KAHLER-RICCI SOLITONS ON COMPACT
COMPLEX MANIFOLDS WITH c¢;(M) > 0

Hual-DoNG Cao0, GANG Tiant?, & X1aonua Zuut

ABsTrACT. In this paper, we discuss the relation between the existence of Kahler-
Ricci solitons and certain functional associated to some complex Monge-Ampere
equation on compact complex manifolds with positive first Chern class. In partic-
ular, we obtain a strong inequality of Moser-Trudinger type on a compact complex
manifold admitting a Kéhler-Ricci soliton. Our result also improves the one obtained
in [Ti] and {TZ1].

0. Introduction.

In this paper, we study the existence of Kahler-Ricci solitons by using properness
of certain functionals. Our approach is similar to that of [Ti] for Kahler-Einstein
metrics. A Kahler metric g on a compact complex manifold M with first Chern
class ¢; (M) > 0 is called a (homothetically shrinking) Kéhler-Ricci soliton if there
is a holomorphic vector field X on M such that the Kahler form w, satisfies

Ric(wy) — wy = Lxwy,

where Ric(wy) denotes the Ricci form of wy, and Lx is the Lie derivative operator
along X. In particular, if X = 0, such a g is a Kahler-Einstein metric. So Kéhler-
Ricci solitons can be regarded as a generalization of Kahler-Einstein metrics of
positive scalar curvature. Ricci solitons have been studied extensively in the recent
years (cf. [Ko], [Ha], [C1], [C2], [Ti], [TZ2], [TZ3], [CH], etc.). One motivation is
that they are very closely related to the limiting singular behavior of solutions of
certain PDEs which arise from geometric analysis, such as Hamilton’s Ricci flow
([Ha]) and certain complex Monge-Ampeére equations associated to Kéahler-Einstein
metrics ([Ti]). Kéahler-Ricci solitons are special Ricci solitons. It was proved re-
cently in ([TZ3], [TZ4]) that there exists at most one Kahler-Ricci soliton on any
compact Kahler manifold with positive first Chern class, modulo holomorphic au-
tomorphisms. This extends Bando and Mabuchi’s theorem on the uniqueness of
Kéhler-Einstein metrics with positive scalar curvature ((BM]).
Let g be a Kahler metric on M with its Kahler form

—1
wg = o E gﬁdzi A dz;,
T
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representing ¢;(M). Then, by the Hodge theory, there is a smooth real-valued
function h, such that

Ric(wy) —wy = %thg.

Suppose that X is a holomorphic vector field on M so that the integral curve of
Im(X) consists of isometries of g. By the Hodge Decomposition Theorem, there is
a unique smooth real-valued function x = @x(wy) on M such that

{ 'ixwg = %5@){,
S wy = [ywg =V.
Set
1
Mix () = {6 € O=()] oy = w, + Y2689 > 0, Tm(X)(¥) = 0}.

The following functional on M x (wy) was introduced in [TZ4],

B @)= 2@~ [ ebruy —tost [ embup),

where
— ﬁ %)
ww = wg -+ ?aaﬁb,
and
T, (%)
—g n-l 1 1
= ny/—1 ZC,’:—I/ (/ / t(st)F(1 — st) 1k fxFX (W)t gs) (0.1)
27V = M Jo Jo

X 0% AOY Awlh Awp1E.

Let Ky be a maximal compact subgroup of the automorphism group of M such
that o-n = n-o for any n € Ky and any isometry o in the subgroup K x generated by
Im(X). Then a Kéhler-Ricci soliton with respect to X on M must be Kp-invariant
by the uniqueness theorem in [TZ3]. We introduce

Definition 0.1. The functional F‘wg is said to be proper with respect to some holo-
morphic vector field X on M if there is a monotone increasing function p(t) :
(a,+00) — R such that

lim;— 4o pt(t) = +00,
and

Fu, (%) 2 p(Lu, (¥)),

for any Ky-invariant function ¥ € Mx(w,), where
]' n
L) = [ e} -up)
It was essentially proved in [TZ4] that the properness of ﬁ‘wg is a sufficient con-

dition for the existence of Kahler-Ricci soliton, that is,
2



Theorem 0.1. Suppose that F, is proper with respect to a holomorphic vector field
X on M. Then there is a Kahler-Ricci soliton with respect to X on M.

The main purpose of this paper is to show that the properness of E, , is also a
necessary condition for the existence of Kahler-Ricci solitons (cf. Section 5). Sup-
pose that M admits a Kahler-Ricci soliton wgs with respect to some holomorphic
vector field X. We define a weighted inner product on C*°(M) by

(6,9) = /M petxxs)yn

and denote by
M(M,wks) ={u € C®°(M)| Aygsu+ X(u) = —u}.

