif∗A], and let fT∗ : K0(T,X
T )(0) →

K0(T, Y
T )(0) denote the same for the fixed-point loci. Then

(55) f∗[A] = i∗f
T
∗

(

(∧N)−1 ·
∑

k

(−1)k[TorOX

k (OXT , A)]

)

,

where i∗ : K0(T, Y
T )(0) → K0(T, Y )(0) is induced by i : Y T →֒ Y .

To obtain (53), we apply Thomason’s theorem with T = T2 and f : X → Y equal
to the Chow morphism σ : Hn → SnC2. The group K0(T, Y ) is identified with the
Grothendieck group of finitely-generated doubly graded C[x,y]Sn -modules. The
Hilbert series HM (q, t) only depends on the class [M ] ∈ K0(T, Y ) of M , and so
induces a Z[q, q−1, t, t−1]-linear map

(56) H : K0(T, Y )(0) → Q(q, t).

The fixed-point locus Y T is a point, so K0(T, Y
T )(0) = Q(q, t), and H ◦ i∗ is

the identity map on Q(q, t). Similarly, XT is the finite set {Iµ : |µ| = n} and
K0(T,X

T )(0) is the direct sum of copies of Q(q, t), one for each µ. With these

identifications, fT∗ is just summation over µ. Applying H to both sides in (55)
yields (53). �

Some of our sheaves and spaces have Sn actions, so we need to sharpen our
notation a bit to keep track of it. Recall that the Frobenius characteristic map
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from Sn characters to symmetric functions is defined by

(57) φχ =
1

n!

∑

w∈Sn

χ(w)pτ(w)(z),

where τ(w) is the partition of n given by the disjoint cycle lengths of the permuta-
tion w, and pλ(z) = pλ1

· · · pλl
(z) denotes the power-sum symmetric function. The

irreducible characters of Sn are then given by the identity

(58) φχλ = sλ(z),

where sλ(z) is a Schur function. Here and below we always work in the algebra

(59) Λ = ΛQ(q,t)(z)

of symmetric function in infinitely many variables z = z1, z2, . . . with coefficients
in Q(q, t). As λ runs over partitions of n, the power-sums pλ(z), Schur functions
sλ(z), Macdonald polynomials Pλ(z; q, t), and so forth are bases of the homogeneous
subspace Λn of degree n in Λ. Occasionally below we will use plethystic substitution,
also known as λ-ring notation. Let A be an algebra of polynomials or formal series
in some indeterminates U with coefficients in Q(q, t). Given Y ∈ A, we define pk[Y ]
to be the result of replacing each indeterminate in Y , including q and t, with its
k-th power. The algebra Λ is freely generated over Q(q, t) by the power-sums pk(z),
so there is a unique Q(q, t)-linear homomorphism

(60) evY : Λ → A, evY pk(z) = pk[Y ].

We now define for all f ∈ Λ, Y ∈ A:

(61) f [Y ] = evY f(z).

We will specifically need the following instances of this construction.

• Setting (here and throughout) Z = z1 + z2 + · · · , we recover f(z) = f [Z].

• f
[

Z
1−t

]

is the image of f under the automorphism of Λ sending pk(z) to

pk(z)/(1 − tk). We can equate f
[

Z
1−t

]

with f(z, tz, t2z, . . .), provided we

interpret the coefficients of the latter expression, which are rational Laurent
series in t, with rational functions. The same holds with q in place of t.

• If Y = a1 + · · · + ak is a sum of monomials ai in the indeterminates, each
with coefficient 1, then f [Y ] = f(a1, . . . , ak).

Now let M be a finitely-generated doubly graded C[x,y]Sn -module with an Sn
action that respects the grading, that is, commutes with the T2 action. For instance,
M might be a doubly graded C[x,y] module with an equivariant Sn action, regarded
as a C[x,y]Sn -module. We denote by V λ the irreducible representation of Sn with
character χλ. Then M has a canonical direct-sum decomposition

(62) M =
⊕

|λ|=n

V λ ⊗Mλ, Mλ =
def

HomSn(V λ,M),

in which each Mλ is a doubly graded C[x,y]Sn -module. We define the Frobenius
series of M to be

(63) FM (z; q, t) =
def

∑

|λ|=n

HMλ
(q, t)sλ(z) =

∑

r,s

trqsφ char(Mr,s).

The last expression follows from (58) and shows that the Frobenius series is a gener-
ating function for the characters char(Mr,s) in the same way that the Hilbert series
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is a generating function for the dimensions. The Hilbert series can be recovered
from the Frobenius series by the formula

(64) HM (q, t) = 〈sn1 ,FM (z; q, t)〉,

where 〈·, ·〉 is the usual Hall inner product on symmetric functions.
If A is a T2-equivariant coherent sheaf on Hn with an Sn action commuting with

the T2 action, then A has a decomposition

(65) A =
⊕

|λ|=n

V λ ⊗C Aλ

as in (62), inducing the decomposition (62) for the cohomology modules M =
Hi(Hn, A). We set

(66) F i
A(z; q, t) = FHi(Hn,A)(z; q, t), χFA(z; q, t) =

∑

i

(−1)iF i
A(q, t).

Then for A locally free we immediately obtain the Frobenius series version of (53):

(67) χFA(q, t) =
∑

|µ|=n

FA(Iµ)(q, t)
∏

x∈d(µ)(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))
.

Let us now evaluate this in some specific cases.

Character formula for R(n, l). Taking A = P ⊗B⊗l, the Sn action on A is
induced by that on P . By Theorem 2.1, we have

(68) FR(n,l)(z; q, t) = χFA(z; q, t).

To calculate this using (67) we must evaluate

(69) F(P⊗B⊗l)(Iµ)(z; q, t) = FP (Iµ)(z; q, t)HB(Iµ)(q, t)
l.

The set Bµ in (51) is a doubly homogeneous basis of B(Iµ) = C[x, y]/Iµ, so we have

(70) HB(Iµ)(q, t) = Bµ(q, t) =
def

∑

(r,s)∈d(µ)

trqs.