Theorem 0.2. Let M be a compact complez manifold admitting a Kahler-Ricci
soliton wys with respect to some holomorphic vector field X and G(C Ky) a com-
pact subgroup of Aut(M) witho-n=n-0 for any o € Kx andn € G. Suppose that
any G-invariant smooth function on M is perpendicular to the space A(M,wks)
with respect to the weighted inner product defined above. Then there are two positive
numbers ¢ and C such that for any G-invariant ¥,

B s(¥) > cluys () 775 — C. (0.2)

In particular, F, xs 18 proper under the same assumption.

The inequality (0.2) is equivalent to the following non-linear inequality of Moser-
Trudinger type,

[ ks < CexplUuns () = sV = 7 [ duks). (03)
M M

The idea of our proof of Theorem 0.2 is inspired by [Ti] and [TZ1], where the
authors proved a fully non-linear inequality for Kéhler-Einstein manifolds. The
inequality (0.3) generalizes such an inequality in [Ti] and [TZ1]. A weak version of
(0.2) was obtained in [TZ4].

The organization of this paper is as follows. In Section 1, we give a proof of
Theorem 0.1 following [TZ4]. In Section 2, we give an estimate for certain heat
kernel on manifolds with modified positive Ricci curvature. In Section 3, a C°-
estimate for certain complex Monge-Ampére equations is obtained. In Section 4,
we prove a smoothing lemma by using Hamilton’s Ricci flow. Theorem 0.2 will be
proved in Section 5.

Acknowledgment. The third author would kke to thank Professor T. Mabuchi
for valuable discussions during his visit at Osaka University in the spring of 2001.

1. An Analytic Criterion for Kihler-Ricci Solitons.

Let (M, g) be an n-dimensional compact Kahler manifold with the first Chern
class c;(M) > 0. Denote by Aut®(M) the connected component of the automor-
phism group of M. Let K be a maximal compact subgroup of Aut®(M), then the
Chevalley decomposition allows us to write Aut®(M) as a semi-direct decomposition
([FM]),
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Aut® (M) = Aut,. (M) < R,,

where Aut,.(M) C Aut®°(M) is a reductive algebraic subgroup and the complexifi-
cation of K, and R, is the unipotent radical of Aut°(M). Let 1,.(M) be the Lie
subalgebra of Aut,(M).

Let X € n.(M) such that the one-parameter subgroup Kx generated by Im(X)
is contained in K, where Im(X) denotes the imaginary part of X. Choose a Kx-
invariant Kahler metric g on M with the Kahler form w,. Then by the Hodge
Decomposition Theorem, there is a smooth real-valued function §x = x(w,) of M

such that ixwy, = %50)(, and consequently,

. v=-1_=
Lxwy =dix(wy) = ?389;(.

We consider the following complex Monge-Ampére equations with parameter
t € [0,1]:

{ det(g;; + ¢;7) = det(g;z)exp{h — 0x — X(¢) — t¢} (1.1)

(9:7 + ¢i7) > 0,
where h = h,,, is a smooth real-valued function on M defined by
Ric(wg) —wg = %aéh
S ey = [y wg =V.

Here wg = wyA...Aw,y. Then one can check that wy = wg+——"2;135¢ is a Kahler-Ricci
soliton with respect to X, i.e., wgy satisfies

RiC(W¢) —We = wa¢,

if and only if ¢ is a solution of equations (1.1); for ¢ = 1. In fact, (1.1); is equivalent
to

Ric(w¢t) - Lx (w¢t) = twg, + (1- t)wy’ (1'2)

where ¢; is a solution of (1.1);. Furthermore, we can normalize 8x by

Ox, n __ n _
eXw = wt=V. 1.3
fei= [ @3)

Since
d . -
2;(/1” eox+x(¢t)w$t) = /M(A'qbt +X(¢t))e9x+X(¢t)wzt —o,
then by (1.3), we have

[ exrxeig = [ exup—v.
M M

Integrating (1.1); after multiplied by e®*+X(9) it follows
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/ eh—t¢‘w3 =V
M

Therefore, differentiating the above identities, we get

1 Jh—tdy n 1 —tds,
/M ¢teh " We = Tt /M ¢teh “ We - (1.4)
Set
=1 —
M(wg) ={¢ € C®(M)| wp = wy + ?3&;5 > 0}.
and

Mx (wg) = {¢ € M(w,))| Im(X)(¢) = 0}.
In [TZ3], the following two functionals on M x (w,) were introduced:
L@ = [ oetuy —etxtxOup)
and .
Jun(8) = % /0 /M Ga(e8X el — IXHXOGILE Y A ds, (1.5)

where ¢, is a path from 0 to ¢ in M x(w,). It is proved in [TZ3] that there are two
uniform positive constants ¢; and ¢ such that

e1ly(9) < 1u(8) — Ju(9) < cal, (9), (1.6)

where I, (¢) = & [;; ¢(w? wj).
Let

By ()= T (@)= [ s

I
= _7/ / ¢369x+X(¢s)wzs Ads.
0 JM

By simple computations, one can show that for any two functions ¢ and % in
Mx (wy), the following co-cycle condition is satisfied,

ng('(/)) = ﬁw9(¢) + F¢(¢);

where Fy(y) = —& 01 T c]-Sste(””'x(d’s)(u(";s A ds and ¢, is a path from ¢ to ¢ in
Mx(wg).