The Frobenius series of P (Iµ) is given by the transformed Macdonald polynomial

(71) H̃µ(z; q, t) =
def

tn(µ)Jµ

[

Z
1−t−1 ; q, t−1

]

,

where Jµ is the integral form Macdonald polynomial defined in [17, VI, eq. (8.3)],
and n(µ) =

∑

i(i− 1)µi. Equivalently,

(72) H̃µ(z; q, t) =
∑

λ

K̃λµ(q, t)sλ(z), K̃λµ(q, t) = tn(µ)Kλµ(q, t
−1),

where Kλµ(q, t) is the Kostka–Macdonald coefficient [17, VI, eq. (8.11)].

Proposition 3.4 ([13]). We have FP (Iµ)(z; q, t) = H̃µ(z; q, t).

The identity in the proposition is equivalent to K̃λµ(q, t) = HPλ(Iµ)(q, t), where

P =
⊕

λ V
λ ⊗ Pλ is the decomposition in (65). As a corollary, we have K̃λµ(q, t) ∈

N[q, t], the proof of which was the main combinatorial objective in [13]. The bundles
Pλ are called character sheaves. We have established the following result.
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Theorem 3.5. The Frobenius series of R(n, l) is given by

(73) FR(n,l)(z; q, t) =
∑

|µ|=n

Bµ(q, t)
lH̃µ(z; q, t)

∏

x∈d(µ)(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))
.

We can express this more succinctly in terms of the linear operator ∆ on Λ
defined by

(74) ∆H̃µ(z; q, t) = Bµ(q, t)H̃µ(z; q, t).

This operator was introduced in [9], where we gave a direct plethystic expression
for it [op. cit., Theorem 2.2].

Lemma 3.6. Let M be a finitely-generated doubly graded C[x,y]-module with an
equivariant Sn action. If the x variables x1, . . . , xn form an M -regular sequence,
then

(75) FM (z; q, t) = FM/(x)M

[

Z
1−t ; q, t

]

,

and similarly with y and q in place of x and t.

Proof. For a module over a local ring, this was proven in [12, Proposition 5.3]. The
same proof applies in the graded setting essentially without change. �

Lemma 3.7. The Frobenius series of C[x,y] is given by

(76) FC[x,y](z; q, t) = hn

[

Z
(1−q)(1−t)

]

.

Proof. Apply Lemma 3.6 first to the regular sequence x in C[x,y], then to y in
C[y]. This reduces (76) to FC(z; q, t) = hn(z) = s(n)(z), which is correct since C is
the trivial representation in degree (0, 0). �

Corollary 3.8. The formula (73) in Theorem 3.5 is equivalent to

(77) FR(n,l)(z; q, t) = ∆lhn

[

Z
(1−q)(1−t)

]

.

Proof. From (73) it is clear that FR(n,l)(z; q, t) = ∆lFR(n,0)(z; q, t). But R(n, 0) =
C[x,y]. �

Note that the case l = 0 gives a geometric interpretation and proof of one of the
basic identities in the theory of Macdonald polynomials [9, Theorem 2.8]:

(78) hn

[

Z
(1−q)(1−t)

]

=
∑

|µ|=n

H̃µ(z; q, t)
∏

x∈d(µ)(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))
.

From the preceding corollary we obtain a formula for the Hilbert series of R(n, l).

Corollary 3.9. We have

HR(n,l) = 〈sn1 (z),∆lhn

[

Z
(1−q)(1−t)

]

〉(79)

=
1

(1 − q)n(1 − t)n
〈en(z),∆

lsn1 (z)〉,(80)

where en(z) is the n-th elementary symmetric function.
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Proof. The first equation is immediate from Corollary 3.8. For the second, recall
from [9] that the transformed Macdonald polynomials are orthogonal with respect
to the inner product

(81) 〈f, g〉∗ =
def

〈ωf [Z(1 − q)(1 − t)], g〉,

where ω is the usual involution on Λ defined by ωek(z) = hk(z). Any operator with

the H̃µ(z; q, t) as eigenfunctions, and ∆ in particular, is therefore self-adjoint with
respect to 〈·, ·〉∗. Hence

(82)

〈sn1 (z),∆lhn

[

Z
(1−q)(1−t)

]

〉 = 〈ωsn1

[

Z
(1−q)(1−t)

]

,∆lhn

[

Z
(1−q)(1−t)

]

〉∗

=
1

(1 − q)n(1 − t)n
〈∆lsn1 (z), hn

[

Z
(1−q)(1−t)

]

〉∗

=
1

(1 − q)n(1 − t)n
〈en(z),∆

lsn1 (z)〉.

�

Character formula for diagonal coinvariants. The ring of coinvariants for the
diagonal action of Sn on C2n is, by definition,

(83) Rn = C[x,y]/mC[x,y],

where m is the homogeneous maximal ideal in C[x,y]Sn . Ignoring its ring structure,
Rn is isomorphic as a doubly graded Sn-module to the space of diagonal harmonics

(84) DHn = {f ∈ C[x,y] : p(∂x, ∂y)f = 0 ∀p ∈ m}.

Its Frobenius series was the subject of a series of combinatorial conjectures by the
author and others in [10]. Later, in [9], Garsia and the author showed that these
conjectures would follow from a conjectured master formula giving FRn

(z; q, t) in
terms of Macdonald polynomials, which we will now prove.

From Theorem 2.2, with l = 0, we obtain

(85) FRn
(z; q, t) = χFP⊗OZn

(z; q, t).

To calculate this using (67), we replace OZn
with the resolution V . given by the

complex in (33) with the final term deleted. This gives

(86) χFP⊗OZn
(z; q, t) =

n+1
∑

k=0

(−1)kχFP⊗Vk
(z; q, t),

where Vk = B⊗∧k(B′⊕Ot⊕Oq). The eigenvalues of τt,q ∈ T2 on the fiber (B′⊕Ot⊕
Oq)(Iµ) are q and t, from the summand Ot⊕Oq, and {trqs : (r, s) ∈ d(µ)\{(0, 0)}},
from the basis Bµ \ {1} of B′(Iµ). The Hilbert series of ∧k(B′⊕Ot⊕Oq)(Iµ) is the
k-th elementary symmetric function of these eigenvalues, and its alternating sum
over k is therefore (1 − q)(1 − t)Πµ(q, t), where

(87) Πµ(q, t) =
def

∏

(r,s)∈d(µ)
(r,s) 6=(0,0)

(1 − trqs).

Hence we have

(88)

n+1
∑

k=0

(−1)kF(P⊗Vk)(Iµ)(z; q, t) = (1 − q)(1 − t)Πµ(q, t)Bµ(q, t)H̃µ(z; q, t),
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and (67) yields the following character formula for the diagonal coinvariants.

Theorem 3.10. The Frobenius series of the coinvariant ring Rn, or of the diagonal
harmonics DHn, is given by

(89) FRn
(z; q, t) =

∑

|µ|=n

(1 − q)(1 − t)Πµ(q, t)Bµ(q, t)H̃µ(z; q, t)
∏

x∈d(µ)(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))
.

We briefly review some of the consequences of this formula, as developed in [9].
First, there is reformulation of (89) along the lines of (77). Let ∇ be the linear
operator on Λ defined by

(90) ∇H̃µ(z; q, t) = tn(µ)qn(µ′)H̃µ(z; q, t),

with n(µ) as in (71) and µ′ denoting the conjugate partition.

Proposition 3.11. The formula (89) may be simply expressed as

(91) FRn
(z; q, t) = ∇en(z).

Next, making use of the known specializations of H̃µ(z; q, t) at t = q−1 and t = 1,
we were able to determine the corresponding specializations of (91).

Proposition 3.12. For t = q−1 we have

(92)

q(
n
2)FRn

(z; q, q−1) =
1

1 + q + · · · + qn
hn

[

Z 1−qn+1

1−q

]

=
∑

|λ|=n

sλ(1, q, . . . , q
n)

1 + q + · · · + qn
sλ(z)

and hence

(93) q(
n
2)HRn

(q, q−1) = (1 + q + · · · + qn)n−1.

In particular, setting q = 1, we have

(94) dimRn = (n+ 1)n−1.

The specialization at t = 1 is most conveniently expressed combinatorially, in
terms of parking functions. A function f : {1, . . . , n} → {1, . . . , n} is called a parking
function if |f−1({1, . . . , k})| ≥ k, for all 1 ≤ k ≤ n. To understand the name, picture
a one-way street with n parking spaces numbered 1 through n. Suppose that n cars
arrive in succession, each with a preferred parking space given by f(i) for the i-th
car. Each driver proceeds directly to his or her preferred space and parks there, or
in the next available space, if the desired space is already taken. The necessary and
sufficient condition for everyone to park without being forced to the end of the street
is that f is a parking function. The weight of f is the quantity w(f) =

∑n
i=1 f(i)−i.

It measures the quantity of frustration experienced by the drivers in having to pass
up occupied parking spaces. The symmetric group acts on the set PFn of parking
functions by permuting the cars (that is, the domain of f) and this action preserves
the weight. Let CPFn =

⊕

d CPFn,d be the permutation representation on parking
functions, graded by weight, i.e., PFn,d = {f ∈ PFn : w(f) = d}.

Proposition 3.13. For t = 1, we have

(95) FRn(z; q, 1) =
∑

d

qdφ char(ε⊗ CPFn,d),
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where ε is the sign representation. In other words, Rn and ε⊗CPFn are isomorphic
as singly graded Sn-modules when we consider only the y-degree in Rn and ignore
the x-degree.

Since it is known that |PFn| = (n+1)n−1, we again recover the dimension formula
(94). Of particular interest is the subspace Rεn of Sn-alternating coinvariants, whose
Hilbert series is given by

(96) HRε
n
(q, t) = 〈en(z),FRn

(z; q, t)〉.

We can expand this by substituting into (89) the known identity

(97) 〈en(z), H̃µ(z; q, t)〉 = K̃(1n),µ(q, t) = tn(µ)qn(µ′),

obtaining the following result.

Corollary 3.14. The Hilbert series of the Sn-alternating diagonal coinvariants is
given by

(98) HRε
n
(q, t) = Cn(q, t) =

def

∑

|µ|=n

tn(µ)qn(µ′)(1 − q)(1 − t)Πµ(q, t)Bµ(q, t)
∏

x∈d(µ)(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))
.

The quantity Cn(q, t), studied in [9, 11], is called the q, t-Catalan polynomial.
From either Proposition 3.12 or 3.13, we see that Cn(q, t) is a q, t-analog of the
Catalan number

(99) Cn(1, 1) =
1

n+ 1

(

2n

n

)

By the corollary above, we have Cn(q, t) ∈ N[q, t]. Recently, Garsia and Haglund
also proved this by establishing the following combinatorial interpretation.

Proposition 3.15 ([8]). Let Dn be the set of non-negative integer sequences (e1 =
0, e2, . . . , en) ∈ Nn satisfying ek+1 ≤ ek + 1 for all k. Put |e| =

∑

i ei and let i(e)
be the number of index pairs i < j such that ej = ei or ej = ei − 1. Then

(100) Cn(q, t) =
∑

e∈Dn

t|e|qi(e).

We remark that (97) has a direct geometric interpretation. The bundle P is a
quotient of B⊗n (see [13, Section 3.7]), so we have an equivariant isomorphism of
line bundles

(101) P(1n) = P ε ∼= ∧nB ∼= O(1).

Hence K̃(1n),µ(q, t), which is the T2 character of the fiber P(1n)(Iµ) = ∧nB(Iµ), is

equal to
∏

(r,s)∈d(µ) t
rqs = tn(µ)qn(µ′). The notation O(1) here refers to the very

ample line bundle coming from the projective embedding of Hn over SnC2 con-
structed in [11, Proposition 2.6]. The identity ∧nB ∼= O(1) is [op. cit., Proposition
2.12]. See also Proposition 5.4, below.

Other character formulas. The ring R(n, l) and its quotient R(n, l)/mR(n, l)
have Sl actions permuting the coordinates a1, b1, . . . , al, bl, and commuting with the
Sn action. Under our identification of these rings with the spaces of global sections
H0(Hn, P ⊗B⊗l) and H0(Zn, P ⊗B⊗l), the Sl action corresponds to permutation
of the tensor factors in B⊗l.
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Recall that the Schur functor Sν for ν a partition of l is defined by

(102) Sν(W ) = (W⊗l)ν = HomSn(V ν ,W⊗l).