Proposition 1.1. Let ¢; be a solution of (1.1), for s =t. Then
N 1 [/t . -
B, (00 = = [ () = Juy (605

Proof. Differentiating (1.1); with respect to ¢, we have
5



A'gy + X (§s) = —(tds + 60). (1.7)
Then by using (1.7) and (1.4), we get

d -~ ~
E(Iwg (¢t) - Jw9(¢t))

1 d
_ - d,ta(eex-!-x((i’t)wzt)

=7 [ 88+ X)X,
= %/M ¢4 (b, + pr)e?x tX g
S 1] il aae g

— [ ooy v g [ gy

f t, N
tth(/ ~go)el T up)

x { :) n
tth(/ H(—pe)elx HX@p ).

It follows

O (6T (80) = Juy (8)) = (L, (80) — Juy (90))
1 d X\Pt n
= V&(/M t(—¢e)e?xPui ),

and consequently,
. 1 - -
By =~ [ 854500 — (L, (8) - ., ()

1t .
= _ZL (I‘Ug (#s) — Jwg(¢s)ds'

O
Recall that the functional F, , is defined as

- N 1
B, (8) = Fu, ()~ log(gs [ eh%up)
= 1 1
=5, - 3 [ wetsup —tog(y; [ evap)

and F, , is called proper with respect to some holomorphic vector field X on M if
there is a monotone increasing function u(t) : (a,+00) — R such that

limg s 4 oo pa(t) = +o00,

and



ng (¥) = Cl/—‘(Iwg (¥)) — C2

for any Ko-invariant function 1, where Ko(2 Kx) is a maximal compact subgroup
of automorphism group Aut(M) such that o-n = 7-0 for any 0 € Kx and n € K.

Proof of Theorem 0.1. Assuming the functional F,, , is proper, we shall prove the
exsitence of a Kéahler-Ricci soliton with respect to X on M. This is equivelant to
prove that there is a solution of (1.1); for ¢ = 1. It suffices to prove that I, (¢:)
is uniformly bounded for any solution of (1.1); for 0 < ¢ < 1. This is because
C3-norm of ¢, can be uniformly bounded by I, (¢:) (cf. [TZ3], [Ya]). By the
Implicit Function Theorem, one can show the solution of (1.1); varies smoothly
with ¢ < 1. Without the loss of generality, we may assume that the Kahler form
wgy is Go-invariant, where Go(2 Kp) is a maximal compact subgroup of Aut(M).
Then solutions ¢; are all K¢-invariant.
By Proposition 1.1, we have

Fw9(¢t)

1 t - 1 - n
- /0 Ty (85) = Fo, (90))ds  log(5; /M s b (1.9)
< _log(%/M eh_¢‘w;).

On the other hand, by using (1.1); and concavity of the logarithmic function, one
can deduce

1 1-—¢
_.log(v /M e"“ﬁ'w;‘) = /M¢,teﬂx+X(¢:)wgt

1-t¢

(1.10)
h—
< Vv /M Gre t""w;‘ <C.

Combining (1.9) and (1.10), we get

ﬁ'wg (¢t) < C.

Therefore, the assumption of properness on ﬁ’ug implies

Iwg (¢t) S C,

and consequently, there is a Kahler-Ricci soliton metric on M with respect to X. [

2. A Heat Kernel Estimate.

In this section, we give an estimate on the heat kernel of the linear elliptic oper-
ator P = P,, = A + Re(X(.)) associated to a Kahler form w and a a holomorphic
vector field X on M. As a consequence, we derive a lower bound of the Green
function of P. The method here follows that of T. Mabuchi in [M1] with modifica-
tions which in turn is inspired by Li-Yau [LY]. Note that P is a self-adjoint elliptic
operator acting on C*®° (M) with respect to the inner product,

(6,9) = /M dpetx o,
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Lemma 2.1. Let w be a Kdhler form on M and X a holomorphic vector field on
M with
Ric(w) — Lxw > 0,

and
A9)( < ka

for some positive number k. Let v(z,t) be a positive smooth solution on M x (0, c0)

of equation (P — %)v = 0. Suppose that

lim sup t(v™2 < 8v,0v > —v~lyy) < 2n,
t—0 Mx{t}

where v; = %. Then there is a positive number C depending only on

my = ——mﬁxﬂx and mg = —n}vilnﬂx
such that
to.n _ _
v(z,t) < v(y,tz)(i)fezp{(tz —t1) " 'r(x,y)?/2+ Ck(t2 — t1)}, (2.1)

where r(z,y) denotes the distance between x and y associate to metric w.