It makes sense as a functor on vector spaces and also on vector bundles. The
following classical result of Schur [22] can be viewed as a formulation of Schur-Weyl
duality.

Proposition 3.16. If α ∈ End(W ) has eigenvalues t1, . . . , td, then the trace of
Sν(α) ∈ EndSν(W ) is given by the Schur function

(103) sν(t1, . . . , td).

Corollary 3.17. The Hilbert series of Sν(B(Iµ)) is given by

(104) HSν(B(Iµ)) = sν [Bµ(q, t)]

in the notation of (61).

Proceeding as in the derivation of Theorems 3.5 and 3.10, one obtains the fol-
lowing refinement, which takes account of the Sl action.

Theorem 3.18. The Frobenius series of R(n, l)ν = HomSl(V ν , R(n, l)) is given by

(105) FR(n,l)ν
(z; q, t) =

∑

|µ|=n

sν [Bµ(q, t)]H̃µ(z; q, t)
∏

x∈d(µ)(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))
.

Setting S(n, l, ν) = (R(n, l)/mR(n, l))ν, its Frobenius series is given by

(106) FS(n,l,ν)(z; q, t) =
∑

|µ|=n

(1 − q)(1 − t)Πµ(q, t)Bµ(q, t)sν [Bµ(q, t)]H̃µ(z; q, t)
∏

x∈d(µ)(1 − t1+l(x)q−a(x))(1 − t−l(x)q1+a(x))
.

It is convenient to express these identities with the aid of operators ∇f defined
for any symmetric function f by

(107) ∇f H̃µ(z; q, t) = f [Bµ(q, t)]H̃(z; q, t).

In this notation, the operator ∆ in (74) is ∇e1 , and ∇ in (90) is the operator which
coincides with ∇en

in degree n, for each n. From the expressions for the l = 0
cases of (105) and (106) in Lemma 3.7 and Proposition 3.11, we get the following
corollary.

Corollary 3.19. The two Frobenius series in (105) and (106) may be simply ex-
pressed as

FR(n,l)ν
(z; q, t) = ∇sν

hn

[

Z
(1−q)(1−t)

]

,(108)

FS(n,l,ν)(z; q, t) = ∇sν
∇en(z) = ∇ensν

en(z).(109)

In particular, the expression on the right-hand side is a q, t-Schur positive formal
power series in (108) and polynomial in (109).

The operators ∇sν
were studied in [2], where we made the following conjecture.

Conjecture 3.20. The quantity ∇sν
en(z) is a q, t-Schur positive polynomial for

all ν and n.

This statement is stronger than the positivity of the expression in (109), because
∇f is linear in f , and ensν is a positive linear combination of Schur functions.
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Proposition 3.21. We have

(110) χFOZn⊗P∗⊗Sν(B) = ∇sν
en(z).

Proof. Equation (109) gives χFOZn⊗P⊗Sν(B) = ∇sν
∇en(z). To remove the extra

factor ∇, we should divide the numerator in (106) by tn(µ)qn(µ′). By the remarks
following (101), this is achieved if we replace P with O(−1) ⊗ P . The latter is
isomorphic to the dual bundle P ∗ [13, eq. (45)]. �

From this we see that ∇sν
en(z) is at least a polynomial and that Conjecture 3.20

would be a consequence of the following strengthening of Theorems 2.1 and 2.2.

Conjecture 3.22. We have H i(Hn, P
∗ ⊗B⊗l) = 0 for all i > 0, and hence also

Hi(Zn, P
∗ ⊗B⊗l) = 0 for all i > 0.

Note that the “hence also” part follows precisely as in the derivation of Theo-
rem 2.2 from Theorem 2.1. The identification of the spaces of global sections seems
rather difficult, and will not be addressed here.

4. The operator conjecture

In [10], we proved the following proposition and conjectured that the theorem
stated below holds. This theorem was called the operator conjecture there.

Proposition 4.1. The space DHn of diagonal harmonics defined in (84) is closed
under the action of the polarization operators

(111) Ek =
n
∑

i=1

yi∂x
k
i , k > 0.

Theorem 4.2. The Vandermonde determinant ∆(x) generates DHn as a module
for the algebra of operators C[∂x1, . . . , ∂xn, E1, . . . , En−1].

Note that the operators ∂xj and Ek all commute, and that we need not go past
En−1, as Ek∆(x) = 0 for k ≥ n. We will prove the theorem using the isomorphism

(112) ψ1 : Rn → H0(Zn, P )

given by the case l = 0 of Theorem 2.2, whereRn is the ring of diagonal coinvariants.
The first step is to recast Theorem 4.2 in ideal-theoretic terms. There is a symmetric
inner product (·, ·) on C[x,y] defined by

(113) (f, g) = g(∂x, ∂y)f(x,y)|
x,y 7→0 .

The set of all monomials xhyk is an orthogonal basis, with (xhyk,xhyk) =
∏n
i=1(hi)!(ki)!. In particular, this verifies that (·, ·) is in fact symmetric. The

inner product is compatible with the grading and non-degenerate. Since C[x,y]d
is finite-dimensional in each degree d, we have I⊥⊥ = I for any homogeneous sub-
space I ⊆ C[x,y]. One sees easily from (113) that the operator ∂xj is adjoint to
multiplication by xj , and likewise for yj . A polynomial f is orthogonal to an ideal
(g1, . . . , gk) if and only if

(114) p(∂x, ∂y)gi(∂x, ∂y)f(x,y) = 0

for all i and all p ∈ C[x,y]. By Taylor’s theorem, this is equivalent to
gi(∂x, ∂y)f(x,y) = 0 for all i. Setting

(115) I = mC[x,y],
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we therefore see that DHn = I⊥, or I = DH⊥
n . The following version of Theo-

rem 4.2 in one set of variables is classical.

Proposition 4.3 ([23]). Let I0 ⊆ C[x] be the ideal generated by the homogeneous
maximal ideal in C[x]Sn , or equivalently by the elementary symmetric functions
e1(x), . . . , en(x), so that I⊥0 is the space of harmonics for the usual action of Sn on
Cn. Then the Vandermonde determinant ∆(x) generates I⊥0 as a C[∂x]-module.

Returning to the diagonal situation, set

(116) OPn = C[∂x, E1, . . . , En−1]∆(x).

We have OPn ⊆ DHn, and hence

(117) I ⊆ OP⊥
n ,

and we are to prove that equality holds here.

Proposition 4.4. We have f(x,y) ∈ OP⊥
n if and only if

(118) f(x, φλ(x)) ∈ (e1(x), . . . , en(x)),

identically in λ, where φλ(z) = λn−1z
n−1 + · · · + λ1z is the polynomial of degree

n− 1 in one variable with zero constant term and generic coefficients.

Proof. Since the adjoint of ∂xj is xj , and the adjoint of Ek is E∗
k =

∑

i x
k
i ∂yi, it

follows that we have f ∈ OPn if and only if

(119) ∆(x) ⊥ C[x, E∗
1 , . . . , E

∗
n−1]f

We can regard the expression exp(λn−1E
∗
n−1 + · · ·+λ1E

∗
1 ) as a generating function

in the indeterminates λk for all monomials in the operators E∗
k . Condition (119) is

then equivalent to

(120) exp(
∑

k λkE
∗
k)f ⊆ (C[∂x]∆(x))⊥

holding identically in λ. This last condition depends only on the y-degree zero part
of exp(

∑

k λkE
∗
k)f , so from Proposition 4.3 we see that it is in turn equivalent to

(121) (exp(
∑

k λkE
∗
k)f)|y 7→0 ∈ (e1(x), . . . , en(x)).

By Taylor’s theorem, exp(λkE
∗
k)f is equal to the result of substituting yj+λkx

k
j for

yj in f , for all j. Hence (exp(
∑

k λkE
∗
k)f)|y 7→0 = f(x, φλ(x)), and the proposition

is proved. �

Theorem 4.2 is a corollary to the preceding propostion and the next.

Proposition 4.5. If f ∈ C[x,y] satisfies f(x, φλ(x)) ∈ (e1(x), . . . , en(x)), with φλ
as in Proposition 4.4, then f(x,y) ∈ mC[x,y], where m = C[x,y]Sn

+ .

Proof. Using Theorem 2.2, it suffices to show that the global section ψf(x,y) ∈
H0(Hn, P ) restricts to zero on Zn. Equivalently, we are to show that the function
f(x,y) on Xn belongs to the ideal of the scheme-theoretic preimage ρ−1(Zn).

Let Ux ⊆ Hn be the open set consisting of ideals I such that x generates the
tautological fiber B(I) = C[x, y]/I as a C-algebra, that is,

(122) Ux = {I ∈ Hn : {1, x, . . . , xn−1} is a basis of B(I)}.
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As shown in [13, Section 3.6], Ux is an affine cell with coordinates e1, . . . , en,
γ0, . . . , γn−1 such that the equations of the universal family over Ux are given in
terms of these and the coordinates x, y on C2 by

(123)
xn − e1x

n−1 + · · · + (−1)nen = 0

y = γn−1x
n−1 + · · · + γ1x+ γ0.

The preimage U ′
x = ρ−1(Ux) of Ux in Xn is an affine cell with coordinates

x1, . . . , xn, γ0, . . . , γn. The morphism ρ : Xn → Hn is given on the coordinate
level by the identification of ei with the i-th elementary symmetric function ei(x).
Each coordinate pair xj , yj on Xn satisfies equations (123), so the coordinates
yj are given in terms of x,γ by yj = φγ(xj), where φγ(z) is the polynomial
γn−1z

n−1 + · · · + γ1z + γ0 with coefficients γ.
The zero fiber Zn is irreducible [3], so Ux ∩ Zn is dense in Zn, and it suffices to

check that the section represented by f is zero there. In terms of the coordinates e,γ
on Ux, the ideal of Ux∩Zn is (γ0, e), so the coordinate ring of the scheme-theoretic
preimage U ′

x ∩ ρ
−1(Zn) is

(124) C[x, γ1, . . . , γn−1]/(e1(x), . . . , en(x)).

In terms of the coordinates x,γ, the given function f(x,y) becomes f(x, φγ(x)),
which belongs to (e1(x), . . . , en(x)) by hypothesis. �

5. Proof of the main theorem

We will prove Theorem 2.1 by combining two results from [13]—the isomorphism
C2n//Sn ∼= Hn and the theorem that R(n, l) is a free C[y]-module—with the the-
orem of Bridgeland, King and Reid mentioned in the introduction. We begin by
reviewing these results.

Let V = Cm be a complex vector space and G a finite subgroup of SL(V ). As
in Section 2, we have a diagram

(125)

X
f

−−−−→ V

ρ





y





y

V //G
σ

−−−−→ V/G,

whose special case for V = C2n, G = Sn is (9). Let D(V //G) be the derived
category of complexes of sheaves of OV //G-modules with bounded, coherent coho-

mology, and DG(V ) the derived category of complexes of G-equivariant sheaves
of OV -modules, again with bounded, coherent cohomology. Bridgeland, King and
Reid define a functor

(126) Φ: D(V //G) → DG(V )

by the formula

(127) Φ = Rf∗ ◦ ρ
∗.

Note that ρ is flat, so we can write ρ∗ instead of Lρ∗ here.

Theorem 5.1 ([4]). Suppose that the Chow morphism V //G → V/G satisfies the
following smallness criterion: for every d, the locus of points x ∈ V/G such that
dimσ−1(x) ≥ d has codimension at least 2d− 1. Then
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(1) V //G is a crepant resolution of singularities of V/G, i.e., it is non-singular
and its canonical line bundle is trivial, and

(2) the functor Φ is an equivalence of categories.

We apply the theorem with V = C2n and G = Sn. Note that Sn, acting di-
agonally, is a subgroup of SL(C2n). It is known [13, 18] that ωHn

∼= OHn
, so

C2n//Sn ∼= Hn is a crepant resolution of C2n/Sn = SnC2. Moreover, the small-
ness criterion in Theorem 5.1 holds. This follows either from the description of the
fibers of the Chow morphism due to Briançon [3], or from the observation in [4]
that, conversely to Theorem 5.1, the criterion holds whenever G preserves a sym-
plectic form on V and V //G is a crepant resolution. We identify DSn(C2n) with the
derived category of bounded complexes of finitely-generated Sn-equivariant C[x,y]-
modules. The functor Rf∗ is thereby identified with RΓXn

. Since ρ is finite and
therefore affine, and P = ρ∗OXn

, the functor RΓXn
◦ ρ∗ is naturally isomorphic to

RΓHn
(P ⊗−).