Proof. Let f =Inv and ' = ¢(< 8f,8f > —f;). Then

PFE +tPf,

= t(< tr,(VV)3f,8f > + < tr,(VV)df,8f > (2.2)

+Re(X(< 8f,8f >)) + |[VVFI? + [VVF|?).
For simplicity, we choose a local holomorphic coordinate system (zi, ..., 2,) near
each point p such that g;z(p) = 6,7 and f;3(p) = 6;7f;;(p). By a direct computation,
one sees,

fifij7 = i(fi5 + fiRy),
fifij7 = fif55

and
X;(fi )i + FFiX5:

= filX5£i); + F(X555)-

Inserting the above indentities into (2.2), we obtain

PF > t(< 8f,8(Pf) > + < 8(Pf),0f >) —tPf, + %(Af)2
(2.3)
— 2tRe < O(PS),8f > —tPf, + %(Af)z

Since

Pf—fi=—<98f,8f >,
8



we have

F=—tPf,
and 5 3
—F - ZF = —tPf,.
ot~ t L
Hence by (2.3), we get
(P~ O)F
¢ L1 (2.4)
> —2Re < OF,0f > —‘t'F+ ;(;F + Re(Xf))2
As in [M1], we define a monotone-increasing function 7 on [my, mz] by
©=ep [ 7y
n(s)=exp | oW
where by = €™2(1 + n). Then 7 is a solution of the ODE on [my,ms)],
,’7” TI, 77[
T T —aly
non 7
Moreover, one can check that the number C defined by
C= min n(s)" (1~ (1-n(s)" n(s)'n)?)
SE[ml ,mz]
is positive, and
!
0<L< l
n " n
Let F = n(—0x)F. Then by (2.4), one can show that
0
(P - E)F
> —2Re < OF,0f > —%F
n' m \2 2
+ (- L oy x|12F
( 7 ( - )X
Ly (—=2Re(XF) — FAOx)
+n % R (1 - (1 - 7 ig'n)?)
+ n(——n‘lF( n'n')? — Re(X f))%.
By the assumption in the lemma, we have
(P — —(,?—)F > —2Re < 8F,8f > —2n~'n'Re(X (F))
t (2.5)

1 k C .
—(z+;)F+EF.
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Applying the Maximal Principle for the function F'(z,t) on M x (0,T], we get
from (2.5),

F(z,t) < C7Y(2n + kt),
for any (z,t) € M x (0,T], and consequently,
(e, < Bule, 1), Bu(a, £) > —v(z, ) le 1) < O +),

for any (z,t) € M x (0,00). Now by integrating the above estimate as in [LY], we
can immediately obtain (2.1). O

Let H = H(z,y,t) be a fundamental solution on M x M X [0, co0) of equation
(P - g)v(x t)=0 (2.6)
Bt ' Ys Y .
i.e. H is a smooth solution of (2.6) satisfying

H(z,y.t) = H(y, z,1),
H(z,y,t)= [, H(z,z,t — s)H(z, y.8)exw™
lim; 0 H(z,y,t) = 62(y)-

By using the asymptotic behaviour of H, for each fixed x € M, one sees

lim sup ¢(H 2 < 8H(z,.,t),0H(z,.,t) > ~H 'H;) < 2n.
t—0 Mx{t}

Moreover, by using an argument in [LY] and Lemma 3.2, we can deduce

Lemma 2.2. Let Z; and Zy be two measurable subset of M. Let T, 4, be three
positive numbers with T < (1 + 26)T. For each z,y € M and 0 <t < 7, denote

Fypr(y,t) = / H(y,., ) H(z, , T)e’ w™.
Z1

Then

—T($,Z1)2 R(IL', Zz)z
21 +20)T | 2(1+20)T — 2t

/ For(.,8)2ef%w™ < exp{ P2z, T),  (2.7)
Za

where r(z, Z1) = inf,ez, 7(z, 2) and R(z, Z3) = sup,cz, r(z, 2).
Proposition 2.1. Let H(z,y,t) be a fundamental solution on M x M x [0,c0) of
equation (2.6). Suppose

Ric(w) — Lxw > 0,

and

A6y <K,

for some positive number k. Then we have
10



vol( Bz (v/2)) 5 vol( By (V)% H (z, y,t)

{’f‘(.’l:,y) - \/z}?l-
4t(1+ 36 + 202)

3 1

-1 s =
+t8(2+80)C k+ BAT0) + 25},

< (1 + 6)*/C eap{—

where vol(By (/1)) = fo(\/z) e*xwn, and {r(z,y) — Vt}+ = max{0,r(z,y) — vt}.