Corollary 5.2. The functor Φ = RΓ(P ⊗−) is an equivalence of categories
Φ: D(Hn) → DSn(C2n).

Using this we can reformulate our main theorem.

Proposition 5.3. Theorem 2.1 is equivalent to the identity in DSn(C2n)

(128) ΦB⊗l ∼= R(n, l),

where the isomorphism is given by the map R(n, l) → ΦB⊗l obtained by composing
the canonical natural transformation Γ → RΓ with the homomorphism ψ in (17).

We will prove identity (128), and thus Theorem 2.1, by using the inverse
Bridgeland–King–Reid functor Ψ: DSn(C2n) → D(Hn), which also has a simple
description in our case. In general, as observed in [4], the inverse functor Ψ can
be calculated using Grothendieck duality as the right adjoint of Φ, given by the
formula

(129) Ψ = (ρ∗(ωX
L
⊗ Lf∗−))G.

To simplify this, we use the following result from [13].

Proposition 5.4. The line bundle O(1) = ∧nB is the Serre twisting sheaf induced
by a natural embedding of Hn as a scheme projective over SnC2. Writing O(1)
also for its pullback to Xn, we have that Xn is Gorenstein with canonical sheaf
ωXn

∼= O(−1).

We need an extra bit of information not contained in the proposition. There are
two possible equivariant Sn actions on OXn

(1): the trivial action coming from the
definition of OXn

(1) as ρ∗OHn
(1), or its twist by the sign character of Sn. The

latter action is the correct one, in the sense that the isomorphism ωXn
∼= O(−1) is

Sn-equivariant for this action, as can be seen from the proof in [13]. Taking this
into account, and using the fact that OXn

(−1) is pulled back from Hn, we have the
following description of the inverse functor.

Proposition 5.5. The inverse of the functor Φ in Corollary 5.2 is given by

(130) Ψ = O(−1) ⊗ (ρ∗ ◦ Lf
∗)ǫ.

Here (−)ǫ denotes the functor of Sn-alternants, i.e., Aǫ = HomSn(ε,A), where ε is
the sign representation.
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Now we recall the algebraic result that was the key technical tool in [13].

Theorem 5.6. The polygraph coordinate ring R(n, l) is a free C[y]-module.

We need to strengthen this in two ways. Any automorphism of C2 induces
an automorphism of C2n+2l, and the corresponding automorphism of C[x,y,a,b]
leaves invariant the defining ideal I(n, l) of Z(n, l). In particular, this is so for
translations in the x-direction, which also leave invariant the ideal (y) and hence
I(n, l) + (y). This implies that any of the coordinates xi, ai is a non-zero-divisor
in R(n, l)/(y), yielding the following two corollaries.

Corollary 5.7. The coordinate ring R(n, l) is a free C[x1,y]-module.

Corollary 5.8. The coordinate ring R(n, l) has a free resolution of length n− 1 as
a C[x,y]-module.

As in [13, Definition 4.1.1], the polygraph Z(n, l) is the union of linear subspaces
Wf ⊆ C2n+2l defined by

(131) Wf = V (If ), If = (ai − xf(i), bi − yf(i) : 1 ≤ i ≤ l)

for all functions f : {1, . . . , l} → {1, . . . , n}. The polygraph ring can be defined with
any ground ring S in place of C as

(132) R(n, l) = S[x,y,a,b]/I(n, l), I(n, l) =
⋂

f

If ,

with If as above. Theorem 5.6 holds in this more general setting [13, Theorem 4.3].

If θ is an automorphism of S[x, y] as an S-algebra, then the automorphism θ⊗(n+l)

of S[x,y,a,b] ∼= S[x, y]⊗(n+l) leaves I(n, l) invariant, inducing an automorphism
of R(n, l). Hence we have the following corollary.

Corollary 5.9. Let S be a C-algebra and let y′ denote the image of y under some
automorphism of S[x, y] as an S-algebra. Then S ⊗C R(n, l) is a free S[y′1, . . . , y

′
n]-

module.

In addition to the results on polygraphs we need the following local structure
theorem for Xn. It allows us to assume by induction on n that a desired geometric
result holds locally over the open locus consisting of points I ∈ Hn such that V (I)
is not concentrated at a single point of C2.

Proposition 5.10. Let Uk ⊆ Xn be the open set consisting of points (I, P1, . . . , Pn)
for which {P1, . . . , Pk} and {Pk+1, . . . , Pn} are disjoint. Then Uk is isomorphic to
an open set in Xk×Xn−k. More precisely, the morphism f : Xn → C2n restricted to
Uk corresponds to the restriction of fk×fn−k : Xk×Xn−k → C2k×C2(n−k) = C2n.

The pullback F ′
n = Fn × Xn /Hn of the universal family to Xn decomposes

over Uk as the disjoint union F ′
n = F ′

k ×Xn−k ∪Xk × F ′
n−k of the pullbacks of the

universal families from Hk and Hn−k. Hence the tautological sheaf ρ∗B decomposes
as ρ∗B = η∗kρ

∗
kBk ⊕ η∗n−kρ

∗
n−kBn−k, where ηk and ηn−k are the projections of

Xk ×Xn−k on the factors.

The final piece of our puzzle will be supplied by a fundamental result of commu-
tative algebra known as the new intersection theorem.

Theorem 5.11 ([19, 20, 21]). Let 0 → Cn → · · · → C1 → C0 → 0 be a bounded
complex of locally free coherent sheaves on a Noetherian scheme X. Denote by
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Supp(C.) the union of the supports of the homology sheaves Hi(C.). Then every
component of Supp(C.) has codimension at most n in X. In particular, if C. is
exact on an open set U ⊆ X whose complement has codimension exceeding n, then
C. is exact.