Proof. First applying Lemma 2.1 to the function F, r(y,t) with (¢1,t2) = (T,7 =
(14 6)T'), we have
For(z,T) < For(y, 7)1+ 8)>/C exp{T 16" r(z,y)?/2 + C~kT6}. (2.8)

Let Z; = By(\/f) and Z; = By(v/t). Then integrating the square of the above
inequality over all y € Z; and using (2.8) and Lemma 2.2, it follows

VOl(Bm(\/Z))Fz,T(wa T)2

< (14 8)*/C exp{2_(71‘(_17_—’2%51));1 +2C71kTS + %}FZ,T(:(:,T),
and consequently,
vol( B (v)) /Z H(z, ., T)?e*wm
= V01(Bm(\/z_f))1Fz,T(fv, T) (2.9)
< (1+8)4n/C exp{% +2C7YkT6 + %}.

On the other hand, applying Lemma 2.1 to the function H(z,zt) in z with
(t1,t2) = (t,T = (1 + 8)t), we have for any z,y,2 € M,

H(z,y,t)? < (14 8)*™CH(z,2,T)? exp{T 16 r(y, 2)% + 2C1kT6}.

Integrating this inequality over all z € Z;, and using (2.9), we can get (2.7). O
Theorem 2.1. Let ¢ € Mx(w). Suppose that

RiC(W¢) - wa¢ > /\Ld¢, (2.10)

and
ANOx (wy) < k,

for some positive numbers A and k. Then there is a uniform constant C depending
only on A and k such that

sup(~¢) < % /M (~)efx @)y + C. (2.11)
11



Proof. Let u;{up = 0),7 = 0,1,.., be the increasing sequence of eingenvalues of
operator —P associated to metric wy. Then by using the standard Bochner tech-
nique, one can obtain gy > A (cf. [TZ3]). Let G(z,y) be the Green function with
[ Gz, .)ea"(“’**)wg = 0 associated to operator P. Then

6w = [ (HawH-

Since

Ho(z,3,8) = H(z,3,8) = 72 = > e ™ fi(2)fily),
=1
we have

Ho(z,z,t +to) < e ¥ Ho(z, z, o), (2.12)

for any to,t > 0, where f;(z) denote the eigenfunctions of p,;.
In [M2], it was proved under the condition (2.10) that there is a uniform constant
4 such that

Diam(M,wg) < 9—1—

vA

Choose to = ;Diam(M,wy)?. Then by Proposition 2.1 we have

H0($7w7t0) S 027 (213)

for some unifoerm constant Co depending only on A and k.
By using (2.12) and (2.13), we get

to (%)
Glaw) 2 = [ gt = [ e Ha(a,a,t0) Holy, vy o)) et
0

to
> —Cs.

Therefore applying the Green formula to function —¢, together with the fact (cf.
(Zh}),

sup |X(¢)|<c (2.14)
Mx (wg)

for some uniform constant ¢ = c¢(wy, X'), we prove
1 / Ox(wg), n
sup(—¢) = = —@)e *w
MP( ¢) Vv M( ) ¢
+ sup / P($())G(z, )e"x @o)yn
M JM
1
< V/ (—-gb)eo"(""”)wg + V(n+ sup | X(¢)(x)|)Cs
M zEM

1 Ox (w n
< —‘;/M(—¢)e ( ¢)w¢ +C.
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3. An C%-Estimate for Solutions of (1.1);.

Lemma 3.1. There are two positive numbers ¢; and ca < 1 such that for any

¢ S MX(wg)J
c1fuy (8) < 10, (8) = Ty () < 2l (). (3.1)
Proof. Let weg =w + 55— ‘/_63¢ Then one can compute

Loy (9)
1
= %f ¢/ dis(e‘g*""”X(‘i’)w;1 )Ads

Ox+sX(4) 5 n—L1
27rV_/ /6¢A6¢e A wgg

— 2 = Z K 1/ (/ s)n—l—ke0x+sX(¢)ds)
0

><c9¢/\3¢/\w¢/\w;’ 1k

(3.2)

n—1
ny—1 k 3 E A n-1-k
<S5 Clkz_OCn_lagb/\3¢/\w¢/\wy .

and

J"wg (9)

— 9x+stx(¢)
27rV / dt/ / td¢ A Ogpe ANwhy,

= Z oy / / Hst)H(1 - st)* Ik X d A ds) (35

x6¢/\8¢/\w¢/\w“ 1-k

) k n—1—-k
> 27rV Clz _10¢ ABPAWE AW .
Combining (3.2) and (3.3), we get

3 ol -
Ju(9) 2 C—lfw(d)),

and consequently, prove the second inequality of (3.1).
On the other hand, we have (cf. [TZ3]),

fwg (45) - ng (¢)
27TV Z k_ 1/ (/ k+1(1 S)n 1—k 0x+sX(¢)ds)

6¢/\6¢/\w /\w" 1=k

(3.4)

> 27rV Z 18¢/\5¢/\w¢’;/\w;"1'k.
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Hence, combining (3.2) and (3.4), we also prove the first inequality of (3.1) . O

Proposition 3.1. Let ¢ = ¢4(t > to) be a solution of equation (1.1);. Then there
are two uniform constants C; and Cy depending only on X and ty such that

oseard < Oy /M Bl — W) + C. (3.5)

Proof. Let 0%y = 0x(wy). First we note

Ay = =% — X (hu,) + ¢,

for some constant ¢. Clearly ¢ < oscpr|f%|, since 6% changes the sign. By using
the fact (cf. (1.2)),

ho, = 0% — (1 —t)¢ + const.,
we have

Ay = —0% — || X |lw, + (1 =) X($) + ¢
< 20scum|bx| + 31X ()] < Cy,

for some uniform constant C]. Applying Theorem 2.1, we see that there is some
uniform constant Cj depending only on X and ¢o such that

1 ’ /
sup(=0) < 3 [ (9)etsug +Cy (36)

On the other hand, by using the Green formula, we have (cf. [TZ4]),

supp < 7 [ gt un 4G, (3.7)
M VJu

for some uniform constant Cj. Hence, combing (3.6) and (3.7), we get

1 /
oscp¢ < v / p(e?*w™ — e?xwh) + Cy + Ci.
M

By using (1.6) and (3.1), one can prove (3.5). O

Remark 3.1. Proposition 3.1 improves our previous result about C°-estimate for
equations (1.1); obtained in [TZ3].

4. A Smoothing Lemma.

In this section, we prove a smoothing lemma by using Hamilton’s Ricci flow.
This lemma will be used in the proof of Theorem 0.2. Let w be any Kahler form in
c1(M) > 0 such that

{ Ric(w) = Lxw > (1 — €)w (a1)
| X (hy — 0x (w))] £ eca, '
for some constant ¢; and 0 < € < 1. We consider the heat equation
u +%=L85u)"
{ gu — log(LH222) - u — hy + x(w), (4.2)
’U,lt=0 =0.
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Note that Eq. (4.2) is the scalar version of the modified Kahler-Ricci flow

0
Y= —Ric(wt) + wi + Lxws.

Here wy = w + %a@‘ut, and u; = u(z,-). Denote by h; = h,, and 6; = Ox(w;),
then it follows from the above equation and maximum principle that

Ou
ht—Bt —§+ct

where ¢; depends on ¢ only. Also, ug = 0 and hence é; = 0.
We list a few basic estimates for the solution u(z,t). Differentiating (4.2), we
get

0  Ou ou
28 =2+ (2, (43)

Applying the maximum principle, we have

Lemma 4.1. Let u; be a solution of (4.2). Then

lutllco < €*llhw — 8x (w)llco,

and

Il IIc0 < €'[|hw — x (W)llco.

Lemma 4.2.

(A4 X)(hy — 6;) > —(c1 + n)ee’.
Proof. From Eq.(4.4), we have

;] ou 5, 0U Ou 2
5 (A +X)(5)) = (A + X))+ (A+ X)(5; IVV( )I
3u

<@+ 7+ x3).

It follows from the maximum principle that
(A +X)(he — 0) > et imf(A + X)(hy — 0x(w)).
On the other hand, (4.1) implies that, at ¢t = 0,

(A + X)(hw — ex(w)) > —(C1 +n)e
Then the lemma follows directly. O
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Lemma 4.3.

I3 UIlco+t||V( “)”cv < e*llhw — 0x (W)l[go-

Proof. By direct computations, we have

0 Ou,, ou .,
2 &=+ Gy - VG + 2,
and
0 ou ., o
a(lv(aﬂ )
= @+ XV - vy G - T TP + 1V e
Hence

0  Ou 2 Ou. o
S (G + V(S

ou ou ou ou
<(A+X)(=)? )2 2 2y
<A+ X)(SP UV + 25 + UV (P)
Lemma 4.3 follows from the maximum principle again. [

Set

1
v = h1 — 01 e, —/ (hl = 01)691w1".
14 M
Lemma 4.4.

2(cy +n)e?V
ol < 2AEDEY g, — o (@)oo

Proof. By Lemma 4.2, we have

(A+ X)v+ (c1 +n)ee > 0.

It follows

/ I(A + X)v+ (1 + n)ee|ePwi™ = / (A + X)v + (cy + n)ee)e? w, ™
M M
= (c1 + n)eeV.

Hence, by applying the Poincaré inequality and Lemma 4.1, we have
16



A1 20, n_ 1 / 2 6, n
'3 < - 1
V/M|v| etw" < M|Vv|e W]
-1 / (~0)(A + X)vettwy"
Viu
= l/ (—0)[(A + X)v + cree)e? w; ™
Vim

1
< Lillce f (A + X)v + (c1 + n)ee)eliny
M
< 262(61 + n)e|lh, — Ox (w)]|co.
This shows the lemma is true. O

Lemma 4.5. We have

lollce < O, 10, X)(1 + || = x (@)l co )T, (4.4)

provided that the following condition holds: there ezxists a constant a > 0 such that
foranyzo e M and 0 <r<1,

vol( By (zp)) > ar®™ (4.5)
with respect to the metric w,.