Proof of Theorem 2.1. By Proposition 5.3, we have a map

(133) R(n, l) → ΦB⊗l

in the derived category DSn(C2n), and it suffices to show that it is an isomorphism.
Applying the inverse functor Ψ yields a map

(134) ΨR(n, l) → B⊗l

in D(Hn), and we can equally well show that this is an isomorphism. Let C be the
third vertex of a distinguished triangle

(135) C[−1] → ΨR(n, l) → B⊗l → C.

We are to show that C = 0.
We may compute ΨR(n, l) as follows. By Corollary 5.8, the C[x,y]-algebra

R(n, l) has a free resolution of length n− 1. We can assume that the resolution is
Sn-equivariant, for instance by taking a graded minimal free resolution. In derived
category terminology, we have an Sn-equivariant complex of free C[x,y]-modules

(136) A. = · · · → 0 → An−1 → · · · → A1 → A0 → 0 → · · ·

quasi-isomorphic to R(n, l). Using the formula for Ψ from Proposition 5.5, we have
ΨR(n, l) = O(−1) ⊗ (ρ∗f

∗A.)ǫ. Moreover, since ρ is flat, and since the functor
(−)ǫ is a direct summand of the identity functor, O(−1) ⊗ (ρ∗f

∗A.)ǫ is a com-
plex of locally free sheaves. Since B⊗l is a sheaf, the map ΨR(n, l) → B⊗l in
(134) is represented by an honest homomorphism of complexes, and not merely
by a quasi-isomorphism. The object C is represented by the mapping cone of this
homomorphism, namely, the complex of locally free sheaves

(137) 0 → Cn → · · · → C2 → C1 → B⊗l → 0,

where Ci = O(−1) ⊗ (ρ∗f
∗Ai−1)

ǫ. We are to prove that this complex is exact.
Let U ⊆ Hn be the open set of points I such that V (I) contains at least two

distinct points of C2. Let Uk be the open subset in Xn on which {P1, . . . , Pk} is
disjoint from {Pk+1, . . . , Pn}. Clearly the open set ρ−1(U) ⊆ Xn is the union of
open sets conjugate by some permutation w ∈ Sn to Uk for some 0 < k < n. On
Uk, the decomposition of the tautological sheaf ρ∗B from Proposition 5.10 induces
a decomposition of ρ∗B⊗l as a a direct sum

(138) ρ∗B⊗l ∼=

l
⊕

j=0

(

l

j

)

· (η∗kρ
∗
kBk)

⊗j ⊗ (η∗n−kρ
∗
n−kBn−k)

⊗l−j .

Let R(n, l)∼ be the sheaf of OC2n modules corresponding to the C[x,y]-module
R(n, l). We partition the set {1, . . . , n} into two subsets S1 = {1, . . . , k} and
S2 = {k + 1, . . . , n}, and define α : {1, . . . , n} → {1, 2} to be the function mapping
the elements of Si to i. Let U ′

k be the open subset consisting of points (P1, . . . , Pn) ∈
C2n satisfying the same condition that defines Uk, namely that {P1, . . . , Pk} and
{Pk+1, . . . , Pn} are disjoint. Over U ′

k, components Wf , Wg of the polygraph Z(n, l)
are disjoint if α◦f 6= α◦g. Hence Z(n, l) is a union of 2l disjoint closed subschemes
Zh, indexed by functions h : {1, . . . , l} → {1, 2}, where Zh is the union of the



VANISHING THEOREMS AND CHARACTER FORMULAS 27

components Wf for which α ◦ f = h. Each subscheme Zh is isomorphic over U ′
k

to Z(k, j) × Z(n − k, l − j), where j = |h−1({1})|. The number of Zh that occur

for a given value of j is
(

l
j

)

. This decomposition of Z(n, l) gives a direct sum

decomposition of R(n, l)∼ on U ′
k as

(139) R(n, l)∼ ∼=

l
⊕

j=0

(

l

j

)

·R(k, j)∼ ⊗R(n− k, l − j)∼.

The decompositions (138) and (139) are compatible with the map ψ : R(n, l) →
H0(Xn, ρ

∗B⊗l) in (17).
Now assume by induction that Theorem 2.1 holds for smaller values of n, the

base case n = 1 being trivial. The preceding remarks then show that the map
R(n, l) → ΦB⊗l in (133) restricts to an isomorphism on the open set U ′ ⊆ C2n of
points (P1, . . . , Pn) with P1, . . . , Pn not all equal. The functors Φ and Ψ are defined
locally with respect to SnC2, so we conclude that the map ΨR(n, l) → B⊗l in (134)
is an isomorphism on U , and hence the complex C in (137) is exact on U . The
complement of U in Hn is isomorphic to C2 × Zn, so it has dimension n + 1 and
codimension n− 1. Before applying Theorem 5.11, we first need to enlarge U to an
open set whose complement has codimension n + 1. The desired open set will be
U ∪ Ux ∪ Uy, where Ux is as in (122), and Uy is defined in the obvious analogous
way. Its complement is isomorphic to C2× (Zn \ (Ux∪Uy)), which has codimension
n+ 1 by the following lemma.

Lemma 5.12. The complement Zn \ (Ux ∪ Uy) of Ux ∪ Uy in the zero fiber has
dimension n− 3.

Proof. Let V = Zn \ (Ux ∪ Uy). Interpreting dimV < 0 to mean that V is empty,
the lemma holds trivially for n = 1, so we can assume n ≥ 2. We consider the
decomposition of Zn into affine cells as in [3, 6], and show that each cell intersects
V in a locus of dimension at most n − 3. There is one open cell, of dimension
n − 1. This cell is actually Ux ∩ Zn, so it is disjoint from V . There is also one
cell of dimension n − 2. It has non-empty intersection with Uy, so its intersection
with V has dimension at most n−3. In fact this intersection has dimension exactly
n− 3, since the complement of Uy is the zero locus of a section of the line bundle
∧nB = O(1). All remaining cells have dimension less than or equal to n− 3. �

We digress briefly to point out the geometric meaning of this lemma. For I in
the zero fiber, the fiber B(I) is an Artin local C-algebra with maximal ideal (x, y).
The point I belongs to Ux ∪ Uy if and only if the maximal ideal is principal, that
is, B(I) has embedding dimension one, or equivalently, the corresponding closed
subscheme V (I) is a subscheme of some smooth curve through the origin in C2. In
this case I is said to be curvilinear. The lemma says that the non-curvilinear locus
has codimension two in the zero fiber.

The proof of Theorem 2.1 is now completed by the following lemma and its
symmetric partner with Uy in place of Ux.

Lemma 5.13. The map ΨR(n, l) → B⊗l restricts to an isomorphism on Ux.

Proof. Recall the description in the proof of Proposition 4.5 of the coordinates on
Ux and its preimage U ′

x = ρ−1(Ux) in Xn. The coordinates on U ′
x are x,γ, with

yj equal to φγ(xj), where φγ(z) = γn−1z
n−1 + · · · + γ1z + γ0. The coordinates
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on Ux are e,γ, where ei = ei(x) is the i-th elementary symmetric function, so
C[e,γ] = C[x,γ]Sn .

We have a trivial isomorphism

(140) C[x,γ] ∼= C[x,y,γ]/(yj − φγ(xj) : 1 ≤ j ≤ n)

which is nonetheless useful because it describes C[x,γ] as a C[x,y]-module. Since
C[x,γ] and C[x,y,γ] are polynomial rings of dimension 2n and 3n, respectively, the
ideal in (140) is a complete intersection ideal. Hence the Koszul complex K.(y −
φγ(x)) over C[x,y,γ] is a free resolution of C[x,γ] as a C[x,y,γ ]-module, and
therefore as a C[x,y]-module.

The restriction of Lf∗R(n, l) to the affine open set U ′
x is the complex of

sheaves associated to the complex of modules C[x,γ]
L
⊗

C[x,y]
R(n, l). This can

be computed by tensoring R(n, l) with the above free resolution of C[x,γ],
and the result is the Koszul complex K.(y − φγ(x)) over C[γ] ⊗C R(n, l). It
follows from Corollary 5.9 that this Koszul complex is a free resolution of
C[γ] ⊗C R(n, l)/(y − φγ(x)). In other words, on U ′

x we have Lf∗R(n, l) =
f∗R(n, l), and we have a description of this object as the sheaf associated
to the C[x,γ]-algebra C[γ] ⊗C R(n, l)/(y − φγ(x)). It follows that ΨR(n, l) =
O(−1) ⊗ (ρ∗Lf

∗R(n, l))ǫ is described on Ux as the sheaf associated to the Sn-
alternating part of this algebra, regarded as a module over C[e,γ] = C[x,γ]Sn .

The equations of the universal family in (123) give us the description of the tau-
tological bundle B as a sheaf of algebras on Ux, from which we can get a description
of B⊗l. To make the variable names match the ones in R(n, l), we should replace
x, y with variables ai, bi standing for the generators of the i-th tensor factor in B⊗l.
In this notation, B⊗l is the sheaf associated to the C[e,γ]-algebra

(141) C[e,γ,a,b]/
l
∑

i=1

(bi − φγ(ai),
n
∏

j=1

(ai − xj)).

Note that the products
∏n
j=1(ai−xj) written here really only depend on a and the

elementary symmetric functions ei = ei(x).
The map ΨR(n, l) → B⊗l is now expressed in local coordinates as a homomor-

phism from

(142) (C[γ] ⊗C R(n, l)/(y − φγ(x)))ǫ

to the algebra in (141). The algebra C[γ] ⊗C R(n, l)/(y − φγ(x)) is generated by
the variables x,γ,a,b, all of which are Sn-invariant except x. It follows that all
its Sn-alternating elements are multiples of the Vandermonde determinant ∆(x)
by polynomials in γ,a,b and the elementary symmetric functions ei(x). Written
out explicitly, the homomorphism in question sends an element ∆(x)p(e,γ,a,b) to
p(e,γ,a,b). The division by ∆(x) here reflects the presence of the factor O(−1)
in the formula for ΨR(n, l). The space of global sections of O(1) on Xn can be
identified with the ideal J ⊆ C[x,y] generated by C[x,y]ǫ, in such a way that ∆(x)
represents the essentially unique section which vanishes nowhere on Ux.

Let us denote the above-described homomorphism by ξ. Since the algebra in
(141) is generated by the variables e,γ,a,b, it is clear that ξ is surjective. The
injectivity of ξ amounts to saying that the expressions bi−φγ(ai) and

∏n
j=1(ai−xj)

are annihilated by ∆(x) in C[γ] ⊗C R(n, l)/(y − φγ(x)). This condition is clearly



VANISHING THEOREMS AND CHARACTER FORMULAS 29

necessary, and it is sufficient since it makes multiplication by ∆(x) a well-defined
left inverse to ξ. The products

∏n
j=1(ai − xj) are zero in R(n, l) and thus present

no difficulty. The expressions bi − φγ(ai) are more subtle, as they do not vanish in
C[γ] ⊗C R(n, l)/(y − φγ(x)).

For x1, . . . , xn distinct, the Lagrange interpolation problem

(143) yj =
n−1
∑

k=0

βkx
k
j , 1 ≤ j ≤ n,

is solved by a formula giving the coefficients βk as rational functions of the form
βk = ∆k(x,y)/∆(x), where ∆k is a certain determinant involving the variables x,
y. Multiplying through by ∆(x) yields the identity of polynomials

(144) yj∆(x) =
n−1
∑

k=0

∆k(x,y)xkj , 1 ≤ j ≤ n.

On each component Wf of Z(n, l) we have ai = xf(i), bi = yf(i), and therefore

(145) bi∆(x) =

n−1
∑

k=0

∆k(x,y)aki , 1 ≤ i ≤ l.

Since these equations hold on every component of Z(n, l), they hold identically
in R(n, l). Similarly, for arbitrary values of the parameters γ, we may substitute
φγ(x) for y in (144) and then let xj = ai, to obtain the identity

(146) φγ(ai)∆(x) =
n−1
∑

k=0

∆k(x, φγ(x))aki , 1 ≤ i ≤ l,

valid when ai is equal to any of the xj . Again this holds on every component of
Z(n, l) and hence as an identity in R(n, l). Subtracting (146) from (145), we see
that ∆(x) annihilates bi − φγ(ai) in C[γ] ⊗C R(n, l)/(y − φγ(x)), which was the
only thing left to prove. �
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