Proof. Pick r = €70 and cover M by geodesic balls of radius r. For any z € M,
we have r € B,.(zq) for some zqg € M. Now

1
inf [o]2eRT < —/ vZel o
Br(zo) @ JB,.(xo)

2(cy + n)e2V?
< Kt meV o 0x(w)co.
CLAl

Hence

1 1
S2E 0] < C(m 01,0, 2)6%59 ||y — 0x ()]G
r{&o

Assuming infg 5y |v| = v(zy), then
|v(2)| < [v(z) — v(zo)| +v(ze) < 7 sup, Vo] + v()
r(To
1 1
< ellhu = 0x (@) lloo €T + CeTm T ||hy, — 6x (@)]1E0
< C'(1 + ||he — 8x (w)]| o )T
This finishes the proof of Lemma 4.5. O

Proposition 4.1 (Smoothing Lemma). Let w € ¢;(M) > 0 be any Kdhler
metric satisfying (4.1). Then there is another Kiher form o' = w + %aéu such
that

(1) llullge < ellhy —Ox (W)l
17



(2) ||h’—9’||c,} < C(n,e,aqa, /\1)(1+||hw—0x(w)||co)e4("£+1), where C(n, c1,a, A1)
is a constant depending only on the dimension n, the Poincare constant Ay, con-
stants ¢; and a appeared in (4.5).

Proof. We shall prove that w, satisfies the above two conditions of the proposition
under the assumption (4.5). By Lemma 4.1, it suffices to check the second condition
only.

Since

1 gt
= [ e =1,
Viu

by (4.4) in Lemma 4.5, we have

I = 8'llgo < C(n, c1, 8, M)(1 + ||y — Ox ()] o)™ (4.6)

For any two points z,y in M, if the distance d(z,y) < ¢TnFD) , then Lemma 4.3
implies that |V(h' — 8')| < e||hy — 0x(w)||ce and hence

(' —6')(z) - (b — )W)}

Vd(z,y)

On the other hand, if d(z,y) > 70 then (4.6) implies that

el|hw — Ox (w)]|coe ™D

(' — 8")(z) - (B — 8")(¥)|
d(z,y)

< C(n,e1,a,A1)(1+ |y — Ox ()| go)e T

This completes the proof of Proposition 4.1. O

5. Properness of F,,(1).
We are now ready to prove Theorem 0.2 stated in the introduction.

Proof of Theorem 0.2. Without the loss of generality, we may assume that the
Kahler-Ricci soliton ggg is Ko(2 K)-invariant ([TZ3]). Let wgg be the Kahler
form of gxs and wy = wy = wgs + %651/). We consider the complex Monge-
Ampeére equations with parameter ¢ € [0, 1]:

{ det(gﬁ + ‘Pi}) = det(gi;)exp{hg —0x — X(p) — tp} (5.1)

(95 +¢i3) >0,

Clearly, —1 + const. is a solution of (5.1); for ¢ = 1. Since 9 is G-invariant, by the
Implicit Function Theorem, there are G-invariant solutions of (5.1); for ¢ sufficiently
close to 1. In fact, in [TZ3], it is proved that there are G-invariant solutions of
(5.1); for any ¢ € [0,1]. This is because I, (p;) — J, (¢:) is nondecreasing in ¢, and
consequently the C3-norm of ¢; can be uniformly bounded.

Put w; = w, + %65%. Then w; = wgs. Moreover, by (1.2), we have

{ hu, = Ox (we) = —(1 = )t + ¢4,
Ric(wt) — Lx(we) = twy + (1 — t)w > twy,

where ¢; is determined by
18



/ e~(-terten
M
In particular,

leel < (1 = Bllpellcos Nhw, — Ox (we)llce < 2(1 = Hllpellco,

and
| X (hw, — 6x(we))] = |(1 — )X (1)

< A= )(1X (0 — o1)| + [X(W)]) < (1 - t)ar(wks, X)
Hence by applying Proposition 4.1 to each w;, we obtain a Kéahler form w; =
wy + gagut satisfying
llutllce < 2e(1 = t)lptllco,
1
Ihwill o3 < C(msye1,0, M) (14 [[(1 = el o) (1 — £) D).
As before, there are ¢; such that wxs = wj + %85@ and
W?(S — (wé)nehu;“gx(wé)_x("pt)_'pt

It follows from the maximum principle that

Pt = 1 — Pr + i, (5.2)

where p; are constants with

el < 2(e + 1)(1 = t)ll¢ellco + e1(wks, X). (5.3)

Hence, ¢; is uniformly equivalent to ¢; as long as 1 is uniformly bounded. Consider
the operator @, : C>7 (M) — C%% by

— Y=158)"
(s = 2w O Ly ) - X -
KS

() = log

Its linearization at t = 0 is (—A — 1 — X(+)), so it is invertiable in the space of

G-invariant functions by the assumption of Theorem 0.2. Then by the Implicit

Function Theorem, there is a 4 > 0, such that if the Hélder norm ”h“’illc% (wxs)
KS

with respect to wig is less than &, then there is a unique 9 such that ®;(¢) =0
and [[9l] .3 < C(0)
We observe that

e 1
A1,(.:.1’ .>_ 2 " 1A1,u1{s) a Z ﬁa())

whenever %wKs < w' € 2wkg, where a is a constant appeared in (4.5) and aq is a
constant such that

agr®™ < vol,,.s(B.(z)), V& € M.
19



Now we choose to such that (1 —to) < (42~ )4("+1) and

1 0
(1 = to)llptllgo (1 — o) *»FD) = 1cy’ (5.4)

where Cy = Cy(n, ¢y, Zz%ao, 27"=1\; ,xs)- Then by Proposition 4.1, one can prove
that for any ¢ > tg, we have

1
lulice < 2e(1 —&)lletllco, lgelloo < -
Therefore, by using (5.2) and (5.3), we get
ller = pillce < 6e(1 = t)li@elico + 2e1, (5.5)

and .
§||<P1||c° —cz < |letlleo < 2||1lleo + ca, (5.6)

for some uniform constants ¢; and ¢g, as longas 1 — ¢ < min{ﬁ, 1 —t5}.
Since I(y;) — J(i¢) is nondecreasing, by (5.5), we have

~wxs(¢) = _ng((pl)

/ (L, (00) = o, (i00))dt

(1- t)(Iwg (pe) — Jwg ()
2 01(1 =)L, (pt)
> Ci(1— t)Jwg(‘Pt)
> C‘( - t)J (p1) — C1(1 — t)oscar (s — p1)

>0y Iwg(‘Pl) 8eC1(1—t)*|le1llco — Co

(5.7)

= Cl wKs ('Iﬁ) 8601(1 - t)ZOSCM’(I} - Cz.

In case

OSCM'l,b S C,(l + IwKE('!nb))

for some uniform constant C’, then by using (5.4) and (5.6), we see that there are
two positive numbers C§ and C} such that

Fogs(®) > CiLys (9) ™5 — Cp, (5.8)

and consequently this would prove the theorem.
In the general case, we shall use a trick in [TZ1]. First by Proposition 3.1, we
have for any £ > %

oscar(ds — ¢1) < C"(1 4 Lugs(d: — 61)).

Set ¥’ = ¢y — ¢1. Then by (5.8), we get
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ng (¢:) — Fug(¢1) = was (¢I)

. (5.9)
2 C'E"l-wxs(")b’)m - C4-

On the other hand, by integrating (1.6) from ¢ to 1, we have

F,,(81) — F,(¢¢)
1 = 1
2 JWg $1) — v fM (1’1“36)(“’;;1 - t(JUJg (&) — v /M ¢te""w3)

—(1 - t)(ng((bl) - jwy (¢1))
—Cs(1 - t)Iwg (1) = ~Cs(1 - t)IwKs (%)

By using the concavity of the logarithmic function and (3.6), we also have,

(5.10)

v v

1 - 1-—-+¢ '
od [ ey <12 [ gt

(5.11)
< —

sup(—¢¢) + Cs < Ce.
M
Hence combining (5.10) and (5.11), we get

Fouy(¢1) — Fuy(61) € Os(1 — t) L5 (4) + Ce. (5.12)
iFrom (5.9) and (5.12), we deduce

(1= s () 2 csoscar(de = 1) ™7 — s,
Then as in (5.7), we prove (cf. [TZ1]),

1-t¢

Foyres () > C1—1I, s (%) — C1(1 — t)oscar (s — 1)
1 _

2 C1mLues () = Co(L = (S5 V™ 5((L = s () + )™

> c-[wxs("vb)ﬁ -C,
(5.13)
for some small positive number ¢ and large number C. Thus Theorem 0.2 is
proved. O

Remark 5.1. By (1.6) and (3.1), we see that the inequality (5.13) is equivalent to
the following non-linear inequality of Moser- Trudinger type,

- . L1 .
/ e ulks < CorplTns () — cums ()5 — & / s}
M V M

for some positive numbers ¢ and C. The inequality of this type was first obtained
in [Ti] and [TZ1] on Kdhler-Einstein manifolds with positive scalar curvature. In-
equality (5.13) improves the result in those two papers. A weak version of (5.13)
was obtained in [TZ4].
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Remark 5.2. It seems that Theorem 0.2 can be improved as follows:

FWKS(¢) 2 CIwKs("p)ﬁ -C

holds for any v € A (M,wks)*. In the proof of Theorem 0.2, we used a technical
assumption on subgroup G(C Ky) in order to apply the Implicit Theorem. We
also notice from Theorem 0.2 that (5.13) holds for any almost plurisubharmonic
function on a Kdhler-Einstein manifold without any nontriviel holomorphic vector

field.
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